TW200916560A - Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device - Google Patents

Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device Download PDF

Info

Publication number
TW200916560A
TW200916560A TW97127337A TW97127337A TW200916560A TW 200916560 A TW200916560 A TW 200916560A TW 97127337 A TW97127337 A TW 97127337A TW 97127337 A TW97127337 A TW 97127337A TW 200916560 A TW200916560 A TW 200916560A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
display device
nickel
compatible
crystal display
Prior art date
Application number
TW97127337A
Other languages
Chinese (zh)
Inventor
Yasuo Toko
Shuji Yokoyama
Shinya Takigawa
Shigeyoshi Nishino
Original Assignee
Stanley Electric Co Ltd
Ube Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd, Ube Industries filed Critical Stanley Electric Co Ltd
Publication of TW200916560A publication Critical patent/TW200916560A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Abstract

Disclosed is a liquid-crystal-compatible particle-containing liquid crystal (i.e., a liquid crystal containing a particle compatible with a liquid crystal), which contains a metal nanoparticle having excellent dispersion ability in a liquid crystal and which has an excellent response property in a lower temperature range when used to form a liquid crystal cell for a liquid crystal display device. Also disclosed is a liquid crystal display device produced by using the liquid-crystal-compatible particle-containing liquid crystal. Specifically disclosed is a liquid-crystal-compatible particle-containing liquid crystal which contains a liquid-crystal-compatible particle composed of: a metal nanoparticle made of nickel and a metal other than nickel; and a liquid crystal molecule bound to the outer region of the metal nanoparticle.; The metal nanoparticle may be a nickel-silver two-component nanoparticle. The liquid crystal display device (1) may have a liquid crystal cell (7) in which the liquid-crystal-compatible particle-containing liquid crystal (L) containing the liquid-crystal-compatible particle is filled. The liquid crystal cell (7) may contain the liquid-crystal-compatible particle-containing liquid crystal (L) and a chiral agent. The liquid-crystal-compatible particle-containing liquid crystal (L) may have a twist angle ranging from 180 to 270 DEG in the liquid crystal cell (7). The liquid-crystal-compatible particle-containing liquid crystal (L) may contain the metal nanoparticle in an amount of 0.02 to 0.2 wt% relative to the amount of the liquid crystal contained therein. The liquid crystal display device (1) may be a dot matrix panel utilizing a DUTY driving.

Description

200916560 九、發明說明 【發明所屬之技術領域】 本發明係關於使用含有液晶相溶性粒子之液晶及使用 該液晶之液晶顯示裝置,例如作爲汽車用顯示面板使用的 液晶顯示裝置。 【先前技術】 以往,顯示驅動頻率依存性的液晶材料乃周知者。然 而,上述液晶材料中,由於閾値具有頻率依存性,故進行 負載驅動時,會有因閾値不均而導致顯示不均的問題產生 〇 爲了解決上述問題,曾有使用在具備0.5〜lOOnm之 範圍之直徑的鈀奈米粒子等金屬奈米粒子所構成之核的周 圍,使液晶分子結合的液晶相溶性粒子之提案。上述液晶 相溶性粒子係可藉由例如:將紫外線照射在使醋酸鈀等的 鈀鹽與液晶分子溶解於乙醇等的溶媒之溶液,以還原該鈀 鹽而製造(參照專利文獻1 )。 此外,本說明書中,上述「使液晶分子結合於由金屬 奈米粒子所構成之核的周圍」係指:具有使液晶分子藉由 某些相互作用而包圍由金屬奈米粒子所構成之核周圍的構 造之狀態。 可推斷上述液晶相溶性粒子具有:以藉由1種或複數 種金屬離子的還原所產生之複數個金屬粒子作爲中心核’ 使液晶分子藉由某些相互作用包圍其周圍之構造。由複數 -5- 200916560 個金屬粒子所構成的中心核亦可具有複數種金屬粒子呈無 規則分布的無規則合金(random alloy)構造,亦可具有 以1種金屬粒子作爲外殼(Shell ) ’且以另一種金屬粒子 作爲核(core)的核-外殼(core shell)構造。將上述中 心核爲由1種金屬粒子所構成時稱爲單元粒子,由2種金 屬粒子所構成時稱爲二元粒子。 使上述液晶相溶性粒子溶解或分散於矩陣液晶而作成 爲含有液晶相溶性粒子之液晶,並使用該含有液晶相溶性 粒子之液晶,構成液晶顯示裝置的液晶胞,依此,使得光 透過量可依存於施加於該液晶顯示裝置之電壓的頻率而變 化。 又,就上述液晶相溶性粒子而言,在混合液晶分子與 二級醇與有機溶媒而得到的混合溶液中,於回流下添加金 屬離子溶液,藉由還原該金屬離子,可將上述金屬奈米粒 子的粒子直徑作成爲40nm以下,大多數係作成爲5nm以 下。作爲此種上述金屬奈米粒子,可舉出例如:鈀或銀的 金屬奈米粒子、或鈀與銀的二元金屬奈米粒子。 藉由將上述金屬離子在上述混合溶液中於回流下還原 而得到的金屬奈米粒子,因其粒子直徑爲4 0 n m以下,大 多爲5 nm以下,故光的波長相當小’不會對液晶顯示裝 置的透過率(折射率)、色調、銳利度(sharpness )等的 光學性質造成影響。另一方面,藉由在矩陣液晶中放入含 有上述金屬奈米粒子之液晶相溶性粒子,被認爲可對液晶 顯示裝置的介電常數異向性、彈性定數、黏性係數等的物 -6- 200916560 理性質造成影響。 述金屬奈米 晶顯示裝置 依存性會變 含有鈀與銀 液晶,構成 —LCD等液 「應答( 載驅動時由 體上應答( 影響甚爲嚴 的二元金屬 有對液晶的 述含有液晶 容易在注入 公報 結果,當含有粒子直徑爲40nm以下之上 粒子之含有液晶相溶性粒子之液晶被使用於液 之液晶胞時,電壓-透過率特性之閾値的頻率 小,可進行負載驅動顯示。 然而,當含有鈀或銀的金屬奈米粒子、或 的二元金屬奈米粒子之含有液晶相溶性粒子之 STN ( Super Twisted Nematic:超扭轉向列) 晶顯示裝置的液晶胞時,在低溫區域會1 response )」變慢的不良情形產生。尤其於負 於無法將充分的電壓差施加至液晶,故會有整 r e s ρ ο n s e )變慢之傾向,低溫下之應答降低的 重。 此外,鈀或銀的金屬奈米粒子、或鈀與銀 奈米粒子在含有液晶相溶性粒子之液晶中,具 分散性低,且容易凝聚之不良情形。因此,上 相溶性粒子之液晶於真空注入至液晶胞時會有 口附近產生堵塞之不良情形。 〔專利文獻1〕日本特開2003 — 149683號 【發明內容】 〔發明所欲解決之課題〕 本發明係爲解決此不良情形而開發者,其目的在於提 供一種含有對液晶具備良好分散性的金屬奈米粒子,且在 200916560 構成液晶顯示裝置的液晶胞時,即使於〇°c以下的低溫區 域應答也良好之含有液晶相溶性粒子之液晶。 又,本發明之目的亦在提供一種使用上述含有液晶相 溶性粒子之液晶的液晶顯示裝置。 〔解決課題之手段〕 爲了達成此目的,本發明之含有液晶相溶性粒子之液 晶的特徵爲:包含由:鎳與鎳以外之至少1種金屬所構成 的金屬奈米粒子;和以該金屬奈米粒子作爲核而結合於該 金屬奈米粒子周圍之至少1種液晶分子所構成之液晶相溶 性粒子。 本發明之含有液晶相溶性粒子之液晶所包含的液晶相 溶性粒子,係以鎳與鎳以外之至少1種金屬所構成的金屬 奈米粒子作爲核,並使上述液晶分子結合於其周圍。根據 上述液晶相溶性粒子,構成STN - LCD等液晶顯示裝置的 液晶胞時,即使在低溫區域「應答」也很快,不會有在動 態影像產生不清晰的部分,或殘留有前一個影像之情形’ 可得到優良的顯示品質。 此外,上述金屬奈米粒子對於上述含有液晶相溶性粒 子之液晶中的液晶具有良好的分散性。因此,根據上述含 有液晶相溶性粒子之液晶,可防止於真空注入至液晶胞時 在注入口附近產生堵塞之情形。 繼之,本發明之液晶顯示裝置的特徵爲:具備封入有 包含上述液晶相溶性粒子之含有液晶相溶性粒子之液晶的 -8- 200916560 液晶胞。 根據本發明之液晶顯示裝置,由於係使用上述含有液 晶相溶性粒子之液晶,故即使在低溫區域「應答」也很快 ,不會有在動態影像產生不清晰的部分,或殘留有前一個 影像之情形,可得到優良的顯示品質。 此外,本發明之液晶顯示裝置中,上述液晶胞係以包 含上述含有液晶相溶性粒子之液晶與旋光劑爲佳。由於上 述液晶胞包含上述旋光劑,故可調整上述含有液晶相溶性 粒子之液晶的扭轉角。 再者,本發明之液晶顯示裝置中,上述液晶胞中之上 述含有液晶相溶性粒子之液晶的扭轉角係以1 80〜270°之 範圍的角度爲宜,以180〜240°之範圍的角度爲更佳。當 扭轉角未滿1 80°時,會有透過率變化相對於電壓之陡峭性 (銳利度:sharpness )變差的問題,超過 270°時,會有 在電壓一透過率特性產生遲滞(hysteresis )之問題。 又,本發明之液晶顯示裝置中,作爲上述液晶相溶性 粒子,可使用例如以鎳一銀二元奈米粒子作爲核者。 本發明之液晶顯示裝置中,含有液晶相溶性粒子之液 晶係以相對於該含有液晶相溶性粒子之液晶中的液晶,含 有0.02〜0_2重量%之範圍的量之上述金屬奈米粒子爲佳 。即使本發明之液晶顯示裝置之上述含有液晶相溶性粒子 之液晶相對於該含有液晶相溶性粒子之液晶中的液晶,含 有超過0.2重量%之上述金屬奈米粒子,也無法期待更佳 之效果。此外,當本發明之液晶顯示裝置之上述含有液晶 -9- 200916560 相溶性粒子之液晶相對於該含有液晶相溶性粒子之 的液晶,含有未滿0·02重量%之上述金屬奈米粒子 無法發揮充分的特性。 再者,本發明之液晶顯示裝置可作成爲例如使 驅動的點陣式面板(dot matrix Panel )。 【實施方式】 繼之,參照附圖,更詳細地說明本發明之實施 第1圖係表示本發明之液晶顯示裝置之一構成 明剖面圖。第2圖係表示本發明之第1實施例之液 裝置的電壓一透過率特性之曲線圖,第3圖係該液 裝置之液晶層的顯微鏡照片。第4圖係表示本發明 比較例之液晶顯示裝置的電壓-透過率特性之曲線 5圖係該液晶顯示裝置之液晶層的顯微鏡照片,第 本發明之第2比較例之液晶顯示裝置的液晶層之顯 片。 第7圖係表示本發明之第2實施例之液晶顯示 電壓-透過率特性之曲線圖,第8圖係該液晶顯示 液曰η層的顯微1¾照片。第9圖係表不本發明之第3 之液晶顯示裝置的電壓一透過率特性之曲線圖,第 係該液晶顯示裝置之液晶層的顯微鏡照片,第n 發明之第4比較例之液晶顯示裝置的液晶層之顯微 〇 第1 2圖係表示本發明之第3實施例之液晶顯 液晶中 時,將 用負載 型態。 例的說 晶顯示 晶顯示 之第1 圖,第 6圖係 微鏡照 裝置的 裝置之 比較例 10圖 圖係本 鏡照片 示裝置 -10- 200916560 的電壓一透過率特性之曲線圖,第1 3圖係該液晶顯示裝 置之液晶層的顯微鏡照片。又,第14圖係表示本發明之 第4實施例之液晶顯示裝置的電壓-透過率特性之曲線圖 ,第1 5圖係本發明之第5比較例之液晶顯示裝置的電壓 -透過率特性之曲線圖,第1 6圖係本發明之第5實施例 之液晶顯示裝置的電壓一透過率特性之曲線圖。 本發明之液晶顯示裝置可作成爲例如:STN ( Super Twisted Nematic :超扭轉向列)—LCD、TN ( Wisted Nematic :扭轉向列)—LCD、IPS ( In-Plane Switching : 平面轉換)一 LCD、GH ( Guest-Host Type :客主型)— LCD、PN (聚合物網路型:Polymer Network Type) — LCD等的各種液晶顯示裝置,尤其作爲車載用液晶顯示裝 置使用時,係以利用S TN模式或TN模式之單純矩陣顯示 裝置、利用TN模式、IPS模式等的動態矩陣(TFT等) 顯不裝置爲佳。 本實施型態中,如第1圖所示,係就超扭轉向列液晶 顯示裝置(STN — LCD ) 1之情形加以說明。本實施型態 之液晶顯示裝置1具備:一對平行且透明的玻璃基板2a 、2 b ;和在玻璃基板2a、2b之相對向的內側面,被設成 特定圖案的透明電極膜3 a、3 b ;和設置於透明電極膜3 a 、3b之相對向之內側面的顯示部之絕緣膜4a、4b ;和在 絕緣膜4 a、4 b之相對向的內側面,以與透明電極膜3 a、 3 b爲大致相同的圖案所設置的配向膜5 a、5 b。透明電極 膜3 a、3 b係彼此垂直相交且分別設成條紋狀。 -11 - 200916560 在液晶顯示裝置1中,藉由玻璃基板2a、透明電極 膜3 a、絕緣膜4 a、配向膜5 a而形成上基板6 a ’且藉由玻 璃基板2b、透明電極膜3 b、絕緣膜4b、配向膜5b而形 成下基板6b。並且,在形成於上下基板6a、6b間的液晶 胞7,封入有含有液晶相溶性粒子之液晶L。 配向膜5a、5b係以將被封入於液晶胞7的液晶分子 配向於一軸,且上下基板6a、6b間的扭轉角成爲例如 240。之左扭轉的方式進行處理。液晶胞7係由主密封劑層 8所密封,在主密封劑層8的外側面形成有導通材圖案9 。此外,在玻璃基板2 a、2 b的外側面’偏光板1 〇 a、1 0 b 係以特定的圖案被貼合。 液晶顯示裝置1係可以如次方式製造。 首先,在玻璃基板2 a、2 b上形成IΤ Ο膜作爲透明電 極,藉由在光微影步驟中設成所期望的圖案而形成透明電 極膜3 a、3 b。繼之,在形成有透明電極膜3 a、3 b之玻璃 基板2a、2b上的顯示部,藉由柔版印刷(flex〇graPhic printing)形成絕緣膜4a、4b。 絕緣膜4 a、4 b雖不一定要形成’但爲了防止上下透 明電極膜3 a、3 b間的短路,以形成爲佳。絕緣膜4 a、4 b 並不限定於柔版印刷’藉由使用金屬遮罩的蒸鍍法等來形 成亦可。 接著,在絕緣膜4a、4b上,形成彼此爲大致相同圖 案的配向膜(例如,R產化學株式會社製’商品名:SE 一 610) 5a、5b。於STN— LCD之情況’配向膜5a、5b之預 -12- 200916560 傾角(p r e t i 11 a n g 1 e )(與基板平面相距之液晶分子'的傾 斜角)以較高者爲佳。 對配向膜5a、5b進行摩擦配向處理。上述摩擦配向 處理可藉由使捲繞布的圓筒狀滾筒高速地旋轉’而在配向 膜5a、5b上摩擦來進行。上述摩擦配向的結果可使被封 入於液晶胞7的液晶分子配向於一軸’且使上下基板6a 、6b間的扭轉角成爲例如240°的左扭轉。 然後,將用來黏合上下基板6a、6b的主密封劑’在 單側的基板6a或基板6b的內側面上印刷成特定的圖案’ 並且在另一邊的基板6b或基板6a的內側面藉由乾式散佈 法散佈間隙控制劑。接著,將上下基板6a、6b在特定的 位置重疊予以晶胞化,且在按壓(press )狀態下進行熱 處理使主密封劑硬化,藉以形成主密封劑層8。 作爲主密封劑,可使用例如熱硬化密封劑(例如三井 化學株式會社製、商品名:ES — 75 00 ),該密封劑亦可含 有數重量%之6 /z m大小的玻璃纖維。此外,亦可使用光 硬化性密封劑或光/熱倂用型密封劑,來取代上述熱硬化 性密封劑。 上述密封劑的印刷可藉由例如網版印刷法來進行,亦 可使用分配塗佈等來進行。將液晶分子L注入到形成於上 下基板6a、6b間的液晶胞7時,上述密封劑的印刷圖案 於使用真空注入法之情況係設成具有注入口的圖案,於 ODF法之情況則設成無注入口的封閉圖案。作爲上述間隙 控制劑,可使用例如直徑6 μ m的塑膠球,亦可使用氧化 -13- 200916560 5夕的球。 在主密封劑層8之外側面的特定位置印刷導通材,而 形成導通材圖案9。作爲上述導通材,可使用例如在上述 熱硬化性密封劑含有數重量%之直徑6.5 μιη的Au球等。 上述導通材的印刷可藉由例如網版印刷來進行。 利用劃線器(scriber )裝置在玻璃基板2a、2b上刻 畫,予以切斷(breaking )而分割成特定的大小/形狀而 形成晶胞,將液晶分子L注入至該晶胞。液晶分子L的 注入可藉由例如真空注入法來進行,此時將注入口用封口 (e n d s e a 1 )劑予以密封。 然後,進行倒角與洗淨,在玻璃基板2a、2b的外側 面,以特定的圖案貼合偏光板1 0a、1 Ob,依此,可獲得 具備第1圖所示之構成的液晶顯示裝置(STN - LCD) 1。 STN - LCD係以黃色模式進行正顯示,以藍色模式進行負 顯示。 本實施型態的液晶顯示裝置1中,被封入至液晶胞7 之含有液晶相溶性粒子之液晶係在矩陣液晶中包含由:鎳 與鎳以外之至少1種金屬所構成的金屬奈米粒子;和以該 金屬奈米粒子作爲核而結合於該金屬奈米粒子周圍之至少 1種液晶分子所構成的液晶相溶性粒子。上述液晶相溶性 粒子係使液晶分子結合於由上述金屬奈米粒子所構成之核 的周圍’可藉由一邊使混合有至少1種液晶分子和二級醇 和有機溶媒而得到的混合溶液回流,一邊添加鎳離子溶液 和鎳以外之至少丨種金屬離子溶液而使之反應,且還原鎳 -14- 200916560 離子,並同時還原鎳以外之至少1種金屬離子’而生成由 鎳與鎳以外之至少1種金屬所構成的多元金屬奈米粒子而 得到。 作爲用以得到上述液晶相溶性粒子使用的上述液晶分 子,可舉出例如:4,-正-戊基-4_氰基聯苯、4’-正-己氧基-4-氰基聯苯等的氰基聯苯類;4-正·戊基-4’-乙烯基雙環己 基、4-正-戊基-4,-(4-三氟甲氧基苯基)雙環己基等的雙 環己基類;4-(反-4 -正-戊基環己基)苄腈等的環己基节 腈類;4,-正-戊基-4-乙氧基-2,3-二氟苯基、卜乙氧基_2,3-二氟- 4-(反-4-正-戊基環己基)苯等的氟苯類;4-丁基苯 甲酸(4-苯腈);4-庚基苯甲酸(4-苯腈)等的苯酯類; 碳酸4-羧基苯基乙酯、碳酸4-羧基苯基正丁酯等的碳酸 酯類;4-(4-正-戊基苯基乙炔基)苯甲腈、4-(4-正-戊 基苯基乙炔基)氟苯等的苯乙炔類;2-(4-苯腈)-5-正-戊基嘧啶、2 - ( 4 -苯腈)-5 -正-辛基嘧啶等的苯基嘧啶類 ;4-4’-雙(乙氧羰基)偶氮苯等的偶氮苯類;4,4’-氧偶 氮苯甲醚、4,4’-二己基氧化偶氮苯等的氧化偶氮苯類; N- (4-甲基苯二烯苯胺)·4_正-丁基苯胺、N- (4-乙氧基 苯二烯苯胺)-4-正一 丁基苯胺等的席夫鹼(Schiff base) 類;N,N ’ -雙苯亞甲基聯苯胺等的聯苯胺類;乙酸膽甾醇 酯(cholesteryl acetate)、膽留醇苯甲酸酯(cholesteryl benzoate)等的膽留醇酯(cholesteryl ester)類;聚(4-亞苯基對酞醯胺)等的液晶高分子類。此外,此等液晶分 子亦可單獨使用或混合兩種以上來使用。上述液晶分子作 -15- 200916560 爲負數種液晶分子混合物使用時,可原樣使用市售品。 用以得到上述液晶相溶性粒子而使用的二級醇可以下 列一般式(1)來表不。[Technical Field] The present invention relates to a liquid crystal display device using a liquid crystal containing liquid crystal-compatible particles and a liquid crystal display device using the liquid crystal, for example, as a display panel for automobiles. [Prior Art] Conventionally, liquid crystal materials that exhibit driving frequency dependence are well known. However, in the liquid crystal material described above, since the threshold 値 has a frequency dependency, there is a problem that display unevenness occurs due to unevenness of the threshold when the load is driven. In order to solve the above problem, it has been used in the range of 0.5 to 100 nm. A liquid crystal-compatible particle in which liquid crystal molecules are bonded around the core of metal nanoparticles such as palladium nanoparticle having a diameter. The liquid crystal-compatible particles can be produced by, for example, irradiating a solution of a palladium salt such as palladium acetate and a liquid crystal molecule in a solvent such as ethanol to reduce the palladium salt (see Patent Document 1). Further, in the present specification, the phrase "binding liquid crystal molecules to the periphery of a core composed of metal nanoparticles" means having a liquid crystal molecule surrounding a core surrounded by metal nanoparticles by some interaction. The state of the structure. It is presumed that the liquid crystal-compatible particles have a structure in which a plurality of metal particles generated by reduction of one or a plurality of metal ions are used as a central core to surround the liquid crystal molecules by some interaction. The central core composed of a plurality of -5 to 200916560 metal particles may have a random alloy structure in which a plurality of metal particles are randomly distributed, or may have a metal particle as a shell ('shell>') Another metal particle is used as a core shell structure. When the core of the center is composed of one type of metal particles, it is called a unit particle, and when it is composed of two kinds of metal particles, it is called a binary particle. Dissolving or dispersing the liquid crystal-compatible particles in a matrix liquid crystal to form a liquid crystal containing liquid crystal-compatible particles, and using the liquid crystal containing the liquid crystal-compatible particles to form a liquid crystal cell of the liquid crystal display device, whereby the light transmission amount can be made It varies depending on the frequency of the voltage applied to the liquid crystal display device. Further, in the liquid crystal-compatible particles, a metal ion solution is added under reflux in a mixed solution obtained by mixing liquid crystal molecules with a secondary alcohol and an organic solvent, and the metal nanoparticle can be reduced by reducing the metal ions. The particle diameter of the particles is 40 nm or less, and most of the particles are made 5 nm or less. Examples of such a metal nanoparticle include a metal nanoparticle of palladium or silver, or a binary metal nanoparticle of palladium and silver. The metal nanoparticles obtained by reducing the metal ions in the mixed solution under reflux have a particle diameter of 40 nm or less, and are often 5 nm or less. Therefore, the wavelength of light is relatively small. The optical properties of the display device such as transmittance (refractive index), color tone, and sharpness are affected. On the other hand, by placing a liquid crystal-compatible particle containing the above-described metal nanoparticles in a matrix liquid crystal, it is considered that the dielectric constant anisotropy, the elastic constant, the viscosity coefficient, and the like of the liquid crystal display device can be considered. -6- 200916560 The nature of the impact. The dependence of the metal nanocrystal display device changes to include palladium and silver liquid crystals, which constitutes a liquid such as "LCD" (response to the body during driving (the binary metal with a very strong influence on the liquid crystal is easy to be As a result of the injection of the publication, when the liquid crystal containing the liquid crystal-compatible particles having a particle diameter of 40 nm or less is used for the liquid crystal cell, the frequency of the voltage-transmittance characteristic threshold 値 is small, and the load-driven display can be performed. When a liquid crystal cell of a STN (Super Twisted Nematic) crystal display device containing liquid crystal phase-soluble particles of metal nanoparticles containing palladium or silver or binary metal nanoparticles is present, it is 1 in a low temperature region. The problem of slowing down occurs. Especially when it is not possible to apply a sufficient voltage difference to the liquid crystal, the whole res ρ ο nse ) tends to be slow, and the response at low temperature is lowered. Further, the metal nanoparticles of palladium or silver or the liquid crystals containing palladium and silver nanoparticles in the liquid crystal containing the liquid crystal-compatible particles have a low dispersibility and are liable to aggregate. Therefore, when the liquid crystal of the upper compatible particles is injected into the liquid crystal cell under vacuum, there is a problem that clogging occurs near the mouth. [Problem to be Solved by the Invention] The present invention has been made to solve the problem, and an object of the present invention is to provide a metal containing a good dispersibility for liquid crystal. In the case of the liquid crystal cell of the liquid crystal display device in the case of the liquid crystal cell of the liquid crystal display device, the liquid crystal containing the liquid crystal-compatible particles is excellent in response to a low temperature region of 〇°c or less. Further, an object of the present invention is to provide a liquid crystal display device using the above liquid crystal containing liquid crystal-soluble particles. [Means for Solving the Problem] In order to achieve the object, the liquid crystal containing the liquid crystal-compatible particles of the present invention is characterized by comprising: a metal nanoparticle composed of at least one metal other than nickel and nickel; The rice particles are bonded to the liquid crystal compatible particles composed of at least one liquid crystal molecule around the metal nanoparticles as a core. The liquid crystal-compatible particles contained in the liquid crystal containing the liquid crystal-compatible particles of the present invention are metal nanoparticles composed of at least one metal other than nickel and nickel as a core, and the liquid crystal molecules are bonded to the periphery thereof. When the liquid crystal cell of a liquid crystal display device such as an STN-LCD is formed by the liquid crystal-compatible particles, the "response" is fast in a low-temperature region, and there is no unclear portion of the moving image or a previous image remains. The situation 'can get excellent display quality. Further, the above metal nanoparticles have good dispersibility with respect to the liquid crystal in the liquid crystal containing the liquid crystal-compatible particles. Therefore, according to the liquid crystal containing the liquid crystal-compatible particles described above, it is possible to prevent clogging in the vicinity of the injection port when the vacuum is injected into the liquid crystal cell. Then, the liquid crystal display device of the present invention is characterized in that it comprises a liquid crystal cell of -8-200916560 in which liquid crystal containing liquid crystal-compatible particles containing the liquid crystal-compatible particles is enclosed. According to the liquid crystal display device of the present invention, since the liquid crystal containing the liquid crystal-compatible particles is used, the "response" is fast even in a low temperature region, and there is no unclear portion of the moving image or the previous image remains. In this case, excellent display quality can be obtained. Further, in the liquid crystal display device of the present invention, the liquid crystal cell is preferably a liquid crystal containing a liquid crystal-compatible particle and an optically active agent. Since the liquid crystal cell contains the above-mentioned optical rotatory agent, the twist angle of the liquid crystal containing the liquid crystal-compatible particles can be adjusted. Further, in the liquid crystal display device of the present invention, the twist angle of the liquid crystal containing the liquid crystal-compatible particles in the liquid crystal cell is preferably an angle in the range of 180 to 270°, and an angle in the range of 180 to 240°. For better. When the twist angle is less than 180°, there is a problem that the transmittance change is steep with respect to the steepness (sharpness) of the voltage. When the angle exceeds 270°, there is a hysteresis in the voltage-transmittance characteristic (hysteresis). ) The problem. Further, in the liquid crystal display device of the present invention, as the liquid crystal-compatible particles, for example, nickel-silver binary nanoparticles can be used as a core. In the liquid crystal display device of the present invention, the liquid crystal system containing the liquid crystal-compatible particles preferably contains the metal nanoparticles in an amount of 0.02 to 0-2% by weight based on the liquid crystal in the liquid crystal containing the liquid crystal-compatible particles. In the liquid crystal display device of the present invention, the liquid crystal containing the liquid crystal-compatible particles and the liquid crystal in the liquid crystal containing the liquid crystal-compatible particles contain more than 0.2% by weight of the metal nanoparticles, and a better effect cannot be expected. Further, in the liquid crystal display device of the present invention, the liquid crystal containing the liquid crystal-9-200916560 compatible particles and the liquid crystal containing the liquid crystal-compatible particles do not have the above-mentioned metal nanoparticles which are less than 0.02% by weight. Fully versatile. Further, the liquid crystal display device of the present invention can be used as, for example, a dot matrix panel for driving. [Embodiment] The present invention will be described in more detail with reference to the accompanying drawings. Fig. 1 is a cross-sectional view showing a configuration of a liquid crystal display device of the present invention. Fig. 2 is a graph showing the voltage-transmittance characteristics of the liquid device of the first embodiment of the present invention, and Fig. 3 is a photomicrograph of the liquid crystal layer of the liquid device. 4 is a graph showing a voltage-transmittance characteristic of a liquid crystal display device of a comparative example of the present invention. FIG. 5 is a micrograph of a liquid crystal layer of the liquid crystal display device, and a liquid crystal layer of a liquid crystal display device according to a second comparative example of the present invention. The show. Fig. 7 is a graph showing the liquid crystal display voltage-transmittance characteristics of the second embodiment of the present invention, and Fig. 8 is a photomicrograph of the liquid crystal display liquid 曰n layer. 9 is a graph showing a voltage-transmittance characteristic of a liquid crystal display device of a third aspect of the present invention, a micrograph of a liquid crystal layer of the liquid crystal display device, and a liquid crystal display device of a fourth comparative example of the nth invention. In the liquid crystal display liquid crystal according to the third embodiment of the present invention, the liquid crystal layer of the liquid crystal layer is in a load type. In the first embodiment of the crystal display display, the sixth embodiment is a comparison example of the device of the micro-mirror device. The figure is a graph of the voltage-transmittance characteristic of the photo-display device-10-200916560, first. 3 is a photomicrograph of a liquid crystal layer of the liquid crystal display device. Further, Fig. 14 is a graph showing voltage-transmittance characteristics of a liquid crystal display device of a fourth embodiment of the present invention, and Fig. 15 is a graph showing voltage-transmittance characteristics of a liquid crystal display device of a fifth comparative example of the present invention. Fig. 16 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the fifth embodiment of the present invention. The liquid crystal display device of the present invention can be used, for example, as an STN (Super Twisted Nematic)-LCD, a TN (Wisted Nematic)-LCD, an IPS (In-Plane Switching)-LCD, GH (Guest-Host Type) - LCD, PN (Polymer Network Type) - Various liquid crystal display devices such as LCD, especially when used as a vehicle-mounted liquid crystal display device, using S TN A simple matrix display device of a mode or a TN mode, a dynamic matrix (TFT or the like) using a TN mode or an IPS mode is preferable. In the present embodiment, as shown in Fig. 1, a case of a super twisted nematic liquid crystal display device (STN - LCD) 1 will be described. The liquid crystal display device 1 of the present embodiment includes: a pair of parallel and transparent glass substrates 2a and 2b; and a transparent electrode film 3a provided in a specific pattern on the inner side surfaces facing the glass substrates 2a and 2b, 3b; and insulating films 4a, 4b disposed on the display portions on the inner side surfaces of the transparent electrode films 3a, 3b; and inner surfaces on the opposite sides of the insulating films 4a, 4b, and transparent electrode films 3 a, 3 b are alignment films 5 a, 5 b provided in substantially the same pattern. The transparent electrode films 3a, 3b are perpendicularly intersected each other and are respectively stripe-shaped. -11 - 200916560 In the liquid crystal display device 1, the upper substrate 6a' is formed by the glass substrate 2a, the transparent electrode film 3a, the insulating film 4a, and the alignment film 5a, and the glass substrate 2b and the transparent electrode film 3 are formed. b, the insulating film 4b, and the alignment film 5b form the lower substrate 6b. Further, the liquid crystal cells 7 formed between the upper and lower substrates 6a and 6b are filled with a liquid crystal L containing liquid crystal-compatible particles. The alignment films 5a and 5b are arranged such that the liquid crystal molecules sealed in the liquid crystal cell 7 are aligned on one axis, and the torsion angle between the upper and lower substrates 6a and 6b is, for example, 240. The left twist is handled in a manner. The liquid crystal cell 7 is sealed by the main sealant layer 8, and a conductive material pattern 9 is formed on the outer surface of the main sealant layer 8. Further, the polarizing plates 1 〇 a and 1 0 b on the outer side surfaces of the glass substrates 2a and 2b are bonded in a specific pattern. The liquid crystal display device 1 can be manufactured in a sub-mode. First, an I Τ film is formed as a transparent electrode on the glass substrates 2 a and 2 b , and the transparent electrode films 3 a and 3 b are formed by providing a desired pattern in the photolithography step. Then, on the display portions on the glass substrates 2a and 2b on which the transparent electrode films 3a and 3b are formed, the insulating films 4a and 4b are formed by flexographic printing. Although the insulating films 4a and 4b are not necessarily formed, it is preferably formed in order to prevent short-circuiting between the upper and lower transparent electrode films 3a and 3b. The insulating films 4a, 4b are not limited to flexographic printing, and may be formed by a vapor deposition method using a metal mask or the like. Then, on the insulating films 4a and 4b, alignment films (for example, manufactured by R-Chem. Co., Ltd., SE: 610) 5a and 5b which are substantially the same pattern are formed. In the case of STN-LCD, the pre- -12-200916560 tilt angle (p r e t i 11 a n g 1 e ) of the alignment films 5a, 5b (the tilt angle of the liquid crystal molecules 'distance from the plane of the substrate) is preferably higher. The alignment films 5a and 5b are subjected to rubbing alignment treatment. The rubbing alignment treatment can be performed by rubbing the cylindrical drum of the wound fabric at a high speed on the alignment films 5a and 5b. As a result of the above-described rubbing alignment, the liquid crystal molecules enclosed in the liquid crystal cell 7 are aligned to one axis ′ and the twist angle between the upper and lower substrates 6a and 6b is, for example, a left twist of 240°. Then, the main sealant 'for bonding the upper and lower substrates 6a, 6b is printed in a specific pattern on the inner side of the substrate 6a or the substrate 6b on one side and on the inner side of the substrate 6b or the substrate 6a on the other side. The dry dispersion method distributes the gap control agent. Next, the upper and lower substrates 6a and 6b are superposed and bonded to each other at a specific position, and heat-treated in a press state to cure the main sealant to form the main sealant layer 8. As the main sealant, for example, a heat-curing sealant (for example, manufactured by Mitsui Chemicals, Inc., trade name: ES-75 00) can be used, and the sealant may contain a glass fiber having a size of 6/z m. Further, a photocurable sealant or a light/heat sealant may be used instead of the above thermosetting sealant. The printing of the above-mentioned sealant can be carried out, for example, by screen printing, or by dispensing coating or the like. When the liquid crystal molecules L are injected into the liquid crystal cells 7 formed between the upper and lower substrates 6a and 6b, the printed pattern of the sealant is set to have a pattern of an injection port when the vacuum injection method is used, and is set in the case of the ODF method. Closed pattern without injection port. As the gap control agent, for example, a plastic ball having a diameter of 6 μm or a ball oxidized from -13 to 200916560 can be used. The conductive material is printed at a specific position on the outer side of the main sealant layer 8, and the conductive material pattern 9 is formed. For the above-mentioned conductive material, for example, an Au ball having a diameter of 6.5 μm and a weight percentage of the thermosetting sealant may be used. Printing of the above conductive material can be performed by, for example, screen printing. The glass substrates 2a and 2b are patterned by a scriber device, and are cut into a specific size/shape to form a unit cell, and the liquid crystal molecules L are injected into the unit cell. The injection of the liquid crystal molecules L can be carried out, for example, by a vacuum injection method, in which case the injection port is sealed with a sealing agent (e n d s e a 1 ). Then, chamfering and washing are performed, and the polarizing plates 10a and 1ob are bonded to the outer surface of the glass substrates 2a and 2b in a specific pattern, whereby a liquid crystal display device having the configuration shown in Fig. 1 can be obtained. (STN - LCD) 1. The STN-LCD is displayed in yellow mode and negative in blue mode. In the liquid crystal display device 1 of the present embodiment, the liquid crystal containing the liquid crystal-compatible particles enclosed in the liquid crystal cell 7 contains metal nanoparticles composed of at least one metal other than nickel and nickel in the matrix liquid crystal; And a liquid crystal-compatible particle composed of at least one liquid crystal molecule bonded to the periphery of the metal nanoparticle using the metal nanoparticle as a core. In the liquid crystal-compatible particles, the liquid crystal molecules are bonded to the periphery of the core composed of the metal nanoparticles, and the mixed solution obtained by mixing at least one liquid crystal molecule and the secondary alcohol and the organic solvent can be reflowed. Adding a nickel ion solution and at least a metal ion solution other than nickel to react, and reducing nickel-14-200916560 ions, and simultaneously reducing at least one metal ion other than nickel to generate at least 1 other than nickel and nickel It is obtained by using a plurality of metal nanoparticles composed of a metal. The liquid crystal molecule used for obtaining the liquid crystal-compatible particles may, for example, be 4,-n-pentyl-4-cyanobiphenyl or 4'-n-hexyloxy-4-cyanobiphenyl. Other cyanobiphenyls; dicyclohexyl groups such as 4-n-pentyl-4'-vinylbicyclohexyl, 4-n-pentyl-4,-(4-trifluoromethoxyphenyl)bicyclohexyl a cyclohexyl nitrite such as 4-(trans-4-n-pentylcyclohexyl)benzonitrile; 4,-n-pentyl-4-ethoxy-2,3-difluorophenyl, Fluorobenzenes such as ethoxy-2,3-difluoro-4-(trans-4-n-pentylcyclohexyl)benzene; 4-butylbenzoic acid (4-benzonitrile); 4-heptylbenzene a phenyl ester such as formic acid (4-benzonitrile); a carbonate such as 4-carboxyphenylethyl carbonate or 4-carboxyphenyl n-butyl carbonate; 4-(4-n-pentylphenylethynyl) a phenylacetylene such as benzonitrile or 4-(4-n-pentylphenylethynyl)fluorobenzene; 2-(4-benzonitrile)-5-n-pentylpyrimidine or 2 - (4-benzene) a phenylpyrimidine such as nitrile)-5-n-octylpyrimidine; an azobenzene such as 4-4'-bis(ethoxycarbonyl)azobenzene; 4,4'-oxyazoanisole, Oxidation of 4,4'-dihexyloxyazobenzene Benzene; Schiff base such as N-(4-methylphenylene aniline)·4_n-butylaniline or N-(4-ethoxyphenylenediphenyl)-4-n-butylaniline (Schiff base); N,N '-benzidines such as bisbenzylidene benzidine; cholesterol esters such as cholesteryl acetate and cholesteryl benzoate (cholesteryl ester); liquid crystal polymer such as poly(4-phenylene-p-amine). Further, these liquid crystal molecules may be used singly or in combination of two or more. When the above liquid crystal molecules are used as a mixture of a plurality of liquid crystal molecules as -15-200916560, a commercially available product can be used as it is. The secondary alcohol used to obtain the above liquid crystal-compatible particles can be represented by the following general formula (1).

R1 R2 在上述一般式(1)中,R1及R2係爲亦可具有取代 基的烴基,作爲該烴基,可舉出例如:甲基、乙基、丙基 、丁基、戊基、己基、庚基等的碳數1〜7之烷基;環丙 基、環丁基、環戊基等的碳數3〜6之環烷基(cycloukyj );乙稀基、烯丙基(allyl )、丙烯基(propenyl )、環 丙烯基、環丁烯基(cyclobutenyl)、環戊烯基( cyclopentenyl)等的碳數2〜6之稀基(alkenyl);乙块 基、丙炔基等的碳數2〜6之炔基(alkynyl);較佳者爲 烷基、烯基、炔基,更佳者爲烷基、炔基。此外,上述_ 基係包含各種異構物。 又,R1及R2亦可相互結合而形成具有無取代或取代 基的環,作爲結合而形成的環,可舉出例如:環丙基_、 環丁基環、環戊基環、環己基環等的碳數3〜6之環 環;環氧乙烷環、氧雜環丁烷環、四氫呋喃環、四氣nr_ ^虱哌喃 環等的碳數2〜5之醚環。此外,上述各環係包含各種異 上述烴基及結合而形成的環亦可县有取件宜.&R1 R2 In the above general formula (1), R1 and R2 are a hydrocarbon group which may have a substituent, and examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. a carbon number of 1 to 7 such as a heptyl group; a cyclopropyl group having a carbon number of 3 to 6 such as a cyclopropyl group, a cyclobutyl group or a cyclopentyl group; an ethyl group, an allyl group, a carbon number of 2 to 6 (alkenyl) such as propenyl, cyclopropenyl, cyclobutenyl or cyclopentenyl; carbon number of an alkyl group, a propynyl group or the like An alkynyl group of 2 to 6; preferably an alkyl group, an alkenyl group or an alkynyl group, more preferably an alkyl group or an alkynyl group. Further, the above _ base system contains various isomers. Further, R1 and R2 may be bonded to each other to form a ring having an unsubstituted or substituted group, and a ring formed by bonding may, for example, be a cyclopropyl group, a cyclobutyl ring, a cyclopentyl ring or a cyclohexyl ring. An ether ring having a carbon number of 3 to 6 or the like; an ether ring having 2 to 5 carbon atoms such as an oxirane ring, an oxetane ring, a tetrahydrofuran ring or a tetrakis nr_^pylore ring. In addition, each of the above ring systems comprises a plurality of different hydrocarbon groups and a combination of the same, and the ring may also be taken in the county.

200916560 作爲可經由上述碳原子形成的取代基,可舉出例如: 甲基、乙基、丙基等的碳數1〜3之烷基;環丙基、環丁 基等的碳數3〜4之環烷基;乙烯基 '烯丙基(allyl)、 丙烯基(propenyl)、環丙烯基等的碳數2〜3之嫌基( alkenyl );乙炔基、丙炔基等的碳數2〜3之炔基( alkynyl );三氟甲基等的碳數i〜4之鹵化烷基;氰基。 此外’上述取代基係包含各種異構物。 作爲可經由上述氧原子形成的取代基,可舉出例如: 羥基、甲氧基、乙氧基(ethoxyl)、丙氧基(pr〇p〇xyl) 等的碳數1〜3之烷氧基。此外,此等基係包含各種異構 物。 作爲上述_素原子,可舉出例如:氟原子、氯原子、 溴原子、碘原子。 上述二級醇的使用量相對於上述液晶分子1 g,較佳 者爲0.1〜200g’更佳者爲1〜l〇〇g。此外,上述二級醇 亦可單獨使用上述二級醇之任一種,亦可混合2種以上來 使用。 作爲用以得到上述液晶相溶性粒子而使用的有機溶媒 ’只要不阻礙上述反應’並無特別限定,ψ舉出例如:丙 酮、甲基乙基酮、甲異丁甲酮等的酮類;乙酸甲醋、乙酸 乙醋、乙酸丁酯、丙酸甲酯等的醋類;N,N,-二甲基甲釀 胺、N,N’-二甲基乙醯胺、N-甲基吡咯烷酮等的醯胺類; N,N’-二甲基咪唑啶酮等的尿素類;二甲亞颯等的亞颯類 -17- 200916560 :環丁颯等的砸類;乙腈、丙腈等的腈類;二***、二異 丙醚、四氫呋喃、二氧陸圜(diox an e)等的醚類;己烷 、庚烷、環己烷等的脂肪族烴類;苯 '甲苯、二甲苯等的 芳香族烴類,而較佳者可舉出:腈類、醚類、芳香族烴類 ,更佳者可舉出醚類。此外,上述有機溶媒亦可單獨使用 上述有機溶媒之任一種’亦可混合兩種以上來使用。 上述有機溶媒的使用量相對於上述液晶分子lg’較 佳者係位在1〇〜500ml的範圍,更佳者係位在20〜200ml 的範圍。 用以得到上述液晶相溶性粒子而使用的鎳離子溶液係 使鎳鹽(由鎳離子與相反離子(counter ion )所構成的鹽 )溶解於有機溶媒者,鎳以外之至少1種金屬離子溶液係 使鎳以外之至少1種金屬鹽(由鎳以外之金屬離子與相反 離子所構成的鹽)溶解於有機溶媒者。作爲上述鎳以外之 金屬離子,可舉出例如過渡金屬離子,較佳者可舉出從 Au+、Au3+、Ag+、Cu+、Cu2+、Ru2+、Ru3+、Ru4+、Rh2 + 、Rh3+、Pd2+、Pd4+、Os4+、Ir+、Ir3+、Pt2+、Pt4+、Fe2 + 、Fe3+、Co2+、C〇3 +所構成之群組中選擇的至少1種金屬 離子。另一方面,作爲上述鎳離子或鎳以外之至少1種金 屬離子的相反離子,可舉出例如:氫陰離子(hydride ion ) '鹵素離子、鹵酸離子、過鹵酸離子、亦可取代的羧酸 離子、乙醯丙酮離子、碳酸離子、硫酸離子、硝酸離子、 四氟硼酸離子、六氟磷酸離子等。此外,上述金屬鹽亦可 使例如一氧化碳、三苯膦、異丙基甲苯(p-cymene)等的 -18- 200916560 中性配位基配位。 作爲用以使上述鎳離子 溶解而使用的有機溶媒,可 相溶性粒子而使用的上述有 量只要是可使上述金屬鹽完 使至少1種上述液晶分 媒混合而得到的混合溶液回 並無特別限制,宜爲40〜1 亦可爲加壓、常壓或減壓之 液中添加含有鎳離子溶液之 加方法並無特別限制,例如 溶液個別地分開來添加之方 事先調製含有複數種金屬離 之方法來進行。 由以上述方式得到之鎳 成的多元金屬奈米粒子,藉 核而結合上述液晶分子,可 上述液晶相溶性粒子係分散 ,故藉由濃縮該分散液,可 。上述分散液的濃縮方法並 下,以 2 0〜1 0 0 °C之範圍的 中,再次加入上述液晶分子 的方法濃縮該分散液,可以 性粒子糊。 或鎳以外之至少1種金屬離子 舉出例如:用以得到上述液晶 機溶媒。上述有機溶媒的使用 全溶解的量,則無特別限制。 子與上述二級醇與上述有機溶 流時的回流溫度(反應溫度) 20°C之範圍的溫度,反應壓力 任一者。此外,在上述混合溶 複數種金屬離子溶液時,其添 可藉由將每一種複數金屬離子 法(同時添加或分開添加)、 子之1種金屬離子溶液來添加 與鎳以外之至少1種金屬所構 由以該多元金屬奈米粒子作爲 作成爲液晶相溶性粒子。由於 於上述有機溶媒而形成分散液 取得均勻的液晶相溶性粒子糊 無特別限定,較佳者係在減壓 溫度進行。又,在上述分散液 而作成爲分散液,藉由以同樣 更高功能取得均勻的液晶相溶 -19- 200916560 上述含有液晶相溶性粒子之液晶可藉由例如將以上述 方式得到之液晶相溶性粒子糊在室溫下一邊攪拌,一邊添 加於基底液晶,使之均勻而得到。此外,爲了調整上述胃 有液晶相溶性離子之液晶的扭轉角,亦可添加旋光劑。 接著,顯示本發明之實施例及比較例。 〔實施例1〕 本實施例中,首先,以如次方式調製含有液晶相溶性 鎳-銀二元奈米粒子之液晶。 在具備攪拌裝置、溫度計、回流冷卻器及滴下漏斗之 內容積1 0 0 m L的玻璃製容器中,加入複數種液晶分子混 合物(大日本油墨化學工業株式會社製STN用液晶、商 品名:LC3) 0.2 0 0 g > 四氫呋喃(tetrahydrofuran) 36.〇mi 及2-丙醇(2-propanol) 10ml以調製混合溶液’將該混 合溶液在攪拌下加熱,且於65〜75 °C之範圍的溫度下回流 。接著,在上述混合溶液中,緩慢地滴下〇. 〇1 mol/ 1乙 醯丙酮鎳(nickel acetylacetonate )的四氫咲喃溶液 3.2ml (作爲鎳原子含有〇_〇32mmol)、與0.01mol/l三 氟乙酸銀的四氫呋喃溶液〇.8ml (作爲銀原子含有 0.008mmol)之混合溶液4ml’並且一邊攪拌,一邊在相 同溫度下使之反應2小時。於反應結束後’將反應液冷卻 至室溫,而得到淡黃色之均勻的液晶相溶性鎳一銀二元奈 米粒子分散液5 0 m L。利用透過型電子顯微鏡分析上述鎳 -銀二元奈米粒子分散液的結果發現’液晶相丨谷性鎳一銀 -20- 200916560 二元奈米粒子之中心金屬的粒子直徑爲3〜15nm且均勻 。接著,在上述複數種液晶分子混合物〇· 093 0g中添加所 得到之液晶相溶性鎳-銀二元奈米粒子分散液1_ 8 3 m丨,並 將所得到的混合物在減壓下予以濃縮’而得到淡藍色之均 勻的液晶相溶性鎳-銀二元奈米粒子糊0.100g (以液晶混 合物基準添加0.1 Wt%的鎳一銀)。 接著,使用在本實施例中所得到之含有液晶相溶性鎳 -銀二元奈米粒子之液晶,製作第1圖所示之液晶顯示裝 置(STN — CD) 1且評價特性。 液晶顯示裝置(STN - CD ) 1的製作係以如次方式進 行。首先,在玻璃基板2a、2b上附著IT0膜作爲透明電 極,藉由在光微影步驟中設成所期望的圖案而形成透明電 極膜3 a、3 b。繼之,在形成有透明電極膜3 a、3 b之玻璃 基板2a、2b上的顯示部,藉由柔版印刷(flexographic printing)形成絕緣膜4a、4b。 接著,在絕緣膜4 a、4 b上,使用液晶配向材(日產 化學株式會社製,商品名:S E — 6 1 0 ),形成彼此大致爲 相同圖案的配向膜5a、5b。然後,使捲繞布的圓筒狀滾 筒高速地旋轉,在配向膜5a、5b上摩擦,藉以進行摩擦 配向處理,使被封入於液晶胞7之含有液晶相溶性鎳-銀 二元奈米粒子之液晶配向於一軸,且使上下基板6a、6b 間的扭轉角成爲例如2 4 0度的左扭轉。 繼之,將熱硬化密封劑(例如三井化學株式會社製、 商品名:ES - 75 00 )在上基板6a的內側面上,藉由網版 -21 - 200916560 印刷法印刷成具有注入口的圖案,並且將直徑6 μπι的塑 膠球藉由乾式散佈法散佈於下基板6 b的內側面,作爲間 隙控制劑。接著,將上下基板6a、6b在特定的位置重疊 予以晶胞化,且在按壓(press )狀態下進行熱處理使主 密封劑硬化,藉以形成密封劑層8。 藉由網版印刷法在密封劑層8外側面的特定位置印刷 導通材,而形成導通材圖案9。作爲上述導通材,係使用 令上述熱硬化性密封劑含有2〜3重量%之直徑6.5μηι的 Au球等。 然後,利用劃線器(scriber )裝置在玻璃基板2a、 2b上刻畫,予以切斷而分割成特定的大小/形狀而形成 晶胞,藉由利用毛細管現象的注入法,將含有液晶相溶性 鎳一銀二元奈米粒子之液晶注入至該晶胞中,並用封口劑 密封注入口( 2處)。 進行倒角與洗淨,在玻璃基板2a、2b的外側面,以 特定的圖案(crossed nicol:正交尼科爾)貼合偏光板 10a、10b,藉此方式,形成具備第1圖所示之構成且晶胞 厚度爲6μιη的液晶顯示裝置(STN— LCD ) 1。 使用LCD評價裝置(大塚電子株式會社製、商品名 :LCD— 5 000 ),測定本實施例所製作之液晶顯示裝置1 之黃色模式正的電壓-透過率特性(驅動頻率依存性)。 將結果顯示於第2圖。 接著,使用上述LCD評價裝置,測定本實施例所製 作之液晶顯示裝置1之電壓-對比特性,由該電壓-對比 -22- 200916560 特性求得最合適電壓(獲得最大對比的電壓),並 下進行最合適電壓的應答特性(1 / 64負載驅動) 。將結果顯示於表1。 此外,表1中係顯示最合適電壓的應答 response time )、與使上升時間及下降時間大約一 應答時間。測定頻率爲1 〇 〇 0 H z。 又,將本實施例所製作之液晶顯示裝置1之液 顯微鏡照片顯示於第3圖。 〔比較例1〕 本比較例中,除了使用完全不含有鎳-銀二元 子之複數種液晶分子混合物(大日本油墨化學工業 社製STN用液晶、商品名:LC3 )外’係利用與實 完全相同的方式作成具備第1圖所示之構成的液晶 置(STN — LCD ) 1。 繼之,利用與實施例1完全相同的方式’測定 例所製作之液晶顯示裝置1之黃色模式正的電壓-特性(驅動頻率依存性)。將結果顯示於第4圖。 接著,利用與實施例1完全相同的方式,測定 例所製作之液晶顯示裝置1之最合適電壓的應答书 /64負載驅動)。將結果顯示於表1。 又,將本比較例所製作之液晶顯示裝置1之液 顯微鏡照片顯示於第5圖。 在室溫 之測定 時間( 致時的 晶層的 奈米粒 株式會 施例1 顯示裝 本比較 透過率 本比較 f性(1 晶層的 -23- 200916560 〔比較例2〕 本比較例中,除了使用含有鈀-銀二元奈米粒子之複 數種液晶分子混合物(大日本油墨化學工業株式會社製 STN用液晶、商品名:LC3 )外,係利用與實施例1完全 相同的方式作成具備第1圖所示之構成的液晶顯示裝置( STN - LCD ) 1。 將本比較例所製作之液晶顯示裝置1之液晶層的顯微 鏡照片顯示於第6圖。 〔表1〕 最合適電壓 最大對比 Rise Decay To Rise To Decay 實施例1 15.2 4.92 117 48 135 64 (15.0) 80 57 90 90 比較例1 15.8 4.52 132 45 145 56 (15.6) 82 58 91 76200916560, as a substituent which can be formed by the above-mentioned carbon atom, for example, an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group or a propyl group; and a carbon number of 3 to 4 such as a cyclopropyl group or a cyclobutyl group; a cycloalkyl group; a vinyl group of allyl, propenyl, cyclopropenyl, etc. having a carbon number of 2 to 3 (alkenyl); an acetylene group, a propynyl group or the like having a carbon number of 2 to 2 Alkynyl of 3; a halogenated alkyl group having a carbon number of i to 4 such as a trifluoromethyl group; a cyano group. Further, the above substituents contain various isomers. Examples of the substituent which can be formed through the above oxygen atom include alkoxy groups having a carbon number of 1 to 3 such as a hydroxyl group, a methoxy group, an ethoxy group, or a propoxy group (pr〇p〇xyl). . In addition, these bases contain various isomers. Examples of the above-mentioned sulfonium atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The amount of the secondary alcohol to be used is preferably from 0.1 to 200 g', more preferably from 1 to 10 g, per 1 g of the liquid crystal molecule. Further, the above secondary alcohol may be used alone or in combination of two or more. The organic solvent used to obtain the liquid crystal-compatible particles is not particularly limited as long as it does not inhibit the reaction, and examples thereof include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; and acetic acid; An vinegar such as methyl vinegar, ethyl acetate, butyl acetate or methyl propionate; N,N,-dimethyl ketoamine, N,N'-dimethylacetamide, N-methylpyrrolidone, etc. Amidoxime; urea such as N,N'-dimethylimidazolidinone; anthraquinone such as dimethyl hydrazine-17- 200916560: anthraquinone such as cyclobutyl hydrazine; nitrile such as acetonitrile or propionitrile Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, diox an e; aliphatic hydrocarbons such as hexane, heptane, cyclohexane; benzene 'toluene, xylene, etc. Examples of the aromatic hydrocarbons include nitriles, ethers, and aromatic hydrocarbons, and more preferred are ethers. Further, the organic solvent may be used singly or in combination of two or more of the above organic solvents. The amount of the organic solvent to be used is preferably in the range of 1 Å to 500 ml with respect to the liquid crystal molecule lg', and more preferably in the range of 20 to 200 ml. The nickel ion solution used to obtain the liquid crystal-compatible particles is a solution in which a nickel salt (a salt composed of nickel ions and counter ions) is dissolved in an organic solvent, and at least one metal ion solution other than nickel is used. At least one metal salt other than nickel (a salt composed of a metal ion other than nickel and a counter ion) is dissolved in an organic solvent. Examples of the metal ion other than the nickel include transition metal ions, and examples thereof include Au+, Au3+, Ag+, Cu+, Cu2+, Ru2+, Ru3+, Ru4+, Rh2+, Rh3+, Pd2+, Pd4+, and Os4+. At least one metal ion selected from the group consisting of Ir+, Ir3+, Pt2+, Pt4+, Fe2+, Fe3+, Co2+, and C〇3+. On the other hand, examples of the counter ion of at least one metal ion other than the nickel ion or nickel include a hydride ion 'halide ion, a halogen acid ion, a perhalogen ion, and an carboxy group which may be substituted. Acid ion, acetamidine ion, carbonate ion, sulfate ion, nitrate ion, tetrafluoroboric acid ion, hexafluorophosphate ion, and the like. Further, the above metal salt may also coordinate a -18-200916560 neutral ligand such as carbon monoxide, triphenylphosphine or isopropyl toluene (p-cymene). The organic solvent to be used for dissolving the above-mentioned nickel ions, the amount of the compatible particles to be used is not particularly limited as long as the mixed solution obtained by mixing at least one of the above-mentioned liquid crystals can be used for the metal salt. The method of adding a nickel ion solution to a liquid pressurized, normal pressure or reduced pressure is not particularly limited. For example, the solution is separately separated and added to prepare a plurality of metals in advance. The method to carry out. The multi-component metal nanoparticle formed of nickel obtained in the above manner is bonded to the liquid crystal molecules by the core, and the liquid crystal-compatible particles can be dispersed. Therefore, the dispersion can be concentrated. In the above method of concentrating the dispersion liquid, the dispersion liquid is further concentrated by adding the liquid crystal molecules in the range of from 20 to 100 ° C to form a binder. The at least one metal ion other than nickel may be, for example, used to obtain the above liquid crystal solvent. The amount of the above organic solvent to be completely dissolved is not particularly limited. The reaction temperature between the secondary alcohol and the above-mentioned secondary alcohol and the reflux temperature (reaction temperature) at 20 ° C in the above-mentioned organic solution flow, and the reaction pressure. In addition, when a plurality of metal ion solutions are mixed and dissolved, the addition may be performed by adding at least one metal other than nickel by using each of the plurality of metal ion methods (adding or separately adding) and one metal ion solution. The composition is composed of the multi-component metal nanoparticles as liquid crystal-compatible particles. The liquid crystal-compatible particle paste which is formed by the above-mentioned organic solvent is not particularly limited, and is preferably subjected to a reduced pressure temperature. Further, the dispersion liquid is used as a dispersion liquid, and a uniform liquid crystal is obtained by the same higher function. -19-200916560 The liquid crystal containing the liquid crystal-compatible particles can be obtained by, for example, liquid crystal compatibility obtained in the above manner. The particle paste was added to the underlying liquid crystal while stirring at room temperature, and was uniformly obtained. Further, in order to adjust the twist angle of the liquid crystal of the liquid crystal compatible ions in the stomach, an optical rotatory agent may be added. Next, examples and comparative examples of the present invention are shown. [Example 1] In the present Example, first, a liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles was prepared in a secondary manner. A liquid crystal molecular mixture (a liquid crystal for STN manufactured by Dainippon Ink and Chemicals, Ltd., trade name: LC3) is added to a glass container having a stirring device, a thermometer, a reflow cooler, and a dropping funnel with an internal volume of 100 m. 0.2 0 0 g > tetrahydrofuran 36. 〇mi and 2-propanol 10 ml to prepare a mixed solution 'The mixture is heated under stirring, and is in the range of 65 to 75 ° C Reflow at temperature. Next, in the above mixed solution, 3.2 ml of a tetrahydrofuran solution of 〇1 mol/1 nickel acetylacetonate (containing 〇_〇32 mmol as a nickel atom) and 0.01 mol/l were slowly dropped. A solution of silver trifluoroacetate in tetrahydrofuran (4 ml of a mixed solution of 8 ml (containing 0.008 mol of a silver atom)) was allowed to react at the same temperature for 2 hours while stirring. After the completion of the reaction, the reaction liquid was cooled to room temperature to obtain a pale yellow homogeneous liquid crystal-compatible nickel-silver binary nanoparticle dispersion liquid of 50 μL. As a result of analyzing the above-mentioned nickel-silver binary nanoparticle dispersion by a transmission electron microscope, it was found that the liquid crystal phase of the center metal of the liquid crystal phase strontium nickel-silver-20-200916560 binary nanoparticle was 3 to 15 nm and uniform. Next, the obtained liquid crystal-compatible nickel-silver binary nanoparticle dispersion 1 - 8 3 m丨 was added to the above-mentioned plural liquid crystal molecule mixture 〇·093 0g, and the obtained mixture was concentrated under reduced pressure' 0.100 g of a liquid crystal-compatible nickel-silver binary nanoparticle paste having a light blue color was obtained (0.1 Wt% of nickel-silver was added on the basis of a liquid crystal mixture). Then, using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles obtained in the present Example, the liquid crystal display device (STN - CD) 1 shown in Fig. 1 was produced and evaluated. The production of the liquid crystal display device (STN-CD) 1 is performed in a secondary manner. First, an IOK film is attached to the glass substrates 2a and 2b as a transparent electrode, and the transparent electrode films 3a and 3b are formed by providing a desired pattern in the photolithography step. Then, on the display portions on the glass substrates 2a and 2b on which the transparent electrode films 3a and 3b are formed, the insulating films 4a and 4b are formed by flexographic printing. Then, on the insulating films 4a and 4b, a liquid crystal alignment material (manufactured by Nissan Chemical Co., Ltd., trade name: S E-6 1 0) is used to form alignment films 5a and 5b having substantially the same pattern. Then, the cylindrical drum of the wound fabric is rotated at a high speed, and rubbed on the alignment films 5a and 5b, whereby the rubbing alignment treatment is performed to encapsulate the liquid crystal-compatible nickel-silver binary nanoparticles sealed in the liquid crystal cell 7. The liquid crystal is aligned on one axis, and the twist angle between the upper and lower substrates 6a and 6b is, for example, a left twist of 240 degrees. Then, a thermosetting sealant (for example, manufactured by Mitsui Chemicals, Inc., trade name: ES-75 00) is printed on the inner side surface of the upper substrate 6a by a screen printing method of the screen 21 - 200916560 to form a pattern having an injection port. And a plastic ball having a diameter of 6 μm was dispersed on the inner side surface of the lower substrate 6 b by a dry dispersion method as a gap controlling agent. Then, the upper and lower substrates 6a and 6b are superposed and bonded to each other at a specific position, and the main sealant is cured by heat treatment in a press state to form the sealant layer 8. The conductive material 9 is formed by printing a conductive material at a specific position on the outer surface of the sealant layer 8 by a screen printing method. As the conductive material, an Au ball or the like having a diameter of 6.5 μm of 2 to 3% by weight of the thermosetting sealant is used. Then, the glass substrate 2a, 2b is cut by a scriber device, cut into a specific size/shape to form a unit cell, and the liquid crystal-compatible nickel is contained by a capillary method. A liquid crystal of a silver binary nanoparticle is injected into the unit cell, and the injection port (2 places) is sealed with a sealing agent. The chamfering and cleaning are performed, and the polarizing plates 10a and 10b are bonded to the outer surface of the glass substrates 2a and 2b in a specific pattern (crossed nicol), thereby forming the first embodiment. A liquid crystal display device (STN-LCD) 1 having a cell thickness of 6 μm. The positive voltage-transmittance characteristic (drive frequency dependency) of the yellow mode of the liquid crystal display device 1 produced in the present example was measured using an LCD evaluation device (manufactured by Otsuka Electronics Co., Ltd., trade name: LCD-5 000). The results are shown in Figure 2. Next, using the above LCD evaluation device, the voltage-contrast characteristic of the liquid crystal display device 1 produced in the present embodiment is measured, and the most suitable voltage is obtained from the voltage-contrast-22-200916560 characteristic (the voltage for obtaining the maximum contrast), and Perform the most appropriate voltage response characteristics (1 / 64 load drive). The results are shown in Table 1. Further, in Table 1, the response time of the most suitable voltage is shown, and the rise time and the fall time are approximately one response time. The measurement frequency is 1 〇 〇 0 H z. Further, a liquid micrograph of the liquid crystal display device 1 produced in the present embodiment is shown in Fig. 3. [Comparative Example 1] In this comparative example, a mixture of a plurality of liquid crystal molecules (a liquid crystal for STN manufactured by Dainippon Ink and Chemicals Co., Ltd., trade name: LC3) which does not contain a nickel-silver binary is used in the first comparative example. In the same manner, a liquid crystal display (STN - LCD) 1 having the configuration shown in Fig. 1 is formed. Then, in the same manner as in the first embodiment, the yellow mode positive voltage-characteristic (driving frequency dependency) of the liquid crystal display device 1 produced in the example was measured. The results are shown in Figure 4. Next, in the same manner as in the first embodiment, the response book / 64 load drive of the optimum voltage of the liquid crystal display device 1 produced in the example was measured. The results are shown in Table 1. Further, a liquid micrograph of the liquid crystal display device 1 produced in the comparative example is shown in Fig. 5. The measurement time at room temperature (the nanocrystalline structure of the crystal layer of the time zone is shown in Example 1 to show the comparative transmittance of the present comparison. This is comparatively f-type (1 - crystal layer -23 - 200916560 [Comparative Example 2] In the same manner as in Example 1, except that a liquid crystal molecule mixture of a plurality of liquid crystal molecules containing a palladium-silver binary nanoparticle (manufactured by Dainippon Ink and Chemicals, Inc., liquid crystal, trade name: LC3) was used, the first image was prepared in the same manner as in the first embodiment. Liquid crystal display device (STN-LCD) having the structure shown in Fig. 1. A microscope photograph of the liquid crystal layer of the liquid crystal display device 1 produced in the comparative example is shown in Fig. 6. [Table 1] The most suitable voltage is the maximum contrast Rise Decay To Rise To Decay Example 1 15.2 4.92 117 48 135 64 (15.0) 80 57 90 90 Comparative Example 1 15.8 4.52 132 45 145 56 (15.6) 82 58 91 76

Rise …上升時間Rise ... rise time

Decay ...下降時間Decay ... fall time

To Rise …從電壓切換至上升的時間To Rise ... switching from voltage to rise

To Decay ...從電壓切換至下降的時間 由第2圖得知,在使用實施例1之含有液晶相溶性鎳 -銀二元奈米粒子之液晶的液晶顯示裝置1中,隨著施加 電壓的增加,透過率也會增加,藉由電壓可控制液晶顯示 裝置1的透過率(顯示)。此外,第2圖中,雖然藉由改 變驅動頻率致使透過率曲線位移而不完全一致,但由於位 移量爲△ V〈 0.3 V,故得知使用實施例1之含有液晶相溶 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1可進行負 -24- 200916560 載驅動。 相對於此,由第4圖得知’在使用完全不含有鎳—銀 二元奈米粒子之複數種液晶分子混合物之比較例1的液晶 顯示裝置1中,隨著施加電壓的增加’透過率也會增加, 藉由電壓可控制液晶顯示裝置1的透過率(顯示)’且得 知改變驅動頻率時之透過率曲線的位移量爲很小的△ V &lt; 0.05V。 此外,比較第2圖與第4圖時得知’使用實施例1之 含有液晶相溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝 置1具備較低的閾値。尤其’於低頻率驅動之情況’使用 實施例1之含有液晶相溶性鎳-銀二元奈米粒子之液晶的 液晶顯示裝置1,在靜態驅動(static drive )下約降低 0.4V,可節省消耗電力。在負載驅動中’尤其在i /64以 上的高負載驅動中,必須有供高驅動電壓之用的昂貴的驅 動電路(d r i v e r ),因此能夠以低電壓來驅動是甚爲有利 的。 再者,由第2圖得知,在使用實施例1之含有液晶相 溶性鎳-銀二元奈米粒子之液晶的液晶顯不裝置1中,驅 動頻率越高,則閾値會些微變高。該現象係與使用含有鈀 -銀二元奈米粒子等錬系以外之金屬奈米粒·子之含有液晶 相溶性金屬奈米粒子之液晶的STN一 LCD爲相反的傾向。 在使用含有鎳系以外之金屬奈米粒子之含有液晶相溶性金 屬奈米粒子之液晶的s TN - L C D中’顯示出驅動頻率越低 ,則閾値越高之傾向乃周知者。 -25- 200916560 由於在使用實施例1之含有液晶相溶性鎳-銀二元奈 米粒子之液晶的液晶顯示裝置1中,係如上所述那樣顯示 出驅動頻率越高,則閾値越高的頻率依存性,故例如藉由 在含有液晶相溶性鎳-銀二元奈米粒子之液晶中,混合鎳 系以外的金屬奈米粒子,被認爲具有可改善頻率依存性之 可能性。 繼之,由表1得知,就上升時間而言,在任一個條件 中皆爲使用實施例1之含有液晶相溶性鎳-銀二元奈米粒 子之液晶的液晶顯示裝置1比較快,然而,就下降時間而 言,使用實施例1之含有液晶相溶性鎳一銀二元奈米粒子 之液晶的液晶顯示裝置1、與使用完全不含有鎳一銀二元 奈米粒子之複數種液晶分子混合物之比較例1的液晶顯示 裝置1爲大致相同。因此,在任一條件中,上升時間與下 降時間的合計時間皆爲使用實施例1之含有液晶相溶性鎳 -銀二元奈米粒子之液晶的液晶顯示裝置1比較快。然而 ,此兩者的差不能斷言爲明確有意義的差。 此外,由表1得知,可得到最大對比之最合適電壓及 應答之平衡良好的電壓,皆以使用實施例1之含有液晶相 溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1爲較低 電壓。由此可確認,進行實用上重要之負載驅動時的驅動 電壓,也是以使用實施例1之含有液晶相溶性鎳-銀二元 奈米粒子之液晶的液晶顯示裝置1爲較低電壓。 此外,由表1得知,若比較最大對比(c R )値時, 則以使用實施例1之含有液晶相溶性鎳一銀二元奈米粒子 -26- 200916560 之液晶的液晶顯示裝置1較高。這點如由第2圖與第4圖 之比較可知悉般’因爲在透過率變化相對於電壓的陡峭性 (銳利度:sharpness )上,使用實施例1之含有液晶相溶 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1比較微小 且良好之故。在STN_ LCD中,銳利度爲重要之要素,若 銳利度良好的話,具有最大對比得以提升,並且高負載驅 動之顯示品質可明顯改善之優點。 繼之’由第3圖得知,使用實施例1之含有液晶相溶 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1之液晶層 ,係與使用第5圖所不之完全不含有鎳-銀二兀奈米粒子 之複數種液晶分子混合物之比較例1的液晶顯示裝置1之 液晶層同樣,完全看不到鎳-銀二元奈米粒子的凝聚。 相對於此,在使用比較例2之含有液晶相溶性鈀-銀 二元奈米粒子之液晶的液晶顯示裝置1之液晶層中,如第 6圖所示般由於可觀察到黑點,所以顯然有產生鈀一銀二 元奈米粒子的凝聚。此外,在第3圖、第5圖、第6圖之 各圖中,白點係直徑6 // m之塑膠球製的間隙控制劑。 〔實施例2〕 本實施例中,首先,以如次之方式調製含有液晶相溶 性鎳-銀二元奈米粒子之液晶。 在具備攪拌裝置、溫度計、回流冷卻器及滴下漏斗之 內容積1 OOmL的玻璃製容器中,加入複數種液晶分子海 合物(大日本油墨化學工業株式會社製STN用液晶、商 -27- 200916560 品名:LC4) 0.2 0 0 g ' 四氫呋喃(tetrahydrofuran ) 36.0ml 及2 -丙醇(2-propanol) 10ml以調製混合溶液,將該混 合溶液在攪拌下加熱,且於65〜75 °C之範圍的溫度下回流 。接著,在上述混合溶液中,緩慢地滴下0.0 1 mol/ 1乙 酿丙酮鎳 (nickel acetylacetonate ) 的四氫呋喃溶液 2.0ml (作爲鎳原子含有0.020mmol)、與0.01mol/l三 氟乙酸銀的四氫呋喃溶液 2.0ml (作爲銀原子含有 0.020mmol )之混合溶液4ml,並且一邊攪拌,一邊於相 同溫度下使之反應2小時。於反應結束後,將反應液冷卻 至室溫,而得到紅褐色之均勻的液晶相溶性鎳一銀二元奈 米粒子分散液50mL。利用透過型電子顯微鏡分析上述鎳 -銀二元奈米粒子分散液的結果發現,液晶相溶性鎳-銀 二元奈米粒子之中心金屬的粒子直徑爲 2〜U nm且均勻 。接著,在上述複數種液晶分子混合物〇 . 〇 9 4 2 g中,添加 所得到之液晶相溶性鎳-銀二元奈米粒子分散液1 . 5 0ml, 並將所得到的混合物在減壓下予以濃縮,而得到紅褐色之 均勻的液晶相溶性鎳-銀二元奈米粒子糊〇. 1 〇〇g (以液晶 混合物基準添加0.1 wt%的鎳一銀)。 繼之,除了使用本實施例所得到之含有液晶相溶性鎳 -銀二元奈米粒子之液晶外,係利用與實施例1完全相同 的方式製作第1圖所示之液晶顯示裝置(STN — LCD) 1。 利用與實施例1完全相同的方式,測定本實施例所製 作之液晶顯示裝置1之黃色模式正的電壓-透過率特性( 驅動頻率依存性)。將結果顯示於第7圖。 -28- 200916560 接著’利用與實施例1完全相同的方式,進行本實施 例1所製作之液晶顯示裝置i之最合適電壓的應答特性( 1 / 64負載驅動)之測定。將結果顯示於表2。 此外’表 2中係表示最合適電壓之應答時間( Ksponse time)、與使上升時間及下降時間大約一致時的 應答時間。測定頻率爲1 000Hz。 又’將本實施例所製作之液晶顯示裝置1之液晶層的 顯微鏡照片顯示於第8圖。 〔比較例3〕 本比較例中,除了使用完全不含有鎳—銀二元奈米粒 子之複數種液晶分子混合物(大日本油墨化學工業株式會 社製S TN用液晶、商品名:L C 4 )外,其餘部分係利用與 實施例1完全相同的方式作成具備第1圖所示之構成的液 晶顯示裝置(STN— LCD ) 1。 繼之’利用與實施例1完全相同的方式,測定本比較 例所製作之液晶顯示裝置1之黃色模式正的電壓-透過率 特性(驅動頻率依存性)。將結果顯示於第9圖。 利用與實施例1完全相同的方式,進行本比較例所製 作之液晶顯示裝置1之最合適電壓的應答特性(1 / 6 4負 載驅動)之測疋。將結果顯不於表2。 又,將本比較例所製作之液晶顯示裝置1之液晶層的 顯微鏡照片顯示於第丨〇圖。 -29- 200916560 〔比較例4〕 本比較例中,除了使用含有鈀-銀二元奈米粒子之複 數種液晶分子混合物(大日本油墨化學工業株式會社製 STN用液晶、商品名:LC4 )外,其餘部分係利用與實施 例1完全相同的方式作成具備第1圖所示之構成的液晶顯 示裝置(STN - LCD ) 1。 將本比較例所製作之液晶顯示裝置1之液晶層的顯微 鏡照片顯示於第1 1圖。 〔表2〕 最合適電壓 最大對比 Rise Decay To Rise To Decay 實施例2 15.0 7.22 83 136 104 176 (15.2) 93 94 128 127 比較例3 14.6 6.11 73 252 95 305 (15.0) 94 103 137 131To Decay ... The time from the voltage switching to the falling is shown in Fig. 2, in the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1, with the application of a voltage When the increase is made, the transmittance is also increased, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. Further, in Fig. 2, although the displacement of the transmittance curve is not completely matched by changing the driving frequency, since the displacement amount is ΔV < 0.3 V, it is known that the liquid crystal-compatible nickel-silver binary containing the embodiment 1 is used. The liquid crystal display device 1 of the liquid crystal of nano particles can be driven by negative-24-200916560. On the other hand, in the liquid crystal display device 1 of Comparative Example 1 using a mixture of a plurality of liquid crystal molecules which do not contain nickel-silver binary nanoparticles at all, the transmittance is increased as the applied voltage is increased. It is increased that the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage, and it is known that the displacement amount of the transmittance curve when the driving frequency is changed is small ΔV &lt; 0.05V. Further, when comparing Figs. 2 and 4, it was found that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1 has a low threshold 値. In particular, in the case of driving at a low frequency, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1 can be reduced by about 0.4 V under static drive, thereby saving power consumption. . In load driving, especially in high load driving above i/64, there must be an expensive driving circuit (d r i v e r ) for high driving voltage, so it is advantageous to be able to drive at a low voltage. Further, as is apparent from Fig. 2, in the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-soluble nickel-silver binary nanoparticles of Example 1, the threshold 値 is slightly increased as the driving frequency is higher. This phenomenon tends to be opposite to the use of an STN-LCD containing a liquid crystal containing liquid crystal-compatible metal nanoparticles other than a metal nanoparticle other than a lanthanum-silica binary nanoparticle. In the case of using s TN - L C D of a liquid crystal containing liquid crystal-compatible metal nanoparticles containing metal nanoparticles other than nickel, the lower the driving frequency is, the higher the threshold is. -25-200916560 In the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1, as shown above, the higher the driving frequency is, the higher the threshold is. For example, it is considered that the metal nanoparticles other than the nickel-based particles are mixed in the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles, and it is considered that the frequency dependence can be improved. Then, as is clear from Table 1, in any of the conditions, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1 is relatively fast, however, In the case of the fall time, a liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1 and a comparative example using a mixture of a plurality of liquid crystal molecules completely containing no nickel-silver binary nanoparticles The liquid crystal display device 1 of 1 is substantially the same. Therefore, in any of the conditions, the total time of the rise time and the fall time is faster than that of the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1. However, the difference between the two cannot be asserted as a clearly meaningful difference. Further, as is clear from Table 1, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1 is a voltage having a good balance between the most suitable voltage and the response. Lower voltage. From this, it was confirmed that the driving voltage at the time of practically important load driving was also a lower voltage using the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1. Further, as is clear from Table 1, when the maximum contrast (c R ) 比较 is compared, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles -26-200916560 of Example 1 is higher. . This is known from the comparison of Fig. 2 and Fig. 4 because the liquid crystal-compatible nickel-silver binary naphthalene of the first embodiment is used because of the steepness (sharpness) of the transmittance change with respect to the voltage. The liquid crystal display device 1 of the liquid crystal of rice particles is relatively small and good. In STN_LCD, sharpness is an important factor. If the sharpness is good, the maximum contrast can be improved, and the display quality of high load driving can be significantly improved. In the following, the liquid crystal layer of the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 1 is completely free of nickel. In the liquid crystal layer of the liquid crystal display device 1 of Comparative Example 1 in which a plurality of liquid crystal molecule mixtures of silver yttrium nanoparticles are mixed, aggregation of nickel-silver binary nanoparticles is not observed at all. On the other hand, in the liquid crystal layer of the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible palladium-silver binary nanoparticles of Comparative Example 2, since black spots can be observed as shown in FIG. 6, it is apparent that Agglomeration of palladium-silver binary nanoparticles is produced. Further, in each of Figs. 3, 5, and 6, the white point is a gap control agent made of a plastic ball having a diameter of 6 // m. [Embodiment 2] In this embodiment, first, a liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles is prepared in the following manner. A plurality of liquid crystal molecules hydrates are added to a glass container having an internal volume of a stirring device, a thermometer, a reflow cooler, and a dropping funnel, and a liquid crystal molecule conjugate manufactured by Dainippon Ink and Chemicals Co., Ltd., -27-200916560 Product Name: LC4) 0.2 0 0 g 'tetrahydrofuran (tetrahydrofuran) 36.0ml and 2-propanol (2-propanol) 10ml to prepare a mixed solution, the mixed solution is heated under stirring, and in the range of 65~75 °C Reflow at temperature. Next, in the above mixed solution, 2.0 ml of a solution of 0.01 mol/l of nickel acetylacetonate in tetrahydrofuran (0.020 mmol as a nickel atom) and a tetrahydrofuran solution of 0.01 mol/l of silver trifluoroacetate were slowly added dropwise. 4 ml of a mixed solution of 2.0 ml (containing 0.020 mmol as a silver atom) was allowed to react at the same temperature for 2 hours while stirring. After completion of the reaction, the reaction solution was cooled to room temperature to obtain 50 ml of a reddish-brown liquid crystal-compatible nickel-silver binary nanoparticle dispersion. As a result of analyzing the above nickel-silver binary nanoparticle dispersion by a transmission electron microscope, it was found that the central metal of the liquid crystal-compatible nickel-silver binary nanoparticles has a particle diameter of 2 to U nm and is uniform. Next, in the above-mentioned plural liquid crystal molecule mixture 〇. 49 4 2 g, the obtained liquid crystal-compatible nickel-silver binary nanoparticle dispersion liquid was added 1.50 ml, and the obtained mixture was subjected to a reduced pressure. The mixture was concentrated to obtain a reddish-brown liquid crystal-compatible nickel-silver binary nanoparticle paste. 1 〇〇g (0.1 wt% of nickel-silver was added on the basis of a liquid crystal mixture). Subsequently, a liquid crystal display device (STN-LCD) shown in Fig. 1 was produced in the same manner as in Example 1 except that the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles obtained in the present Example was used. ) 1. In the same manner as in the first embodiment, the positive voltage-transmittance characteristic (driving frequency dependence) of the yellow mode of the liquid crystal display device 1 produced in the present embodiment was measured. The results are shown in Figure 7. -28- 200916560 Next, in the same manner as in the first embodiment, the measurement of the optimum voltage response characteristic (1/64 load drive) of the liquid crystal display device i produced in the first embodiment was carried out. The results are shown in Table 2. Further, in Table 2, the response time (Ksponse time) of the most suitable voltage is shown, and the response time when the rise time and the fall time are approximately coincident. The measurement frequency is 1 000 Hz. Further, a microscope photograph of the liquid crystal layer of the liquid crystal display device 1 produced in the present embodiment is shown in Fig. 8. [Comparative Example 3] In the present comparative example, a liquid crystal molecule mixture of S TN (trade name: LC 4 manufactured by Dainippon Ink and Chemicals Co., Ltd.) was used in addition to a plurality of liquid crystal molecular mixtures (trade name: LC 4 manufactured by Dainippon Ink and Chemicals Co., Ltd.). In the remaining portion, a liquid crystal display device (STN-LCD) 1 having the configuration shown in Fig. 1 was fabricated in the same manner as in the first embodiment. Then, in the same manner as in the first embodiment, the positive voltage-transmittance characteristic (driving frequency dependence) of the yellow mode of the liquid crystal display device 1 produced in the comparative example was measured. The results are shown in Figure 9. In the same manner as in the first embodiment, the measurement of the optimum voltage response characteristic (1 / 6 4 load driving) of the liquid crystal display device 1 produced in the comparative example was carried out. The results are not shown in Table 2. Further, a micrograph of the liquid crystal layer of the liquid crystal display device 1 produced in the comparative example is shown in the figure. -29-200916560 [Comparative Example 4] In this comparative example, a mixture of a plurality of liquid crystal molecules containing palladium-silver binary nanoparticles (liquid crystal for STN manufactured by Dainippon Ink and Chemicals, Ltd., trade name: LC4) was used. In the remaining portion, a liquid crystal display device (STN-LCD) 1 having the configuration shown in Fig. 1 was fabricated in the same manner as in the first embodiment. A photomicrograph of the liquid crystal layer of the liquid crystal display device 1 produced in the comparative example is shown in Fig. 11. [Table 2] Most suitable voltage Maximum contrast Rise Decay To Rise To Decay Example 2 15.0 7.22 83 136 104 176 (15.2) 93 94 128 127 Comparative Example 3 14.6 6.11 73 252 95 305 (15.0) 94 103 137 131

Rise ...上升時間Rise ... rise time

Decay ...下降時間Decay ... fall time

To Rise ...從電壓切換至上升的時間To Rise ... switching from voltage to rise

To Decay ...從電壓切換至下降的時間 由第7圖得知,在使用實施例2之含有液晶相溶性鎳 -銀二元奈米粒子之液晶的液晶顯示裝置1中,隨著施加 電壓的增加,透過率亦會增加,藉由電壓可控制液晶顯示 裝置1的透過率(顯示)。又,第7圖中,雖然藉由改變 驅動頻率致使透過率曲線位移而完全不一致,但由於位移 量爲△ V &lt; 0.2 5 V,故得知使用實施例2之含有液晶相溶 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1可進行負 -30 - 200916560 載驅動。 相對於此,由第9圖得知,在使用完全不含有鎳-銀 二元奈米粒子之複數種液晶分子混合物之比較例3的液晶 顯示裝置1中,隨著施加電壓的增加,透過率亦會增加, 藉由電壓可控制液晶顯示裝置1的透過率(顯示),且得 知改變驅動頻率時之透過率曲線的位移量爲很小的△ V &lt; 0.05V。 此外,比較第7圖與第9圖時得知’使用實施例2之 含有液晶相溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝 置1具備較低的閾値。尤其’於低頻率驅動之情況’使用 實施例2之含有液晶相溶性鎳-銀二元奈米粒子之液晶的 液晶顯示裝置1,在靜態驅動下約降低〇 _ 〇 5 V,可節省消 耗電力。在負載驅動中,尤其在1 / 64以上的高負載驅動 中,由於爲高驅動電壓’故必須有昂貴的驅動電路( driver ),因此可以低電壓來驅動者甚爲有利。 再者,由第7圖得知,在使用實施例2之含有液晶相 溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1中’驅 動頻率越高,則閾値會些微變高。該現象係與使用含有16 -銀二元奈米粒子等鎳系以外之金屬奈米粒子之含有液晶 相溶性金屬奈米粒子之液晶的STN 一 LCD爲相反的傾向。 使用含有鎳系以外之金屬奈米粒子之含有液晶相溶性金屬 奈米粒子之液晶的STN - LCD中,顯示出驅動頻率越低’ 則閾値越高之傾向乃周知者。 由於在使用實施例2之含有液晶相溶性鎳一銀二元奈 -31 - 200916560 米粒子之液晶的液晶顯示裝置1中,係如上所述那樣顯示 出驅動頻率越高,則閾値越高的頻率依存性,故例如藉由 在含有液晶相溶性鎳-銀二元奈米粒子之液晶中,混合鎳 系以外的金屬奈米粒子,被認爲具有可抵消頻率依存性之 可能性。 再者,比較第7圖與第9圖時得知,使用實施例2之 含有液晶相溶性鎳一銀二元奈米粒子之液晶的液晶顯示裝 置 1,其透過率變化相對於電壓的陡峭性(銳利度: sharpness )聿交優良。 繼之,由表2得知,使用實施例2之含有液晶相溶性 鎳-銀二元奈米粒子之液晶的液晶顯示裝置1,其下降時 間快相當多。又,應答之平衡良好的電壓(表中,以括弧 表示)之應答,也是以使用實施例2之含有液晶相溶性鎳 一銀二元奈米粒子之液晶的液晶顯示裝置1,其上升時間 、下降時間皆比較快。因此,使用實施例2之含有液晶相 溶性鎳一銀二元奈米粒子之液晶的液晶顯示裝置1,相較 於使用實施例3之完全不含有鎳-銀二元奈米粒子之複數 種液晶分子混合物的液晶顯示裝置1,前者的應答顯然較 快。 此外,由表2得知,若比較最大對比(CR )値時, 以使用實施例2之含有液晶相溶性鎳-銀二元奈米粒子之 液晶的液晶顯示裝置1較高。這點如由第7圖與第9圖的 比較可知悉般,因爲在透過率變化相對於電壓的陡峭性( 銳利度:s h a r p n e s s )上,使用實施例2之含有液晶相溶性 -32- 200916560 鎳-銀二元奈米粒子之液晶的液晶顯示裝置丨比較 故。在STN — LCD中’銳利度爲重要之要素,若銳 好的話,則具有最大對比得以提升’並且高負載驅 示品質可明顯改善之優點。 繼之,由第8圖得知’使用實施例2之含有液 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1之 ,係與使用第1〇圖所示之完全不含有鎳-銀二元 子之複數種液晶分子混合物之比較例3的液晶顯示 之液晶層同樣,完全看不到鎳-銀二元奈米粒子的 相對於此,在使用比較例4之含有液晶相溶性 二元奈米粒子之液晶的液晶顯示裝置1之被晶層中 11圖所示般由於可觀察到黑點,所以顯然有產生 二元奈米粒子的凝聚。此外,在第8圖、第1 0圖 圖之各圖中,白點係直徑6 a m之塑膠球製的間隙 〔實施例3〕 本實施例3中,利用與實施例2完全相同的方 到紅褐色之均勻的液晶相溶性鎳-銀二元奈米粒子 50mL。利用透過型電子顯微鏡分析上述鎳一銀一 粒子分散液的結果發現,液晶相溶性鎳一銀二元奈 之中心金屬的粒子直徑爲2〜1 1 nm且均勻° 1妾著 實施例2使用者爲相同之複數種液晶分子混合物( 油墨化學工業株式會社製S ΤΝ用液晶、商品名: 良好之 利度良 動之顯 晶相溶 液晶層 奈米粒 裝置1 凝聚。 鈀-銀 ,如第 鈀-銀 、第Π 控制劑 式,得 分散液 元奈米 米粒子 ,在與 大日本 LC4 ) -33- 200916560 0 · 093 0g中,添加所得到之液晶相溶性鎳-銀二元奈米粒 子分散液1 8 3 m 1 ’並將所得到的混合物在減壓下予以濃縮 ,而得到紅褐色之均勻的液晶相溶性鎳一銀二元奈米粒子 糊0 · 1 0 0 g (以液晶混合物基準添加〇 · 1 wt %的鎳一銀)。 繼之,除了使用本實施例所得到之含有液晶相溶性鎳 -銀二元奈米粒子之液晶外,其餘部分係利用與實施例1 完全相同的方式製作第1圖所示之液晶顯示裝置(STN — LCD) 1。 利用與實施例1完全相同的方式,測定本實施例所製 作之液晶顯示裝置1之黃色模式正的電壓-透過率特性( 驅動頻率依存性)。將結果顯示於第1 2圖。 接著,利用與實施例1完全相同的方式,進行本實施 例所製作之液晶顯示裝置〗之最合適電壓的應答特性(1 / 64負載驅動)之測定。將結果顯示於表3。 此外,表3中係顯示最合適電壓之應答時間、與使上 升時間及下降時間大約一致時的應答時間。測定頻率爲 1000Hz。又,在表3中,再揭載比較例3所製作之液晶顯 示裝置1之最合適電壓的應答特性(1/64負載驅動)之 測定結果。 將本實施例所製作之液晶顯示裝置1之液晶層的顯微 鏡照片顯不於弟1 3圖。 -34- 200916560 〔表3〕 最合適電壓 最大對比 Rise Decay To Rise To Decay 實施例3 14.8 8.04 85 122 117 159 (14.9) 86 101 125 136 比較例3 14.6 6.11 73 252 95 305 (15.0) 94 103 137 131To Decay ... the time from the voltage switching to the falling is known from Fig. 7, in the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2, with the application of a voltage Increasingly, the transmittance is also increased, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. Further, in Fig. 7, although the transmittance curve is completely inconsistent by changing the driving frequency, since the displacement amount is ΔV &lt; 0.2 5 V, it is known that the liquid crystal-compatible nickel-silver containing the second embodiment is used. The liquid crystal display device 1 of the liquid crystal of the nanoparticle can perform negative -30 - 200916560 drive. On the other hand, as shown in FIG. 9, in the liquid crystal display device 1 of Comparative Example 3 using a mixture of a plurality of liquid crystal molecules which do not contain nickel-silver binary nanoparticles, the transmittance is also increased as the applied voltage is increased. It is increased that the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage, and it is known that the displacement amount of the transmittance curve when the driving frequency is changed is small ΔV &lt; 0.05V. Further, when comparing Figs. 7 and 9, it is known that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2 has a low threshold 値. In particular, in the case of driving at a low frequency, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2 can reduce the power consumption by about 〇 〇 5 V under static driving. In load driving, especially in high load driving of 1 / 64 or more, since it is necessary to have an expensive driving circuit because of a high driving voltage, it is advantageous to drive at a low voltage. Further, as is apparent from Fig. 7, in the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-soluble nickel-silver binary nanoparticles of Example 2, the higher the driving frequency, the slightly higher the threshold 。. This phenomenon tends to be opposite to the use of an STN-LCD containing liquid crystal containing liquid crystal-compatible metal nanoparticles such as metal nanoparticles other than nickel-based silver nanoparticles. In an STN-LCD using a liquid crystal containing liquid crystal-compatible metal nanoparticles other than nickel-based metal nanoparticles, it is known that the lower the driving frequency is, the higher the threshold is. In the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary Nai-31 - 200916560 particles of Example 2, as shown above, the higher the driving frequency is, the higher the threshold is. For example, it is considered that the metal nanoparticles other than the nickel-based particles are mixed in the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles, and it is considered that the frequency dependency can be canceled. Further, when comparing the seventh and ninth drawings, it is understood that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of the second embodiment has a steepness in transmittance change with respect to voltage ( Sharpness: sharpness) Excellent. Then, as is clear from Table 2, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2 had a relatively high fall time. In addition, the response of the voltage having a good balance of the response (indicated by the parentheses in the table) is also the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2, and the rise time and the fall time. Time is faster. Therefore, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2 is compared with the plurality of liquid crystal molecule mixtures completely containing no nickel-silver binary nanoparticles in Example 3. In the liquid crystal display device 1, the former responds obviously faster. Further, as is clear from Table 2, when the maximum contrast (CR) 比较 is compared, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 2 is higher. This is known from the comparison of Fig. 7 and Fig. 9, because the liquid crystal compatibility-32-200916560 nickel of Example 2 is used in the transmittance change with respect to the sharpness (sharpness) of the voltage. - Liquid crystal display devices of liquid crystals of silver binary nanoparticles are relatively rare. In the STN-LCD, 'sharpness is an important factor. If it is sharp, the maximum contrast is improved' and the high-load drive quality can be significantly improved. Next, it is understood from Fig. 8 that the liquid crystal display device 1 using the liquid crystal containing liquid nickel-silver binary nanoparticles of Example 2 is completely free of nickel-silver two as shown in Fig. 1 In the same manner as the liquid crystal layer of the liquid crystal display of Comparative Example 3 of the plural liquid crystal molecules of the same, the nickel-silver binary nanoparticle was not observed at all, and the liquid crystal-compatible binary nanoparticle of Comparative Example 4 was used. In the liquid crystal display device 1 of the liquid crystal of the particle, as shown in Fig. 11 of the crystal layer, since black spots are observed, it is apparent that aggregation of binary nanoparticles is generated. Further, in each of Figs. 8 and 10, the white dots are gaps made of plastic balls having a diameter of 6 am. [Embodiment 3] In the third embodiment, the same method as in the second embodiment is used. Reddish-brown liquid crystal-compatible nickel-silver binary nanoparticles 50 mL. As a result of analyzing the above-mentioned nickel-silver-particle dispersion by a transmission electron microscope, it was found that the particle diameter of the center metal of the liquid crystal-compatible nickel-silver binary was 2 to 11 nm and uniform, and the user of Example 2 was A mixture of a plurality of liquid crystal molecules (S Liquid Chemicals, Inc., manufactured by Ink Chemical Industry Co., Ltd., trade name: Good crystal phase solution, crystal layer nanoparticle device 1 with good affinity). Palladium-silver, such as palladium-silver , the third control agent type, obtained by dispersing the liquid nanometer particles, and the liquid crystal-compatible nickel-silver binary nanoparticle dispersion obtained by adding the liquid crystal-compatible nickel-silver binary nanoparticle dispersion 1 8 to the Japanese Japanese version of LC4) -33-200916560 0 · 093 0g 3 m 1 ' and the obtained mixture was concentrated under reduced pressure to obtain a reddish-brown homogeneous liquid crystal-compatible nickel-silver binary nanoparticle paste 0 · 1 0 0 g (added 〇·1 on the basis of liquid crystal mixture) Wt % nickel-silver). Then, the liquid crystal display device (STN) shown in Fig. 1 was produced in the same manner as in Example 1 except that the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles obtained in the present Example was used. — LCD) 1. In the same manner as in the first embodiment, the positive voltage-transmittance characteristic (driving frequency dependence) of the yellow mode of the liquid crystal display device 1 produced in the present embodiment was measured. The results are shown in Figure 12. Next, in the same manner as in the first embodiment, the response characteristic (1/64 load driving) of the optimum voltage of the liquid crystal display device produced in the present embodiment was measured. The results are shown in Table 3. Further, in Table 3, the response time of the most suitable voltage is shown, and the response time when the rising time and the falling time are approximately coincident. The measurement frequency is 1000 Hz. Further, in Table 3, the measurement results of the response characteristics (1/64 load drive) of the optimum voltage of the liquid crystal display device 1 produced in Comparative Example 3 are further disclosed. The photomicrograph of the liquid crystal layer of the liquid crystal display device 1 produced in the present embodiment is not shown in the drawings. -34- 200916560 [Table 3] The most suitable voltage maximum contrast Rise Decay To Rise To Decay Example 3 14.8 8.04 85 122 117 159 (14.9) 86 101 125 136 Comparative Example 3 14.6 6.11 73 252 95 305 (15.0) 94 103 137 131

Rise ...上升時間 Decay ...下降時間Rise ... rise time Decay ... fall time

To Rise …從電壓切換至上升的時間 To Decay ...從電壓切換至下降的時間 由第1 2圖得知,在使用實施例3之含有液晶相溶性 鎳-銀二元奈米粒子之液晶的液晶顯示裝置1中,隨著施 加電壓的增加,透過率亦會增加,藉由電壓可控制液晶顯 示裝置1的透過率(顯示)。又,在第12圖中,雖然藉 由改變驅動頻率致使透過率曲線位移而完全不一致,但由 於位移量爲△ V &lt; 0.2 V,故得知使用實施例2之含有液晶 相溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1可進 行負載驅動。 相對於此,由第9圖得知,在使用完全不含有鎳-銀 二元奈米粒子之複數種液晶分子混合物之比較例3的液晶 顯示裝置1中,隨著施加電壓的增加,透過率亦會增加, 藉由電壓可控制液晶顯示裝置1的透過率(顯示),且得 知改變驅動頻率時之透過率曲線的位移量爲很小的△ V &lt; 0.05V。 此外,比較第1 2圖與第9圖時得知,使用實施例3 之含有液晶相溶性鎳-銀二元奈米粒子之液晶的液晶顯示 -35- 200916560 裝置1具備較低的閾値。尤其,於低頻率驅 用實施例3之含有液晶相溶性鎳-銀二元奈 的液晶顯示裝置1,在靜態驅動下約降低0 _ 耗電力。在負載驅動中,尤其在1/64以上 中,由於爲高驅動電壓,故必須有昂貴的驅 可以低電壓來驅動者甚爲有利。 再者,由第12圖得知,在使用實施例 相溶性鎳-銀二元奈米粒子之液晶的液晶顯 驅動頻率越高,則閾値會些微變高。該現象 鈀-銀二元奈米粒子等鎳系以外之金屬奈米 晶相溶性金屬奈米粒子之液晶的STN - LCD 。在使用含有鎳系以外之金屬奈米粒子之含 金屬奈米粒子之液晶的STN — LCD中’顯示 低,則閾値越高之傾向乃周知者。 由於在使用實施例3之含有液晶相溶性 米粒子之液晶的液晶顯示裝置1中’係如上 出驅動頻率越高’則閾値越高的頻率依存性 在含有液晶相溶性鎳-銀二元奈米粒子之液 系以外的金屬奈米粒子,被認爲具有可抵消 可能性。 更且,比較第1 2圖與第9圖時得知’ 之含有液晶相溶性鎳-銀二元奈米粒子之液 裝置1,其透過率變化相對於電壓的陡峭 sharpness )較優良 ° 動之情況,使 米粒子之液晶 4V,可節省消 的局負載驅動 動電路,因此 3之含有液晶 示裝置1中, 係與使用含有 粒子之含有液 爲相反的傾向 有液晶相溶性 出驅動頻率越 錬一銀二兀奈 所述那樣顯示 ,故例如藉由 晶中,混合鎳 頻率依存性之 使用實施例3 晶的液晶顯本 性(銳利度: -36- 200916560 繼之,由表3得知,使用實施例3之含有液晶相溶性 鎳-銀二元奈米粒子之液晶的液晶顯示裝置1,其最合適 電壓的下降時間快相當多。又,應答之平衡良好的電壓( 表中,以括弧表示)之應答,也是以使用實施例3之含有 液晶相溶性鎳一銀二元奈米粒子之液晶的液晶顯示裝置1 ,其上升時間、下降時間皆比較快。然而,此兩者的差不 能斷言爲明確有意義的差。 此外,由表3得知,若比較最大對比(C R )値時, 以使用實施例3之含有液晶相溶性鎳-銀二元奈米粒子之 液晶的液晶顯不裝置1較商。追點如由第12圖與第9圖 的比較可知悉般,因爲在透過率變化相對於電壓的陡峭性 (銳利度:sharpness)上,使用實施例3之含有液晶相溶 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1比較良好 之故。在STN - LCD中,銳利度爲重要之要素,若銳利度 良好的話,具有最大對比得以提升,並且高負載驅動之顯 不品質可明顯改善之優點。 繼之’由第13圖得知,使用實施例3之含有液晶相 溶性鎳一銀二元奈米粒子之液晶的液晶顯示裝置1之液晶 層’係與使用第10圖所示之完全不含有鎳一銀二元奈米 粒子之複數種液晶分子混合物之比較例3的液晶顯示裝置 1之液晶層同樣’完全看不到鎳一銀二元奈米粒子的凝聚 0 相對於此’在使用比較例4之含有液晶相溶性鈀-銀 二元奈米粒子之液晶的液晶顯示裝置1之液晶層中,如第 -37- 200916560 1 1圖所示般由於可觀察到黑點,所以顯然有產生鈀-銀 二元奈米粒子的凝聚。此外,在第13圖、第10圖、第 1 1圖之各圖中,白點係直徑6 // m之塑膠球製的間隙控制 劑。 〔實施例4〕 本實施例中,首先,以如次方式調製含有液晶相溶性 鎳一銀二元奈米粒子之液晶。 在具備攪拌裝置、溫度計、回流冷卻器及滴下漏斗之 內容積5 00mL的玻璃製容器中,加入複數種液晶分子混 合物(大日本油墨化學工業株式會社製STN用液晶、商 品名:LC4 ) 0.8 00 g、四氫呋喃(tetrahydrofuran ) 144_0ml及2-丙醇(2-propanol) 40ml以調製混合溶液, 將該混合溶液在攪拌下加熱,且於65〜75 °C之範圍的溫 度下回流。接著,在上述混合溶液中’緩慢地滴下 0.0 1 m ο 1 / 1三氟乙酸銀的四氫咲喃溶液8 _ 0 m 1 (作爲銀原 子含有〇_〇80mmol),並且一邊攪拌’一邊於相同溫度下 使之反應1 5分鍾。然後’在上述溶液中’緩慢地滴下 0.01mol/l 乙醯丙酮鎳(nickel acetylaceton ate)的四氫 呋喃溶液8_0ml (作爲鎳原子含有〇.〇80mmol) ’並且一 邊攪拌,一邊於相同溫度下使之反應2小時。於反應結束 後,將反應液冷卻至室溫,而得到紅褐色之均勻的液晶相 溶性鎳一銀二元奈米粒子分散液2 0 0 m L。利用透過型電子 顯微鏡分析上述鎳-銀二元奈米粒子分散液的結果發現’ -38- 200916560 液晶相溶性鎳-銀二元奈米粒子之中心金屬的粒子直徑爲 2〜U nm且均勻。接著,在上述複數種液晶分子混合物 3.7 6 g中添加所得到之液晶相溶性鎳—銀二元奈米粒子分 散液6 0 · 0 m 1,並將所得到的混合物在減壓下予以濃縮,而 得到紅褐色之均勻的液晶相溶性鎳-銀二元奈米粒子糊 4.0 0 g (以液晶混合物基準添加0.1 wt %的鎳—銀)。 繼之,除了使用本實施例所得到之含有液晶相溶性鎳 -銀二元奈米粒子之液晶,且在液晶注入法使用真空注入 法外,其餘部分係利用與貫施例1完全相同的方式來製作 第1圖所示之液晶顯示裝置(STN — LCD) 1。 利用與實施例1完全相同的方式,測定本實施例所製 作之液晶顯示裝置1之黃色模式正在低溫側(及一 2〇 °c )的電壓-透過率特性(驅動頻率依存性)。將結果顯 示於第14圖及表4。此外,第丨4圖(a )係表示〇它的結 果’第1 4圖(b )係表示—2 0。(:的結果。 接著,利用與實施例!完全相同的方式,進行本實施 例所製作之液晶顯示裝置丨之最合適電壓在低溫側(〇 及—20 °C )的應答特性(i M負載驅動)之測定。將結 果顯示於表5。 此外’表5中係表示最合適電壓之應答時間、與使上 升時間及下降時間大約一致時的應答時間。測定頻率爲 1000Hz 。 -39- 200916560 〔表4〕 頻率(Hz) 閾値的 頻率特性 100 300 1000 o°c vs m 2.4366 2.4173 2.4583 &lt;0.066 V10 [VI 2.4312 2.413 2.4541 V90/V10 0.97285 0.97133 0.96398 -20°C V5「V1 2.6217 2.6468 2.6849 &lt;0.072 vio rvi 2.5981 2.6381 2.6698 V90/V10 0.9364 0.92788 0.92664 〔表5〕 頻率(Hz) Rise Decay To Rise To Decay 電壓(V) CR o°c 100 1213.8 150.85 798.31 122.97 16.0 — 415.92 391.18 260.41 279.75 15.3 — 300 883.71 181.13 536.55 139.81 16.0 — 405.59 400.76 243.41 289.13 15.4 — 1000 413.9 346.94 260.38 254.13 16.0 2.3403 404.07 402.82 268.26 317.08 15.9 —- — 20°C 100 2302.6 2061.1 1364.4 1571.9 16.1 — 300 2421.9 2293.4 1443.5 1736.9 17.0 — 1000 5365.7 1462.6 3336.5 1213.1 19.4 1.1674 3063 2907 1928.5 2329.1 19.0 —To Rise ... time from voltage switching to rising To Decay ... the time from voltage switching to falling is known from Fig. 2, using the liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles of Example 3. In the liquid crystal display device 1, as the applied voltage increases, the transmittance also increases, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. Further, in Fig. 12, the transmittance curve is completely inconsistent by changing the driving frequency, but since the displacement amount is ΔV &lt; 0.2 V, it is known that the liquid crystal-compatible nickel-silver containing the second embodiment is used. The liquid crystal display device 1 of the liquid crystal of the nanoparticle can be driven by a load. On the other hand, as shown in FIG. 9, in the liquid crystal display device 1 of Comparative Example 3 using a mixture of a plurality of liquid crystal molecules which do not contain nickel-silver binary nanoparticles, the transmittance is also increased as the applied voltage is increased. It is increased that the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage, and it is known that the displacement amount of the transmittance curve when the driving frequency is changed is small ΔV &lt; 0.05V. Further, when comparing Figs. 12 and 9, it is understood that the liquid crystal display using the liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles of Example 3 -35-200916560 device 1 has a low threshold 値. In particular, the liquid crystal display device 1 containing the liquid crystal-compatible nickel-silver binary nepheline of Example 3 was driven at a low frequency to reduce the power consumption by about 0 _ under static driving. In load driving, especially in 1/64 or more, since it is a high driving voltage, it is necessary to have an expensive driving. It is advantageous to drive a low voltage. Further, as seen from Fig. 12, the higher the liquid crystal display driving frequency of the liquid crystal using the compatible nickel-silver binary nanoparticles of the examples, the slightly higher the threshold enthalpy. This phenomenon is a STN-LCD of a liquid crystal of a metal nanocrystalline phase-compatible metal nanoparticle other than a nickel-based palladium-silver binary nanoparticle. When the display is low in an STN-LCD using liquid crystal containing metal nanoparticles other than nickel-based metal nanoparticles, the tendency of the threshold 値 is higher. In the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible rice particles of Example 3, the higher the driving frequency is, the higher the frequency dependence of the threshold is in the liquid crystal-compatible nickel-silver binary nanoparticles. Metal nanoparticles other than the liquid system are considered to have a possibility of offset. Further, when comparing the first and second figures, it is known that the liquid device 1 containing the liquid crystal-compatible nickel-silver binary nanoparticles has a superior transmittance with respect to the steep sharpness of the voltage. In the liquid crystal display device 1 of the liquid crystal display device 1, the liquid crystal display device 1 has a liquid crystal compatibility, and the driving frequency is the opposite. As shown in the silver bismuth, the liquid crystal display property of Example 3 is used, for example, by mixing the nickel frequency dependence in the crystal (sharpness: -36-200916560, followed by Table 3, using the examples) The liquid crystal display device 1 of liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles has a relatively high fall time of the most suitable voltage, and a response of a well-balanced voltage (in the table, indicated by parentheses) Also, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 3 has a relatively fast rise time and fall time. However, both of them are It cannot be asserted that it is a clearly meaningful difference. Further, as shown in Table 3, when the maximum contrast (CR ) 比较 is compared, the liquid crystal display device using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 3 is used. 1Comparative. The tracking point can be known from the comparison of Fig. 12 and Fig. 9, because the liquid crystal-compatible nickel of Example 3 is used in the steepness (sharpness) of the transmittance change with respect to the voltage. - Liquid crystal display device 1 of liquid crystals of silver binary nanoparticles is relatively good. In STN-LCD, sharpness is an important factor, and if the sharpness is good, the maximum contrast is improved, and the high load drive is not displayed. The quality can be significantly improved. Then, as shown in Fig. 13, the liquid crystal layer of the liquid crystal display device 1 using the liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles of the third embodiment is used and the tenth figure is used. The liquid crystal layer of the liquid crystal display device 1 of Comparative Example 3, which is a mixture of a plurality of liquid crystal molecules which does not contain nickel-silver binary nanoparticles at all, is also 'completely incapable of seeing the condensation of nickel-silver binary nanoparticles. 0 is relatively observable in the liquid crystal layer of the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible palladium-silver binary nanoparticles of Comparative Example 4, as shown in the figure -37-200916560 1 Black spots, so it is apparent that there is agglomeration of palladium-silver binary nanoparticles. In addition, in each of the figures of Fig. 13, Fig. 10, and Fig. 1, the white dots are made of plastic balls having a diameter of 6 // m. [Example 4] In the present embodiment, first, a liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles is prepared in a secondary manner, and is provided with a stirring device, a thermometer, a reflux cooler, and a dropping funnel. In a glass container having a volume of 500 00 mL, a mixture of a plurality of liquid crystal molecules (liquid crystal for STN manufactured by Dainippon Ink and Chemicals, Ltd., trade name: LC4), 0.800 g, tetrahydrofuran, 144_0 ml, and 2-propanol (2- Propanol) 40 ml to prepare a mixed solution, the mixed solution was heated under stirring, and refluxed at a temperature ranging from 65 to 75 °C. Next, a tetrahydrofuran solution of 8 1 m ο 1 / 1 of trifluoroacetic acid in a mixture of 8 _ 0 m 1 (containing 〇_〇 80 mmol as a silver atom) was slowly dropped in the above mixed solution, and while stirring The reaction was allowed to proceed for 15 minutes at the same temperature. Then, 'in the above solution', a solution of 0.01 mol/l of nickel acetylacetonate in tetrahydrofuran (8_0 ml (containing nickel ruthenium as a nickel atom) was slowly added] and reacted at the same temperature while stirring. 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature to obtain a reddish-brown liquid crystal-soluble nickel-silver binary nanoparticle dispersion of 200 mm. As a result of analyzing the above nickel-silver binary nanoparticle dispersion by a transmission electron microscope, it was found that the center metal of the liquid crystal-compatible nickel-silver binary nanoparticle of '-38-200916560 has a particle diameter of 2 to U nm and is uniform. Next, the obtained liquid crystal-compatible nickel-silver binary nanoparticle dispersion liquid 6 0 · 0 m 1 was added to 3.76 g of the above plurality of liquid crystal molecule mixtures, and the resulting mixture was concentrated under reduced pressure. A reddish-brown liquid crystal-compatible nickel-silver binary nanoparticle paste of 4.00 g (0.1 wt% of nickel-silver added as a liquid crystal mixture) was obtained. Then, in addition to using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles obtained in the present example, and using the vacuum injection method in the liquid crystal injection method, the rest is in the same manner as in the first embodiment. A liquid crystal display device (STN - LCD) 1 shown in Fig. 1 was produced. In the same manner as in the first embodiment, the voltage-transmittance characteristics (driving frequency dependence) of the yellow mode of the liquid crystal display device 1 produced in the present embodiment on the low temperature side (and a temperature of 2 〇 ° C) were measured. The results are shown in Figure 14 and Table 4. Further, Fig. 4(a) shows the result of ’', and Fig. 14(b) shows -20. (Results of: The response voltage of the most suitable voltage of the liquid crystal display device produced in the present embodiment on the low temperature side (〇 and -20 ° C) was carried out in exactly the same manner as in the embodiment! (i M load) The results are shown in Table 5. In addition, in Table 5, the response time of the most suitable voltage is shown, and the response time is approximately the same as the rise time and the fall time. The measurement frequency is 1000 Hz. -39- 200916560 〔 Table 4] Frequency (Hz) Frequency characteristic of threshold 100 100 300 1000 o°c vs m 2.4366 2.4173 2.4583 &lt;0.066 V10 [VI 2.4312 2.413 2.4541 V90/V10 0.97285 0.97133 0.96398 -20°C V5 "V1 2.6217 2.6468 2.6849 &lt;0.072 Vio ri 。 。 。 。 。 。 。 139.81 16.0 — 405.59 400.76 243.41 289.13 15.4 — 1000 413.9 346.94 260.38 254.13 16.0 2.3403 404.07 402.82 268.26 317.0 8 15.9 —– — 20°C 100 2302.6 2061.1 1364.4 1571.9 16.1 — 300 2421.9 2293.4 1443.5 1736.9 17.0 — 1000 5365.7 1462.6 3336.5 1213.1 19.4 1.1674 3063 2907 1928.5 2329.1 19.0 —

Rise ...上升時間、Decay ...下降時間 To Rise…從電壓切換至上升的時間 To Decay...從電壓切換至下降的時間 CR....最大對比値 〔比較例5〕 本比較例中,除了使用完全不含有鎳一銀二元奈米粒 子之複數種液晶分了·混合物(大日本油墨化學工業株式會 社製STN用液晶、商品名:LC4 )外,其餘部分係利用與 -40- 200916560 實施例4完全相同的方式作成具備第1圖所示之構成的液 晶顯示裝置(STN— LCD ) 1。 繼之,利用與實施例1完全相同的方式,測定本比較 例所製作之液晶顯示裝置1之黃色模式正在低溫側(〇 t 及一 2(TC )的電壓一透過率特性(驅動頻率依存性)。將 結果顯示於第1 5圖及第1 6圖。此外,第1 5圖(a )係表 示0 °C的結果,第1 5圖(b )係表示一 2 0 t的結果。 然後,利用與實施例1完全相同的方式,進行本比較 例所製作之液晶顯示裝置1之最合適電壓在低溫側(〇 t 及一 20 °C )的應答特性(1 / 64負載驅動)之測定。將結 果顯不於表7。 〔表6〕 頻率(Hz) 閾値的 頻率特性 100 300 1000 o°c vs m 2.4744 2.4764 2.4876 &lt;0.014 V10 fVl 2.4687 2.472 2.4786 V90/V10 0.96295 0.96222 0.96237 -20°C V5『V1 2.6396 2.646 2.6896 &lt;0.0051 VI0 [VI 2.6286 2.6375 2.6793 V90/V10 0.93154 0.93186 0.92794 -41 - 200916560 〔表7〕 頻率(Hz) Rise Decay To Rise To Decay 電壓(v) CR o°c 100 1019.7 141.37 630.06 110.64 16.2 — 429.55 377.14 260.38 285.32 15.5 — 300 860.63 189.3 541.37 154.83 16.2 — 412 428 254.94 314.06 15.6 — 1000 457.39 326.99 286.01 245.61 16.2 1.7476 431.93 378.88 279.89 307.1 16.1 — -20°C 100 2277.7 1973.6 1301.2 1524.2 16.2 — 300 2823.5 2464.7 1810.1 1908.5 17.0 — 1000 5248.2 1756.3 3260.2 1432.8 19.6 1.1599 3399.3 3249.9 2230.7 2742.2 19.3 —Rise ... rise time, Decay ... fall time To Rise... time from voltage switching to rise To Decay... time from voltage switching to falling CR....maximum contrast 値 [comparative example 5] In the example, except for a plurality of liquid crystals and a mixture (a liquid crystal for STN manufactured by Dainippon Ink and Chemicals, Ltd., trade name: LC4), which is completely free of nickel-silver binary nanoparticles, the rest is utilized with -40. - 200916560 In the fourth embodiment, a liquid crystal display device (STN-LCD) 1 having the configuration shown in Fig. 1 was fabricated in the same manner. Then, in the same manner as in the first embodiment, the yellow mode of the liquid crystal display device 1 produced in the comparative example was measured on the low temperature side (〇t and one (TC) voltage-transmittance characteristic (drive frequency dependency). The results are shown in Fig. 15 and Fig. 16. In addition, Fig. 15(a) shows the result at 0 °C, and Fig. 15(b) shows the result at 20t. Measurement of the response characteristics (1 / 64 load drive) of the optimum voltage of the liquid crystal display device 1 produced in the comparative example on the low temperature side (〇t and 20 ° C) in the same manner as in the first embodiment. The results are not shown in Table 7. [Table 6] Frequency (Hz) Frequency characteristic of threshold 100 100 300 1000 o°c vs m 2.4744 2.4764 2.4876 &lt;0.014 V10 fVl 2.4687 2.472 2.4786 V90/V10 0.96295 0.96222 0.96237 -20°C V5 "V1 2.6396 2.646 2.6896 &lt;0.0051 VI0 [VI 2.6286 2.6375 2.6793 V90/V10 0.93154 0.93186 0.92794 -41 - 200916560 [Table 7] Frequency (Hz) Rise Decay To Rise To Decay Voltage (v) CR o°c 100 1019.7 141.37 630.06 110.64 16.2 — 429.55 377.14 260.38 285.32 15.5 — 300 860.63 189.3 541.37 154.83 16.2 — 412 428 254.94 314.06 15.6 — 1000 457.39 326.99 286.01 245.61 16.2 1.7476 431.93 378.88 279.89 307.1 16.1 — -20°C 100 2277.7 1973.6 1301.2 1524.2 16.2 — 300 2823.5 2464.7 1810.1 1908.5 17.0 — 1000 5248.2 1756.3 3260.2 1432.8 19.6 1.1599 3399.3 3249.9 2230.7 2742.2 19.3 —

Rise ...上升時間Rise ... rise time

Decay ...下降時間Decay ... fall time

To Rise…從電壓切換至上升的時間 To Decay ...從電壓切換至下降的時間 CR....最大對比値 由第14圖及表4得知,在使用實施例4之含有液晶 相溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1中, 隨著施加電壓的增加,透過率亦會增加,藉由電壓可控制 液晶顯示裝置1的透過率(顯示)。又,在第14圖中, 雖然藉由改變驅動頻率致使透過率曲線位移而完全不一致 ,但由於位移量於Ot下爲Δν &lt; 0.066V,於—20t下爲 △ V &lt; 0.0 72V,故得知使用實施例4之含有液晶相溶性鎳 -銀二元奈米粒了·之液晶的液晶顯示裝置1可進行負載驅 動。 相對於此,由第1 5圖及表6得知,在使用完全不含 有鎳-銀二元奈米粒子之複數種液晶分子混合物之比較例 -42- 200916560 5的液晶顯示裝置1中,隨著施加電壓的增加’透過率亦 會增加,藉由電壓可控制液晶顯示裝置1的透過率(顯示 ),且得知改變驅動頻率時之透過率曲線的位移量甚小, 於 〇°C 下爲△V&lt;0.014V,於一20°C 下爲 Λν'Ο.Οδίν。 再者,比較表4與表6時得知,使用實施例4之含有 液晶相溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1 具備較低的閎値,且可節省消耗電力。在負載驅動中,尤 其在1 / 6 4以上的高負載驅動中,由於爲高驅動電壓,故 必須有昂貴的驅動電路(driver ),因此可以低電壓來驅 動者甚爲有利。 繼之,比較表5與表7時得知,在低溫側(及一 2 0 °C )之大部分的應答係以使用實施例4之含有液晶相溶 性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1較快。然 而,此兩者的差不能斷言爲明確有意義的差。 又,得知可獲得最大對比的最合適電壓、應答之平衡 良好的電壓皆以使用實施例4之含有液晶相溶性鎳-銀二 元奈米粒子之液晶的液晶顯示裝置1爲較低電壓。由此可 確認,進行實用上重要之負載驅動時的驅動電壓,也是以 使用實施例4之含有液晶相溶性鎳一銀二元奈米粒子之液 晶的液晶顯示裝置1爲較低電壓。 由表5及表7得知,若比較最大對比(CR )値時, 以使用實施例4之含有液晶相溶性鎳一銀二元奈米粒子之 液晶的液晶顯示裝置1較高。若最大對比値高時,在S TN 一 LCD中,可得到良好的顯示品質。 -43- 200916560 〔實施例5〕 本實施例中,首先,以如次方式調製含有液晶相溶性 鎳-銀二元奈米粒子之液晶。 在具備攪拌裝置、溫度計、回流冷卻器及滴下漏斗之 內容積5 0 0 m L的玻璃製容器中,加入複數種液晶分子混 合物(大日本油墨化學工業株式會社製STN用液晶、商 品名:LC4 ) 0.800g、四氫呋喃(tetrahydrofuran ) 144.0ml及2 -丙醇(2-propanol) 40ml以調製混合溶液, 將該混合溶液在攪拌下加熱,且於65〜75 °C之範圍的溫度 下回流。接著,在上述混合溶液中,緩慢地滴下0.01 mol /1乙酸丙酮鎳(nickel acetylacetonate)的四氫呋喃溶 液 12_8ml (作爲鎳原子含有 0.128mmol)、與 0.01mol./i 三氟乙酸銀的四氫呋喃溶液 3.2 m 1 (作爲銀原子含有 0.032mmol )之混合溶液16ml’並且一邊攪拌,一邊於相 同溫度下使之反應2小時。於反應結束後,將反應液冷卻 至室溫,而得到紅褐色之均勻的液晶相溶性鎳-銀二元奈 米粒子分散液200mL。利用透過型電子顯微鏡分析上述鎳 -銀二元奈米粒子分散液的結果發現,液晶相溶性鎳-銀 二元奈米粒子之中心金屬的粒子直徑爲2〜llnm且均勻 。接著,在上述複數種液晶分子混合物3.7 1 g中添加所得 到之液晶相溶性鎳一銀二元奈米粒子分散液73.0ml,並將 所得到的混合物在減壓下予以濃縮’而得到紅褐色之均句 的液晶相溶性鎳-銀二元奈米粒子糊4 . 〇 〇 g (以液晶混合 -44 - 200916560 物基準添加〇 . 1 wt%的鎳一銀)。 繼之,除了使用本實施例所得到之含有液晶相溶性鎳 -銀二元奈米粒子之液晶,且在液晶注入法使用真空注入 法外,其餘部分係利用與實施例1完全相同的方式來製作 第1圖所示之液晶顯示裝置(STN— LCD ) 1。 利用與實施例1完全相同的方式,測定本實施例所製 作之液晶顯示裝置1之黃色模式正在低溫側(及- 20 °C )的電壓-透過率特性(驅動頻率依存性)。將結果顯 示於第1 6圖及表8。此外,第1 6圖(a )係表示0 °C的結 果,第16圖(b)係表示一 2 0 °C的結果。 接著,利用與實施例1完全相同的方式,進行本實施 例所製作之液晶顯示裝置1之最合適電壓在低溫側(〇 t 及一 2 0 °C )的應答特性(1 / 6 4負載驅動)之測定。將結 果顯示於表9。 此外,表9中係表示最合適電壓之應答時間、與使上 升時間及下降時間大約一致時的應答時間。測定頻率爲 1000Hz 。 〔表8〕 頻率(Hz) 閾値的 頻率特性 100 300 1000 o°c V5m 2.4762 2.491 2.5297 &lt;0.054 V10 [V] 2.4701 2.4818 2.5094 V90/V10 0.97225 0.96907 0.96441 -20°C V5 [VI 2.6881 2.6966 2.7388 &lt;0.052 V10 [VI 2.6763 2.6886 2.7276 V90/V10 0.93184 0.93438 0.94043 -45- 200916560 〔表9〕 頻率(Hz) Rise Decay To Rise To Decay 電壓(V) CR o°c 100 1589.4 130.53 1149.8 109.06 16.4 —— 445.64 421.65 291.09 280.12 15.6 — 300 975.95 180.56 649.49 141.11 16.4 — 449.2 413.37 291.05 287.76 15.8 — 1000 508.9 355.04 345.75 250.33 16.4 1.7641 441.4 399.72 296.27 282.44 16.3 — —20°C 100 2179 2145.1 1360.9 1441.7 16.4 — 300 2596 2413.4 1693.6 1775.8 17.3 — 1000 3215.2 3397.6 2311 2679.4 19.4 1.163To Rise... Switching from voltage to rising time To Decay ... switching from voltage to falling time CR.. Maximum contrast 値 is seen from Fig. 14 and Table 4, using liquid crystal compatibility in Example 4. In the liquid crystal display device 1 of liquid crystal of nickel-silver binary nanoparticles, as the applied voltage is increased, the transmittance is also increased, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. Further, in Fig. 14, although the transmittance curve is completely inconsistent by changing the driving frequency, the displacement amount is Δν &lt; 0.066V at Ot and ΔV &lt; 0.0 72V at -20t. It was found that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 4 can be driven by a load. On the other hand, in the liquid crystal display device 1 of Comparative Example-42-200916560 5, which uses a mixture of a plurality of kinds of liquid crystal molecules which do not contain nickel-silver binary nanoparticles at all, as shown in FIG. 5 and Table 6, The increase in applied voltage 'transmission rate is also increased, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage, and it is known that the displacement of the transmittance curve when the driving frequency is changed is very small, at 〇 ° C ΔV &lt; 0.014V, Λν'Ο.Οδίν at 20 °C. Further, when Tables 4 and 6 were compared, it was found that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 4 has a low enthalpy and can save power consumption. In load driving, especially in high load driving of 1 / 6 4 or higher, since it is a high driving voltage, it is necessary to have an expensive driver, so it is advantageous to drive at a low voltage. Then, when comparing Table 5 with Table 7, it was found that most of the response on the low temperature side (and a temperature of 20 ° C) was to use the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 4. The liquid crystal display device 1 is faster. However, the difference between the two cannot be asserted as a clearly meaningful difference. Further, it was found that the optimum voltage for obtaining the maximum contrast and the balance of the response were good, and the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 4 was a lower voltage. From this, it was confirmed that the driving voltage at the time of practically important load driving was also a lower voltage using the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 4. As is apparent from Tables 5 and 7, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 4 was higher when the maximum contrast (CR) was compared. If the maximum contrast is high, a good display quality can be obtained in the S TN-LCD. -43-200916560 [Embodiment 5] In the present embodiment, first, a liquid crystal containing liquid crystal-compatible nickel-silver binary nanoparticles is prepared in a secondary manner. In a glass container having an internal volume of 500 m of a mixture of a stirring device, a thermometer, a reflow cooler, and a dropping funnel, a plurality of liquid crystal molecular mixtures (a liquid crystal for STN manufactured by Dainippon Ink and Chemicals, Ltd., trade name: LC4) is added. 0.800 g, tetrahydrofuran (144.0 ml) and 2-propanol (40 ml) were prepared to prepare a mixed solution, and the mixed solution was heated under stirring and refluxed at a temperature ranging from 65 to 75 °C. Next, in the above mixed solution, 12 mol of a 0.01 mol /1 nickel acetylacetonate tetrahydrofuran solution (containing 0.128 mmol as a nickel atom) and a tetrahydrofuran solution of 0.01 mol./i of trifluoroacetic acid in a solution of 3.2 m were slowly added dropwise. 1 ml (mixed solution containing 0.032 mmol as a silver atom) 16 ml' and reacted at the same temperature for 2 hours while stirring. After the completion of the reaction, the reaction solution was cooled to room temperature to obtain 200 ml of a reddish-brown liquid crystal-compatible nickel-silver binary particle dispersion. As a result of analyzing the above nickel-silver binary nanoparticle dispersion by a transmission electron microscope, it was found that the central metal of the liquid crystal-compatible nickel-silver binary nanoparticles has a particle diameter of 2 to 11 nm and is uniform. Next, 73.0 ml of the obtained liquid crystal-compatible nickel-silver binary nanoparticle dispersion was added to 3.7 1 g of the above plurality of liquid crystal molecule mixtures, and the resulting mixture was concentrated under reduced pressure to obtain a reddish brown color. Uniform liquid crystal-compatible nickel-silver binary nanoparticle paste 4. 〇〇g (added 〇. 1 wt% of nickel-silver) on the basis of liquid crystal mixing -44 - 200916560. Then, except that the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles obtained in the present example was used, and the vacuum injection method was used for the liquid crystal injection method, the rest was produced in exactly the same manner as in Example 1. The liquid crystal display device (STN-LCD) 1 shown in Fig. 1. In the same manner as in the first embodiment, the voltage-transmittance characteristics (driving frequency dependence) of the yellow mode of the liquid crystal display device 1 produced in the present example on the low temperature side (and - 20 °C) were measured. The results are shown in Figure 16 and Table 8. Further, Fig. 16(a) shows the result at 0 °C, and Fig. 16(b) shows the result at 20 °C. Then, in the same manner as in the first embodiment, the response characteristics of the optimum voltage of the liquid crystal display device 1 produced in the present embodiment on the low temperature side (〇t and 20 ° C) were performed (1 / 6 4 load driving). Determination of). The results are shown in Table 9. Further, in Table 9, the response time of the most suitable voltage is shown, and the response time when the rising time and the falling time are approximately coincident. The measurement frequency is 1000 Hz. [Table 8] Frequency (Hz) Frequency characteristic of threshold 100 100 300 1000 o°c V5m 2.4762 2.491 2.5297 &lt;0.054 V10 [V] 2.4701 2.4818 2.5094 V90/V10 0.97225 0.96907 0.96441 -20°C V5 [VI 2.6881 2.6966 2.7388 &lt; 0.052 V10 [VI 2.6763 2.6886 2.7276 V90/V10 0.93184 0.93438 0.94043 -45- 200916560 [Table 9] Frequency (Hz) Rise Decay To Rise To Decay Voltage (V) CR o°c 100 1589.4 130.53 1149.8 109.06 16.4 —— 445.64 421.65 291.09 280.12 15.6 — 300 975.95 180.56 649.49 141.11 16.4 — 449.2 413.37 291.05 287.76 15.8 — 1000 508.9 355.04 345.75 250.33 16.4 1.7641 441.4 399.72 296.27 282.44 16.3 — —20°C 100 2179 2145.1 1360.9 1441.7 16.4 — 300 2596 2413.4 1693.6 1775.8 17.3 — 1000 3215.2 3397.6 2311 2679.4 19.4 1.163

Rise …上升時間、Decay…下降時間Rise ... rise time, Decay... fall time

To Rise ...從電壓切換至上升的時間 To Decay...從電壓切換至下降的時間 CR....最大對比値 由第1 6圖及表8得知,在使用實施例5之含有液晶 相溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1中, 隨著施加電壓的增加,透過率亦會增加,藉由電壓可控制 液晶顯不裝置1的透過率(顯不)。又,在第16圖及表 8中,雖然藉由改變驅動頻率致使透過率曲線位移而完全 不一致,但由於位移量於下爲△VC0.054V,於—20 °C下爲△ V &lt; 0.0 5 2 V,故得知使用實施例5之含有液晶相 溶性鎳-銀二元奈米粒子之液晶的液晶顯示裝置1可進行 負載驅動。 相對於此,由第15圖及表6得知,在使用完全不含 有鎳-銀二元奈米粒子之複數種液晶分子混合物之比較例 -46- 200916560 5的液晶顯示裝置1中,隨著施加電壓的增加,透過率亦 會增加,藉由電壓可控制液晶顯示裝置1的透過率(顯示 ),且得知改變驅動頻率時之透過率曲線的位移量甚小, 於 〇°C 下爲△V&lt;0.014V,於一20°C 下爲 Λν'Ο.Οδίν。 再者,比較表8與表6時得知,使用實施例5之含有 液晶相溶性鎳一銀二元奈米粒子之液晶的液晶顯示裝置1 、與使用比較例5之完全不含有鎳-銀二元奈米粒子之複 數種液晶分子混合物的液晶顯示裝置1,兩者在低溫側( 0 °C及一2 0 °C )的應答大致相同。 又,得知可獲得最大對比的最合適電壓、應答之平衡 良好的電壓皆以使用實施例5之含有液晶相溶性鎳-銀二 元奈米粒子之液晶的液晶顯示裝置1爲較低電壓。由此得 知,使用上述含有液晶相溶性鎳-銀二元奈米粒子之液晶 的液晶顯示裝置1之顯示功能,會受到該含有液晶相溶性 鎳一銀二元奈米粒子之液晶的鎳含量所影響。 更且,由表9及表7得知,若比較最大對比(CR ) 値時,以使用實施例5之含有液晶相溶性鎳-銀二元奈米 粒子之液晶的液晶顯示裝置1較高,且在S TN - L C D中可 得到良好的顯示品質。 【圖式簡單說明】 第1圖係表示本發明之液晶顯示裝置的一構成例之說 明剖面圖。 第2圖係表示本發明之第1實施例之液晶顯示裝置的 -47- 200916560 電壓-透過率特性之曲線圖。 第3圖係本發明之第1實施例之液晶顯示裝置的液晶 層之顯微鏡照片。 第4圖係表示本發明之第1比較例之液晶顯示裝置的 電壓-透過率特性之曲線圖。 第5圖係該液晶顯示裝置之液晶層的顯微鏡照片。 第6圖係本發明之第2比較例之液晶顯示裝置的液晶 層之顯微鏡照片。 第7圖係表示本發明之第2實施例之液晶顯示裝置的 電壓一透過率特性之曲線圖。 第8圖係該液晶顯示裝置之液晶層的顯微鏡照片。 第9圖係表示本發明之第3比較例之液晶顯示裝置的 電壓-透過率特性之曲線圖。 第1 〇圖係該液晶顯示裝置之液晶層的顯微鏡照片。 第1 1圖係本發明之第4比較例之液晶顯示裝置的液 晶層之顯微鏡照片。 第1 2圖係表示本發明之第3實施例之液晶顯示裝置 的電壓一透過率特性之曲線圖。 第1 3圖係表示該液晶顯示裝置之液晶層的顯微鏡照 片。 第1 4圖係表示本發明之第4實施例之液晶顯示裝置 的電壓一透過率特性之曲線圖。 第1 5圖係表示本發明之第5比較例之液晶顯示裝置 的電壓一透過率特性之曲線圖。 -48- 200916560 第1 6圖係表示本發明之第5實施例之液晶顯示裝置 的電壓一透過率特性之曲線圖。 【主要元件符號說明】 1 :液晶顯示裝置 2a、2b :玻璃基板 3 a、3 b :透明電極膜 4a、4b :絕緣膜 5 a、5 b :配向膜 6 a、6 b :基板 7 :液晶胞 8 :密封劑層 9 :導通材圖案 10a 、 10b :偏光板 -49 -To Rise ...the time from the voltage switching to the rise To Decay...the time from the voltage switching to the falling time CR.. The maximum contrast is known from the 16th and 8th tables, and the use of the embodiment 5 is used. In the liquid crystal display device 1 of liquid crystal of liquid crystal-compatible nickel-silver binary nanoparticles, as the applied voltage increases, the transmittance also increases, and the transmittance of the liquid crystal display device 1 can be controlled by the voltage (not shown). Further, in Fig. 16 and Table 8, although the transmittance curve is completely inconsistent by changing the driving frequency, the displacement amount is ΔVC0.054V below, and ΔV &lt; 0.0 at -20 °C. At 5 2 V, it was found that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 5 can be driven by a load. On the other hand, as seen from Fig. 15 and Table 6, in the liquid crystal display device 1 of Comparative Example-46-200916560, which uses a mixture of a plurality of liquid crystal molecules which do not contain nickel-silver binary nanoparticles, As the voltage increases, the transmittance also increases. The voltage can control the transmittance (display) of the liquid crystal display device 1, and it is known that the displacement of the transmittance curve when the driving frequency is changed is very small, and is Δ at 〇 ° C. V&lt;0.014V, at 20 °C, Λν'Ο.Οδίν. Further, when Tables 8 and 6 were compared, it was found that the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 5 and the use of Comparative Example 5 did not contain the nickel-silver binary at all. The liquid crystal display device 1 in which a plurality of liquid crystal molecules are mixed with nano particles has substantially the same response on the low temperature side (0 ° C and 120 ° C). Further, it was found that the optimum voltage for obtaining the maximum contrast and the balance of the response were good, and the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 5 was a lower voltage. Thus, it is understood that the display function of the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles is affected by the nickel content of the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles. . Further, as is clear from Tables 9 and 7, when the maximum contrast (CR ) 比较 is compared, the liquid crystal display device 1 using the liquid crystal containing the liquid crystal-compatible nickel-silver binary nanoparticles of Example 5 is high, and Good display quality is obtained in S TN - LCD. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a configuration example of a liquid crystal display device of the present invention. Fig. 2 is a graph showing voltage-transmittance characteristics of -47 to 200916560 of the liquid crystal display device of the first embodiment of the present invention. Fig. 3 is a photomicrograph of a liquid crystal layer of a liquid crystal display device of a first embodiment of the present invention. Fig. 4 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the first comparative example of the present invention. Fig. 5 is a photomicrograph of a liquid crystal layer of the liquid crystal display device. Fig. 6 is a photomicrograph of a liquid crystal layer of a liquid crystal display device of a second comparative example of the present invention. Fig. 7 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the second embodiment of the present invention. Fig. 8 is a photomicrograph of a liquid crystal layer of the liquid crystal display device. Fig. 9 is a graph showing voltage-transmittance characteristics of a liquid crystal display device of a third comparative example of the present invention. The first drawing is a photomicrograph of the liquid crystal layer of the liquid crystal display device. Fig. 1 is a photomicrograph of a liquid crystal layer of a liquid crystal display device of a fourth comparative example of the present invention. Fig. 1 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the third embodiment of the present invention. Fig. 13 is a photomicrograph showing the liquid crystal layer of the liquid crystal display device. Fig. 14 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the fourth embodiment of the present invention. Fig. 15 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the fifth comparative example of the present invention. -48- 200916560 Fig. 6 is a graph showing the voltage-transmittance characteristics of the liquid crystal display device of the fifth embodiment of the present invention. [Main component symbol description] 1 : Liquid crystal display device 2a, 2b: Glass substrate 3 a, 3 b : Transparent electrode film 4a, 4b: Insulating film 5 a, 5 b : Alignment film 6 a, 6 b : Substrate 7 : Liquid crystal Cell 8: sealant layer 9: conductive material pattern 10a, 10b: polarizing plate -49 -

Claims (1)

200916560 十、申請專利範圍 1. 一種含有液晶相溶性粒子之液晶,其特徵爲: 包含由:鎳與鎳以外之至少1種金屬所構成的金屬奈 米粒子;和以該金屬奈米粒子作爲核而結合於該金屬奈米 粒子周圍之至少1種液晶分子所構成之液晶相溶性粒子。 2 .如申請專利範圍第1項之含有液晶相溶性粒子之液 晶,其中,上述金屬奈米粒子爲鎳-銀二元奈米粒子。 3 . —種液晶顯示裝置,其特徵爲: 具備封入有含有液晶相溶性粒子之液晶的液晶胞,而 該含有液晶相溶性粒子之液晶係包含由:鎳與鎳以外之至 少1種金屬所構成的金屬奈米粒子:和以該金屬奈米粒子 作爲核而結合於該金屬奈米粒子周圍之至少1種液晶分子 所構成之液晶相溶性粒子。 4.如申請專利範圍第3項之液晶顯示裝置,其中,上 述液晶胞係包含上述含有液晶相溶性粒子之液晶與旋光劑 〇 5 .如申請專利範圍第3項之液晶顯示裝置,其中,上 述液晶胞中之上述含有液晶相溶性粒子之液晶的扭轉角爲 180〜270°之範圍的角度。 6 ·如申請專利範圍第3項之液晶顯示裝置,其中,上 述金屬奈米粒子係鎳-銀二元奈米粒子。 7.如申請專利範圍第3項之液晶顯示裝置,其中,相 對於上述含有液晶相溶性粒子之液晶中的液晶,係含有 0.02〜0.2重量%之範圍的上述金屬奈米粒子。 -50- 200916560 8.如申請專利範圍第3項之液晶顯示裝置,其中,爲 使用負載驅動的點矩陣面板。 -51 -200916560 X. Patent Application Area 1. A liquid crystal containing liquid crystal-compatible particles, characterized by comprising: metal nanoparticles composed of at least one metal other than nickel and nickel; and using the metal nanoparticle as a core And a liquid crystal-compatible particle composed of at least one liquid crystal molecule bound to the metal nanoparticle. 2. The liquid crystal containing liquid crystal-compatible particles according to claim 1, wherein the metal nanoparticle is nickel-silver binary nanoparticle. A liquid crystal display device comprising: a liquid crystal cell in which a liquid crystal containing liquid crystal-compatible particles is enclosed, wherein the liquid crystal containing liquid crystal-compatible particles comprises at least one metal other than nickel and nickel. The metal nanoparticle: a liquid crystal-compatible particle composed of at least one liquid crystal molecule bonded to the metal nanoparticle by using the metal nanoparticle as a core. 4. The liquid crystal display device of claim 3, wherein the liquid crystal cell comprises the liquid crystal containing the liquid crystal-compatible particles and the optically active agent, the liquid crystal display device of claim 3, wherein The twist angle of the liquid crystal containing the liquid crystal-compatible particles in the liquid crystal cell is an angle in the range of 180 to 270°. 6. The liquid crystal display device of claim 3, wherein the metal nanoparticle is a nickel-silver binary nanoparticle. 7. The liquid crystal display device of claim 3, wherein the liquid crystal in the liquid crystal containing the liquid crystal-compatible particles contains the metal nanoparticles in a range of 0.02 to 0.2% by weight. -50-200916560 8. The liquid crystal display device of claim 3, wherein the load-driven dot matrix panel is used. -51 -
TW97127337A 2007-07-18 2008-07-18 Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device TW200916560A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187417A JP2009025484A (en) 2007-07-18 2007-07-18 Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device

Publications (1)

Publication Number Publication Date
TW200916560A true TW200916560A (en) 2009-04-16

Family

ID=40259474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127337A TW200916560A (en) 2007-07-18 2008-07-18 Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2009025484A (en)
TW (1) TW200916560A (en)
WO (1) WO2009011128A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392186B2 (en) * 2003-04-14 2009-12-24 大日本印刷株式会社 High-speed response liquid crystal device and driving method
JP2006291016A (en) * 2005-04-08 2006-10-26 Nano Opt Kenkyusho:Kk Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element

Also Published As

Publication number Publication date
JP2009025484A (en) 2009-02-05
WO2009011128A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4691746B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
KR100816570B1 (en) Particle Compatible With Liquid Crystal, Its Manufacturing Method, and Liquid Crystal Device
US20080106689A1 (en) Display Element And Display Device
CN103180410B (en) Liquid-crystal composition containing polymerizable compound and use its liquid crystal display device
US9120970B2 (en) Liquid crystalline media and liquid crystal displays with a polymer-stabilized homeotropic orientation
Chen et al. Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device
US5769393A (en) Liquid crystal elements and method of producing same
JP2006291016A (en) Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element
JP2007277539A (en) Composition including at least one sort of liquid crystal
US20100195008A1 (en) Planar nematic liquid crystal cells doped with nanoparticles and methods of inducing a freedericksz transition
TWI316635B (en) Display apparatus
JP5019847B2 (en) Liquid crystal compatible particle-containing liquid crystal and liquid crystal display device
JP5241853B2 (en) Micro functional materials
JP3807454B2 (en) Electro-optic liquid crystal system
JP3477678B2 (en) Display device and electro-optical device using colloidal liquid crystal composite material
JPH0873857A (en) Liquid crystal composition and liquid crystal display element
EP1236785A2 (en) Liquid crystal composition, liquid crystal display device and liquid crystal displaying method
JP4586218B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4131296B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
TW200916560A (en) Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device
JP4701466B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP5566109B2 (en) Liquid crystal display
Mizoshita et al. Nematic liquid-crystalline physical gels exhibiting faster responses to electric fields in twisted nematic cells
TW200921185A (en) Liquid crystal display device
JP2006206710A (en) Chiral nematic liquid crystal composition, liquid crystal display element and method for producing the same