JP2012523499A - Method for producing metal nanostructure using ionic liquid - Google Patents

Method for producing metal nanostructure using ionic liquid Download PDF

Info

Publication number
JP2012523499A
JP2012523499A JP2012504611A JP2012504611A JP2012523499A JP 2012523499 A JP2012523499 A JP 2012523499A JP 2012504611 A JP2012504611 A JP 2012504611A JP 2012504611 A JP2012504611 A JP 2012504611A JP 2012523499 A JP2012523499 A JP 2012523499A
Authority
JP
Japan
Prior art keywords
ionic liquid
metal
anion
metal nanostructure
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012504611A
Other languages
Japanese (ja)
Other versions
JP6041138B2 (en
Inventor
ソク ソ,クァン
ウン キム,ジョン
ヨン キム,テ
Original Assignee
ソク ソ,クァン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソク ソ,クァン filed Critical ソク ソ,クァン
Publication of JP2012523499A publication Critical patent/JP2012523499A/en
Application granted granted Critical
Publication of JP6041138B2 publication Critical patent/JP6041138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

【課題】本発明は、ナノサイズの金属構造体の製造方法に関する。
【解決手段】本発明は、金属塩を前駆体とするポリオール還元反応において、イオン性液体を用いることにより、ワイヤ状、キュービック状、八面体状など種々の形態の金属ナノ構造体を均一に製造する方法を提供する。
【選択図】図1
The present invention relates to a method for producing a nano-sized metal structure.
In the polyol reduction reaction using a metal salt as a precursor, the present invention uniformly produces various forms of metal nanostructures such as wires, cubics, and octahedra by using an ionic liquid. Provide a way to do it.
[Selection] Figure 1

Description

本発明は、ナノサイズの金属ナノ構造体の製造方法に関し、特に、金属塩を前駆体とするポリオール還元反応にイオン性液体を用いることにより、キュービック状又は八面体状の粒子形態、ナノワイヤ形態などの種々の形態の金属ナノ構造体を均一に製造する方法に関する。   The present invention relates to a method for producing a nano-sized metal nanostructure, and in particular, by using an ionic liquid for a polyol reduction reaction using a metal salt as a precursor, a cubic or octahedral particle form, a nanowire form, etc. The present invention relates to a method for uniformly producing metal nanostructures of various forms.

近年、平板ディスプレイ、タッチパネル、太陽光電池などの種々の分野に適用するために金属ナノ粒子の合成に関する研究が多く進められている。これらの金属ナノ粒子は、透明電極又は導電性インクなどの種々の分野に適用でき、これらの金属ナノ粒子の量産化技術の発明が必要である。この際、金属ナノ粒子の形態は、電気伝導度などの特性を左右する重要な要素であるため、金属ナノ粒子の形態を自由に制御できる技術の発明が必要である。   In recent years, much research on the synthesis of metal nanoparticles has been advanced for application to various fields such as flat panel displays, touch panels, and solar cells. These metal nanoparticles can be applied to various fields such as a transparent electrode or a conductive ink, and an invention of a technique for mass production of these metal nanoparticles is required. At this time, since the form of the metal nanoparticles is an important factor that influences characteristics such as electric conductivity, an invention of a technique capable of freely controlling the form of the metal nanoparticles is required.

それで、金属塩前駆体をエチレングリコールなどのポリオール還元剤を使用して金属ナノ構造体を製造する際にして、ポリビニルピロリドンなどの化合物を共に用いてワイヤ状の金属構造体を製造する技術が報告されている(Chem. Mater. 14、4736−4745)。上記の技術は、いわゆるポリオール還元方法と言われるが、この方法は、溶液相の金属ナノ構造体を比較的容易に製造できるという利点がある。しかしながら、上述した方法により製造された金属ナノ構造体は主にワイヤ状を有するものの、ワイヤ状のみでなく他のナノ粒子の形状を有する構造体が混在されている場合が多く、反応条件に応じてナノ構造体の形態を再現性よく製造し難いという欠点がある。   Therefore, when manufacturing metal nanostructures using a polyol reducing agent such as ethylene glycol as a metal salt precursor, a technology for manufacturing wire-like metal structures using a compound such as polyvinylpyrrolidone is reported. (Chem. Mater. 14, 4736-4745). The above technique is called a so-called polyol reduction method, and this method has an advantage that a solution-phase metal nanostructure can be produced relatively easily. However, although the metal nanostructure manufactured by the above-described method mainly has a wire shape, there are many cases where a structure having not only a wire shape but also other nanoparticle shapes is mixed, depending on the reaction conditions. Therefore, it is difficult to produce nanostructures with good reproducibility.

そのため、金属ナノ構造体の製造において、最終の生成物がワイヤ状(wire shape)、キュービック状(cubic shape)、又は八面体状(octahedral)など金属ナノ構造体の形状を均一で、且つ自由に制御できる技術の発明が必要である。   Therefore, in the manufacture of metal nanostructures, the final product is uniform and freely shaped in the shape of metal nanostructures such as wire shape, cubic shape, or octahedral shape. There is a need for an invention that can be controlled.

本発明の目的は、イオン性液体を用いて種々の形状の金属ナノ構造体を自由に選択して均一に製造できるようにする方法を提供することにある。即ち、本発明を用いることにより、金属塩を前駆体とするポリオール還元反応において、ワイヤ状、キュービック状、八面体状など種々の形状の金属ナノ構造体を均一で、且つ自由に製造することができる。   An object of the present invention is to provide a method that allows metal nanostructures of various shapes to be freely selected and uniformly manufactured using an ionic liquid. That is, by using the present invention, in a polyol reduction reaction using a metal salt as a precursor, metal nanostructures of various shapes such as a wire shape, a cubic shape, and an octahedral shape can be uniformly and freely produced. it can.

前記のような本発明の目的を達成するために、本発明は、イオン性液体、金属塩および還元溶媒を混合反応させることにより、種々の形状の金属ナノ構造体を製造する方法を提供する。   In order to achieve the object of the present invention as described above, the present invention provides a method for producing metal nanostructures of various shapes by mixing and reacting an ionic liquid, a metal salt and a reducing solvent.

なお、本発明は、イオン性液体、金属塩および還元溶媒を混合反応させることにより、上記イオン性液体を構成する陽イオンおよび陰イオンの化学的結合構造により金属ナノ構造体の形状が決定されることを特徴とする。   In the present invention, the shape of the metal nanostructure is determined by the chemical bonding structure of the cation and the anion constituting the ionic liquid by mixing and reacting the ionic liquid, the metal salt, and the reducing solvent. It is characterized by that.

なお、本発明は、イオン性液体、金属塩および還元溶媒を混合反応させることにより、金属ナノ構造体の製造方法において、イオン性液体により金属ナノ構造体が一次元、二次元又は三次元形状を含む様々な構造を持つようにすることを特徴とする。   The present invention provides a method for producing a metal nanostructure by mixing and reacting an ionic liquid, a metal salt, and a reducing solvent so that the metal nanostructure has a one-dimensional, two-dimensional or three-dimensional shape by the ionic liquid. It is characterized by having various structures including.

本発明では、金属塩を前駆体のポリオール還元反応のときにイオン性液体を用い、この際、イオン性液体の陰イオン成分を異にして金属ナノ粒子の形状を変化させる方法を用いた。   In the present invention, an ionic liquid is used during the polyol reduction reaction of a metal salt as a precursor, and at this time, a method of changing the shape of the metal nanoparticles by using different anion components of the ionic liquid is used.

本発明は、イオン性液体、金属塩および還元溶媒を混合反応させることにより、ポリオール還元反応により金属粒子を製造する際に、イオン性液体の陰イオンの種類を異にしてそれぞれ異なる形状の金属ナノ粒子を製造することを特徴とする。   In the present invention, when metal particles are produced by a polyol reduction reaction by mixing and reacting an ionic liquid, a metal salt, and a reducing solvent, different types of anions of the ionic liquid are used to form metal nanoparticles having different shapes. It is characterized by producing particles.

上記金属塩は、AgNO、Ag(CHCOO)、AgClO、Au(ClO、PdCl、NaPdCl、PtCl、SnCl、HAuCl、FeCl、FeCl、Fe(CHCOO)、CoCl、KFe(CN)、KCo(CN)、KMn(CN)、KCO等通常の金属陽イオンおよび有機又は無機陰イオンからなるものであって、これらに特に限定されるのではない。上記金属塩は、還元反応により銀、金、パラジウム、錫、鉄、コバルトなど該当金属ナノ粒子に変換される。 The metal salts are AgNO 3 , Ag (CH 3 COO) 2 , AgClO 4 , Au (ClO 4 ) 3 , PdCl 2 , NaPdCl 4 , PtCl 2 , SnCl 4 , HAuCl 4 , FeCl 2 , FeCl 3 , Fe (CH 3 COO) 2 , CoCl 2 , K 4 Fe (CN) 6 , K 4 Co (CN) 6 , K 4 Mn (CN) 6 , K 2 CO 3, etc. However, it is not particularly limited to these. The metal salt is converted into the corresponding metal nanoparticles such as silver, gold, palladium, tin, iron, and cobalt by a reduction reaction.

上記還元溶媒は、金属塩を溶解させることができる極性溶媒であって、分子内にヒドロキシ基を少なくとも2個以上有するジオール、ポリオール又はグリコールなどの溶媒を言う。こられの具体的な例としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、グリセリン、グリセロール、ポリエチレングリコール、ポリプロピレングリコールなどがある。上記ポリオール還元溶媒は、金属塩の還元反応を誘導して金属元素を生成させる役割をする。   The reducing solvent is a polar solvent that can dissolve a metal salt, and refers to a solvent such as diol, polyol, or glycol having at least two hydroxy groups in the molecule. Specific examples of these include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, glycerin, glycerol, polyethylene glycol, and polypropylene glycol. The polyol reducing solvent serves to induce a metal salt reduction reaction to generate a metal element.

上記イオン性液体は、有機陽イオンおよび有機又は無機陰イオンから構成された化合物であって、下記一般式(1a)のイミダゾリウム系イオン性液体および/又は下記一般式(1b)のピリジニウム系イオン性液体であることを特徴とする。   The ionic liquid is a compound composed of an organic cation and an organic or inorganic anion, and is an imidazolium-based ionic liquid of the following general formula (1a) and / or a pyridinium-based ion of the following general formula (1b) It is a characteristic liquid.

式中、RおよびRは同一であっても異なってもよく、水素又は炭素数1〜16の炭化水素基を示し、ヘテロ原子を含むこともできる。又、X−はイオン性液体の陰イオンを示す。 In the formula, R 1 and R 2 may be the same or different, represent hydrogen or a hydrocarbon group having 1 to 16 carbon atoms, may contain heteroatoms. X- represents an anion of the ionic liquid.

式中、RおよびRは同一であっても異なってもよく、水素又は炭素数1〜16の炭化水素基を示し、ヘテロ原子を含むこともできる。又、X−はイオン性液体の陰イオンを示す。 In formula, R < 3 > and R < 4 > may be same or different, shows hydrogen or a C1-C16 hydrocarbon group, and can also contain a hetero atom. X- represents an anion of the ionic liquid.

上記一般式(1a)で表されるイミダゾリウムイオン性液体の陽イオンの例を具体的に挙げると、1,3−ジメチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1−ヘキシル−3−メチルイミダゾリウム、1−オクチル−3−メチルイミダゾリウム、1−デシル−3−メチルイミダゾリウム、1−ドデシル−3−メチルイミダゾリウム、1−テトラデシル−3−メチルイミダゾリウムなどがあり、上記一般式(1b)で表されるピリジニウム系イオン性液体の陽イオンの例としては、1−メチルピリジニウム、1−エチルピリジニウム、1−ブチルピリジニウム、1−エチル−3−メチルピリジニウム、1−ブチル−3−メチルピリジニウム、1−ヘキシル−3−メチルピリジニウム、1−ブチル−3,4−ジメチルピリジニウムなどがある。   Specific examples of the cation of the imidazolium ionic liquid represented by the general formula (1a) include 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methyl. Imidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methyl Examples of the cation of the pyridinium-based ionic liquid represented by the general formula (1b) include 1-methylpyridinium, 1-ethylpyridinium, 1-tetradecyl-3-methylimidazolium, and the like. -Butylpyridinium, 1-ethyl-3-methylpyridinium, 1-butyl-3-methylpyridinium, 1- Hexyl-3-methylpyridinium, and the like 1-butyl-3,4-dimethyl pyridinium.

なお、本発明のイオン性液体の陽イオンは、一般式(1a)又は一般式(1b)で表される単分子形態のイオン性液体のみでなく、高分子形態のイオン性液体を含むものであり、例えば、ポリ(1−ビニル−3−アルキルイミダゾリウム)、ポリ(1−ビニル−ピリジニウム)、ポリ(1−ビニル−アルキルピリジニウム)、ポリ(1−アリル−3−アルキルイミダゾリウム)、ポリ(1−(メタ)アクリロイルオキシ−3−アルキルイミダゾリウム)などがあり、これらに限定されない。   In addition, the cation of the ionic liquid of the present invention includes not only a single molecular ionic liquid represented by the general formula (1a) or the general formula (1b) but also a high molecular ionic liquid. Yes, for example, poly (1-vinyl-3-alkylimidazolium), poly (1-vinyl-pyridinium), poly (1-vinyl-alkylpyridinium), poly (1-allyl-3-alkylimidazolium), poly (1- (meth) acryloyloxy-3-alkylimidazolium) and the like are not limited thereto.

上記単分子又は高分子形態のイオン性液体は、有機又は無機陰イオンを有し、例えば、Br−、Cl−、I−、BF−、PF−、ClO−、NO−、AlCl−、AlCl−、AsF−、SbF−、CHCOO−、CFCOO−、CHSO−、CSO−、CHSO−、CSO−、CFSO−、(CFSON−、(CFSOC−、(CFCFSON−、CSO−、CCOO−、(CFSO)(CFCO)N−などがあり、これらに限定されない。 The monomolecular or polymer form of the ionic liquid has an organic or inorganic anion, for example, Br-, Cl-, I-, BF 4 -, PF 6 -, ClO 4 -, NO 3 -, AlCl 4 -, Al 2 Cl 7 - , AsF 6 -, SbF 6 -, CH 3 COO-, CF 3 COO-, CH 3 SO 3 -, C 2 H 5 SO 3 -, CH 3 SO 4 -, C 2 H 5 SO 4 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (CF 3 CF 2 SO 2) 2 N-, C 4 F 9 SO 3 - , C 3 F 7 COO—, (CF 3 SO 2 ) (CF 3 CO) N—, and the like, but are not limited thereto.

上記単分子又は高分子形態のイオン性液体は、陽イオンおよび陰イオンの組合せにより様々な物理的および化学的特性を有する構成が可能であるが、望ましくは金属塩および還元溶媒との相溶性が高いものを選択することが有利である。上記イオン性液体は、金属塩がポリオール還元反応によって金属元素に変換されるときに金属イオン又は金属元素と化学的に相互作用することから、金属元素が一次元、二次元、又は三次元的な成長が可能なように助力する役割をし、最終的に均一な形状を有する金属粒子が作製される。   The ionic liquid in the above monomolecular or polymer form can be configured to have various physical and chemical properties by a combination of a cation and an anion, but preferably has compatibility with a metal salt and a reducing solvent. It is advantageous to choose a higher one. The ionic liquid has a one-dimensional, two-dimensional, or three-dimensional metal element because the metal salt chemically interacts with the metal ion or the metal element when the metal salt is converted into the metal element by a polyol reduction reaction. Metal particles having a uniform shape are finally produced by helping to enable growth.

特に、上記イオン性液体の陰イオン成分が最終的に製造された金属ナノ粒子の形状を左右するが、例えば、アルキル硫酸塩(RSO−)やスルホン酸アルキル(RSO−)のような硫黄化合物の陰イオンを有するイオン性液体を用いると、主に一次元的な成長をしてナノワイヤ状の金属構造体が製造され、ハロゲン化物(Halide)系陰イオンを有するイオン性液体を用いると、主に三次元的な成長をして塩素陰イオン(Cl−)の場合はキュービック状、ブロム陰イオン(Br−)の場合は八面体状の粒子を有する金属構造体が製造される。イオン性液体の陰イオン成分によりそれぞれ異なる形状の金属ナノ粒子を選択的に製造することができる。最終のナノ構造体の形状は、反応初期段階で金属ナノ粒子とイオン性液体間の相互作用により金属ナノ粒子の成長方向が変わるので、この段階で、特に、イオン性液体の陰イオンが重要な役割をすることになる。即ち、反応初期に先に金属塩が還元溶媒によって先に金属ナノ粒子が形成され、金属ナノ粒子とイオン性液体の陰イオン(Cl−、Br−、CHSO−)と相互作用しながら、一定方向の成長をするように助力し、種々の形状の金属ナノ構造体を製造できることになる。 In particular, anionic component of the ionic liquid affects the shape of the finally produced metal nanoparticles, for example, alkyl sulfates sulfur such as (RSO 4 - -) and alkyl sulfonates (RSO 3) When an ionic liquid having a compound anion is used, a nanowire-like metal structure is produced mainly by one-dimensional growth, and when an ionic liquid having a halide anion is used, It grows mainly three-dimensionally to produce a metal structure having cubic particles in the case of chlorine anions (Cl-) and octahedral particles in the case of bromo anions (Br-). Depending on the anionic component of the ionic liquid, metal nanoparticles having different shapes can be selectively produced. Since the final nanostructure shape changes the growth direction of the metal nanoparticles due to the interaction between the metal nanoparticles and the ionic liquid at the initial stage of the reaction, the anion of the ionic liquid is particularly important at this stage. Will play a role. That is, the metal salt is first formed by the reducing solvent in the early stage of the reaction, and the metal nanoparticle is interacted with the anion (Cl−, Br−, CH 3 SO 4 −) of the ionic liquid. The metal nanostructures of various shapes can be manufactured by assisting the growth in a certain direction.

本発明の代表的な例として、ナノワイヤ状を有する金属ナノ構造体を製造するための具体的な方法は次の通りである。先ず、上記の金属塩、還元溶媒および硫化物の陰イオンからなるイオン性液体を適正比率で混合した後、常温で一定時間撹はんする。均一に混合した後上記混合物の反応温度を150〜200℃に上げて反応を持続することにより、金属ナノワイヤを製造する。これにより製造された金属ナノワイヤは、ナノ粒子の形状は殆どなく、平均直径が0.01〜0.1ミクロン、平均長さが5〜100ミクロンのナノワイヤ状を有する。前記の過程でナノワイヤの形状を有するためには、各成分の混合比率を適宜調節することが必要であるが、これは、還元溶媒に対して金属塩0.01〜1モル濃度およびイオン性液体(高分子形態のイオン性液体の場合には繰り返し単位を基準として)0.001〜1モル濃度に維持することが望ましい。上記濃度において、金属塩の濃度が0.01およびイオン性液体の濃度が0.001以下であると、濃度が低すぎて生成される金属ワイヤの含有量が非常に低くなり、或いはイオン性液体の含有量が非常に低くなって、金属ナノワイヤの生成が良くなく不利である。その反面、金属塩の濃度が1モル以上であると、金属塩の含有量が高すぎて生成された金属粒子がくっつき合ったり、粒子の大きさが大きくなるという欠点があって不利であり、又はイオン性液体の含有量が1モル以上であると、全体溶液の粘度が高くなりすぎ、金属ナノワイヤの合成が難しくなってむしろ不利である。   As a typical example of the present invention, a specific method for manufacturing a metal nanostructure having a nanowire shape is as follows. First, an ionic liquid composed of the above metal salt, reducing solvent and sulfide anion is mixed in an appropriate ratio, and then stirred at room temperature for a predetermined time. After uniformly mixing, the reaction temperature of the mixture is raised to 150 to 200 ° C. to maintain the reaction, thereby producing metal nanowires. The metal nanowires thus produced have almost no nanoparticle shape, and have a nanowire shape with an average diameter of 0.01 to 0.1 microns and an average length of 5 to 100 microns. In order to have a nanowire shape in the above-described process, it is necessary to appropriately adjust the mixing ratio of each component, which is 0.01 to 1 molar concentration of metal salt and ionic liquid with respect to the reducing solvent. It is desirable to maintain the concentration at 0.001 to 1 molar (based on repeating units in the case of ionic liquids in polymer form). In the above concentration, when the concentration of the metal salt is 0.01 and the concentration of the ionic liquid is 0.001 or less, the content of the metal wire generated due to the concentration being too low, or the ionic liquid As a result, the production of metal nanowires is not good and disadvantageous. On the other hand, if the concentration of the metal salt is 1 mol or more, the metal salt content is too high and the produced metal particles stick together, and the particle size is disadvantageous. Alternatively, if the content of the ionic liquid is 1 mol or more, the viscosity of the whole solution becomes too high, which makes it difficult to synthesize metal nanowires, which is rather disadvantageous.

前述したような方法を用いながら陰イオンが互いに異なるイオン性液体を用いるとキュービック状の金属ナノ粒子又は八面体状の金属ナノ粒子を均一で、且つ安定的に合成することができる。   When ionic liquids having different anions are used while using the method described above, cubic metal nanoparticles or octahedral metal nanoparticles can be synthesized uniformly and stably.

本発明のイオン性液体、金属塩および還元溶媒を混合反応することにより、種々の形状の金属ナノ構造体の製造方法において、金属ナノ構造体の形状および大きさをより一層効果的に制御するために、下記一般式(2a)の窒素化合物又は一般式(2b)の硫黄化合物を添加剤として追加することが可能であり、この際、上記化合物の含有量の範囲は金属塩100重量部を基準として0.1〜100重量部にすることが望ましい。これらの化合物の濃度が0.1重量部以下であると形状および大きさの制御効果が僅かであり、100重量部以上であるとナノ構造体の形状が変化してしまう副作用が生じむしろ不利である。   In order to more effectively control the shape and size of a metal nanostructure in a method for producing metal nanostructures of various shapes by mixing and reacting the ionic liquid, metal salt and reducing solvent of the present invention. It is possible to add a nitrogen compound of the following general formula (2a) or a sulfur compound of the general formula (2b) as an additive, and the content range of the above compound is based on 100 parts by weight of a metal salt. Is preferably 0.1 to 100 parts by weight. If the concentration of these compounds is 0.1 parts by weight or less, the effect of controlling the shape and size is slight, and if it is 100 parts by weight or more, there is a side effect of changing the shape of the nanostructure, which is rather disadvantageous. is there.

式中、R、R、RおよびRは同一であっても異なってもよく、炭素数1〜20の炭化水素基を示し、ヘテロ原子を含むこともできる。又、Y−は有機或いは無機陰イオンを示す。 In the formula, R 5 , R 6 , R 7 and R 8 may be the same or different, each represents a hydrocarbon group having 1 to 20 carbon atoms, and may include a hetero atom. Y- represents an organic or inorganic anion.

式中、Rは単分子又は高分子形態の炭化水素基を示し、ヘテロ原子を含むこともできる。又、Y−は有機或いは無機陰イオンを示す。 In the formula, R represents a monomolecular or macromolecular hydrocarbon group, and may contain a hetero atom. Y- represents an organic or inorganic anion.

上記一般式(2a)で表される窒素化合物の例としては、塩化テトラブチルアンモニウム、臭化セチルトリメチルアンモニウム、塩化テトラブチルホスホニウムなどを含み、上記一般式(2b)で表される硫黄化合物の例としては、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸、ポリスチレンスルホン酸、ポリ(4−スチレンスルホン酸ナトリウム)等がある。   Examples of the nitrogen compound represented by the general formula (2a) include tetrabutylammonium chloride, cetyltrimethylammonium bromide, tetrabutylphosphonium chloride, and the like, and examples of the sulfur compound represented by the general formula (2b). As sodium dodecyl sulfate, dodecyl benzene sulfonic acid, polystyrene sulfonic acid, poly (sodium 4-styrene sulfonate), and the like.

本発明は、イオン性液体、金属塩および還元溶媒を混合反応させることにより、種々の形状の金属ナノ構造体を製造することができる。   In the present invention, metal nanostructures of various shapes can be produced by mixing and reacting an ionic liquid, a metal salt, and a reducing solvent.

なお、金属塩を前駆体とするポリオール還元反応において、陰イオンの種類が異なるイオン性液体を選択的に用いることにより、種々の形状の金属ナノ粒子を選択的に再現性よく製造できて効果的である。   In addition, in the polyol reduction reaction using a metal salt as a precursor, by selectively using ionic liquids having different types of anions, metal nanoparticles of various shapes can be selectively produced with good reproducibility and effective. It is.

本発明により製造された金属ナノ構造体を示す写真である。3 is a photograph showing a metal nanostructure manufactured according to the present invention. 本発明により製造された金属ナノ構造体を示す写真である。3 is a photograph showing a metal nanostructure manufactured according to the present invention. 本発明により製造された金属ナノ構造体を示す写真である。3 is a photograph showing a metal nanostructure manufactured according to the present invention.

以下、本発明を次の実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
丸底フラスコにAgNOをエチレングリコールに0.1モル濃度で溶かした溶液50ミリリットルと、1−ブチル−3−メチルイミダゾリウムメチルサルフェイトをエチレングリコールに0.15モル濃度で溶かした溶液50ミリリットルとを混合した。上記混合溶液は、160℃で60分間撹はんしながら反応させた後、温度を再度常温に冷却させた。上記溶液を1ミクロンの気孔を有したフィルタでろ過した後、走査電子顕微鏡で観察した結果、図1に示すように、直径が約220ナノメートル、長さが約7ミクロンのナノワイヤが形成されたことを確認した。
Example 1
50 ml of a solution obtained by dissolving AgNO 3 in ethylene glycol at a 0.1 molar concentration in a round bottom flask and 50 ml of a solution obtained by dissolving 1-butyl-3-methylimidazolium methyl sulfate in ethylene glycol at a 0.15 molar concentration. And mixed. The mixed solution was reacted at 160 ° C. with stirring for 60 minutes, and then the temperature was again cooled to room temperature. The solution was filtered through a filter having 1 micron pores and then observed with a scanning electron microscope. As a result, as shown in FIG. 1, nanowires having a diameter of about 220 nanometers and a length of about 7 microns were formed. It was confirmed.

(実施例2)
丸底フラスコにAgNOを1,3−プロピレングリコールに0.2モル濃度で溶かした溶液10ミリリットルと、1−エチル−3−メチルイミダゾリウムメチルサルフェイトを1,3−プロピレングリコールに0.3モル濃度で溶かした溶液10ミリリットルとを混合した。上記混合溶液は、100℃の温度で約30分間撹はんして反応させた後、温度を常温に冷却させた。上記溶液を1ミクロンの気孔を有したフィルタでろ過した後、走査電子顕微鏡で観察した結果、直径が約180ナノメートル、長さが約10ミクロンのナノワイヤが形成されたことを確認した。
(Example 2)
In a round bottom flask, 10 ml of a solution prepared by dissolving AgNO 3 in 1,3-propylene glycol at a 0.2 molar concentration, and 1-ethyl-3-methylimidazolium methyl sulfate in 1,3-propylene glycol were mixed in 0.3. 10 ml of the solution dissolved in molarity was mixed. The mixed solution was stirred and reacted at a temperature of 100 ° C. for about 30 minutes, and then the temperature was cooled to room temperature. The solution was filtered through a filter having 1 micron pores and then observed with a scanning electron microscope. As a result, it was confirmed that nanowires having a diameter of about 180 nanometers and a length of about 10 microns were formed.

(実施例3)
丸底フラスコにAgNOを1,2−プロピレングリコールに0.2モル濃度で溶かした溶液10ミリリットルと、1−エチル−3−メチルイミダゾリウムメチルサルフェイトを1,3−プロピレングリコールに0.3モル濃度で溶かした溶液10ミリリットルとを混合した後、添加したAgNOの重量に対して1%重量のドデシル硫酸ナトリウムを添加した。上記混合溶液は、100℃の温度で約30分間撹はんして反応させた後、温度を常温に冷却させた。上記溶液を1ミクロンの気孔を有したフィルタでろ過した後、走査電子顕微鏡で観察した結果、直径が約80ナノメートル、長さが約10ミクロンのナノワイヤが形成されたことを確認した。
(Example 3)
10 mL of a solution obtained by dissolving AgNO 3 in 1,2-propylene glycol at a 0.2 molar concentration in a round bottom flask, and 1-ethyl-3-methylimidazolium methyl sulfate in 1,3-propylene glycol in 0.3 After mixing with 10 ml of the solution dissolved at a molar concentration, 1% by weight of sodium dodecyl sulfate was added with respect to the weight of AgNO 3 added. The mixed solution was stirred and reacted at a temperature of 100 ° C. for about 30 minutes, and then the temperature was cooled to room temperature. The solution was filtered through a filter having 1 micron pores and then observed with a scanning electron microscope. As a result, it was confirmed that nanowires having a diameter of about 80 nanometers and a length of about 10 microns were formed.

(実施例4)
イオン性液体として1−エチル−3−メチルピリジニウムメチルサルフェイトを使用したことを除いては、実施例1と同一の方法で金属ナノ構造体を製造した。上記溶液を1ミクロンの気孔を有したフィルタでろ過した後、走査電子顕微鏡で観察した結果、直径が約320ナノメートル、長さが約5ミクロンのナノワイヤが形成されたことを確認した。
Example 4
A metal nanostructure was produced in the same manner as in Example 1 except that 1-ethyl-3-methylpyridinium methylsulfate was used as the ionic liquid. The solution was filtered through a filter having 1 micron pores and then observed with a scanning electron microscope. As a result, it was confirmed that nanowires having a diameter of about 320 nanometers and a length of about 5 microns were formed.

(実施例5)
イオン性液体として1−ブチル−3−メチルイミダゾリウムクロライドを使用したことを除いては、実施例1と同一の方法で金属ナノ構造体を製造した。最終的に生成された反応溶媒を0.2ミクロン大きさのテフロンフィルタでろ過した後、走査電子顕微鏡で観察した結果、図2に示すように、約400ナノメートルのキュービック状を有する銀ナノ粒子が形成されたことを確認した。
(Example 5)
A metal nanostructure was produced in the same manner as in Example 1 except that 1-butyl-3-methylimidazolium chloride was used as the ionic liquid. After the reaction solvent finally produced was filtered with a 0.2 micron size Teflon filter and observed with a scanning electron microscope, as shown in FIG. 2, silver nanoparticles having a cubic shape of about 400 nanometers. It was confirmed that was formed.

(実施例6)
イオン性液体として1−ブチル−3−メチルイミダゾリウムブロマイドを使用したことを除いては、実施例1と同一の方法で金属構造体を製造した。最終的に生成された反応溶媒を1ミクロンのフィルタでろ過した後、走査電子顕微鏡で観察した結果、図3に示すように、約5ミクロンの八面体状を有する銀粒子が形成されたことを確認した。
(Example 6)
A metal structure was produced in the same manner as in Example 1 except that 1-butyl-3-methylimidazolium bromide was used as the ionic liquid. The reaction solvent finally produced was filtered with a 1 micron filter and then observed with a scanning electron microscope. As a result, as shown in FIG. 3, silver particles having an octahedral shape of about 5 microns were formed. confirmed.

本発明により製造された金属ナノ構造体は、平板ディスプレイ、タッチパネル、太陽光電池などの種々の産業分野において使用が可能である。   The metal nanostructure produced by the present invention can be used in various industrial fields such as a flat panel display, a touch panel, and a solar battery.

Claims (12)

イオン性液体、金属塩および還元溶媒を混合反応させることにより、種々の形状の金属ナノ構造体を製造する金属ナノ構造体の製造方法。 A method for producing a metal nanostructure, wherein metal nanostructures having various shapes are produced by mixing and reacting an ionic liquid, a metal salt, and a reducing solvent. 上記イオン性液体を構成する陽イオンおよび陰イオンの化学的結合構造により金属ナノ構造体の形状が決定されることを特徴とする請求項1に記載の金属ナノ構造体の製造方法。 The method for producing a metal nanostructure according to claim 1, wherein the shape of the metal nanostructure is determined by a chemical bond structure of a cation and an anion constituting the ionic liquid. 上記イオン性液体を構成する陰イオン成分がアルキル硫酸塩(RSO−)やスルホン酸アルキル(RSO−)を含む硫黄化合物の陰イオンを有するイオン性液体を用いてナノワイヤ状のような一次元形状の構造を、ハロゲン化物(Halide)系陰イオンを有するイオン性液体を用いて三次元形状の構造を、塩素陰イオン(Cl−)の場合はキュービック状の構造を、そしてブロム陰イオン(Br−)の場合は八面体状の粒子形状の構造を有するようにすることを特徴とする請求項1又は2に記載の金属ナノ構造体の製造方法。 Anionic component alkyl sulphates constituting the ionic liquid (RSO 4 -) and alkyl sulfonates (RSO 3 -) one, such as a nanowire using ionic liquids dimensional with anions of sulfur compounds including The structure of the shape is formed using an ionic liquid having a halide-based anion, a three-dimensional structure, in the case of chlorine anion (Cl-), a cubic structure, and a bromide anion (Br The method for producing a metal nanostructure according to claim 1 or 2, wherein in the case of-), the structure has an octahedral particle shape. 上記イオン性液体は、有機陽イオンおよび有機又は無機陰イオンから構成された化合物であって、単分子形態であるか、あるいは高分子形態であることを特徴とする請求項1〜3のうちいずれか1項に記載の金属ナノ構造体の製造方法。 The ionic liquid is a compound composed of an organic cation and an organic or inorganic anion, and is in a monomolecular form or in a polymer form. A method for producing the metal nanostructure according to claim 1. 上記イオン性液体の陽イオンとしては、下記一般式(1a)のイミダゾリウム系陽イオン、下記一般式(1b)のピリジニウム系陽イオンを含むものであって、単分子形態であるか、あるいは高分子形態であることを特徴とする請求項1〜4のうちいずれか1項に記載の金属ナノ構造体の製造方法。
式中、RおよびRは同一であっても異なってもよく、水素又は炭素数1〜16の炭化水素基を示し、ヘテロ原子を含むこともできる。又、X−はイオン性液体の陰イオンを示す。
式中、RおよびRは同一であっても異なってもよく、水素又は炭素数1〜16の炭化水素基を示し、ヘテロ原子を含むこともできる。又、X−はイオン性液体の陰イオンを示す。
The cation of the ionic liquid includes an imidazolium cation of the following general formula (1a), a pyridinium cation of the following general formula (1b), and is in a monomolecular form or high It is a molecular form, The manufacturing method of the metal nanostructure of any one of Claims 1-4 characterized by the above-mentioned.
In the formula, R 1 and R 2 may be the same or different, represent hydrogen or a hydrocarbon group having 1 to 16 carbon atoms, may contain heteroatoms. X- represents an anion of the ionic liquid.
In formula, R < 3 > and R < 4 > may be same or different, shows hydrogen or a C1-C16 hydrocarbon group, and can also contain a hetero atom. X- represents an anion of the ionic liquid.
上記イオン性液体の陰イオンとしては、 Br−、Cl−、I−、BF−、PF−、ClO−、NO−、AlCl−、AlCl−、AsF−、SbF−、CHCOO−、CFCOO−、CHSO−、CSO−、CHSO−、CSO−、CFSO−、(CFSON−、(CFSOC−、(CFCFSON−、CSO−、CCOO−、(CFSO)(CFCO)N−のうちいずれか1つを使用することを特徴とする請求項1〜5のうちいずれか1項に記載の金属ナノ構造体の製造方法。 The anion of the ionic liquid, Br-, Cl-, I-, BF 4 -, PF 6 -, ClO 4 -, NO 3 -, AlCl 4 -, Al 2 Cl 7 -, AsF 6 -, SbF 6 -, CH 3 COO-, CF 3 COO-, CH 3 SO 3 -, C 2 H 5 SO 3 -, CH 3 SO 4 -, C 2 H 5 SO 4 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, ( CF 3 SO 2) 3 C -, (CF 3 CF 2 SO 2) 2 N-, C 4 F 9 SO 3 -, C 3 F 7 COO -, (CF 3 SO 2) (CF 3 CO) method for producing a metal nanostructure according to any one of claims 1 to 5, wherein the use of any one of N-. 上記金属塩は、金属陽イオンおよび有機又は無機陰イオンからなるものであり、AgNO、Ag(CHCOO)、AgClO、Au(ClO、PdCl、NaPdCl、PtCl、SnCl、HAuCl、FeCl、FeCl、Fe(CHCOO)、CoCl、KFe(CN)、KCo(CN)、KMn(CN)、KCOのうちいずれか1つを使用することを特徴とする請求項1〜6のうちいずれか1項に記載の金属ナノ構造体の製造方法。 The metal salt is composed of a metal cation and an organic or inorganic anion, and is AgNO 3 , Ag (CH 3 COO) 2 , AgClO 4 , Au (ClO 4 ) 3 , PdCl 2 , NaPdCl 4 , PtCl 2 , SnCl 4 , HAuCl 4 , FeCl 2 , FeCl 3 , Fe (CH 3 COO) 2 , CoCl 2 , K 4 Fe (CN) 6 , K 4 Co (CN) 6 , K 4 Mn (CN) 6 , K 2 CO Any one of 3 is used, The manufacturing method of the metal nanostructure of any one of Claims 1-6 characterized by the above-mentioned. 還元溶媒は、分子内にヒドロキシ基を少なくとも2個以上有するジオール、ポリオール又はグリコールなどの溶媒であって、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、グリセリン、グリセロール、ポリエチレングリコール、ポリプロピレングリコールのうちいずれか1つを使用することを特徴とする請求項1〜7のうちいずれか1項に記載の金属ナノ構造体の製造方法。 The reducing solvent is a solvent such as diol, polyol or glycol having at least two hydroxy groups in the molecule, and is ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, glycerin, glycerol, polyethylene glycol. Any one of these and polypropylene glycol is used, The manufacturing method of the metal nanostructure of any one of Claims 1-7 characterized by the above-mentioned. イオン性液体、金属塩および還元溶媒の混合比率は、還元溶媒に対して金属塩0.01〜1モル濃度およびイオン性液体(高分子形態のイオン性液体の場合には繰り返し単位基準として)0.001〜1モル濃度であることを特徴とする請求項1〜8のうちいずれか1項に記載の金属ナノ構造体の製造方法。 The mixing ratio of the ionic liquid, the metal salt, and the reducing solvent is 0.01 to 1 molar concentration of the metal salt and the ionic liquid (on the basis of a repeating unit in the case of the ionic liquid in a polymer form) 0 It is 0.001-1 mol concentration, The manufacturing method of the metal nanostructure of any one of Claims 1-8 characterized by the above-mentioned. イオン性液体、金属塩および還元溶媒以外に、下記一般式(2a)の窒素化合物および一般式(2b)の硫黄化合物をさらに含むことを特徴とする請求項1〜9のうちいずれか1項に記載の金属ナノ構造体の製造方法。
式中、R、R、RおよびRは同一であっても異なってもよく、炭素数1〜20の炭化水素基を示し、ヘテロ原子を含むこともできる。又、Y−は有機或いは無機陰イオンを示す。
式中、Rは単分子又は高分子形態の炭化水素基を示し、ヘテロ原子を含むこともできる。又、Y−は有機或いは無機陰イオンを示す。
In addition to the ionic liquid, the metal salt and the reducing solvent, the nitrogen compound of the following general formula (2a) and the sulfur compound of the general formula (2b) are further included. The manufacturing method of the metal nanostructure of description.
In the formula, R 5 , R 6 , R 7 and R 8 may be the same or different, each represents a hydrocarbon group having 1 to 20 carbon atoms, and may include a hetero atom. Y- represents an organic or inorganic anion.
In the formula, R represents a monomolecular or macromolecular hydrocarbon group, and may contain a hetero atom. Y- represents an organic or inorganic anion.
上記窒素化合物および硫黄化合物の濃度は、金属塩100重量部を基準として0.1〜100重量部であることを特徴とする請求項10に記載の金属ナノ構造体の製造方法。 The method for producing a metal nanostructure according to claim 10, wherein the concentration of the nitrogen compound and the sulfur compound is 0.1 to 100 parts by weight based on 100 parts by weight of the metal salt. 請求項1〜11に記載の方法を用いて製造された金属ナノ構造体。 The metal nanostructure manufactured using the method of Claims 1-11.
JP2012504611A 2009-04-08 2010-04-07 Method for producing metal nanostructure using ionic liquid Active JP6041138B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0030599 2009-04-08
KR20090030599A KR101479788B1 (en) 2009-04-08 2009-04-08 Method for producing metal nano structures using ionic liquid
PCT/KR2010/002127 WO2010117204A2 (en) 2009-04-08 2010-04-07 Production method for a metal nanostructure using an ionic liquid

Publications (2)

Publication Number Publication Date
JP2012523499A true JP2012523499A (en) 2012-10-04
JP6041138B2 JP6041138B2 (en) 2016-12-07

Family

ID=42936716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504611A Active JP6041138B2 (en) 2009-04-08 2010-04-07 Method for producing metal nanostructure using ionic liquid

Country Status (6)

Country Link
US (1) US20120034129A1 (en)
JP (1) JP6041138B2 (en)
KR (1) KR101479788B1 (en)
CN (1) CN102369154B (en)
TW (1) TW201100558A (en)
WO (1) WO2010117204A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136772A (en) * 2010-12-09 2012-07-19 Sumitomo Chemical Co Ltd Method for producing metal nanowire
JP2012180589A (en) * 2011-02-07 2012-09-20 Sumitomo Chemical Co Ltd Method for manufacturing metal nanowire
JP2013159825A (en) * 2012-02-06 2013-08-19 Sumitomo Chemical Co Ltd Method of manufacturing metal nanowire
CN103769600A (en) * 2014-01-14 2014-05-07 南昌大学 Surface high-dispersion precious metal high-index crystallographic-plane nano-particle preparation method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011342379A1 (en) * 2010-12-17 2013-07-25 University Of South Australia Extraction of gold
KR101309525B1 (en) * 2011-12-26 2013-09-24 전북대학교산학협력단 Metal-ionic liquid hybrid thin film and method for preparing the same
CN102672194B (en) * 2012-01-04 2014-08-27 河南科技大学 Method for preparing gold nanoparticles by polymer ionic liquid
US9095903B2 (en) * 2012-01-23 2015-08-04 Carestream Health, Inc. Nanowire ring preparation methods, compositions, and articles
US9920207B2 (en) * 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
US20150321257A1 (en) * 2012-12-14 2015-11-12 Soloe Tech Co., Ltd. Method for manufacturing silver nanowires using ionic liquid
KR101448361B1 (en) * 2012-12-14 2014-10-14 인스콘테크(주) Method for producing silver nanowires using copolymer capping agents
US10020807B2 (en) 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
CN103469264B (en) * 2013-09-16 2015-10-21 中国电子科技集团公司第三十八研究所 Electroplating deposition prepares the method for nanocrystalline structure gold-tin alloy coating
KR101372657B1 (en) * 2013-09-26 2014-03-11 금오공과대학교 산학협력단 Process for preparing palladium nanoparticles by non-aqueous electrolysis
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
CN105439203B (en) * 2014-09-25 2017-09-22 中国科学院大连化学物理研究所 A kind of surface amphiphilic nano molybdenum disulfide hydrogenation catalyst and preparation method and application
CN104690294B (en) * 2015-03-27 2017-04-05 严锋 The preparation method of high length-diameter ratio nano silver wire and the nano silver wire prepared with the method
CN105316953B (en) * 2015-11-04 2018-02-13 长安大学 One kind attachment SnS2The preparation method and applications of textile
WO2017217628A1 (en) 2016-06-14 2017-12-21 충남대학교산학협력단 Method for producing metal nanoparticle-polymer composite thin film
CN106493386A (en) * 2016-11-03 2017-03-15 国家纳米科学中心 The octahedral shape Nanoalloy of octahedra Nanoalloy and porous, Preparation Method And The Use
KR20180060756A (en) * 2016-11-29 2018-06-07 경희대학교 산학협력단 Method for manufacturing silver nanocube-particles and silver nanocube-particles manufactured by the same
CN108161020A (en) * 2016-12-13 2018-06-15 中国科学院光电技术研究所 A kind of octahedral preparation method of gold nano
CN106953103B (en) * 2017-03-08 2019-04-09 济南大学 A kind of monocrystalline gold@platinum nucleocapsid octahedron nanoparticle controllable method for preparing based on seed epitaxial growth
US9850420B1 (en) 2017-05-23 2017-12-26 King Saud University Composition and method for enhanced oil recovery
CN108031860B (en) * 2017-12-04 2021-04-06 浙江工业大学 Preparation method of nano gold triangular plate
CN108359809B (en) * 2018-04-27 2021-01-15 连云港笃翔化工有限公司 Method for recovering palladium chloride from waste palladium catalyst
KR102242578B1 (en) 2019-09-05 2021-05-25 주식회사 하이코스킨 Manufacturing method of gold nanorods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265713A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Method for producing metal acicular body-containing metal particulate
WO2007055422A1 (en) * 2005-11-10 2007-05-18 Sumitomo Metal Mining Co., Ltd. Indium nanowire, oxide nanowire, electroconductive oxide nanowire, and production process thereof
JP2007239055A (en) * 2006-03-10 2007-09-20 Kyushu Univ Method for producing metal nanowire
US20080003130A1 (en) * 2006-02-01 2008-01-03 University Of Washington Methods for production of silver nanostructures
US20080245186A1 (en) * 2005-05-13 2008-10-09 University Of Rochester Synthesis of nano-materials in ionic liquids
WO2009080522A1 (en) * 2007-12-19 2009-07-02 Universität Potsdam Synthesis of au, pd, pt or ag nano- or microcrystals via reduction of metal salts by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride
JP5611220B2 (en) * 2008-11-18 2014-10-22 スー・クワンスック Method for producing metal nanowire using ionic liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585349B2 (en) * 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US7582330B2 (en) * 2004-11-24 2009-09-01 3M Innovative Properties Counsel Method for making metallic nanostructures
US7247723B2 (en) * 2004-11-24 2007-07-24 3M Innovative Properties Company Metallic chromonic compounds
CN100496819C (en) * 2005-10-18 2009-06-10 河南大学 Reduced preparation method for metal nanometer particle using hydroxy ion liquid
EP1993960A2 (en) * 2006-01-17 2008-11-26 PPG Industries Ohio, Inc. Method of producing particles by physical vapor deposition in an ionic liquid
US8454721B2 (en) * 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
JPWO2009063744A1 (en) * 2007-11-16 2011-03-31 コニカミノルタホールディングス株式会社 Method for producing metal nanowire, metal nanowire and transparent conductor
US7922787B2 (en) * 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265713A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Method for producing metal acicular body-containing metal particulate
US20080245186A1 (en) * 2005-05-13 2008-10-09 University Of Rochester Synthesis of nano-materials in ionic liquids
WO2007055422A1 (en) * 2005-11-10 2007-05-18 Sumitomo Metal Mining Co., Ltd. Indium nanowire, oxide nanowire, electroconductive oxide nanowire, and production process thereof
US20080003130A1 (en) * 2006-02-01 2008-01-03 University Of Washington Methods for production of silver nanostructures
JP2007239055A (en) * 2006-03-10 2007-09-20 Kyushu Univ Method for producing metal nanowire
WO2009080522A1 (en) * 2007-12-19 2009-07-02 Universität Potsdam Synthesis of au, pd, pt or ag nano- or microcrystals via reduction of metal salts by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride
JP5611220B2 (en) * 2008-11-18 2014-10-22 スー・クワンスック Method for producing metal nanowire using ionic liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013046085; BENJAMIN WILEY et al.: 'Synthesis of Silver Nanostructures with Controlled Shapes and Properties' ACCOUNT OF CHEMICAL RESEARCH Vol.40, 2007, P.1067〜1076, American Chemical Society *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136772A (en) * 2010-12-09 2012-07-19 Sumitomo Chemical Co Ltd Method for producing metal nanowire
JP2012180589A (en) * 2011-02-07 2012-09-20 Sumitomo Chemical Co Ltd Method for manufacturing metal nanowire
JP2013159825A (en) * 2012-02-06 2013-08-19 Sumitomo Chemical Co Ltd Method of manufacturing metal nanowire
CN103769600A (en) * 2014-01-14 2014-05-07 南昌大学 Surface high-dispersion precious metal high-index crystallographic-plane nano-particle preparation method

Also Published As

Publication number Publication date
TW201100558A (en) 2011-01-01
CN102369154A (en) 2012-03-07
WO2010117204A3 (en) 2011-01-20
CN102369154B (en) 2015-02-18
WO2010117204A2 (en) 2010-10-14
KR101479788B1 (en) 2015-01-06
US20120034129A1 (en) 2012-02-09
KR20100112049A (en) 2010-10-18
JP6041138B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6041138B2 (en) Method for producing metal nanostructure using ionic liquid
TWI464274B (en) Method of manufacturing metal nanowire using ionic liquid
Wang et al. Sonochemical synthesis of hollow PbS nanospheres
Han et al. Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application
TWI476160B (en) Method for preparing silver nanowire
US10195670B2 (en) Methods of controlling nanostructure formations and shapes
Li et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids
KR100993389B1 (en) Organic-inorganic hybrid material having nanoparticles adhering thereon and method for preparing the same
Gupta et al. Controlled morphology of conducting polymers: formation of nanorods and microspheres of polyindole
Dai et al. Formation of gold nanoparticles in the presence of o-anisidine and the dependence of the structure of poly (o-anisidine) on synthetic conditions
Chen et al. Structure-controlled solventless thermolytic synthesis of uniform silver nanodisks
Zhou et al. Synthesis of highly crystalline silver dendrites microscale nanostructures by electrodeposition
Wang et al. Controlled synthesis of V-shaped SnO2 nanorods
US20110197710A1 (en) Making metal and bimetal nanostructures with controlled morphology
Li et al. Recent Advances in Amino‐Based Molecules Assisted Control of Noble‐Metal Electrocatalysts
Chen et al. Chemical preparation of special-shaped metal nanomaterials through encapsulation or inducement in soft solution
KR20170106086A (en) preparation method of copper nano-structures
Echeverria et al. Ag–Ga bimetallic nanostructures ultrasonically prepared from silver–liquid gallium core–shell systems engineered for catalytic applications
JP4331927B2 (en) Inorganic nanoparticle-organic compound composite and one-dimensional array integrated structure thereof
Liu et al. Fabrication of silver nanowires via a β-cyclodextrin-derived soft template
Yu et al. Structure Transition of CuOX Nanoparticles in Copper− Silica Nanocomposites
JP6743230B2 (en) Method for producing gold nanoparticles based on functionalized ionic liquid
Ma et al. Synthesis of gold nanostructures using Langmuir monolayers of ionic liquid-type Gemini imidazolium surfactants
Wei et al. Synthesis of water soluble silver-nanoparticle-embedded polymer nanofibers with poly (2-ethyl-2-oxazoline) by a straightforward polyol process
KR20160109149A (en) Oxide or hydroxide nanostructure on metal surface and synthesis method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6041138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250