TW201100558A - Method of forming metal nanostructure using ionic liquid - Google Patents

Method of forming metal nanostructure using ionic liquid Download PDF

Info

Publication number
TW201100558A
TW201100558A TW099110948A TW99110948A TW201100558A TW 201100558 A TW201100558 A TW 201100558A TW 099110948 A TW099110948 A TW 099110948A TW 99110948 A TW99110948 A TW 99110948A TW 201100558 A TW201100558 A TW 201100558A
Authority
TW
Taiwan
Prior art keywords
metal
ionic liquid
anion
chemical formula
nanostructure
Prior art date
Application number
TW099110948A
Other languages
Chinese (zh)
Inventor
Kwang-Suck Suh
Jong-Eun Kim
Tae-Young Kim
Original Assignee
Kwang-Suck Suh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwang-Suck Suh filed Critical Kwang-Suck Suh
Publication of TW201100558A publication Critical patent/TW201100558A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention provides a method of forming metal nanostructures, and, more particularly, to a method of uniformly forming various shapes of nanostructures, such as cubic or octahedral nanoparticles, nanowires and the like, using ionic liquid in a polyol reduction reaction in which metal salts are used as precursors.

Description

201100558 六、發明說明: 【發明所屬之技術領域】 ^發明係關於-種產生金屬奈米結構的方法,尤其係關於一 ΐί二ί醇還原反應(於其中金屬鹽被使用作為前驅物)中使用離 ^夜體^勻產生各種形狀之奈米結構(例如立方贼人面體 顆粒、奈米線等等)的方法。 Τ 【先前技術】 ϊί ’已積極進行金屬奈米顆粒合成的研究,以便將其應用 〇 Ϊ手面ΐ示器、觸控式面板、太陽能電池等等。由於這些金屬奈 i顆ί實際/上可用以製造透明電極、導電油墨(eGnductive ink)等 I扈太^必須發展出可大1生產金屬奈米顆粒的技術。又,由於 ^屬奈米顆粒的形狀係影響材料特性(例如導·料)的重要因 素’戶=亦必須發展出可自由控制金屬奈米顆粒之形狀的技術。 * 文(chem.Mater.14,4736_4745)中報導一種用以產 1不未了構的技術’於其中,當例如聚乙稀吡咯烷酮咖 =0 1 等的化合物與例如乙二醇(ethyleneglycol)等等的多 劑7同使用時’線狀金屬奈米結構被產生。此種 〇二糾日兀醇還原法」。此種多元醇還原法係有助於極易產 太=㈣合^米結構。然而,使用多元醇還原法所產生的金屬 S壯ΐΐΐ列問題:雖然其大部分具有線狀,但仍會混合各 而▲現:w 、以生產金屬奈米結構,以使其形狀依照反應條件 地控=屬奈米結構方面,必須發展出可均勻且自由 的技術、。屬不未&quot;構形狀(例如線狀、立方體狀、八面體狀等等) 【發明内容】 技術問題 於是,作成本發明以解決上述問題,而本發明之一目的在於 201100558 用Ϊ日自由且均勻Μ生各獅狀之金屬奈米 體狀、各獅狀的金屬奈米結構(例如線狀、立方 待,由本發明?達成之目的並不限於上述目的,以及其 的可被熟f本項技藝者藉细下綱*清楚瞭解。 ’、 技術方案 屬太ΐΙϊϊΐί U發明提供一種用以產生各種形狀之金 及還原溶劑’⑽成-混合物;以及使此混合金屬』 鲍工方法巾’金屬奈米結構的形狀可由構成麟子液體之陽 離子與陰離子之間的化學鍵結加以決定。 又,在此方法中,包含一維、二維、以及二維 之各種形⑽金屬奈綠構,簡域料翻構 在本發明中,金屬奈米結構的形狀可藉由在多元醇還原反應 (於/、中金屬鹽被使用作為别驅物)中改變離子液體的陰離子成分 而變化。 亦即,各種形狀的金屬奈米結構可藉由改變離子液體之陰離 子的種類而產生。 β 金屬鹽係由金屬陽離子與有機或無機陰離子所構成。本發明 之金屬鹽的範例可包含但不限於:AgN03、Ag(al3ax))&quot;2、201100558 VI. Description of the invention: [Technical field to which the invention pertains] ^The invention relates to a method for producing a metal nanostructure, in particular to a reduction reaction of a ruthenium glycol (in which a metal salt is used as a precursor) A method of producing nanostructures of various shapes (for example, cubic thief human face particles, nanowires, etc.) from the night body. Τ 【Prior Art】 ϊί ’ has been actively researching the synthesis of metallic nanoparticles to apply it to hand-held displays, touch panels, solar cells, and more. Since these metals can be used practically to manufacture transparent electrodes, conductive inks, etc., it is necessary to develop a technique for producing large-sized metal nanoparticles. Further, since the shape of the nanoparticle is an important factor affecting the material properties (e.g., the material), it is necessary to develop a technique capable of freely controlling the shape of the metal nanoparticle. * (Chem. Mater. 14, 4736_4745) reports a technique for producing a structure in which, for example, a compound such as polyvinylpyrrolidone = 1 1 and a compound such as ethyleneglycol, etc. When a plurality of agents 7 are used together, a linear metal nanostructure is produced. This kind of 〇2 纠 兀 兀 还原 reduction method. This polyol reduction method contributes to the extremely easy production of too = (four) combined rice structure. However, the problem of the metal S-strong column produced by the polyol reduction method is that although most of them have a linear shape, they are mixed with each other, and now: w, to produce a metal nanostructure, so that its shape conforms to the reaction conditions. Ground control = in terms of nanostructure, it is necessary to develop a uniform and free technology. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; And uniformly bred each lion-like metal nano-body shape, each lion-like metal nanostructure (for example, linear, cubic, by the present invention? The purpose achieved is not limited to the above purpose, and its can be cooked The craftsman knows clearly by subscribing to the following. ', the technical solution is too ΐΙϊϊΐ ί U invention provides a kind of gold and reducing solvent used to produce various shapes '(10) into-mixture; and make this mixed metal 』 The shape of the rice structure can be determined by the chemical bond between the cation and the anion constituting the liquid of the lining. In addition, in this method, the one-dimensional, two-dimensional, and two-dimensional various shapes (10) metal naphthalene structure, simple domain material are included. In the present invention, the shape of the metal nanostructure can be changed by changing the anion of the ionic liquid in the polyol reduction reaction (the / metal salt is used as a precursor). That is, various shapes of the metal nanostructure can be produced by changing the kind of anion of the ionic liquid. The beta metal salt is composed of a metal cation and an organic or inorganic anion. Examples of the metal salt of the present invention may include But not limited to: AgN03, Ag(al3ax))&quot;2

AgC104、Au(C104)3、PdCl2、NaPdCl4、PtCl2、SnCl4、HAuC14、 FeCl2、FeCl3、Fe(CH3COO)2、CoCl2、K4Fe(CN)6、K4C〇CCN)6、 K:4Mn(CN)6、以及KfO3。此金屬鹽可藉由還原反應而被轉化成對 應的金屬奈米結構,例如銀奈米結構、金奈米結構、把奈米結構、 錫奈米結構、鐵奈米結構、钻奈米結構等等。 此還原溶劑為一極性溶劑,其能夠溶解金屬鹽並且在其分子 中具有兩個以上的羥基(hydroxy groups),例如二元醇(di〇1)/、多元 醇(polyol)、甘醇(glycol)等等。此還原溶劑的具體範例包含:乙二 201100558 醇(ethyleneglycol)、1,2-丙二醇(l,2-propylenegiyCol)、1&gt;3_丙二醇 (l,3-propyleneglycol)、丙三醇(glyCerin)、丙三醇(glycer〇1)、聚乙二 醇、聚丙二醇等等。此還原溶劑藉由誘發金屬鹽被還原而產生金 屬元素。 此離子液體為包含有機陽離子以及有機或無機陰離子的化合 物’並且為藉由下列化學式1A所表示的咪唑離子基 (imidazolium-based)離子液體及/或藉由化學式1B所表示的吡啶離 子基(pyridinium-based)離子液體。 &lt;化學式1A&gt; r2 r,nVn n pf此’__Rl與R2彼此相同或相異,各自獨立選自於氫以及 y λ/6的运基,並且可包含雜原子(hetero atom);以及X&quot;&quot;為離子 液體的陰離子。 &lt;化學式1B&gt;AgC104, Au(C104)3, PdCl2, NaPdCl4, PtCl2, SnCl4, HAuC14, FeCl2, FeCl3, Fe(CH3COO)2, CoCl2, K4Fe(CN)6, K4C〇CCN)6, K:4Mn(CN)6, And KfO3. The metal salt can be converted into a corresponding metal nanostructure by a reduction reaction, such as a silver nanostructure, a gold nanostructure, a nanostructure, a tin nanostructure, a iron nanostructure, a nanostructure, etc. Wait. The reducing solvent is a polar solvent capable of dissolving a metal salt and having two or more hydroxy groups in its molecule, such as a diol (di〇1)/, a polyol, a glycol (glycol). )and many more. Specific examples of the reducing solvent include: ethylene 201100558 alcohol (ethyleneglycol), 1,2-propanediol (1,2-propylenegiyCol), 1&gt; 3-propylene glycol (1,3-propyleneglycol), glycerol (glyCerin), C Triol (glycerol 1), polyethylene glycol, polypropylene glycol, and the like. This reducing solvent produces a metal element by inducing reduction of the metal salt. This ionic liquid is a compound containing an organic cation and an organic or inorganic anion' and is an imidazolium-based ionic liquid represented by the following Chemical Formula 1A and/or a pyridinium group represented by Chemical Formula 1B (pyridinium) -based) ionic liquid. &lt;Chemical Formula 1A&gt; r2 r, nVn n pf This '__R1 and R2 are identical or different from each other, each independently selected from hydrogen and y λ/6, and may contain a hetero atom; and X&quot;&quot; is an anion of ionic liquid. &lt;Chemical Formula 1B&gt;

R3 汉4彼此相同或相異’各自獨立選自於氫以及 子。 、、土 並且可包含雜原子;以及}r為離子液體的陰離 的上^化學式1A所表示之咪唑離子基離子液體之陽離子 摩已例可包含:丨,3_二曱基咪唑離子 201100558 (l,3-dimethylimidazolium)、1,3-二乙基咪唑離子、μ乙基_3 芙 唑離子、1-丁基-3-甲基咪唑離子、1_己基_3_甲基咪唑離子、丨_$^ -3-甲基咪咬離子、1-癸基_3_甲基咖坐離子、七十:烧基 ^ 唾離子、1-十四烧基_3_甲基咪唑離^ (l-tetmdecyl-3-methylimidazolium)等等。藉由上述化學式 m 示之吼唆離子基離子液體之陽離子的具體範例可包含:L曱基 離子(l-methylpyridinium)、1-乙基吡啶離子、“丁基咣啶離^i 乙基-3-曱基如定離子、1_丁基_3_曱基吡啶離子、^己基_其吡 淀離子、1- 丁基-3,4-二甲基吡啶離土子 (l-butyl-3,4-dimethylpyridinium)等等。 又,本發明之離子液體可包含藉由化學式1A或m =合離子㈣錢單分子軒雜。崎合離子液體^包 ^但不限於:聚(1-乙烯基氺烷基味唾离^ 子 ^olyG-vinyW-alkylimidazolium))、聚(1_ 乙烯基 _ π比啶離 子)(p〇ly(l-vinyl-Pyridinium))、聚(1_乙烯基_院基吡啶離 ^基广 ί基?_子)㈣(1,1_3_alkyiimidazQli·))、以及聚 t(甲基)丙烯酿氧基!烷基咪唑離 子)(p〇ty(l-(meth)aCryl〇yl〇Xy_3_alkylimidazQlium)) 〇 4 一單分子絲合離子㈣包含核或無機陰離子。此有機或益 機陰離子的範例可包含但不限於:Β]Γ、cr、r、— 二,、、、 αο4' νο3-、Alcl4-、Al2Cl7-、AsF 4 ⑺ 6一、R3 Han 4 are identical or different from each other' are each independently selected from hydrogen and a sub. , earth and may contain heteroatoms; and}r is an anion of the ionic liquid. The cation of the imidazolium-based ionic liquid represented by the chemical formula 1A may include: 丨, 3_dimercaptoimidazole ion 201100558 ( l,3-dimethylimidazolium), 1,3-diethylimidazolium ion, μethyl-3-triazole ion, 1-butyl-3-methylimidazolium ion, 1-hexyl_3_methylimidazolium ion, hydrazine _$^ -3-methyl merging ion, 1-mercapto _3_methyl ke sitting ion, seventy: burning base ^ salivary ion, 1-tetradecyl _3_methylimidazole away ^ (l -tetmdecyl-3-methylimidazolium) and so on. Specific examples of the cation of the cerium ion-based ionic liquid represented by the above chemical formula m may include: L-methylpyridinium, 1-ethylpyridinium ion, "butyl acridine from ^i ethyl-3" - mercapto such as deionized ion, 1-butyl_3_mercaptopyridine ion, ^hexyl_pyridyl ion, 1-butyl-3,4-dimethylpyridine ion (l-butyl-3, 4-dimethylpyridinium), etc. Further, the ionic liquid of the present invention may comprise a single molecule of the formula 1A or m = ionic (4) money. The ionic liquid is not limited to: poly(1-vinyl fluorene) Alkyl sulphate ^olyG-vinyW-alkylimidazolium), poly(1_vinyl_π-pyridinium), poly(1_vinyl-Pyridinium) From ^基广ü基?_子)(4)(1,1_3_alkyiimidazQli·)), and polyt(meth)acrylic acid!alkylimidazolium ion)(p〇ty(l-(meth)aCryl〇yl〇) Xy_3_alkylimidazQlium)) 〇4 A single molecular chelating ion (IV) contains a nuclear or inorganic anion. Examples of this organic or probiotic anion may include, but are not limited to: Β]Γ, cr, r, — 2, , , , αο4' νο3- , Alcl4- , Al2Cl7-, AsF 4 (7) 6 I.

(C™ 'QH5S〇r'W f=2^r、(CF3S〇2)3Cr、(CF3CF2S〇2)2&gt;r、 C3F7C00、(CF3S02)(CF3C0)]Sr。 此單分子或聚合離子㈣可根據所使用 碎肖性,纽健材與 早子或聚合離子液體。由於離子液體可在金屬鹽 麟轉化成金屬元素時,因為離子液體與金屬離子 :互作用而協助金屬元素於-維、二維或 —'、隹工間成長,所以农終可產生均勻成型的金屬奈米顆粒。 201100558 尤其,離子液__子成分可 粒的形狀。舉例而言,當使用含有硫 &amp; 產生、准m。構,例如奈米線; 離子的離子液體時,可產生三維的金屬太料^ϋ素陰 當使用含有驗離子(α-)_子㈣時;;二対金 f 陰離子(B〇的離子液體時可產ί ^ ^ ϋι構It 獅狀的金屬奈米結構可勤改變離子液 ΐ之ίί 的麵而被選雜地產生。在反_初期階段(CTM 'QH5S〇r'W f=2^r, (CF3S〇2)3Cr, (CF3CF2S〇2)2&gt;r, C3F7C00, (CF3S02)(CF3C0)]Sr. This single molecule or polymeric ion (4) can Depending on the fragrant nature of the material, Newcomin and the early ionic or polymeric ionic liquid. Since the ionic liquid can be converted into a metal element in the metal salt, the ionic liquid interacts with the metal ion to assist the metal element in the -dimensional, two Dimensions or - ', the growth of the inter-laboratory, so the end of the agricultural can produce uniformly shaped metal nanoparticles. 201100558 In particular, the ionic liquid __ sub-component can be the shape of the particles. For example, when used with sulfur &amp; m. structure, such as nanowire; ion ionic liquid, can produce three-dimensional metal too material ^ ϋ 阴 当 when using the test ion (α-) _ sub (four); 対 gold f anion (B 〇 In the case of ionic liquids, ί ^ ^ ϋ constitutive It lion-like metal nanostructures can be used to change the surface of ionic liquids and are selected to produce miscellaneous ground.

米顆粒與離子液體之間的交互作用,會改變金屬奈米顆粒 的成長方向’因此改變金屬奈米結構的形狀。因此,在此階段, 離子液體的陰離子可扮演在金屬奈米結構成型時的重要角色。亦 !_p if反應的早期階段巾,首先,金屬鹽會鋪原溶劑反應而產 ,至屬奈米顆粒,然後所產生的金屬奈米結構會與離子液體的陰 離子作用而在-預定方向成長’因此產生各細彡狀的金屬奈米結 構。 用=產生金屬奈米線(其為本發明之奈米結構的典型範例)的 ^法被實施如下。首先,以一預定混合比例來混合金屬鹽、還原 /谷劑以及含有疏化合物陰離子的離子液體,然後在室溫下授拌一 預定時間,以形成一均勻混合物,接著以150〜20(rc使此混合物 反應而產生金屬奈米線。以此方式所產生的奈米線可具有001〜 0.1 //m的平均直徑以及5〜100/zm的平均長度。在此方法中,為 了產生奈米線,必須適當調整離子液體、金屬鹽以及還原溶劑的 混合比例。在其混合比例中,金屬鹽可基於還原溶劑而具有〇 〇1 〜1 Μ的濃度,以及離子液體(當離子液體為聚合離子液體時,離 子液體的重複單位(repetitive unit))可基於還原溶劑而具有〇.〇〇1〜 1 Μ的濃度。當金屬鹽的濃度低於〇.〇1 μ時,僅可產生少量的金 屬奈米線,因為金屬鹽的濃度過低;而當離子液體的濃度低於 0.001 Μ時’則無法輕易產生金屬奈米線,因為離子液體的量過 小。相較之下,當金屬鹽的濃度高於1 Μ時,所產生的金屬奈米 201100558 f 3互相附著並且會使其尺寸增加;而當離子液體 古1 Μ W,=以合成金屬奈米線’因為混合溶液的黏度過高又冋、 均勻巾使用包含不_麵離子_子液體時,可 一右1成立方體金屬奈米結構或人面體金屬奈米結構。 加劑 產生金屬奈米結構的方法巾,^ 了有效控 狀以及尺寸,藉由下列化學式2a所表示的氮 二.項下列化學式2b所表示的硫化合物可被使用作為添 &lt;化學式2A&gt;The interaction between the rice particles and the ionic liquid changes the direction of growth of the metal nanoparticles. Thus changes the shape of the metal nanostructure. Therefore, at this stage, the anion of the ionic liquid can play an important role in the formation of the metal nanostructure. Also! The early stage of the _p if reaction, first of all, the metal salt will be produced by the original solvent reaction, to the nanoparticle, and then the resulting metal nanostructure will interact with the anion of the ionic liquid to grow in a predetermined direction. Therefore, each fine-grained metal nanostructure is produced. The method of producing a metal nanowire (which is a typical example of the nanostructure of the present invention) is carried out as follows. First, the metal salt, the reducing/treat, and the ionic liquid containing the compound anion are mixed at a predetermined mixing ratio, and then mixed at room temperature for a predetermined time to form a homogeneous mixture, followed by 150 to 20 (rc The mixture reacts to produce a metal nanowire. The nanowires produced in this manner can have an average diameter of 001 to 0.1 //m and an average length of 5 to 100/zm. In this method, in order to produce a nanowire The mixing ratio of the ionic liquid, the metal salt, and the reducing solvent must be appropriately adjusted. In the mixing ratio, the metal salt may have a concentration of 〇〇1 〜1 基于 based on the reducing solvent, and the ionic liquid (when the ionic liquid is a polymeric ionic liquid) The repetitive unit of the ionic liquid may have a concentration of 〇.〇〇1 to 1 基于 based on the reducing solvent. When the concentration of the metal salt is lower than 〇.〇1 μ, only a small amount of metal naphthalene may be produced. The rice noodle, because the concentration of the metal salt is too low; when the concentration of the ionic liquid is less than 0.001 ', the metal nanowire cannot be easily produced because the amount of the ionic liquid is too small. When the concentration of the metal salt is higher than 1 ,, the produced metal nano 201100558 f 3 adheres to each other and increases its size; and when the ionic liquid is ancient 1 Μ W, = synthetic metal nanowire 'because of the mixed solution When the viscosity is too high and the sputum is used, the uniform towel can contain a non-surface ion _ sub-liquid, and can be a right-handed cubic metal nanostructure or a human-faced metal nanostructure. The additive produces a metal nanostructure method towel, ^ The effective control and the size, the sulfur compound represented by the following chemical formula 2b represented by the following chemical formula 2a can be used as the addition &lt;chemical formula 2A&gt;

Rb R7~-N+~R5 I γ-Rb R7~-N+~R5 I γ-

R0 Y 其中RS、R6、R7以及R8為彼此相同或相異,各自獨立選自於 ㈣的烴基,並且可包含雜原子;以及= &lt;化學式2B&gt; 〇 R —(〇)—s—〇 Y— * 中R為單分子或聚合烴基,並且可包含雜原子;以及\ 马有機或無機陰離子。 _在此情況下,氮化合物或硫化合物可基於100重量份之金 二有ο,1:100重量份的含量。當氮化合物或琉化合物的含: *1重昼份時’可稱微有效控制金屬奈米結構的形狀以及 又,當其含量高於100重量份時,則會發生奈米結構之形 交形的有害副作用。 201100558 藉由上述化學式2A所表示之氮化合物的範例包含:氣化四丁 基銨(tetrabutyl ammonium chloride)、漠化十六燒基三甲基銨 (cetyltrimethyl ammonium bromide)、氯化四 丁基鱗(tetrabutyl phosphonium chloride)等等。藉由上述化學式2B所表示之硫化合 物的範例包含:十二烧基硫酸納(sodium dodecyl sulfate)、十二烧 基苯磺酸鹽(dodecyl benzene sulfonate)、聚苯乙烯續酸鹽 (polystyrene sulfonate)、聚(鈉-4_ 苯乙烯磺酸 鹽)(poly(sodium-4-styrene sulfonate))等等。 有益效果 〇 依照本發明’吾人可藉甴混合並反應離子液體、金屬鹽以及 還原溶劑,而產生各種形狀的金屬奈米結構。 又,在多元醇還原反應(於其中金屬鹽被使用作用前驅物)中, 當選擇性地使用具有不同種類陰離子的離子液體時,可選擇性且 再現地產生不同形狀的金屬奈米結構。 【實施方式】 最佳模式 以下’將藉由下列範例來詳述本發明。在此,下列範例被提 ο 及以說明本發明’以及本發明之範圍並不限於這些範例。 &lt;範例1&gt; 在一圓底燒瓶中,使於其中將硝酸銀(AgNCb)溶於乙二醇而形 成〇·1 Μ濃度的50 mL溶液與於其中將曱基硫酸μ丁基_3_甲基‘ 唾(1 -buty 1-3 -methylimidazolium methyl sulfate)溶於乙二醇而形成 〇. 15 Μ濃度的50 mL溶液混合,以形成一混合溶液。接著,以丨6(rc 擾掉並反應此混合溶液60分鐘,然後冷卻至室溫。接著,以且有 1 /zm之孔徑的過濾器來過濾此冷卻混合溶液,然後以電子掃描式 顯微鏡進行觀察。因此,可發現到金屬奈米線被產生,如圖1 ^斤 201100558 示。可觀察到金屬奈米線具有約220 nm的直徑以及約7 //m的長 度。 &lt;範例2&gt; 在一圓底燒瓶中,使於其中將硝酸銀(AgN03)溶於1,3-丙二醇 而形成0.2 Μ濃度的10 mL溶液與於其中將甲基硫酸丨_乙基_3_甲 基咪唑(l-ethyl-3-methylimidazolium methyl sulfate)溶於 1,3-丙二醇 而形成0.3 Μ濃度的10 mL溶液混合,以形成一混合溶液。接著, 以100°C攪拌並反應此混合溶液約30分鐘,然後冷卻至室溫。接 著,以具有1 /zm之孔徑的過濾器來過濾此冷卻混合溶液,然後 以電子掃描式顯微鏡進行觀察。因此’可發現到具有約18〇11111之 直徑以及約10 /zm之長度的金屬奈米線被產生。 &lt;範例3&gt; 在一圓底燒瓶中,使於其中將硝酸銀(AgN〇3)溶於1,2-丙二醇 而形成0.2 Μ濃度的10 mL溶液與於其中將曱基硫酸丨_’乙基各甲 基咪唑溶於1,3-丙二醇而形成〇.3 Μ濃度的1〇 mL溶液混合,以 形成第一混合溶液,然後以硝酸銀(AgN〇3)之1%的量,將十二垸 基硫酸鈉加入第一混合溶液而形成第二混合溶液。接著,以1〇〇^ 攪拌並反應第二混合溶液約30分鐘,然後冷卻至室溫。接著,£ 具有1 /zm之孔徑的過濾器來過濾此冷卻混合溶液,然後以带= 掃描式顯微鏡進行觀察。因此,可發現到具有約8〇 nm之直 及約10 #ιη之長度的金屬奈米線被產生。 二从 〈範例4&gt; 除了使用甲基硫酸1_乙基_3—甲基。比^ (l-butyl-3-methylpyridinium methyl sulfate)作為離子液體以外定 相同範例1的方式來形成金屬奈米結構。如同在範例t中], 具有1 /zm之孔徑的過濾器來過濾此冷卻混合溶液,然後以恭= 掃描式顯微鏡進行觀察。因此,可發現到金屬奈米線被產生R0 Y wherein RS, R6, R7 and R8 are the same or different from each other, each independently selected from the hydrocarbon group of (d), and may contain a hetero atom; and = &lt;chemical formula 2B&gt; 〇R —(〇)—s—〇Y —* R is a single molecule or a polymeric hydrocarbon group and may contain a hetero atom; and a horse organic or inorganic anion. In this case, the nitrogen compound or the sulfur compound may be contained in an amount of ο,1:100 parts by weight based on 100 parts by weight of the gold. When the nitrogen compound or the cerium compound contains: *1 by weight, the shape of the metal nanostructure can be said to be slightly effective, and when the content is more than 100 parts by weight, the shape of the nanostructure can occur. Harmful side effects. 201100558 An example of the nitrogen compound represented by the above Chemical Formula 2A includes: tetrabutyl ammonium chloride, cetyltrimethyl ammonium bromide, and tetrabutyl chloride scale ( Tetrabutyl phosphonium chloride) and the like. Examples of the sulfur compound represented by the above Chemical Formula 2B include: sodium dodecyl sulfate, dodecyl benzene sulfonate, polystyrene sulfonate , poly(sodium-4-styrene sulfonate), and the like. Advantageous Effects 依照 According to the present invention, a metal nanostructure of various shapes can be produced by mixing and reacting an ionic liquid, a metal salt, and a reducing solvent. Further, in the polyol reduction reaction (in which the metal salt is used as the precursor), when the ionic liquid having different kinds of anions is selectively used, metal nanostructures of different shapes can be selectively and reproducibly produced. [Embodiment] BEST MODE Hereinafter, the present invention will be described in detail by way of the following examples. Herein, the following examples are presented to illustrate the invention and the scope of the invention is not limited to these examples. &lt;Example 1&gt; In a round bottom flask, a 50 mL solution in which silver nitrate (AgNCb) was dissolved in ethylene glycol to form a ruthenium concentration of ruthenium was used, and a butyl sulfonium sulfonate was used. '1 -buty 1-3 -methylimidazolium methyl sulfate was dissolved in ethylene glycol to form a 50 mL solution of 15 Μ concentration to form a mixed solution. Next, the mixed solution was disturbed and reacted with 丨6 (rc) for 60 minutes, and then cooled to room temperature. Then, the cooled mixed solution was filtered with a filter having a pore diameter of 1 /zm, and then subjected to electron scanning microscopy. Observation. Therefore, it can be found that the metal nanowire is produced as shown in Fig. 1 Φ 201100558. It can be observed that the metal nanowire has a diameter of about 220 nm and a length of about 7 // m. &lt;Example 2&gt; In a round bottom flask, a 10 mL solution in which silver nitrate (AgN03) was dissolved in 1,3-propanediol to form a concentration of 0.2 Torr and a methyl sulphate _ethyl_3_methylimidazole (l-ethyl) was added thereto. -3-methylimidazolium methyl sulfate) 10 mL solution dissolved in 1,3-propanediol to form a concentration of 0.3 Torr to form a mixed solution. Then, the mixed solution was stirred and reacted at 100 ° C for about 30 minutes, and then cooled to Then, the cooled mixed solution was filtered with a filter having a pore diameter of 1 /zm, and then observed by an electron scanning microscope. Therefore, it was found to have a diameter of about 18〇11111 and a length of about 10 /zm. Metal nanowire is produced &lt;Example 3&gt; In a round bottom flask, a silver nitrate (AgN〇3) was dissolved in 1,2-propanediol to form a 0.2 mL solution of a concentration of 0.2 Torr and a sulfhydryl sulfate 丨-'ethyl group Each methyl imidazole is dissolved in 1,3-propanediol to form a 1 mL solution of 〇.3 Μ concentration to form a first mixed solution, and then 12 垸 in an amount of 1% of silver nitrate (AgN〇3) Sodium sulfate is added to the first mixed solution to form a second mixed solution. Then, the second mixed solution is stirred and reacted for about 30 minutes, and then cooled to room temperature. Then, a filter having a pore diameter of 1 /zm is applied. The filtered mixed solution was filtered and observed with a belt = scanning microscope. Therefore, it was found that a metal nanowire having a length of about 8 〇 nm and a length of about 10 # ηη was produced. A metal nanostructure is formed in the same manner as in the ionic liquid except that 1-ethyl-3-methylpyridinium methyl sulfate is used as the ionic liquid. Medium], a filter with a pore size of 1 /zm to filter this cooling mix Solution, then Christine = scanning microscope. Thus, the metal nanowires can be found to produce

•J 10 201100558 觀察到金屬奈米線具有約32〇 ηπι的直彳莖以及約5 # in的長度。 &lt;範例5&gt; 除了使用氟化 1-丁基 _3_ 曱基味 β坐(l-butyl-3-methylimidazolium chloride)作為離子液體以外,以相同於範例1的方式來形成金屬奈 米結構。以具有0.2 之孔徑的過濾器來過濾此冷卻混合溶液, 然後以電子掃描式顯微鏡進行觀察。因此’可發現到具有約400 nm 之粒徑的立方體銀奈米顆粒,如圖2所示。 〈範例6&gt; 除了使用漠化 1-丁基 _3—甲基咪唑(i_butyl-3-methylimidazolium bmmide)作為離子液體以外,以相同於範例1的方式來形成金屬奈 米結構。以具有1 Am之孔徑的過濾器來過濾此冷卻混合溶液, 然後以電子掃描式顯微鏡進行觀察。因此,可發現到具有約5 之粒徑的八面體銀顆粒,如圖3所示。、 產業利用性• J 10 201100558 It is observed that the metal nanowire has a straight stalk of about 32 〇 ηπι and a length of about 5 # in. &lt;Example 5&gt; A metal nanostructure was formed in the same manner as in Example 1 except that 1-butyl-3-methylimidazolium chloride was used as the ionic liquid. This cooled mixed solution was filtered with a filter having a pore size of 0.2, and then observed with an electron scanning microscope. Thus, cubic silver nanoparticles having a particle size of about 400 nm can be found, as shown in FIG. <Example 6> A metal nanostructure was formed in the same manner as in Example 1 except that i-butyl-3-methylimidazolium bmmide was used as the ionic liquid. This cooled mixed solution was filtered with a filter having a pore size of 1 Am, and then observed with an electron scanning microscope. Thus, octahedral silver particles having a particle size of about 5 can be found, as shown in FIG. Industrial utilization

吏用本發明之方法所產生的金屬奈米結構可用於 各種產業雜,例如平面顯示器、觸控式面板、太陽能電池等等。 【圖式簡單說明】 結 構的=至3 _雜用舰本發明之方法啦生之金屬奈米 【主要元件符號說明】 (無)The metal nanostructure produced by the method of the present invention can be used in various industries such as flat panel displays, touch panels, solar cells, and the like. [Simple description of the structure] Structure = to 3 _ miscellaneous ship The method of the present invention is a raw metal nanometer [Explanation of main component symbols] (none)

Claims (1)

201100558 七、申請專利範圍: 、、β人生各種形狀之金屬奈米結構的方法,包含下列步驟: 物;^ 子液體、—金屬鹽以及—還原溶劑,以形成-混合 使该混合物反應。 ^触之狀經各娜狀之金屬奈米結 離子與陰離仅狀係由構成該離子液體之陽 摘狀_姓錄微之金屬奈 奈米線的3金屬化合物陰離子的離子液體,產生例如 生立方ΐί!;ϊϋ;使用含有氯陰離子(cr)的離子液體,產 體,產生八面體金屬°奈%^及使用含有漠陰離子(Br—)的離子液 狀tri她圍第1至3項其中任—項所述之用以產生各種护 合化合物。 卞的化合物,亚且為一早分子化合物或一聚 5.如申請專利範圍第1 &lt;化學式1A&gt; 12 201100558 Ri,N+VN R 2 的及子⑽ &lt;化學式1B&gt; Ο γχ- Rs 一八中1¾與化彼此相同或相異,各自獨立選自於氫以及CKi6 的烴基,並且包含雜原子;以及χ_為該離子液體的陰離子。 6.、如申明專利範圍弟1至5項其中任一項所述之用以產生各種形 狀之金屬奈米結構的方法,其中該離子液體的陰離子為選自Br_、 U Cl、一「、BF4-、PF6-、C104' N03-、A1CLT、Α12α7-、AsF「、 SbF6—、ch3coo—、cf3coo—、CH3S〇3—、C2H5S03—、CH3S〇4—、 c2H5s〇r . CF3SO3- ^ (CF3S02)2N- ^ (CF3S02)3C- ^ (cf3cf2so2)2&gt;t ' c4f9so3~ ' c3f7coo~ &gt; a A(CF3so2)(CF3c〇)&gt;r 的任何一者。 7·如申請專利範圍第1至6項其中任一項所述之用以產生各種形 狀之金屬奈米結構的方法,其中該金屬鹽係由金屬陽離子與有機 或無機陰離子所構成,並且為選自AgN03、Ag(CH3COC〇2、 AgC104、Au(C104)3、PdCl2、NaPdCl4、PtCl2、SnCl4、HAuC14、 FeCl2、FeCl3、Fe(CH3COO)2、CoCl2、K4Fe(CN)6、K4Co(CN)6、 13 201100558 K4Mn(CN)6、Κ2(ΙΌ3 的任何一者。 8·如申請專利範圍第丨至7項1 狀之金屬奈米結構的方法J中、】之用以產生各種形 自乙二醇、&amp;丙二以4 ,等,、轉 (glycerol)、聚乙二醇、聚丙二醇的任何一者f(gycenn)丙二醇 狀之金屬奈米結構的方法,其中在錄生各種形 金屬鹽基於該還原溶劑而具有㈣〜1 曲,及_子液體基於該還原溶劑而具有隱〜丄m的 3机ii該ϊί液體為聚合離子液體時,該離子液體的重複單 位基於5亥运原 &gt;谷劑而具有0.001〜1 ]yj的濃产。 ^申請專舰圍第丨至9項財任1所狀鼓產生各獅 屬奈絲構的方法,其巾除了雜子液體、該金屬鹽以及 ,原溶劑以外’使用藉由下列化學式Μ所表示的氮化合物 由下列化學式2B所表示的硫化合物來作為一添加劑: 曰 &lt;化學式2A&gt; Rs 其中R5、R6、R7以及Rs為彼此相同或相異,各自獨立 =J Q-C20的烴基’並且包含雜原子;以及γ-為有機或無機 14 201100558 &lt;化學式2B&gt; 〇 R~(°)-s~~〇- II v 〇γ 其中R為單分子或聚合趣基’並且包含雜原子;以及Y〜為 機或無機陰離子。 … =·如申請專利範圍第丨。項所述之用以產生各種形狀之金屬奈米 Ο 二構的方法,其中該氮化合物或該硫化合物基於100 重量份之該 &amp;屬鹽而具有0.1〜100重量份的含量。 12. —種金屬奈米結構,使用申請專利範圍第i至n項其中任一 項所述之方法產生。 八、圖式: 15201100558 VII. Patent application scope: The method of the metal nanostructure of various shapes of β life includes the following steps: the liquid, the metal salt and the reducing solvent to form and mix to react the mixture. The contact between the metal-like nano-junction ions and the anion-only form of the ionic liquid constituting the cation liquid, the ionic liquid of the metal compound of the 3 metal compound anion of the metal nano-nano line Cubic ΐί!;ϊϋ; using an ionic liquid containing a chloride anion (cr), the product, producing an octahedral metal, and using an ionic liquid containing a desert anion (Br-), she is surrounded by items 1 to 3 Any of the items described above are used to produce various protective compounds. A compound of hydrazine, which is an early molecular compound or a poly 5. As claimed in the patent 1st &lt;Chemical Formula 1A&gt; 12 201100558 Ri, N+VN R 2 and (10) &lt;Chemical Formula 1B&gt; Ο γχ- Rs VIII The intermediates are identical or different from each other, each independently selected from the group consisting of hydrogen and a hydrocarbon group of CKi6, and containing a hetero atom; and χ_ is an anion of the ionic liquid. 6. The method according to any one of claims 1 to 5, wherein the anion of the ionic liquid is selected from the group consisting of Br_, U Cl, and a BF4. -, PF6-, C104' N03-, A1CLT, Α12α7-, AsF", SbF6-, ch3coo-, cf3coo-, CH3S〇3-, C2H5S03-, CH3S〇4-, c2H5s〇r. CF3SO3-^ (CF3S02) 2N-^(CF3S02)3C-^(cf3cf2so2)2&gt;t ' c4f9so3~ ' c3f7coo~ &gt; a A(CF3so2)(CF3c〇)&gt;r. 7·If the patent application range is 1 to 6 A method for producing a metal nanostructure of various shapes, wherein the metal salt is composed of a metal cation and an organic or inorganic anion, and is selected from the group consisting of AgN03, Ag (CH3COC〇2, AgC104). , Au(C104)3, PdCl2, NaPdCl4, PtCl2, SnCl4, HAuC14, FeCl2, FeCl3, Fe(CH3COO)2, CoCl2, K4Fe(CN)6, K4Co(CN)6, 13 201100558 K4Mn(CN)6, Κ2 (Any of the ΙΌ3. 8. If the method of applying the patent range 丨7 to 7 is in the form of a metal nanostructure, J is used to generate various forms from B a method of propylene glycol-like metal nanostructures of any one of alcohol, & propylene, 4, etc., glycerol, polyethylene glycol, polypropylene glycol, wherein various metal salts are recorded in the form of propylene glycol Based on the reducing solvent, it has (4)~1 曲, and the _sub-liquid is based on the reducing solvent and has 3 ii of hidden ~ 丄m. When the 液体 liquid is a polymeric ionic liquid, the repeating unit of the ionic liquid is based on 5 haiyuan original &gt The gluten has a rich yield of 0.001~1]yj. ^Apply a special ship to the first squad to the 9th squad, and the method of producing the genus of the genus is the method of the genus, the towel except the miscellaneous liquid, the metal salt And, the nitrogen compound represented by the following chemical formula 使用 is a sulfur compound represented by the following chemical formula 2B as an additive: 曰 &lt;chemical formula 2A&gt; Rs wherein R5, R6, R7 and Rs are the same as each other or Different, each independently = J Q-C20 hydrocarbyl ' and contains heteroatoms; and γ- is organic or inorganic 14 201100558 &lt;Chemical Formula 2B&gt; 〇R~(°)-s~~〇- II v 〇γ where R Is a single molecule or a polymeric group and contains heteroatoms; And Y~ is an organic or inorganic anion. ... = · If the scope of the patent application is 丨. The method for producing a metal nano Ο structure of various shapes, wherein the nitrogen compound or the sulfur compound has a content of 0.1 to 100 parts by weight based on 100 parts by weight of the salt of the &amp; 12. A metal nanostructure produced using the method described in any one of claims i to n. Eight, schema: 15
TW099110948A 2009-04-08 2010-04-08 Method of forming metal nanostructure using ionic liquid TW201100558A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090030599A KR101479788B1 (en) 2009-04-08 2009-04-08 Method for producing metal nano structures using ionic liquid

Publications (1)

Publication Number Publication Date
TW201100558A true TW201100558A (en) 2011-01-01

Family

ID=42936716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110948A TW201100558A (en) 2009-04-08 2010-04-08 Method of forming metal nanostructure using ionic liquid

Country Status (6)

Country Link
US (1) US20120034129A1 (en)
JP (1) JP6041138B2 (en)
KR (1) KR101479788B1 (en)
CN (1) CN102369154B (en)
TW (1) TW201100558A (en)
WO (1) WO2010117204A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838771B2 (en) * 2010-12-09 2016-01-06 住友化学株式会社 Manufacturing method of metal nanowire
AU2011342379A1 (en) * 2010-12-17 2013-07-25 University Of South Australia Extraction of gold
JP5861480B2 (en) * 2011-02-07 2016-02-16 住友化学株式会社 Manufacturing method of metal nanowire
KR101309525B1 (en) * 2011-12-26 2013-09-24 전북대학교산학협력단 Metal-ionic liquid hybrid thin film and method for preparing the same
CN102672194B (en) * 2012-01-04 2014-08-27 河南科技大学 Method for preparing gold nanoparticles by polymer ionic liquid
US9095903B2 (en) * 2012-01-23 2015-08-04 Carestream Health, Inc. Nanowire ring preparation methods, compositions, and articles
JP5867124B2 (en) * 2012-02-06 2016-02-24 住友化学株式会社 Manufacturing method of metal nanowire
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
JP2016507640A (en) * 2012-12-14 2016-03-10 ソロ テック カンパニー,リミテッド Method for producing silver nanowires using ionic liquid
KR101448361B1 (en) * 2012-12-14 2014-10-14 인스콘테크(주) Method for producing silver nanowires using copolymer capping agents
US10020807B2 (en) 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
CN103469264B (en) * 2013-09-16 2015-10-21 中国电子科技集团公司第三十八研究所 Electroplating deposition prepares the method for nanocrystalline structure gold-tin alloy coating
KR101372657B1 (en) * 2013-09-26 2014-03-11 금오공과대학교 산학협력단 Process for preparing palladium nanoparticles by non-aqueous electrolysis
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
CN103769600B (en) * 2014-01-14 2016-04-13 南昌大学 A kind of preparation method of surperficial high dispersive noble metal high miller index surface nano particle
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
CN105439203B (en) * 2014-09-25 2017-09-22 中国科学院大连化学物理研究所 A kind of surface amphiphilic nano molybdenum disulfide hydrogenation catalyst and preparation method and application
CN104690294B (en) * 2015-03-27 2017-04-05 严锋 The preparation method of high length-diameter ratio nano silver wire and the nano silver wire prepared with the method
CN105316953B (en) * 2015-11-04 2018-02-13 长安大学 One kind attachment SnS2The preparation method and applications of textile
WO2017217628A1 (en) * 2016-06-14 2017-12-21 충남대학교산학협력단 Method for producing metal nanoparticle-polymer composite thin film
CN106493386A (en) * 2016-11-03 2017-03-15 国家纳米科学中心 The octahedral shape Nanoalloy of octahedra Nanoalloy and porous, Preparation Method And The Use
KR20180060756A (en) * 2016-11-29 2018-06-07 경희대학교 산학협력단 Method for manufacturing silver nanocube-particles and silver nanocube-particles manufactured by the same
CN108161020A (en) * 2016-12-13 2018-06-15 中国科学院光电技术研究所 Preparation method of gold nano octahedron
CN106953103B (en) * 2017-03-08 2019-04-09 济南大学 A kind of monocrystalline gold@platinum nucleocapsid octahedron nanoparticle controllable method for preparing based on seed epitaxial growth
US9850420B1 (en) 2017-05-23 2017-12-26 King Saud University Composition and method for enhanced oil recovery
CN108031860B (en) * 2017-12-04 2021-04-06 浙江工业大学 Preparation method of nano gold triangular plate
CN108359809B (en) * 2018-04-27 2021-01-15 连云港笃翔化工有限公司 Method for recovering palladium chloride from waste palladium catalyst
KR102242578B1 (en) 2019-09-05 2021-05-25 주식회사 하이코스킨 Manufacturing method of gold nanorods

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585349B2 (en) * 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US7582330B2 (en) * 2004-11-24 2009-09-01 3M Innovative Properties Counsel Method for making metallic nanostructures
US7247723B2 (en) * 2004-11-24 2007-07-24 3M Innovative Properties Company Metallic chromonic compounds
JP2006265713A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Method for producing metal acicular body-containing metal particulate
US7547347B2 (en) * 2005-05-13 2009-06-16 University Of Rochester Synthesis of nano-materials in ionic liquids
CN100496819C (en) * 2005-10-18 2009-06-10 河南大学 Reduced preparation method for metal nanometer particle using hydroxy ion liquid
CN102554261B (en) * 2005-11-10 2014-08-13 住友金属矿山株式会社 Indium nanowire, oxide nanowire, conductive oxide nanowire and manufacturing methods thereof
JP5155881B2 (en) * 2006-01-17 2013-03-06 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Methods for producing particles in ionic liquids by physical vapor deposition
US20080003130A1 (en) * 2006-02-01 2008-01-03 University Of Washington Methods for production of silver nanostructures
JP4852751B2 (en) * 2006-03-10 2012-01-11 国立大学法人九州大学 Manufacturing method of metal nanowire
US8454721B2 (en) * 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
JPWO2009063744A1 (en) * 2007-11-16 2011-03-31 コニカミノルタホールディングス株式会社 Method for producing metal nanowire, metal nanowire and transparent conductor
WO2009080522A1 (en) * 2007-12-19 2009-07-02 Universität Potsdam Synthesis of au, pd, pt or ag nano- or microcrystals via reduction of metal salts by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride
US7922787B2 (en) * 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
KR101089299B1 (en) * 2008-11-18 2011-12-02 광 석 서 Method for producing metal nanowire using ionic liquid

Also Published As

Publication number Publication date
JP6041138B2 (en) 2016-12-07
JP2012523499A (en) 2012-10-04
KR101479788B1 (en) 2015-01-06
CN102369154B (en) 2015-02-18
WO2010117204A2 (en) 2010-10-14
WO2010117204A3 (en) 2011-01-20
US20120034129A1 (en) 2012-02-09
CN102369154A (en) 2012-03-07
KR20100112049A (en) 2010-10-18

Similar Documents

Publication Publication Date Title
TW201100558A (en) Method of forming metal nanostructure using ionic liquid
Hou et al. Formation of supraparticles and their application in catalysis
Solanki et al. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review
Brown et al. Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions
Jung et al. Sonochemical preparation of shape-selective ZnO nanostructures
Gao et al. Evidence for the monolayer assembly of poly (vinylpyrrolidone) on the surfaces of silver nanowires
Bang et al. Applications of ultrasound to the synthesis of nanostructured materials
Viau et al. Ruthenium nanoparticles: size, shape, and self-assemblies
Cui et al. Synthesis and functions of Ag 2 S nanostructures
Fan et al. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions
Wang et al. Self-adjustable crystalline inorganic nanocoils
Bourret et al. 1D Cu (OH) 2 nanomaterial synthesis templated in water microdroplets
Cure et al. Monitoring the coordination of amine ligands on silver nanoparticles using NMR and SERS
Guo et al. Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route
Wang et al. Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition
Huang et al. A strategy for the formation of gold–palladium supra-nanoparticles from gold nanoparticles of various shapes and their application to high-performance H2O2 sensing
Griffiths et al. Surfactant directed growth of gold metal nanoplates by chemical vapor deposition
Papadas et al. Templated self-assembly of colloidal nanocrystals into three-dimensional mesoscopic structures: A perspective on synthesis and catalytic prospects
Ma et al. Flowerlike copper (II)-based coordination polymers particles: Rapid room-temperature fabrication, influencing factors, and transformation toward CuO microstructures with good catalytic activity for the reduction of 4-nitrophenol
Azulai et al. Seed concentration control of metal nanowire diameter
Pol et al. The effect of a magnetic field on a RAPET (reaction under autogenic pressure at elevated temperature) of MoO (OMe) 4: fabrication of MoO2 nanoparticles coated with carbon or separated MoO2 and carbon particles
Yadav et al. Extraction of two-dimensional aluminum alloys from decagonal quasicrystals
Tao et al. Continuous synthesis of highly uniform noble metal nanoparticles over reduced graphene oxide using microreactor technology
Li et al. Ionic liquid-assisted synthesis of Au–Pt bimetallic particles for enhanced methanol electrooxidation
Zhang et al. Influence of Sn on stability and selectivity of Pt–Sn@ UiO-66-NH2 in furfural hydrogenation