TW200921185A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TW200921185A
TW200921185A TW97127335A TW97127335A TW200921185A TW 200921185 A TW200921185 A TW 200921185A TW 97127335 A TW97127335 A TW 97127335A TW 97127335 A TW97127335 A TW 97127335A TW 200921185 A TW200921185 A TW 200921185A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
silver
display device
metal
crystal display
Prior art date
Application number
TW97127335A
Other languages
Chinese (zh)
Inventor
Yasuo Toko
Shuji Yokoyama
Shinya Takigawa
Shigeyoshi Nishino
Original Assignee
Stanley Electric Co Ltd
Ube Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd, Ube Industries filed Critical Stanley Electric Co Ltd
Publication of TW200921185A publication Critical patent/TW200921185A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Abstract

Disclosed is a liquid crystal display device which has an excellent response property in a lower temperature range and does not need to change its driving voltage. The liquid crystal display device comprises a liquid-crystal-compatible particle-containing liquid crystal (L) (i.e., a liquid crystal containing a particle compatible with a liquid crystal) which is packed in a liquid crystal cell (7). The liquid-crystal-compatible particle-containing liquid crystal (L) contains a liquid-crystal-compatible particle which is composed of: a nanoparticle made of silver alone or a metal nanoparticle made of silver and a metal other than silver; and a liquid crystal molecule bound to the nanoparticle. The liquid crystal molecule has a negative dielectric anisotropy. The metal nanoparticle may be a silver-palladium two-component nanoparticle containing silver and palladium at a ratio of 1:(0.25 to 4) by weight. The liquid-crystal-compatible particle-containing liquid crystal (L) may contain the metal nanoparticle in an amount of 0.02 to 0.2 wt% relative to the amount of the liquid crystal contained therein. The liquid crystal contained in the liquid-crystal-compatible particle-containing liquid crystal (L) may be oriented in a perpendicular direction relative to substrates (2a, 2b).The liquid crystal display device may be a dot matrix panel utilizing a DUTY driving. For example, the liquid crystal display device can be used as a character display panel or a dot matrix panel utilizing a static or active driving.

Description

200921185 九、發明說明 【發明所屬之技術領域】 本發明係關於液晶顯示裝置,進而詳言之係關於垂直 配向液晶顯示裝置(P B T - L C D )。 【先前技術】 從前,於被夾持於相對向的1對基板之液晶胞,封入 具有負的電容率向異性的液晶之垂直配向模式之液晶顯示 裝置係屬已知(例如參照專利文獻1 )。 在前述液晶顯示裝置,不對設在前述1對基板之電極 施加電壓時,前述液晶對前述基板排列於垂直方向,藉由 與正交尼科爾(crossed Nicol )配置之偏光板之組合,可 以得到非常良好的暗顯示(常黑)。此外,在前述液晶顯 示裝置’對設於前述1對基板的電極施加電壓的話,前述 液晶倒下對前述基板排列於水平方向,進行明顯示。 在前述液晶顯示裝置,藉由對前述基板於垂直方向層 積具有負的折射率向異性之光學補償板,可以補償垂直配 向之前述液晶的光學向異性’可以得到非常優異的視角特 性。 然而,在BU述液晶顯不裝置,於室溫附近之溫度區域 應答速度比較快,但在例如〇°C以下的低溫區域,會有應 合顯者變慢的不佳情形。應答太慢的話動態影像會產生模 糊’前一影像會殘留,而顯著損及顯示品質。 此外,在_2(TC附近之低溫區域,因爲閾値及電壓-透 -5- 200921185 過率曲線會改變,所以會有有必要因應於溫度而改變驅動 電壓進行溫度補償的必要之不良情形。 [專利文獻1 ] 日本特開2005-234254號公報 【發明內容】 [發明所欲解決之課題] 本發明之目的在於解消前述的不良情形,提供即使 在-2 0〜0°C附近的低溫區域也有優良的應答,而且沒有必 要因應溫度而改變驅動電壓進行溫度補償之液晶顯示裝置 [供解決課題之手段] 爲了達成前述目的’本發明之液晶顯示裝置,特徵爲 具備:被夾持於相對向的1對基板的液晶胞’及被封入該 液晶胞的含有液晶相溶性粒子之液晶;該含有液晶相溶性 粒子之液晶,含有由單獨的銀所構成的金屬奈米粒子’或 者由銀與銀以外的至少1種金屬所構成的金屬奈米粒子’ 及以該金屬奈米粒子爲核結合於該金屬奈米粒子的周圍之 至少1種液晶分子所構成的液晶相溶性粒子;該液晶分子 的電容率向異性爲負。 又,於本說明書中’前述「以該金屬奈米粒子爲核結 合於該金屬奈米粒子的周圍之至少1種液晶分子」之「結 合」兩個字,係指具有液晶分子藉由某種相互作用而包圍 -6 - 200921185 由金屬奈米粒子所構成的核的周圍的構造之狀態。 前述液晶相溶性粒子’係被推定爲具有以藉由1種或 複數種金屬離子之還原所生的複數個金屬粒子爲中心核’ 而液晶分子藉由某種相互作用包圍於其周圍的構造。由複 數個金屬粒子所構成的中心核’複數種之金屬粒子可以胃 有分佈隨機之無規則合金構造’亦可爲以1種金屬粒子爲 殼(shell ),而以他種金屬粒子爲核(core )之殼-核( shell-core )構造。前述中心核由1種金屬粒子所構成的場 合稱爲單元粒子,由2種類金屬粒子所構成的場合稱爲二 元粒子。 於本發明之液晶顯示裝置,前述液晶分子之電容率向 異性爲負,所以在不對前述相對向的1對基板間施加電壓 的狀態,該液晶分子對該基板排列於垂直方向。此處,前 述液晶分子,以前述金屬奈米粒子爲核形成由結合於該金 屬奈米粒子的周圍的至少1種液晶分子所構成的液晶相溶 性粒子,該液晶相溶性粒子進而被含有於液晶之「含液晶 相溶性粒子之液晶」被封入前述液晶胞。結果,如前所述 般前述液晶分子在對前述基板排列於垂直方向的狀態,於 0 °c以下之低溫區域的應答可高速化。 亦即’根據本發明之液晶顯示裝置,於〇。(:以下之低 溫區域也可以防止動態影像產生模糊、或前一影像的殘留 ,可以得到優異的顯示品質。 此外,根據本發明之液晶顯示裝置,藉由前述含液晶 相溶性粒子之液晶包含前述金屬奈米粒子,於-2 0〜〇 附 200921185 近之低溫區域也可以減少由於頻率的不同所導致的閾値依 存性。亦即,根據本發明之液晶顯示裝置,於-2 0〜〇。(:附 近之低溫區域,也沒有必要因應溫度而改變驅動電壓進行 溫度補償。 於本發明之液晶顯示裝置’前述金屬奈米粒子,可以 爲由銀單獨構成之金屬奈米粒子’亦可爲銀,與銀以外之 至少1種金屬所構成的金屬奈米粒子;但爲了得到前述效 果,以前述銀,與銀以外之至少1種金屬所構成的金屬奈 米粒子較佳,進而以銀-鈀二元奈米粒子尤佳。此外,前 述銀-鈀二元奈米粒子,最好是銀與鈀的重量比在銀:鈀 =1 : 0.25〜4的範圍。 前述銀-IG二元奈米粒子,銀與銷的重量比對1份銀 之鈀量未滿〇 . 2 5份時,可能會無法充分得到前述作用效 果。此外,銀與鈀之重量比在對1份銀含有超過4份鈀以 上,可能無法得到更高的效果。 此外,於本發明之液晶顯示裝置,最好是前述含有液 晶相溶性粒子之液晶,對含有的液晶而言含有0.02〜〇·2 重量百分比之範圍之量之前述金屬奈米粒子。前述含有液 晶相溶性粒子之液晶,對於含有的液晶,前述金屬奈米粒 子之量未達0.02重量百分比時’可能無法充分得到前述 作用效果。此外,前述含有液晶相溶性粒子之液晶’對於 含有的液晶,前述金屬奈米粒子之量即使超過〇·2重里百 分比,也可能無法得到更好的效果。 本發明之液晶顯示裝置,亦可爲使用負載驅動之點陣 -8- 200921185 面板’亦可係使用靜態驅動或主動驅動之字元顯示面板或 點陣面板。 【實施方式】 以下,參照圖面同時詳細說明本發明之實施型態。 圖1係說明本發明之液晶顯示裝置之一構成例之剖面 圖。圖2係顯示本發明的第1實施例之液晶顯示裝置之電 壓一透過率特性之驅動頻率依存性之圖,圖3係顯示對本 發明之第1比較例之液晶顯示裝置之電壓一透過率特性之 驅動頻率依存性之圖。此外,圖4係顯示本發明的第1實 施例之液晶顯示裝置之電壓一透過率特性之各驅動頻率之 溫度依存性之圖,圖5係顯示對本發明之第1比較例之液 晶顯示裝置之電壓一透過率特性之各驅動頻率之溫度依存 性之圖。 本實施型態之液晶顯示裝置,如圖1所示,係PBT-LCD (垂直配向液晶顯示裝置)1,具備:1對平行且透明 之玻璃基板2a,2b、及在玻璃基板2a,2b之相對向的內側 面設爲特定圖案的透明電極膜3a,3b、及被設於透明電極 膜3 a, 3b之相對向的內側面之顯示部的絕緣膜4a,4b、以 及在絕緣膜4a,4b之相對向的內側面上以與透明電極膜 3a,3b幾乎相同的圖案設置的垂直配向膜5a,5b。透明電極 膜3a,3b,被設爲相互正交之條紋狀。 在液晶顯示裝置1,藉由玻璃基板2 a、透明電極膜3 a 、絕緣膜4a、垂直配向膜5a形成上基板6a,藉由玻璃基 -9- 200921185BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a vertical alignment liquid crystal display device (P B T - L C D ). [Prior Art] A liquid crystal display device in which a liquid crystal cell of a pair of substrates that are opposed to each other is sealed in a vertical alignment mode of a liquid crystal having a negative permittivity to an opposite polarity is known (for example, refer to Patent Document 1). . In the liquid crystal display device, when a voltage is applied to the electrodes provided on the pair of substrates, the liquid crystal is arranged in the vertical direction with respect to the substrate, and is combined with a polarizing plate disposed in a crossed Nicol. Very good dark display (usually black). Further, when the liquid crystal display device 'applies a voltage to the electrodes provided on the pair of substrates, the liquid crystal falls down and the substrate is arranged in the horizontal direction to be clearly displayed. In the liquid crystal display device, the optical compensation plate having a negative refractive index and an opposite polarity is laminated on the substrate in the vertical direction, whereby the optical anisotropy of the liquid crystal in the vertical alignment can be compensated for, and excellent viewing angle characteristics can be obtained. However, in the case where the liquid crystal display device is described in the BU, the response speed is relatively fast in the temperature region near the room temperature, but in a low temperature region such as 〇 ° C or less, there is a case where the response is slow. If the response is too slow, the motion picture will be blurred. The previous image will remain, which will significantly impair the display quality. In addition, in the low temperature region near _2 (TC), since the threshold curve and the voltage-permeability-5-200921185 overtone curve will change, there is a need to change the driving voltage in response to temperature to perform the necessary temperature compensation. [Problem to be Solved by the Invention] An object of the present invention is to solve the above-described problems and provide a low temperature region even in the vicinity of -200 to 0 °C. A liquid crystal display device which is excellent in response and does not require a temperature change to change the driving voltage and is temperature-compensated. [Means for Solving the Problem] In order to achieve the above object, the liquid crystal display device of the present invention is characterized in that it is provided to be held in a relative direction. a liquid crystal cell of a pair of substrates and a liquid crystal containing liquid crystal-compatible particles sealed in the liquid crystal cell; the liquid crystal containing liquid crystal-compatible particles containing metal nanoparticles composed of silver alone or by silver or silver a metal nanoparticle composed of at least one metal and a metal core nanoparticle as a core bonded to the periphery of the metal nanoparticle a liquid crystal-compatible particle composed of one type of liquid crystal molecules; the permittivity of the liquid crystal molecule is negative to the opposite polarity. Further, in the present specification, the above-mentioned "the metal nanoparticle as a core is bonded to the periphery of the metal nanoparticle. The term "combination" of at least one liquid crystal molecule refers to a state in which a liquid crystal molecule surrounds a nucleus surrounded by a metal nanoparticle by a certain interaction -6 - 200921185. The compatible particles are estimated to have a structure in which a plurality of metal particles generated by reduction of one or a plurality of metal ions are used as a central core, and liquid crystal molecules are surrounded by a certain interaction. The central nucleus composed of metal particles, the metal particles of a plurality of kinds of metals can be randomly distributed in the stomach, and the structure of the metal can be used as a shell, and the metal particles are used as a core. Shell-core structure. The case where the central core is composed of one type of metal particles is called a unit particle, and the case where two types of metal particles are used is called a binary particle. In the liquid crystal display device of the present invention, since the permittivity of the liquid crystal molecules is negative, the liquid crystal molecules are arranged in the vertical direction without applying a voltage between the pair of opposing substrates. In the liquid crystal molecule, liquid crystal-compatible particles composed of at least one liquid crystal molecule bonded to the periphery of the metal nanoparticles are formed by using the metal nanoparticles as a core, and the liquid crystal-compatible particles are further contained in the liquid crystal. As described above, in the liquid crystal cell, the liquid crystal molecules are arranged in the vertical direction in the state in which the liquid crystal molecules are arranged in the vertical direction, and the response in the low temperature region of 0 ° C or lower can be increased. According to the liquid crystal display device of the present invention, (in the following low temperature region, blurring of the moving image or retention of the previous image can be prevented, and excellent display quality can be obtained. Further, according to the liquid crystal display device of the present invention, since the liquid crystal containing the liquid crystal-compatible particles contains the metal nanoparticles, the threshold 値 due to the difference in frequency can be reduced in the near-low temperature region of -2 0 〜 2009 200921185 Dependence. That is, the liquid crystal display device according to the present invention is at -2 0 to 〇. (: In the vicinity of the low temperature region, it is not necessary to change the driving voltage in accordance with the temperature to perform temperature compensation. In the liquid crystal display device of the present invention, the metal nanoparticle described above may be a metal nanoparticle composed of silver alone or may be silver. a metal nanoparticle composed of at least one metal other than silver; however, in order to obtain the above-described effects, it is preferable to use a metal nanoparticle composed of at least one metal other than silver, and further, silver-palladium. Further, the binary nano particles are particularly preferable. Further, the silver-palladium binary nanoparticles preferably have a weight ratio of silver to palladium in the range of silver:palladium = 1:0.25 to 4. The aforementioned silver-IG binary nanoparticle. The weight ratio of particles to silver to pin is less than 1 part of the amount of palladium in silver. When the amount is 25 parts, the above effects may not be sufficiently obtained. In addition, the weight ratio of silver to palladium is more than 4 parts for 1 part of silver. Further, in the liquid crystal display device of the present invention, it is preferable that the liquid crystal containing the liquid crystal-compatible particles contains 0.02 to 〇·2 by weight of the liquid crystal contained. the amount In the liquid crystal containing the liquid crystal-compatible particles, when the amount of the metal nanoparticles is less than 0.02% by weight, the liquid crystal-compatible particles may not be sufficiently obtained. The liquid crystal 'for the liquid crystal contained, the amount of the above-mentioned metal nanoparticles may not be better even if it exceeds 〇·2 weight percentage. The liquid crystal display device of the present invention may also be a lattice-driven -8 using a load. - 200921185 The panel ' can also use a static drive or an active drive character display panel or a dot matrix panel. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Fig. 1 is a view showing the liquid crystal of the present invention. FIG. 2 is a cross-sectional view showing a configuration of a voltage-transmittance characteristic of a liquid crystal display device according to a first embodiment of the present invention, and FIG. 3 is a view showing a first comparative example of the present invention. The driving frequency dependence of the voltage-transmittance characteristic of the liquid crystal display device. In addition, FIG. 4 shows the present invention. FIG. 5 is a view showing a voltage-transmittance characteristic of a liquid crystal display device according to a first comparative example of the present invention, showing a temperature dependency of each of the driving frequency of the voltage-transmittance characteristic of the liquid crystal display device of the first embodiment. A diagram of the temperature dependence of the driving frequency. The liquid crystal display device of the present embodiment is a PBT-LCD (Vertical Alignment Liquid Crystal Display Device) 1 and has a pair of parallel and transparent glass substrates 2a, 2b as shown in FIG. And the transparent electrode films 3a and 3b having a specific pattern on the inner side surfaces of the glass substrates 2a and 2b, and the insulating film 4a provided on the display portions of the opposite inner side surfaces of the transparent electrode films 3a and 3b. 4b and vertical alignment films 5a, 5b which are provided in substantially the same pattern as the transparent electrode films 3a, 3b on the opposite inner side faces of the insulating films 4a, 4b. The transparent electrode films 3a and 3b are formed in stripes which are orthogonal to each other. In the liquid crystal display device 1, the upper substrate 6a is formed by the glass substrate 2a, the transparent electrode film 3a, the insulating film 4a, and the vertical alignment film 5a, by means of a glass substrate -9-200921185

板2 b、透明電極膜3 b、絕緣膜4 b、垂直配向j 基板6b。接著’在被夾持於上、下基板6a,6b 的液晶胞7,以使排列於與上、下基板6a,6b 上的方式被封入含有液晶相溶性粒子之液晶L 垂直配向膜5a, 5b,以使被封入液晶胞7 配向於一軸,上、下基板6 a,6 b間的配向狀態 (anti-parellel )狀態的方式被處理。液晶胞' 劑層8而被封固,於密封劑層8的外側面被形 案9。此外,於玻璃基板2 a, 2 b的外側面,偏j 以成爲特定圖案’例如成爲正交尼科爾(cro s 配置的方式被貼附。 液晶顯示裝置1,例如可以下述方法製造 首先’於玻璃基板2a,2b上作爲透明電極 、濺鍍法等形成IΤ Ο膜’藉由以光蝕刻步驟使 圖案而形成透明電極膜3 a, 3 b。其次,於被形 膜3 a,3 b的玻璃基板2 a,2 b上之顯示部,以撓 絕緣膜4a,4b。 絕緣膜4 a,4 b不一定要形成,但是爲了防 明電極膜3 a,3 b之間的短路,最好還是形成 4a,4b不以撓曲印刷爲限,亦可藉由使用金屬 法、濺鍍法等來形成。 其次’於絕緣膜4a,4b上,形成幾乎互爲 垂直配向膜(例如’日產化學株式會社製造 SE-121 1 ) 5a,5b。作爲得到均勻的單—區域( 莫5b形成下 間而被形成 垂直的方向 〇 的液晶分子 成爲反平行 r,藉由密封 成導通材圖 亡板 10a,10b s e d N i c ο 1 ) 藉由蒸鍍法 成爲所要的 成透明電極 曲印刷形成 止上下之透 之。絕緣膜 遮罩之蒸鍍 相同圖案的 ,商品名: domain )配 -10- 200921185 向的手法’可以採用其自身所習知之方法(例如參照專利 文獻1 )。 其次,對垂直配向膜5a,5b進行摩擦處理。前述摩擦 處理’係可以使把布捲成原筒狀的輥筒高速旋轉,藉由摩 擦垂直配向膜5a,5b上而進行。前述摩擦處理的結果,能 夠以使被封入液晶胞7的液晶分子配向於一軸,上下基板 6a,6b間的配向狀態成爲反平行(anti_parellel )狀態的方 式進行處理。 作爲對前述垂直配向膜5a,5b進行配向處理的方法, 亦可取代前述摩擦處理’而採用光配向法、離子束配向法 、電漿束配向法、斜向蒸鑛法等。 其次’將貼合上、下基板6a,6b之用的密封劑印刷於 單側的基板6a或者基板6b的內側面上成爲特定圖案,同 時於另一方之基板6 b或者基板6 a的內側面以乾式散佈法 散佈間隙控制劑。接者’藉由使上下基板6 a,6 b在特定的 位置重疊而細胞(cell )化,在按壓狀態進行熱處理使密 封劑硬化,而形成密封劑層8。 作爲前述密封劑,例如可以使用熱硬化性密封劑(例 如’三井化學株式會社製造,商品名:ES-7500)。前述 熱硬化性密封劑包含數個重量百分比之3 · 9 μηι大小的玻璃 纖維。此外,取代前述熱硬化性密封劑,而使用光硬化性 密封劑或光/熱倂用型密封劑等亦可。 前述密封劑之印刷,例如可以藉由網版印刷法進行, 亦可使用分配器(dispenser )等來進行。前述密封劑之印 -11 - 200921185 刷圖案,在被形成於上、下基板6 a,6 b間的液晶胞7注入 液晶分子L時,使用真空注入法的場合做成有注入口的圖 案,使用ODF法(單滴塡充法)的場合形成沒有注入口 的封閉圖案。作爲前述間隙控制劑’例如可以使用直徑 6 μιη的塑膠球,亦可使用二氧化矽之球。 其次,於密封劑層8的外側面之特定位置印刷導通材 ,形成導通材圖案9。作爲前述導通材’例如可以使用在 前述熱硬化性密封劑內包含數個重量百分比之直徑々.Mm 之金(Au)球等者。前述導通材的印刷,例如可以藉由網 版印刷來進行。 其次,藉由畫線裝置在玻璃基板2a,2b上畫出傷痕, 藉由分斷(breaking )分割爲特定的大小/形狀形成胞( cell ),對該胞注入液晶分子L。液晶分子L的注入,例 如可以藉由真空注入法來進行’在此場合,以終端密封劑 密封注入口。 其後’進行倒角(去除尖角)與洗淨,於玻璃基板 2 a,2 b之外側面,將偏光板1 0 a,1 0 b以特定之圖案,例如 成爲對摩擦具備45度角度之正父尼科爾(crossed Nieol )配置的方式貼附,可以得到具備圖1所示的構成之,常 黑之 PBT-LCD1。 又,PBT-LCD1亦可於偏光板10a,l〇b具備視角(光 學)補償板。 於本實施型態之液晶顯不裝置1,被封入液晶胞7之 含有液晶相溶性粒子之液晶L ’係將由單獨的銀所構成的 -12- 200921185 金屬奈米粒子,或者銀與銀以外之至少1種金屬所構成的 金屬奈米粒子’與以該金屬奈米粒子爲核結合於該金屬奈 米粒子的周圍之至少1種液晶分子所構成之液晶相溶性粒 子,含有於基質(matrix )液晶中者。前述液晶相溶性粒 子,係於前述金屬奈米粒子所構成的核的周圍使結合液晶 分子者,可以藉由使混合至少1種液晶分子、與2級醇、 與有機溶媒而得之混合溶液回流(reflux ),同時添加銀 離子溶液使其反應,還原銀離子產生由銀單獨構成之金屬 奈米粒子,或者是添加銀離子溶液,與銀以外之至少1種 金屬離子溶液使其反應,還原銀離子同時還原銀以外之至 少1種金屬離子,產生由銀與銀以外之至少1種金屬所構 成的多元金屬奈米粒子而得。 作爲供獲得前述液晶相溶性粒子之用的前述液晶分子 ’例如,可以舉出:4’-正戊基-4-氰基聯苯、4’-己氧基-4-氰基聯苯等氰基聯苯類;4 -正戊基-4’-乙烯基二環己基、 4-正戊基-4’·( 4-三氟甲氧基苯基)二環己基等二環己基 類;4-(反-4-正戊基環己基)苯甲腈等環己基苯甲腈類, 4’-正戊基-4-乙氧基-2,3-二氟二苯基、1-乙氧基-2,3-二氟-4-(反-4-正戊基環己基)苯等氟苯類;4-丁基安息香酸( 4 -氰基苯基)、4_庚基安息香酸(4 -氰基苯基)等苯基酯 類;4-羧基苯基乙基碳酸酯' 4_羧基苯基正丁基碳酸酯等 碳酸酯類;4_ (4 -正戊基苯基乙炔基)苯甲腈、4- (4 -正 戊基苯基乙炔基)氟苯等苯乙炔類;2-(4-苯腈)-5 -正戊 基嘧啶、2 - ( 4 -苯腈)-5 -正辛基嘧啶等苯基吡啶類;4,4 ’ · -13- 200921185 bis (乙酯基)偶氮苯等偶氮苯類;4_4,氧化偶氮基苯甲醚 、4-4’二己基氧化偶氮苯等之氧化偶氮苯類;正-(4_甲氧 基苯亞甲基)-4-正丁基苯胺、N- (4-乙氧基苯亞甲基)-4_正丁基苯胺等席夫鹽基類;N-N,-雙苯亞甲基聯苯胺等 聯苯胺類;胆甾醇乙酸酯、膽甾醇苯酸酯等膽甾醇基酯類 :聚(4_苯撐對苯二甲酸胺)等液晶高分子類。又,這些 液晶分子’可以單獨使用或混合兩種以上使用。前述液晶 分子,作爲複數種之液晶分子混合物使用時,可以直接使 用巾售品。 爲了得到前述液晶相溶性粒子所使用的二級醇,如下 列一般式(1 )所示。The plate 2b, the transparent electrode film 3b, the insulating film 4b, and the vertical alignment j substrate 6b. Then, the liquid crystal cells 7 held by the upper and lower substrates 6a, 6b are sealed in the liquid crystal L vertical alignment film 5a, 5b containing liquid crystal-compatible particles so as to be arranged on the upper and lower substrates 6a, 6b. The method in which the liquid crystal cell 7 is sealed to the one axis and the anti-parellel state between the upper and lower substrates 6a, 6b is processed. The liquid crystal cell layer 8 is sealed and patterned on the outer side surface of the sealant layer 8. Further, on the outer surface of the glass substrates 2a, 2b, the offset j is applied as a specific pattern, for example, in the form of a crossed Nicols. The liquid crystal display device 1 can be manufactured, for example, by the following method. 'I-ruthenium film is formed as a transparent electrode, a sputtering method, or the like on the glass substrates 2a, 2b'. The transparent electrode film 3a, 3b is formed by patterning by a photo-etching process. Secondly, the film 3a, 3 is formed. The display portions on the glass substrates 2a, 2b of b are made of flexible insulating films 4a, 4b. The insulating films 4a, 4b do not have to be formed, but in order to prevent short circuits between the electrode films 3a, 3b, Preferably, the formation of 4a, 4b is not limited to the flexographic printing, and may be formed by using a metal method, a sputtering method, etc. Next, 'on the insulating films 4a, 4b, almost perpendicularly aligned films are formed (for example ' Nissan Chemical Co., Ltd. manufactures SE-121 1 ) 5a, 5b. As a uniform single-region (the liquid crystal molecules which are formed in the vertical direction by the formation of the lower 5b become anti-parallel r, are sealed by the conductive material. The plates 10a, 10b sed N ic ο 1 ) become desired by evaporation The transparent electrode is printed to form a transparent upper and lower surface. The insulating film mask is vapor-deposited with the same pattern, and the product name: domain is matched with the method of -10-200921185. The method can be adopted by its own method (for example, refer to the patent literature). 1 ). Next, the vertical alignment films 5a, 5b are subjected to a rubbing treatment. The above-mentioned rubbing treatment is performed by rotating the rolls wound in the original cylindrical shape at a high speed and by rubbing the vertical alignment films 5a, 5b. As a result of the rubbing treatment, the liquid crystal molecules sealed in the liquid crystal cell 7 can be aligned on one axis, and the alignment state between the upper and lower substrates 6a and 6b can be treated in an anti-parallel state. As a method of aligning the vertical alignment films 5a and 5b, a photoalignment method, an ion beam alignment method, a plasma beam alignment method, an oblique steaming method, or the like may be employed instead of the rubbing treatment. Next, 'the sealant for bonding the upper and lower substrates 6a, 6b is printed on the inner side surface of the substrate 6a or the substrate 6b on one side to be a specific pattern, and the inner side of the other substrate 6b or the substrate 6a. The gap control agent is dispersed by a dry dispersion method. The carrier is formed by laminating the upper and lower substrates 6a, 6b at specific positions, and heat-treating the sealing agent in a pressed state to form the sealant layer 8. As the sealant, for example, a thermosetting sealant (for example, 'Mitsubishi Chemical Co., Ltd., trade name: ES-7500) can be used. The aforementioned thermosetting sealant contains a plurality of glass fibers of a size of 3 · 9 μηι. Further, in place of the thermosetting sealant, a photocurable sealant or a light/heat sealant may be used. The printing of the sealant can be carried out, for example, by a screen printing method, or by using a dispenser or the like. In the seal pattern of the sealant -11 - 200921185, when the liquid crystal cell 7 formed between the upper and lower substrates 6a, 6b is injected into the liquid crystal molecules L, a pattern of an injection port is formed by using a vacuum injection method. When the ODF method (single drop tamping method) is used, a closed pattern without an injection port is formed. As the gap control agent, for example, a plastic ball having a diameter of 6 μm can be used, and a ball of cerium oxide can also be used. Next, a conductive material is printed at a specific position on the outer surface of the sealant layer 8, and a conductive material pattern 9 is formed. As the conductive material, for example, a gold (Au) ball having a diameter of 々.Mm may be contained in the thermosetting sealant. The printing of the above-mentioned conductive material can be carried out, for example, by screen printing. Next, a scratch is drawn on the glass substrates 2a, 2b by a line drawing device, and a cell is formed by breaking into a specific size/shape to inject the liquid crystal molecules L into the cells. The injection of the liquid crystal molecules L can be carried out, for example, by a vacuum injection method. In this case, the injection port is sealed with a terminal sealant. Thereafter, 'chamfering (removing sharp corners) and washing, on the outer side of the glass substrate 2 a, 2 b, the polarizing plate 10 a, 1 0 b is in a specific pattern, for example, has a 45 degree angle to the friction The method of configuring the crossed Nieol is attached, and the PBT-LCD1 having the configuration shown in Fig. 1 can be obtained. Further, the PBT-LCD 1 may have a viewing angle (optical) compensation plate on the polarizing plates 10a, 10b. In the liquid crystal display device 1 of the present embodiment, the liquid crystal L' containing the liquid crystal-compatible particles enclosed in the liquid crystal cell 7 is a -12-200921185 metal nanoparticle composed of a single silver, or a silver or silver A liquid crystal compatible particle composed of at least one metal nanoparticle composed of at least one metal and at least one liquid crystal molecule bonded to the periphery of the metal nanoparticle as a core is contained in a matrix In the LCD. The liquid crystal-compatible particles may be formed by mixing a mixture of at least one liquid crystal molecule, a second-order alcohol, and an organic solvent by mixing liquid crystal molecules around the core formed by the metal nanoparticles. (reflux), simultaneously adding a silver ion solution to react, reducing silver ions to produce metal nanoparticles composed of silver alone, or adding a silver ion solution, reacting with at least one metal ion solution other than silver to reduce silver The ion simultaneously reduces at least one metal ion other than silver, and produces a multi-component metal nanoparticle composed of at least one metal other than silver and silver. Examples of the liquid crystal molecule 'for the liquid crystal-compatible particles to be obtained include cyanide such as 4'-n-pentyl-4-cyanobiphenyl or 4'-hexyloxy-4-cyanobiphenyl. a phenyl group; a 4-cyclohexyl group such as 4-n-pentyl-4'-vinyldicyclohexyl or 4-n-pentyl-4'-(4-trifluoromethoxyphenyl)dicyclohexyl; -(trans-4-n-pentylcyclohexyl)benzonitrile and other cyclohexylbenzonitriles, 4'-n-pentyl-4-ethoxy-2,3-difluorodiphenyl, 1-ethoxy Fluorobenzenes such as benzyl-2,3-difluoro-4-(trans-4-n-pentylcyclohexyl)benzene; 4-butylbenzoic acid (4-cyanophenyl), 4-heptylbenzoic acid ( a phenyl ester such as 4-cyanophenyl); a carbonate such as 4-carboxyphenylethyl carbonate ' 4-carboxyphenyl n-butyl carbonate; 4_(4-n-pentylphenylethynyl) Benzocarbonitrile, phenylacetylene such as 4-(4-n-pentylphenylethynyl)fluorobenzene; 2-(4-benzonitrile)-5-n-pentylpyrimidine, 2-(4-benzonitrile)-5 -Phenylpyridines such as n-octylpyrimidine; 4,4 ' · -13- 200921185 bis (ethyl ester) azobenzene and other azobenzenes; 4_4, azobenzene, 4-4' Heji Oxidized azobenzenes such as azobenzene; n-(4-methoxybenzylidene)-4-n-butylaniline, N-(4-ethoxybenzylidene)-4_positive Schiff bases such as butyl aniline; benzidines such as NN,-bisbenzylidene benzidine; cholesteryl esters such as cholesterol acetate and cholesteryl benzoate: poly(4-phenylene pair) Liquid crystal polymers such as phthalic acid amines. Further, these liquid crystal molecules ' may be used singly or in combination of two or more. When the liquid crystal molecule is used as a mixture of a plurality of liquid crystal molecules, the towel can be directly used. In order to obtain the secondary alcohol used for the liquid crystal-compatible particles, the following general formula (1) is shown.

R1 R2 於前述一般式(1 )’ R1及R2係可以具有置換基之烴 基’作爲該烴基,例如可以舉出:甲基、乙基、丙基、丁 基、戊基、己基、庚基等碳數在1〜7之烷基;環丙基、 環丁基、環戊基等碳數爲3〜6之環烷基;乙烯基、烯丙 基' 丙烯基、環丙烯基、環丁烯基、環戊烯基等碳數2〜6 之烯基;乙炔基、丙炔基等碳數2〜6之炔基等;較佳者 爲烷基、烯基、炔基,進而更佳者爲烷基、炔基。又,前 述烴基,包含各種異性體。 此外,R1與R2,亦可相互結合形成具有無置換基或 有置換基之環,作爲結合而形成之環,例如可以舉出:環 -14- 200921185 丙基環 之環烷 等碳數 前 置換基 子而形 作 :甲基 丁烷基 基、環 原子數 ;氰基 作 羥基、 又,這 作 溴原子 對 爲 0.1 ,可以 上使用 作 要是不 :丙酮 、環丁基環、環戊基環、環己基環等碳數爲3〜6 環;氧雜環丙烷環、氧雜環丁烷環、氧雜環戊烷環 2〜5之醚環。又,前述各環’包含各種異性體。 述烴基及結合形成的環,亦可具有置換基,作爲該 ’可以舉出中介碳原子而形成之置換基、中介氧原 成之置換基、鹵素原子等。 爲前述中介碳原子而形成之置換基,例如可以舉出 、乙基、丙基等碳數1〜3之烷基;環丙烷基、環 等碳數爲3〜4之環烷基;乙烯基、烯丙基、丙烯 丙烯基等碳數2〜3之烯基;乙炔基、丙炔基等碳 2〜3之炔基;三氟甲烷基等碳數1〜4之鹵化烷基 °又,前述置換基,包含各種異性體。 爲前述中介氧原子而形成之置換基,例如可以舉出 甲氧基、乙氧基、丙氧基等碳數1〜3之烷氧基。 些基,包含各種異性體。 爲前述鹵素原子,例如可以舉出氟原子、氯原子、 、碘原子等。 前述液晶分子1 g之前述二級醇之使用量,較佳者 〜200g,進而更佳者爲1〜100g。又,前述二級醇 單獨使用前述二級醇之任何一種,亦可混合二種以 〇 爲供獲得前述液晶相溶性粒子之用的有機溶媒,只 妨礙前述反應者即可沒有特別限定,例如可以舉出 、甲乙酮、甲基異丁基酮等酮類;醋酸甲酯、醋酸 -15- 200921185 乙酯、醋酸丁酯、丙酸甲酯等酯類;ν,ν,-、Ν,Ν-二甲基乙醯胺、Ν•甲基吡咯烷酮等用 甲基咪唑啉酮等尿素類;二甲基亞颯等亞颯 楓類;乙腈、丙腈等腈類;二乙基醚、二異 呋喃、二氧六環等醚類;己烷、庚烷、環己 氫化合物類;苯、甲苯、二甲苯等芳香族碳 ,較佳者爲腈類、醚類、芳香族碳氫化合物 者爲醚類。又,前述有機溶媒,可以單獨使 媒之任何一種,亦可混合二種以上使用。 對前述液晶分子lg之前述有機溶媒之 者爲10〜5 00mL之範圍,進而更佳者爲20 圍。 爲了得到前述液晶相溶性粒子所使用的 係使銀鹽(與銀離子成爲離子對之鹽)溶解 ,銀以外之至少1種金屬離子之溶液,係使 1種之金屬鹽(與銀以外之金屬離子成對的 鹽)溶解於有機溶媒者。作爲前述銀以外之 如可以舉出過渡金屬離子,較佳者爲由Au 、Cu2+、Ru2+、Ru3+、Ru4+、Rh2+、Rh3+、 〇s4+、Ir+、Ir3+、Pt2+、Pt4+、Fe2+、Fe3+、 構成的群中選出之至少1種金屬離子。另一 前述銀離子或銀以外之至少1種金屬離子成 如可以舉出:含羥基離子、鹵離子、鹵酸離 子、亦可被置換之羧酸離子、乙醯丙酮酸鹽 二甲基甲醯胺 g 類;Ν,Ν’-二 類;環丁砸等 丁基醚、四氫 烷等脂肪族碳 氫化合物類等 類,進而更佳 用前述有機溶 使用量,較佳 〜200mL之範 銀離子溶液, 於有機溶媒者 銀以外之至少 離子所構成之 金屬離子,例 +、Au3+ ' Cu + Pd2+、Pd4+、 Co2+、Co3 +所 方面,作爲與 對的離子,例 子、過鹵酸離 基離子、碳酸 -16- 200921185 離子、硫酸離子、硝酸離子、四氟硼酸離子、六氟磷 子等。又’前述金屬鹽’例如亦可配位以一氧化碳、 基隣化氣、p -甲基異丙基苯等中性配位子。 作爲供溶解前述銀離子或銀以外之至少1種金屬 之用的有機溶媒’例如可以舉出爲了獲得前述液晶相 粒子所使用之前述有機溶媒。前述有機溶媒之使用量 要是可以使前述金屬鹽完全溶解之量即可,沒有特別 制。 使混合至少1種前述液晶分子、前述二級醇、前 機溶媒而得的混合溶液回流(reflux )時之回流溫度 應溫度)雖沒有特別限制,較佳者爲40〜1 20°C的範 溫度,反應壓力可以是加壓、常壓或者減壓之任一種 ,於前述混合溶液,添加含銀離子溶液之複數種金屬 溶液的場合,其添加方法並無特別限制,例如,可以 藉由將每1種之複數金屬離子溶液另行個別地區分而 的方法(可爲同時添加或分割添加),或預先調製包 數種金屬離子之1種金屬離子溶液而添加之方法等。R1 R2 is a hydrocarbon group which may have a substituent in the above general formula (1) 'R1 and R2', and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group and the like. An alkyl group having a carbon number of 1 to 7; a cycloalkyl group having a carbon number of 3 to 6 such as a cyclopropyl group, a cyclobutyl group or a cyclopentyl group; a vinyl group, an allyl 'propylene group, a cyclopropenyl group, a cyclobutene group a vinyl group having 2 to 6 carbon atoms such as a cyclopentenyl group; an alkynyl group having 2 to 6 carbon atoms such as an ethynyl group or a propynyl group; preferably an alkyl group, an alkenyl group or an alkynyl group, and more preferably a group. Is an alkyl group, an alkynyl group. Further, the above hydrocarbon group contains various anisotropy. Further, R1 and R2 may be bonded to each other to form a ring having a substituent or a substituent, and a ring formed by bonding may be, for example, a carbon number pre-exchange such as a cyclo-14-200921185 propyl ring naphthenic ring. The base is shaped as: methylbutanyl group, ring atom number; cyano group as hydroxyl group; further, this is a bromine atom pair of 0.1, which can be used as if not: acetone, cyclobutyl ring, cyclopentyl ring, The carbon number of the cyclohexyl ring is 3 to 6 rings; the ether ring of the oxirane ring, the oxetane ring, and the oxolane ring 2 to 5. Further, each of the above rings 'includes various anisotropic bodies. The hydrocarbon group and the ring formed by the bonding may have a substituent group, and examples of the substituent include a substituent group formed by interposing a carbon atom, a substituent which is an intermediate oxygen atom, a halogen atom, and the like. Examples of the substituent group formed by the intermediate carbon atom include an alkyl group having 1 to 3 carbon atoms such as an ethyl group and a propyl group; a cycloalkyl group having a carbon number of 3 to 4 such as a cyclopropyl group or a ring; and a vinyl group; Alkenyl group having 2 to 3 carbon atoms such as allyl group and propylene propylene group; alkynyl group having 2 to 3 carbons such as ethynyl group and propynyl group; halogenated alkyl group having 1 to 4 carbon atoms such as trifluoromethylalkyl group; The aforementioned substituent includes various anisotropy. The substituent group formed by the above-mentioned intermediate oxygen atom may, for example, be an alkoxy group having 1 to 3 carbon atoms such as a methoxy group, an ethoxy group or a propoxy group. These bases contain a variety of heterosexuals. Examples of the halogen atom include a fluorine atom, a chlorine atom, and an iodine atom. The amount of the secondary alcohol used as the liquid crystal molecule 1 g is preferably from 2,000 g, more preferably from 1 to 100 g. Further, the secondary alcohol may be used singly or in combination with any of the above-mentioned secondary alcohols, and may be used as an organic solvent for obtaining the liquid crystal-compatible particles, and the reaction is not particularly limited, and for example, Examples include ketones such as methyl ethyl ketone and methyl isobutyl ketone; esters of methyl acetate, acetic acid-15-200921185 ethyl ester, butyl acetate, methyl propionate; ν, ν, -, Ν, Ν-二Urea, such as methyl acetamide and hydrazine methyl pyrrolidone, such as methyl imidazolidinone; yttrium, yttrium and other nitrile; acetonitrile, propionitrile and the like; diethyl ether, diisofuran, Ethers such as dioxane; hexane, heptane, cyclohexyl hydrogen compounds; aromatic carbons such as benzene, toluene, xylene, etc., preferably nitriles, ethers, aromatic hydrocarbons, ethers . Further, the organic solvent may be used alone or in combination of two or more. The organic solvent of the liquid crystal molecule lg is in the range of 10 to 500 mL, and more preferably 20 or more. In order to obtain the liquid crystal-compatible particles, a silver salt (a salt which is ion-paired with silver ions) is dissolved, and a solution of at least one metal ion other than silver is used as a metal salt (a metal other than silver) The ion-paired salt) is dissolved in an organic solvent. Examples of the transition metal ion other than the silver include a group of Au, Cu2+, Ru2+, Ru3+, Ru4+, Rh2+, Rh3+, 〇s4+, Ir+, Ir3+, Pt2+, Pt4+, Fe2+, and Fe3+. At least one metal ion selected from the group. The at least one metal ion other than the silver ion or silver may be exemplified by a hydroxyl group-containing ion, a halogen ion, a halogen acid ion, a carboxylic acid ion which may be substituted, and an acetoacetate dimethylformamidine. An amine g; Ν, Ν '- two; butyl ether such as cyclobutyl hydrazine, an aliphatic hydrocarbon such as tetrahydroalkane, and the like, and further preferably used in the above organic solvent, preferably ~200 mL of the aromatic silver The ionic solution is a metal ion composed of at least ions other than the silver of the organic solvent, for example, in the case of Au3+'Cu + Pd2+, Pd4+, Co2+, Co3 +, as an ion of the pair, an example, a perhalogen ion ion Carbonate-16- 200921185 Ions, sulfate ions, nitrate ions, tetrafluoroboric acid ions, hexafluorophosphorus, etc. Further, the aforementioned metal salt may be coordinated, for example, with a neutral ligand such as carbon monoxide, sulfene gas or p-methylisopropylbenzene. The organic solvent used for dissolving at least one of the above-mentioned silver ions or silver ′ is, for example, the organic solvent used for obtaining the liquid crystal phase particles. The amount of the organic solvent to be used is not particularly limited as long as the metal salt can be completely dissolved. The reflux temperature at which the mixed solution obtained by mixing at least one of the liquid crystal molecules, the secondary alcohol, and the precursor solvent is refluxed is not particularly limited, and is preferably 40 to 1 20 ° C. The temperature and the reaction pressure may be any one of pressurization, normal pressure or decompression. When a plurality of metal solutions containing a silver ion solution are added to the mixed solution, the method of addition is not particularly limited, and for example, A method in which a plurality of metal ion solutions are separately distinguished (may be added simultaneously or separately), or a method in which one metal ion solution of a plurality of metal ions is prepared in advance is added.

如前所述所得的由銀單獨構成的金屬奈米粒子, 由銀與銀以外之至少1種金屬所構成之金屬奈米粒子 以藉由以該金屬奈米粒子爲核而與前述液晶分子結合 液晶相溶性粒子。前述液晶相溶性粒子,因爲分散於 有機溶媒形成分散液,所以藉由濃縮該分散液,可以 均勻的液晶相溶性粒子漿(paste )。前述分散液之濃 法沒有特別限制,較佳者爲在減壓下,在20〜100 °C 酸離 三苯 離子 溶性 ’只 的限 述有 (反 圍之 。又 離子 採用 添加 含複 或者 ,可 成爲 前述 得到 縮方 的溫 -17- 200921185 度範圍內進行。此外,在前述分散液,再度加入前述液晶 分子作爲分散液,以同樣的方法濃縮該分散液,可以取得 更高性能且均勻的液晶相溶性粒子漿。 前述含有液晶相溶性粒子之液晶,例如可以藉由把如 前所述般進行所得到的液晶相溶性粒子槳,在室溫下一面 攪拌一面添加基質液晶,藉由進行均勻化而得。此外,前 述含有液晶相溶性粒子之液晶,爲了調整扭轉角,亦可添 加旋光劑。 在具備以上構成之本實施型態之PBT-LCD 1,藉由前 述含有液晶相溶性粒子之液晶L包含前述金屬奈米粒子, 例如在0 °C以下之低溫區域之應答被高速化。亦即,根據 本實施型態之PBT-LCD 1,於0 t以下之低溫區域也可以 防止動態影像產生模糊、或前一影像的殘留,可以得到優 異的顯示品質。 此外,本實施型態之PBT-LCD1,前述含有液晶相溶 性粒子之液晶L藉由含有前述金屬奈米粒子使得閾値變低 ,可以使驅動電路低電壓化。結果,本實施型態之PBT-LCD 1可以省電力化,同時去除在進行負載驅動的場合所 必須要使用的昂貴的驅動電路(驅動器)變得不再需要。 此外,本實施型態之PBT-LCD 1,前述含有液晶相溶 性粒子之液晶L藉由含有前述金屬奈米粒子使得閾値的溫 度依存性變低。亦即,本實施型態之PBT-LCD1不需要前 述驅動電路之溫度補償,可以謀求低成本化。 此外,本實施型態之P B T- L C D 1,前述含有液晶相溶 -18- 200921185 性粒子之液晶L藉由含有前述金屬奈米粒子使得銳利度變 好。結果,本實施型態之PBT-LCD1提高最大對比’提局 負載驅動之顯示品質,換句話說在相同的顯示品質下可以 提高負載數(顯示電容),對於單純矩陣LCD特別有利 〇 此外,本實施型態之PBT-LCD1,前述含有液晶相溶 性粒子之液晶L藉由含有前述金屬奈米粒子消除銳利度之 溫度依存性。結果,本實施型態之PBT-LCD1不隨著溫度 變化,可得優異之顯示品質。 進而,在本實施型態之PBT-LCD1,藉由前述含液晶 相溶性粒子之液晶L包含前述金屬奈米粒子,於-20〜〇°C 附近之低溫區域也可以減少由於頻率的不同所導致的閾値 依存性。亦即,根據本實施型態之PBT-LCD1,於-20〜〇 °C附近之低溫區域,也沒有必要因應溫度而改變驅動電jg 進行溫度補償。 其次,顯示本發明之實施例及比較例。 [第1實施例] 在本實施例’首先如下述般進行,調製液晶相溶性含 有銀-鈀二元奈米粒子之液晶。 在具備攪拌裝置、溫度計、回流冷卻器及滴下漏斗之 內容積爲1 〇〇mL之玻璃製容器,加入複數種之液晶分子$ 合物(Merck公司製造之液晶材料,商品名:〇 / υ . / U 〇 g ,氧雜環戊院 tetrahydrofuran) 36.0mL 以及 2•丙醇 -19- 200921185 1 0 m L調製混合溶液。其次,於前述混合溶液, 0.01M三氟醋酸銀之氧雜環戊烷(tetrahydrofuran) 2.0mL (作爲銀原子包含0.020mmole)與0.01M醋酸 氧雜環戊烷(tetrahydrofuran )溶液2. OmL (作爲鈀 包含0.020mm〇le),在加熱回留下(內溫69°C)反 個小時。反應結束後,將反應液冷卻至室溫’得到褐 均勻的液晶相溶性銀-鈀二元奈米粒子分散液5 OmL。 透過型電子顯微鏡分析前述銀-鈀二元奈米粒子分散 結果,液晶相溶性銀-鈀二元奈米粒子之中心金屬之 爲2〜10nm且均勻。 其次,於內容積25mL之玻璃製容器’加入前述 種之液晶混合物5 7 0 m g,與在本實施例調製之被晶相 銀-鈀二元奈米粒子分散液7mL (作爲全金屬量包含〇 )進行攪拌後,在減壓下濃縮所得之混合物’於減壓 燥,得到液晶相溶性銀-鈀二元奈米粒子漿600mg ( 晶分子混合物爲基準添加〇. 1重量百分比之銀-鈀)。 其次,使用在本實施例所得到的含有結晶相溶七 鈀二元奈米粒子之液晶,製作圖1所示之PBT_LCD1 估特性。 PBT-LCD 1之製作,如下述般進行。首先’於玻 板2a,2b上作爲透明電極形成ITO膜’藉由以光蝕刻 使成爲所要的圖案而形成透明電極膜3 a,3 b °其次’ 形成透明電極膜3a,3b的玻璃基板2a,2b上之顯示部 撓曲印刷形成絕緣膜4a,4b。 添加 溶液 鈀之 原子 應1 色之 藉由 液的 粒徑 複數 溶性 .6m g 下乾 以液 銀- 而評 璃基 步驟 於被 ,以 -20- 200921185 其次,於絕緣膜4a,4b上,使用液晶配向材(日產化 學株式會社製造’商品名:SE_121 1 )形成相互幾乎爲相 同圖案之垂直配向膜5a,5b。其次,使捲著布的圓筒狀之 輥筒高速旋轉,藉由摩擦垂直配向膜5a,5b上而進行摩擦 處理,使被封入液晶胞7的含有液晶相溶性鎳-銀二元奈 米粒子之液晶配向於一軸’上下基板6a,6b間的配向狀態 成爲反平行(anti-parellel)狀態。 其次,將熱硬化性密封劑(三井化學株式會社製造, 商品名:E S - 7 5 0 0 )印刷於上基板6 a的內側面上,藉由網 版印刷成具有注入口的圖案’同時作爲間隙控制劑,將直 徑3·75μηι之塑膠球以乾式散佈法散佈於下基板6b的內側 面。前述熱硬化性密封劑包含1〜5重量百分比之3.9μηι 大小的玻璃纖維。接著,藉由使上下基板6a,6b在特定的 位置重疊而細胞(cell )化,在按壓狀態進行熱處理使密 封劑硬化,而形成密封劑層8。 其次,於密封劑層8的外側面之特定位置藉由網版印 刷法印刷導通材,形成導通材圖案9。作爲前述導通材, 使用在前述熱硬化性密封劑內包含1〜5重量百分比之直 徑4.4μηι之金(Au)球等者。 其次,藉由畫線裝置在玻璃基板2a,2b上畫出傷痕, 藉由分斷(breaking )分割爲特定的大小/形狀形成胞( c e 11 ),藉由真空注入法對該胞注入含有液晶相溶性鎳-銀 二元奈米粒子之液晶,以終端密封劑密封注入口( 2處) -21 - 200921185 其後’進行倒角(去除尖角)與洗淨,於玻璃基板 2a,2b之外側面,藉由將偏光板10a,i〇b以特定之圖案, 成爲對摩擦具備45度角度之正父尼科爾(cr〇sse(j Nicol )配置的方式貼附,形成具備圖1所示的構成之,胞厚度 3.7 5μηι,反平行配向、常黑之PBT-LCD1。 其次’使用LCD評估裝置(大塚電子株式會社製造 ’商品名:LCD-5200) ’ 針對 100Hz、300Hz、1000Hz 之 各頻率’分別在室溫(2 5 °C ) 、〇 °C、- 2 0。(:測定在本實施 例製作的PBT-LCD1之電壓-透過率特性(驅動頻率依存 性)。結果顯示於圖2及表1。於圖2,圖2 ( a )係室溫 (2 5 °C )之測定結果,圖2 ( b )係0 °C之測定結果,圖2 (c )係-20°C之測定結果。 [第1比較例] 在本比較例,除了使用完全不含有銀-鈀二元奈米粒 子的複數種液晶分子混合物(Merck公司製造,商品名: M4 )以外,使與第1實施例完全相同,做成具備圖1所示 的構成之PBT-LCD1。 其次,使與第1實施例完全相同,測定在本比較例製 作的PBT-LCD 1之電壓-透過率特性(驅動頻率依存性) 。結果顯示於圖3及表1。於圖3,圖3 ( a )係室溫(25 °C )之測定結果,圖3 ( b )係0 °C之測定結果’圖3 ( c ) 係-2 之測定結果。 -22- 200921185 【表1】 頻率(fiz) 閾値之 頻率 依存性 100 300 1000 25 °C 第1實 施例 vsm 2.212 2.2125 2.2171 極小 <0.009 viom 2.3231 2.325 2.3316 V90/V10 1.6624 1.66 1.6576 第1比 較例 vsm 2.2268 2.2379 2.2463 小 <0.018 vi〇m 2.3521 2.3593 2.3691 V90/V10 1.7529 1.7492 1.7531 o°c 第1實 施例 V5[V1 2.2081 2.2096 2.2152 極小 <0.009 V10[V1 2.3254 2.327 2.334 V90/V10 1.6485 1.6495 1.6489 第1比 較例 V5[V1 2.2168 2.222 2.2338 小 <0.015 V10[V1 2.3436 2.3483 2.3582 V90/V10 1.6875 1.6902 1.7 -20°C 第1實 施例 V5rvi 2.2127 2.2119 2.214 極小 <0.004 VIOfVl 2.3307 2.3304 2.3336 V90/V10 1.6335 1.6357 1.636 第1比 較例 V5[V1 2.1883 2.1891 2.1949 極小 <0.007 viorvi 2.3045 2.3043 2.3109 V90/V10 1.5769 1.5795 1.5792 由圖2可知,在含有液晶相溶性粒子之液晶L包含前 述銀-鈀二元奈米粒子之第1實施例之PBT-LCD1,伴隨著 施加電壓的增加透過率也增加,可以藉由電壓控制PBT-L C D1之透過率(顯示)。此外,在圖2可知,即使改變 驅動頻率,透過率之曲線也幾乎完全一致。 另一方面,由圖3可知,使用完全不含有前述銀-鈀 二元奈米粒子之複數種液晶分子混合物之第1比較例之 -23- 200921185 PBT-LCDl,也與前述第1實施例之PBT-LCD1同樣,伴 隨著施加電壓的增加,透過率也增加,可以藉由電壓控制 PBT-LCD1之透過率(顯示)。此外,在圖3可知,即使 改變驅動頻率,透過率之曲線也幾乎完全一致。 其次,由表1,比較PBT-LCD1之閾値可知,在室溫 (25°C )以及0°C,前述第1實施例之PBT-LCDl的閾値 較低。亦即,根據前述第1實施例之PBT-LCD1的話,可 以低電壓化,可謀求省電力。 此處,於負載驅動的場合,與靜態驅動相比必須要高 的驅動電壓,昂貴的驅動電路(驅動器)變得有必要。此 外’在可以使用於PBT-LCDl的液晶材料,△ ε高的液晶 材料很少,且期待低電壓化。亦即,前述第 1實施例 PBT-LCDl因爲不需要昂貴的驅動電路、可以成爲△ ε高 的液晶材料的替代這一點也很有利。 此外,由表1可知,在室溫(2 5 °C )以及〇 °C,前述 第1實施例之PBT-LCD 1在銳利度(sharpness )上也很優 異。前述第1實施例之PBT-LED1,藉由在銳利度上的優 異,可以提高最大對比,同時於高負載驅動也可以得到顯 著優異的顯示品質。 其次,在-2(TC,使用完全不含前述銀·鈀二元奈米粒 子的複數種液晶分子混合物之第1比較例之PBT-LCDl之 閾値很低,銳利度也優異,會被認爲比前述第1實施例之 PBT-LCDl具備更優異的性能。但是,改變觀點的話,前 述第1實施例之PBT-LCDl不管溫度如何閾値以及銳利度 -24- 200921185 幾乎都不改變,相對地前述第1比較例之ρβτ-lcdi則存 在有閾値及銳利度之溫度依存性’可以說是僅在-20 °C呈 現優異的特性。 因此,接著分別於圖4顯示前述第1實施例之PBT-LCD1之電壓一透過率特性之各驅動頻率之溫度依存性之圖 ,於圖5顯示前述第1比較例之ΡΒΤ-LCDI之電壓一透過 率特性之各驅動頻率之溫度依存性之圖。於圖4,圖4 ( a )係在100Hz之測定結果,圖4 ( b)係在300Hz之測定 結果,圖4 ( c )係在1 00 0Hz之測定結果。此外,同樣地 ,於圖5,圖5(a)係在100Hz之測定結果,圖5 ( b) 係在300Hz之測定結果,圖4 ( c )係在1 00 0Hz之測定結 果。 由圖4可知,在含有液晶相溶性粒子之液晶L包含前 述銀-鈀二元奈米粒子之第1實施例之ΡΒΤ-LCDI,電壓-透過率特性於各頻率幾乎爲一致,不受溫度影響。 另一方面,由圖5可知,在使用完全不含前述銀-鈀 二元奈米粒子之複數種液晶分子混合物之第1比較例例之 ΡΒΤ-LCDI,電壓-透過率特性隨著溫度改變。 閾値或銳利度隨著溫度改變的話,產生因應於溫度改 變驅動電壓的必要,顯示的外觀也改變。但是,根據前述 第1實施例之ρβτ-lcdi的話,如前所述幾乎沒有溫度依 存性,所以沒有必要因應溫度改變驅動電壓,而仍可得到 優異的顯不品質。 其次’使用前述LCD評估裝置,測定前述第1實施 -25- 200921185 例以及第1比較例之PBT-LCD1之電壓-對比特性,由電 壓-對比特性求出最適電壓(可得最大對比之電壓),在 室溫(25 t ) 、〇°C、-20°C測定在最適電壓下之應答特性 (1 /4負荷驅動)。結果顯示於表2。 又,在表2,顯示將最適電壓下的應答時間、升起時 間、以及衰減時間幾乎排成一致時的應答時間。 【表2】The metal nanoparticles composed of silver alone obtained as described above, and the metal nanoparticles composed of at least one metal other than silver and silver are bonded to the liquid crystal molecules by using the metal nanoparticles as a core. Liquid crystal compatible particles. Since the liquid crystal-compatible particles are dispersed in the organic solvent to form a dispersion, by concentrating the dispersion, a uniform liquid crystal-compatible particle slurry can be obtained. The concentration method of the above-mentioned dispersion liquid is not particularly limited, and it is preferred that the acid-dissolved triphenyl ion solubility at 20 to 100 ° C under reduced pressure is only limited (the reverse ion is used. It can be carried out in the range of the temperature of -17 to 21,185 degrees which is obtained by the above-mentioned shrinkage. Further, in the dispersion liquid, the liquid crystal molecules are again added as a dispersion liquid, and the dispersion liquid is concentrated in the same manner to obtain higher performance and uniformity. Liquid crystal-compatible particle slurry. The liquid crystal containing the liquid crystal-compatible particles can be obtained by, for example, adding a matrix liquid crystal while stirring at room temperature by using a liquid crystal-compatible particle paddle obtained as described above. In addition, the liquid crystal containing the liquid crystal-compatible particles may be added with a light-emitting agent in order to adjust the twist angle. The PBT-LCD 1 of the present embodiment having the above configuration is provided by the liquid crystal-compatible particles. The liquid crystal L contains the above-described metal nanoparticles, and the response in the low temperature region of, for example, 0 ° C or lower is accelerated. That is, the PB according to the present embodiment. T-LCD 1, in the low temperature region below 0 t, can also prevent blurring of the moving image or residual of the previous image, and can obtain excellent display quality. In addition, the PBT-LCD1 of the present embodiment contains the liquid crystal compatibility. The liquid crystal L of the particles can lower the threshold voltage by including the metal nanoparticles, and the driving circuit can be reduced in voltage. As a result, the PBT-LCD 1 of the present embodiment can save power and remove the load driving. The expensive driving circuit (driver) that must be used is no longer needed. Further, in the PBT-LCD 1 of the present embodiment, the liquid crystal L containing the liquid crystal-compatible particles has a threshold 値 temperature by containing the aforementioned metal nanoparticles. In other words, the PBT-LCD 1 of the present embodiment does not require temperature compensation of the drive circuit, and can be reduced in cost. Further, the PB T-LCD 1 of the present embodiment contains the liquid crystal compatibility- 18- 200921185 The liquid crystal L of the particles makes the sharpness better by containing the aforementioned metal nanoparticles. As a result, the PBT-LCD1 of the present embodiment increases the maximum contrast. The display quality of the drive, in other words, the number of loads (display capacitance) can be increased under the same display quality, which is particularly advantageous for a simple matrix LCD. In addition, the PBT-LCD1 of the present embodiment, the liquid crystal L containing the liquid crystal compatible particles The temperature dependence of the sharpness is eliminated by the inclusion of the metal nanoparticles. As a result, the PBT-LCD1 of the present embodiment does not exhibit temperature change, and excellent display quality can be obtained. Further, in the present embodiment, PBT-LCD1 The liquid crystal L containing the liquid crystal-compatible particles contains the metal nanoparticles, and the threshold-dependent property due to the difference in frequency can be reduced in the low temperature region around -20 to 〇 °C. That is, according to the PBT-LCD1 of the present embodiment, it is not necessary to change the driving electric power jg in accordance with the temperature in the low temperature region around -20 to 〇 °C for temperature compensation. Next, examples and comparative examples of the present invention are shown. [First Embodiment] In the present Example, first, liquid crystal-compatible liquid crystal containing silver-palladium binary nanoparticles was prepared as follows. A glass container having a volume of 1 〇〇mL of a stirring device, a thermometer, a reflux condenser, and a dropping funnel was added, and a plurality of liquid crystal molecules (a liquid crystal material manufactured by Merck Co., Ltd., trade name: 〇/υ) were added. / U 〇g , oxime tetrahydrofuran) 36.0mL and 2 • propanol-19- 200921185 1 0 m L to prepare a mixed solution. Next, in the above mixed solution, 0.01 M of tetrahydrofuran of tetrafluorofuran, 2.0 mL (containing 0.020 mmole as a silver atom) and 0.01 M of a tetrahydrofuran acetate solution (0.2 mL) Palladium contains 0.020 mm 〇le) and is left back (internal temperature 69 ° C) for an hour after heating. After completion of the reaction, the reaction solution was cooled to room temperature to obtain a brown homogeneous liquid crystal-compatible silver-palladium binary nanoparticle dispersion of 50 mL. The dispersion of the silver-palladium binary nanoparticles was analyzed by a transmission electron microscope, and the center metal of the liquid crystal-compatible silver-palladium binary nanoparticles was 2 to 10 nm and uniform. Next, in a glass container having an internal volume of 25 mL, '70 mg of the liquid crystal mixture of the above kind was added, and 7 mL of the crystal phase silver-palladium binary nanoparticle dispersion prepared in the present example was contained (as a total metal amount, 〇) After stirring, the resulting mixture was concentrated under reduced pressure to dryness under reduced pressure to obtain a liquid crystal-compatible silver-palladium binary nanoparticle slurry of 600 mg (yield of 1% by weight of silver-palladium based on a mixture of crystal molecules). . Next, using the liquid crystal containing the crystalline phase-dissolved heptadium-palladium binary nanoparticles obtained in the present Example, the PBT_LCD1 evaluation characteristic shown in Fig. 1 was produced. The production of PBT-LCD 1 was carried out as follows. First, 'the ITO film is formed as a transparent electrode on the glass plates 2a, 2b'. The transparent electrode film 3a is formed by photolithography to form a desired pattern, 3b, and then the glass substrate 2a of the transparent electrode film 3a, 3b is formed. The display portion on 2b is flexographically printed to form insulating films 4a, 4b. The atom of the added solution palladium should be 1 color by the particle size of the liquid. The solubility of the liquid is 6m g and the liquid silver is used. The evaluation step is performed at -20-200921185. Next, on the insulating film 4a, 4b, The liquid crystal alignment material (manufactured by Nissan Chemical Co., Ltd., trade name: SE_121 1 ) forms vertical alignment films 5a and 5b which are almost identical to each other. Next, the cylindrical roller which is wound with the cloth is rotated at a high speed, and rubbing is applied to the vertical alignment films 5a and 5b to rub the liquid crystal-compatible nickel-silver binary nanoparticles which are sealed in the liquid crystal cell 7. The liquid crystal is aligned on the one-axis 'the alignment state between the upper and lower substrates 6a, 6b in an anti-parellel state. Next, a thermosetting sealant (manufactured by Mitsui Chemicals, Inc., trade name: ES-7500) is printed on the inner side surface of the upper substrate 6a, and screen-printed into a pattern having an injection port. The gap control agent spreads the plastic balls having a diameter of 3·75 μm on the inner side surface of the lower substrate 6b in a dry dispersion manner. The thermosetting sealant contains 1 to 5 weight percent of a glass fiber of a size of 3.9 μm. Then, the upper and lower substrates 6a and 6b are stacked at a specific position to form a cell, and heat treatment is performed in a pressed state to cure the sealing agent to form the sealant layer 8. Next, the conductive material is printed by a screen printing method at a specific position on the outer surface of the sealant layer 8, thereby forming a conductive material pattern 9. As the conductive material, a gold (Au) ball or the like having a diameter of 4.4 μηι in an amount of 1 to 5 wt% in the thermosetting sealant is used. Next, a scar is drawn on the glass substrates 2a, 2b by a line drawing device, and is divided into a specific size/shape forming cell (ce 11 ) by breaking, and the cell is filled with liquid crystal by a vacuum injection method. Liquid crystal of compatible nickel-silver binary nanoparticles, sealed with a terminal sealant (2 places) -21 - 200921185 Thereafter 'chamfering (removing sharp corners) and washing, outside the glass substrates 2a, 2b The side surface is formed by attaching the polarizing plates 10a, i〇b in a specific pattern to a positively-fed Nicole (j Nicol) arrangement having a 45-degree angle of friction, and is formed as shown in FIG. The composition is 3.7 5μηι, the anti-parallel alignment, the black PBT-LCD1. Next, 'Use the LCD evaluation device (manufactured by Otsuka Electronics Co., Ltd., trade name: LCD-5200)' For each frequency of 100Hz, 300Hz, 1000Hz 'At room temperature (25 ° C), 〇 ° C, - 2 0. (: The voltage-transmittance characteristics (driving frequency dependence) of the PBT-LCD 1 produced in this example were measured. The results are shown in Fig. 2 And Table 1. In Figure 2, Figure 2 (a) is room temperature (25 ° C) The results are shown in Fig. 2(b) as the measurement result at 0 °C, and Fig. 2(c) is the measurement result at -20 °C. [First comparative example] In this comparative example, except that silver-palladium is not contained at all. The PBT-LCD 1 having the configuration shown in Fig. 1 was prepared in the same manner as in the first embodiment except that a plurality of liquid crystal molecular mixtures (manufactured by Merck Co., Ltd., trade name: M4) of the nanoparticles were used. The first example was identical, and the voltage-transmittance characteristics (driving frequency dependence) of the PBT-LCD 1 produced in this comparative example were measured. The results are shown in Fig. 3 and Table 1. In Fig. 3, Fig. 3 (a) The measurement result of temperature (25 °C), Fig. 3 (b) is the measurement result of 0 °C 'Fig. 3 (c) - 2 measurement results. -22- 200921185 [Table 1] Frequency (fiz) Frequency of threshold 値Dependence 100 300 1000 25 °C 1st embodiment vsm 2.212 2.2125 2.2171 Very small <0.009 viom 2.3231 2.325 2.3316 V90/V10 1.6624 1.66 1.6576 1st comparative example vsm 2.2268 2.2379 2.2463 small <0.018 vi〇m 2.3521 2.3593 2.3691 V90/ V10 1.7529 1.7492 1.7531 o°c First embodiment V5[V1 2.2081 2.2096 2.2152 Very small <0.009 V10 [V1 2.3254 2.327 2.334 V90/V10 1.6485 1.6495 1.6489 First Comparative Example V5 [V1 2.2168 2.222 2.2338 Small < 0.015 V10 [V1 2.3436 2.3483 2.3582 V90/V10 1.6875 1.6902 1.7 -20 °C First Embodiment V5rvi 2.2127 2.2119 2.214 Very small <0.004 VIOfVl 2.3307 2.3304 2.3336 V90/V10 1.6335 1.6357 1.636 1st comparative example V5[V1 2.1883 2.1891 2.1949 Very small <0.007 viorvi 2.3045 2.3043 2.3109 V90/V10 1.5769 1.5795 1.5792 It can be seen from Fig. 2 that the liquid crystal phase is contained The liquid crystal L of the soluble particles contains the PBT-LCD1 of the first embodiment of the silver-palladium binary nanoparticle, and the transmittance increases as the applied voltage increases, and the transmittance of the PBT-L C D1 can be controlled by the voltage ( display). In addition, as can be seen from Fig. 2, even if the driving frequency is changed, the curves of the transmittances are almost identical. On the other hand, as can be seen from Fig. 3, the -23-200921185 PBT-LCD1 of the first comparative example using a mixture of a plurality of liquid crystal molecules which does not contain the silver-palladium binary nanoparticle completely, is also the same as the first embodiment. Similarly, the PBT-LCD1 increases the transmittance with an increase in the applied voltage, and the transmittance (display) of the PBT-LCD1 can be controlled by the voltage. Further, as can be seen from Fig. 3, even if the driving frequency is changed, the curves of the transmittances are almost identical. Next, from Table 1, comparing the threshold of PBT-LCD1, the threshold 値 of the PBT-LCD 1 of the first embodiment described above is low at room temperature (25 ° C) and 0 °C. In other words, according to the PBT-LCD 1 of the first embodiment, the voltage can be reduced and power can be saved. Here, in the case of load driving, a high driving voltage is required as compared with the static driving, and an expensive driving circuit (driver) becomes necessary. Further, in the liquid crystal material which can be used for PBT-LCD1, there are few liquid crystal materials having a high Δ ε and a low voltage is expected. That is, the above-described first embodiment PBT-LCD1 is also advantageous in that it does not require an expensive driving circuit and can be replaced by a liquid crystal material having a high Δ ε. Further, as is clear from Table 1, the PBT-LCD 1 of the first embodiment described above is also excellent in sharpness at room temperature (25 ° C) and 〇 °C. According to the PBT-LED1 of the first embodiment, the maximum contrast can be improved by the superiority in sharpness, and the display quality can be remarkably excellent under high load driving. Next, at -2 (TC, the PBT-LCD1 of the first comparative example using a mixture of a plurality of liquid crystal molecules completely free of the above-mentioned silver-palladium binary nanoparticles has a low threshold , and excellent sharpness, and is considered to be considered as The PBT-LCD1 of the first embodiment has more excellent performance than the first embodiment. However, the PBT-LCD1 of the first embodiment does not change almost regardless of the temperature threshold and the sharpness -24-200921185. In the ρβτ-lcdi of the first comparative example, the temperature dependence of the threshold 値 and the sharpness is present. It can be said that the ρβτ-lcdi exhibits excellent characteristics only at -20 ° C. Therefore, the PBT of the first embodiment described above is shown in Fig. 4, respectively. Fig. 5 is a graph showing the temperature dependence of the respective driving frequencies of the voltage-transmittance characteristics of the ΡΒΤ-LCDI of the first comparative example, as shown in Fig. 5 for the temperature dependence of the respective driving frequencies of the voltage-transmittance characteristics of the LCD 1. 4, Fig. 4 (a) is the measurement result at 100 Hz, Fig. 4 (b) is the measurement result at 300 Hz, and Fig. 4 (c) is the measurement result at 100 Hz. Further, similarly, Fig. 5, Fig. 5 5(a) is the measurement result at 100 Hz, and Figure 5 (b) is at 300H. Fig. 4 (c) shows the measurement result at 100 Hz. As is apparent from Fig. 4, in the first embodiment in which the liquid crystal L containing the liquid crystal-compatible particles contains the silver-palladium binary nanoparticle. -LCDI, the voltage-transmittance characteristic is almost uniform at each frequency and is not affected by temperature. On the other hand, as shown in Fig. 5, a plurality of liquid crystal molecule mixtures completely free of the aforementioned silver-palladium binary nanoparticles are used. In the first comparative example of ΡΒΤ-LCDI, the voltage-transmittance characteristic changes with temperature. As the temperature changes, the threshold 値 or sharpness changes, and the appearance of the display changes depending on the temperature. However, according to the foregoing, In the case of ρβτ-lcdi of the first embodiment, since there is almost no temperature dependency as described above, it is not necessary to change the driving voltage in response to the temperature, and excellent quality can be obtained. Next, the above-mentioned LCD evaluation device is used to measure the above-mentioned 1Implement the voltage-contrast characteristics of the PBT-LCD1 in the example-25-200921185 and the first comparative example, and find the optimum voltage from the voltage-contrast characteristic (the maximum contrast voltage can be obtained) in the room. (25 t ), 〇 ° C, -20 ° C measured the response characteristics at the optimum voltage (1 / 4 load drive). The results are shown in Table 2. In addition, in Table 2, the response time at the optimum voltage is shown, The rise time and the response time when the decay time is almost aligned. [Table 2]

Rise Decay TO Rise TO Decay 電壓(V) 100Hz 第1實施例 35.747 32.422 29.775 32.422 6.9 第1比較例 26.41 28.203 20.911 28.203 7.0 25 °C 300Hz 第1實施例 35.949 34.557 30.172 33.827 7.2 第1比較例 30.555 29.907 25.525 29.256 7.3 1000Hz 第1實施例 36.087 36.698 30.767 35.31 7.3 第1比較例 29.944 30.515 25.772 29.395 7.4 100Hz 第1實施例J 111.55 118.44 96.038 115.56 7.2 第1比較例 107.79 109.28 90.585 106.69 7.2 o°c 300Hz 第1實施例 119.19 119.08 103.29 115.17 7.2 第1比較例 113.62 112.83 97.471 108.06 7.3 1000Hz 第1實施例 115.86 119.13 99.14 114.43 7.3 第1比較例 104.72 108.55 90.304 104.97 7.4 100Hz 第1實施例 697.97 695.1 594.55 667.25 7.3 第1比較例 829.64 844.84 714.87 810.42 7.1 -20°C 300Hz 第1實施例 741.52 729.19 646.32 700.63 7.2 第1比較例 813.94 793.86 704.62 765.06 7.2 1000Hz 第1實施例 680.04 699.36 597.46 671.91 7.4 第1比較例 848.62 822.07 730.84 786.2 7.1Rise Decay TO Rise TO Decay Voltage (V) 100Hz First Embodiment 35.747 32.422 29.775 32.422 6.9 First Comparative Example 26.41 28.203 20.911 28.203 7.0 25 °C 300Hz First Embodiment 35.949 34.557 30.172 33.827 7.2 First Comparative Example 30.555 29.907 25.525 29.256 7.3 1000Hz First embodiment 36.087 36.698 30.767 35.31 7.3 First comparative example 29.944 30.515 25.772 29.395 7.4 100Hz First embodiment J 111.55 118.44 96.038 115.56 7.2 First comparative example 107.79 109.28 90.585 106.69 7.2 o°c 300Hz First embodiment 119.19 119.08 103.29 115.17 7.2 First comparative example 113.62 112.83 97.471 108.06 7.3 1000Hz First embodiment 115.86 119.13 99.14 114.43 7.3 First comparative example 104.72 108.55 90.304 104.97 7.4 100Hz First embodiment 697.97 695.1 594.55 667.25 7.3 First comparative example 829.64 844.84 714.87 810.42 7.1 -20 ° C 300 Hz first embodiment 741.52 729.19 646.32 700.63 7.2 first comparative example 813.94 793.86 704.62 765.06 7.2 1000 Hz first embodiment 680.04 699.36 597.46 671.91 7.4 first comparative example 848.62 822.07 730.84 786.2 7.1

Rise 升起時間Rise rises time

Decay 衰減時間 TO Rise 由電壓切換至升起爲止的時間 TO Decay由電壓切換至衰減爲止的時間 -26- 200921185 由表2可知’在25°C及0°C,升起時間、衰減時間, 以使用完全不含有則述銀-銷二元奈米粒子的複數種之液 晶分子混合物之第1比較例之PBT-LCD1其應答爲高速。 但是,在-2 0 °C ,逆轉、升起時間、衰減時間,都以含有 液晶相溶性粒子的液晶包含前述銀-鈀二元奈米粒子之第1 實施例之PBT-LED1其應答爲高速。 於PBT-LED1在-20〜之低溫區域,應答變得遲緩 是最大的問題。前述第1實施例之PBT-LCD1也在越低溫 應答變得越慢,其變化量與第1比較例之PBT-LCD1這樣 的從前例相比,應答變慢的變化量爲和緩,可知在低溫區 域的應答低速化的問題被改善了。 【圖式簡單說明】 圖1係說明本發明之垂直配向液晶顯示裝置之一構成 例之剖面圖。 圖2係顯示本發明的第丨實施例之液晶顯示裝置之電 壓一透過率特性之驅動頻率依存性之圖。 圖3係顯示對本發明之第丨比較例之液晶顯示裝置之 電壓一透過率特性之驅動頻率依存性之圖。 圖4係顯示本發明的第丨實施例之液晶顯示裝置之電 壓一透過率特性之各驅動頻率之溫度依存性之圖。 圖5係顯示對本發明之第!比較例之液晶顯示裝置之 電壓一透過率特性之各驅動頻率之溫度依存性之圖。 -27- 200921185 【主要元件符號說明】 1 :液晶顯示裝置 2a,2b :玻璃基板 3a,3b :透明電極膜 4a,4b :絕緣膜 5a,5b :配向膜 6a,6b :基板 7 :液晶胞(c e 11 ) 8 :密封劑層 9 :導通材圖案 10a,10b :偏光板 -28Decay decay time TO Rise Time from voltage switching to rising TO Decay Time from voltage switching to attenuation -26- 200921185 It can be seen from Table 2 'At 25 ° C and 0 ° C, rise time, decay time, to The PBT-LCD1 of the first comparative example in which a mixture of a plurality of liquid crystal molecules of a plurality of kinds of silver-pin binary nanoparticles is not contained at all has a high speed. However, the PBT-LED1 of the first embodiment in which the silver-palladium binary nanoparticle is contained in the liquid crystal containing the liquid crystal-compatible particles at a temperature of -0 °C, the reverse rotation, the rise time, and the decay time are high-speed. . In the low temperature range of -20~ of PBT-LED1, the response becomes sluggish is the biggest problem. The PBT-LCD 1 of the first embodiment is also slower in response to the lower temperature, and the amount of change is slower than that of the prior example of the PBT-LCD 1 of the first comparative example, and it is known that the amount of change is slow. The problem of slow response in the area has been improved. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a configuration of a vertical alignment liquid crystal display device of the present invention. Fig. 2 is a graph showing the drive frequency dependence of the voltage-transmittance characteristics of the liquid crystal display device of the third embodiment of the present invention. Fig. 3 is a graph showing the dependence of the driving frequency of the voltage-transmittance characteristics of the liquid crystal display device of the comparative example of the present invention. Fig. 4 is a graph showing the temperature dependence of the respective driving frequencies of the voltage-transmittance characteristics of the liquid crystal display device of the third embodiment of the present invention. Figure 5 shows the first paragraph of the present invention! A graph of the temperature dependence of each of the driving frequencies of the voltage-transmittance characteristics of the liquid crystal display device of the comparative example. -27- 200921185 [Description of main component symbols] 1 : Liquid crystal display device 2a, 2b: Glass substrate 3a, 3b: Transparent electrode film 4a, 4b: Insulating film 5a, 5b: Alignment film 6a, 6b: Substrate 7: Liquid crystal cell ( Ce 11 ) 8 : sealant layer 9 : conductive material pattern 10a, 10b : polarizing plate -28

Claims (1)

200921185 十、申請專利範圍 1 . 一種液晶顯示裝置,其特徵爲具備:被夾持於相對 向的1對基板的液晶胞,及被封入該液晶胞的含有液晶相 溶性粒子之液晶;該含有液晶相溶性粒子之液晶,含有由 單獨的銀所構成的金屬奈米粒子,或者由銀與銀以外的至 少1種金屬所構成的金屬奈米粒子,及以該金屬奈米粒子 爲核結合於該金屬奈米粒子的周圍之至少1種液晶分子所 構成的液晶相溶性粒子;該液晶分子的電容率向異性爲負 〇 2.如申請專利範圍第1項之液晶顯示裝置’其中前述 銀,與銀以外之至少1種金屬所構成的金屬奈米粒子’係 銀-絶二元奈米粒子。 3 .如申請專利範圍第2項之液晶顯示裝置’其中前述 銀-16二元奈米粒子’銀與銷的重量比在銀:把=1· 〇·25 〜4的範圍。 4 .如申請專利範圍第1項之液晶顯示裝置’其中前述 ' 含有液晶相溶性粒子之液晶,對含有的液晶而言含有〇·02 〜0.2重量百分比之範圍之量之前述金屬奈米粒子° ' 5 .如申請專利範圍第1項之液晶顯示裝置’其中前述 含有液晶相溶性粒子之液晶中之液晶對前述基板配向於垂 直方向。 6 ·如申請專利範圍第1項之液晶顯示裝置’其中係使 用負載驅動之點陣面板。 7.如申請專利範圍第1項之液晶顯示裝置’其中係使 -29- 200921185 用靜態驅動或主動驅動之字元顯示面板或點陣面板 -30-200921185 X. Patent Application No. 1. A liquid crystal display device comprising: a liquid crystal cell sandwiched between a pair of opposing substrates; and a liquid crystal containing liquid crystal-compatible particles sealed in the liquid crystal cell; The liquid crystal of the compatible particles contains metal nanoparticles composed of silver alone or metal nanoparticles composed of at least one metal other than silver and silver, and the metal nanoparticles are bonded to the core. a liquid crystal-compatible particle composed of at least one liquid crystal molecule around the metal nanoparticle; the permittivity of the liquid crystal molecule is negative 〇2. The liquid crystal display device of the first aspect of the patent application, wherein the silver, A metal nanoparticle composed of at least one metal other than silver is a silver-based binary nanoparticle. 3. The liquid crystal display device of claim 2, wherein the weight ratio of the silver-16 binary nanoparticle silver to the pin is in the range of silver:==1·〇·25 to 4. 4. The liquid crystal display device of the first aspect of the invention, wherein the liquid crystal containing the liquid crystal-compatible particles, the liquid crystal containing the metal nanoparticle in an amount of from 0.02 to 0.2% by weight. [5] The liquid crystal display device of claim 1, wherein the liquid crystal in the liquid crystal containing the liquid crystal-compatible particles is aligned in the vertical direction with respect to the substrate. 6. A liquid crystal display device as claimed in claim 1 wherein a load-driven dot matrix panel is used. 7. A liquid crystal display device as claimed in claim 1 wherein the -29-200921185 is a statically driven or actively driven character display panel or a dot matrix panel -30-
TW97127335A 2007-07-18 2008-07-18 Liquid crystal display device TW200921185A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187418A JP2009025485A (en) 2007-07-18 2007-07-18 Liquid crystal display device

Publications (1)

Publication Number Publication Date
TW200921185A true TW200921185A (en) 2009-05-16

Family

ID=40259473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127335A TW200921185A (en) 2007-07-18 2008-07-18 Liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2009025485A (en)
TW (1) TW200921185A (en)
WO (1) WO2009011127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419586B (en) * 2009-06-15 2013-12-11 Htc Corp Method for managing multimedia broadcast multicast service transmission and related communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042748A (en) * 2009-08-21 2011-03-03 Osaka Univ Nanoparticle dispersed liquid crystal, method for producing the same and liquid crystal display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337351A (en) * 2000-03-24 2001-12-07 Shunsuke Kobayashi Liquid crystal display device
JP4104892B2 (en) * 2001-08-31 2008-06-18 直樹 戸嶋 Liquid crystal display
JP4392186B2 (en) * 2003-04-14 2009-12-24 大日本印刷株式会社 High-speed response liquid crystal device and driving method
JP2006291016A (en) * 2005-04-08 2006-10-26 Nano Opt Kenkyusho:Kk Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419586B (en) * 2009-06-15 2013-12-11 Htc Corp Method for managing multimedia broadcast multicast service transmission and related communication device

Also Published As

Publication number Publication date
JP2009025485A (en) 2009-02-05
WO2009011127A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
US7771799B2 (en) Liquid crystal-soluble particle, method for manufacturing the same and liquid crystal device element
US7567332B2 (en) Manufacturing method of a display panel
JP2006291016A (en) Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element
US20070026135A1 (en) Method of making a liquid crystal alignment layer
CN100447638C (en) Liquid crystal display device and method of producing the same
JP5019847B2 (en) Liquid crystal compatible particle-containing liquid crystal and liquid crystal display device
JP4559685B2 (en) Liquid crystal alignment layer
TW200921185A (en) Liquid crystal display device
KR101102026B1 (en) Liquid crystal display and method of fabricating the same
US7999909B2 (en) Fabrication method of in-plane switching mode liquid crystal display device including twisted nematic liquid crystal layer between first and second ferroelectric liquid crystal layers
CN108329929B (en) Liquid crystal composition with extremely low negative dielectric anisotropy and application thereof
JP5566109B2 (en) Liquid crystal display
JP2006206710A (en) Chiral nematic liquid crystal composition, liquid crystal display element and method for producing the same
JP4700244B2 (en) High contrast smectic liquid crystal control or display device
JP2009150944A (en) Liquid crystal display device
JP2008203642A (en) Multiple imposition thin film transistor substrate and manufacturing method of liquid crystal display element
KR20070027360A (en) Transition metal doped conducting polymer membrane and method for preparing the same
JP2001172635A (en) Active matrix type liquid crystal display device
JP5374930B2 (en) Liquid crystal material, liquid crystal display element, and liquid crystal display device
TW200916560A (en) Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device
KR102187149B1 (en) Liquid crystal display device
JPH11222593A (en) Liquid crystal composition and liquid crystal element
JPH05119320A (en) Liquid crystal oriented film
JPH0754382B2 (en) Method for manufacturing liquid crystal electro-optical device
JP4959016B2 (en) Liquid crystal display