TW200903555A - Ion implanter - Google Patents

Ion implanter Download PDF

Info

Publication number
TW200903555A
TW200903555A TW097111420A TW97111420A TW200903555A TW 200903555 A TW200903555 A TW 200903555A TW 097111420 A TW097111420 A TW 097111420A TW 97111420 A TW97111420 A TW 97111420A TW 200903555 A TW200903555 A TW 200903555A
Authority
TW
Taiwan
Prior art keywords
ion beam
ion
ribbon
current density
thickness
Prior art date
Application number
TW097111420A
Other languages
Chinese (zh)
Other versions
TWI371055B (en
Inventor
Yasuyuki Tsuji
Original Assignee
Mitsui Shipbuilding Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Shipbuilding Eng filed Critical Mitsui Shipbuilding Eng
Publication of TW200903555A publication Critical patent/TW200903555A/en
Application granted granted Critical
Publication of TWI371055B publication Critical patent/TWI371055B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

To adjust a current density distribution of an ion implantation apparatus with precision by finely bending a part of a stripe type ion beam in a surface of the stripe type ion beam. The ion implantation apparatus 10 comprises: an ion source 22 for generating an ion beam; a beam shaping section 20 for shaping the ion beam into the stripe type ion beam; a processing section 60 for irradiating the stripe type ion beam onto a process substrate 62; a lens element 40 for adjusting a current density distribution which expresses the total from current density in the beam thickness direction of the stripe type ion beam with a distribution along the beam thickness direction; and a beam transport section 30 for making the thickness in the thickness direction of the stripe type ion beam thinner, to irradiate the process substrate 62 with the stripe type ion beam. The lens element 40 is set so that the current density distribution of the ion beam can be adjusted in a region near a focusing position 52 of the ion beam.

Description

200903555 九、發明說明 【發明所屬之技術領域】 本發明係關於對處理對象基板照射帶狀離子束而進行 離子植入的離子植入裝置。 【先前技術】 現今對於在採用液晶方式或有機LED的平面型顯示 裝置所使用的玻璃基板或半導體基板,使用離子植入裝置 而進行離子植入的處理正在盛行中。尤其,爲了對於大型 基板有效且正確地進行離子植入,係要求使用對於基板的 寬幅所照射之離子束的寬幅較寬,且將電流密度分布控制 成所希望的分布的帶狀離子束。 藉由使用將離子束的射束寬度形成爲比基板寬度寬的 帶狀離子束,可一次處理基板寬度方向的區域,此時,藉 由使其朝與基板寬度方向呈正交的方向移動,可一次將基 板整體進行離子植入,因而提升效率。 另一方面,帶狀離子束係將基板寬度方向的相同位置 在與寬度方向呈正交的方向進行處理,因此當該帶狀離子 束的電流密度分布在寬度方向不均一時,在基板上不均一 地予以離子植入的部分會呈現爲線狀,而無法進行正確的 離子植入處理。因此,帶狀離子束最好係以形成爲所希望 的電流密度分布的方式予以正確調整。 在下述專利文獻1中所記載的離子植入裝置,係如上 所述將帶狀離子束進行整形,使作爲被照射體的試料相對 -4- 200903555 於離子束移動’藉此將離子束相對於試料進行掃描。在該 裝置中’利用離子源產生縱長的帶狀離子束,使由該離子 源所產生的帶狀離子束通過質量分析磁鐵的通路,之後, 僅使具有所希望範圍的質量數的離子種通過,使已通過用 以將除此以外的質量數的離子種予以遮斷的開縫的離子束 照射在試料而進行離子植入。此時,使試料朝向與帶狀離 子束的寬度較寬的長邊方向呈正交的方向移動,而進行試 料的離子植入。 此外’設置有用以調查離子束分布的位置檢測器。 同樣地’在下述專利文獻2係記載有以下所示之離子 植入裝置。亦即,在該裝置中,在予以磁屏的離子源中使 縱長剖面的大面積離子束發生,藉由窗架型(window frame type )磁鐵,將離子束以在短邊方向呈接近90度之 較大中心角的方式一樣地彎曲,通過具有縱長開口的開縫 板而去除不需要離子,將離子束照射在朝射束短邊方向並 進運動的試料。 此外,在下述專利文獻3係記載有以下所示之離子植 入裝置。亦即,在該裝置中,係由離子源,包含所希望的 離子種,使寬度比基板短邊寬度寬的片狀離子束發生,藉 由質量分離磁鐵,將片狀離子束彎曲成與該片材面呈正交 的方向而選擇並導出所希望的離子種,此時,使用分離開 縫,與質量分離磁鐵合作而選出所希望的離子種並使其通 過。之後,在已通過分離開縫的離子束的照射區域內,使 基板朝與離子束的片材面實質上呈正交的方向往返驅動’ -5- 200903555 而進行離子植入。 (專利文獻1 )日本專利特開平1 0-3 02706號公報 (專利文獻2 )日本專利特開平1 1 - 1 265 76號公報 (專利文獻3)日本專利特開2005-327713號公報 【發明內容】 (發明所欲解決之課題) 但是,在上述專利文獻1至3中,使用專利文獻 1所記載之用以調查帶狀離子束之分布的位置檢測器來測 定該離子束的電流密度分布,會有即使視其結果來調整帶 狀離子束的電流密度分布,亦無法精度佳地進行調整的問 題。 亦即,上述調整係藉由將帶狀離子束的一部分在帶狀 離子束的面內彎曲成較小,以補充電流密度較低部分的電 流密度來進行。爲了將帶狀離子束的一部分在帶狀離子束 的面內予以彎曲,係在上述離子束之一部分的區域使用電 場或磁場來進行。此時,例如若爲電場時,在帶狀離子束 之面內方向,電場係必須具有斜率,若爲磁場時,必須使 磁場具有相對於帶狀離子束的面呈垂直方向的磁場成分。 但是’此時之帶狀離子束係具有厚度,而且電場及磁場以 3次元分布’因此’受到上述彎曲時所不需要的電場或磁 場成分的影響而使帶狀離子束的厚度變爲不均一。因此, 使得利用分離開縫進行所希望的離子種的選擇時的選擇性 bS降低,甚至誤爲僅將欲彎曲的帶狀離子束的前述一部分 -6 - 200903555 去除分離開縫,藉此對於作爲處理對象基板的試料 均勻的電流密度分布的離子束進行離子植入。如上 無法將帶狀離子束的一部分精度高地朝所希望的方 地較小。 近年來在進行離子植入時,需要更進一步之離 入角度的控制或溫度管理,但是上述帶狀離子束的 不均一會使該管理更加困難。 因此,本發明係爲了解決上述問題點,目的在 種離子植入裝置,可將帶狀離子束的一部分在帶狀 的面內彎曲成較小而精度佳地調整電流密度分布之 精度佳且均勻地調整電流密度分布。 (解決課題之手段) 爲了達成上述目的,本發明係提供一種離子植 ’係在處理對象基板照射具有比該處理對象基板的 寬的射束寬度的帶狀離子束而進行離子植入的離子 置’其特徵爲具有:射束整形部,具備產生離子束 源,且將所產生的離子束整形成帶狀離子束;處理 前述帶狀離子束照射在處理對象基板;以及射束輸 具備:以在與前述帶狀離子束之前述射束寬度方向 的帶狀離子束的厚度方向具有曲率的方式將前述帶 束的行進方向予以彎曲的質量分離磁鐵;及用以將 帶狀離子束的厚度方向中的電流密度合計値以前述 度方向的分布予以表示的前述帶狀離子束的電流密 ,以不 所示, 向彎曲 子束植 厚度的 提供一 離子束 例如可 入裝置 寬幅更 植入裝 的離子 部,將 送部, 呈正交 狀離子 在前述 射束寬 度分布 200903555 進行調整的調整單元,在將前述帶狀離子束的前述厚 向的厚度減薄而使前述帶狀離子束收斂後,使前述帶 子束進至前述處理部,以在前述帶狀離子束的厚度比 前述質量分離磁鐵時之前述帶狀離子束的厚度薄之前 狀離子束的收斂位置附近的區域,調整前述帶狀離子 電流密度分布的方式配置有前述調整單元。 此時,最好前述質量分離磁鐵係使前述帶狀離子 前述厚度方向中收斂,在該收斂的位置,設有使預定 子粒子通過的分離開縫, 前述調整單元係設在與前述分離開縫的位置相重 位置或相鄰接的位置。 此外,最好前述調整單元係在前述帶狀離子束之 厚度方向的兩側成對,且由沿著前述寬度方向設有複 的磁鐵所構成,且前述分離開縫係由非磁性體所構成 或者,同樣地最好前述調整單元係在前述帶狀離 之前述厚度方向的兩側成對,且由沿著前述寬度方向 複數對的電極所構成,與前述分離開縫的位置鄰接而 前述調整單元係在鄰接的前述分離開縫之側具備用以 藉由前述電極所形成之電場的電場屏蔽。 此外,前述射束整形部亦以具備複數個產生前述 離子束的離子源,而且將由該等離子源所產生的帶狀 束在前述離子束的厚度方向中以一點予以收斂的方式 前述複數個離子源,前述調整單元係以在前述一點予 斂的位置附近的區域調整前述離子束的電流密度分布 度方 狀離 通過 述帶 束的 束在 的離 疊的 前述 數對 〇 子束 設有 設, 遮蔽 帶狀 離子 配置 以收 的方 -8- 200903555 式配置有前述調整單元的形態爲佳。 (發明之效果) 在本發明之離子植入裝置中,在將帶狀離子束的厚度 方向的厚度減薄而使帶狀離子束收斂後,使帶狀離子束照 射在處理對象基板。此時,在帶狀離子束的厚度比通過質 量分離磁鐵的帶狀離子束的厚度薄之離子束的收斂位置附 近的區域,調整單元係對離子束的電流密度分布進行調整 。因此,對於厚度變薄的帶狀離子束所作用的磁場成分或 電場成分係在離子束的厚度方向具有大致一定的値,而且 ,該値係接近於帶狀離子束之射束厚度方向之中心位置中 的値。因此,帶狀離子束中之射束厚度方向的各部分係接 受一定磁場的作用而在相同方向以相同角度予以彎曲。因 此,可調整精度較高的離子束的電流密度分布,例如均勻 的電流密度分布。此外,由於在離子束的厚度變薄的區域 進行離子束的電流密度分布之調整,因此離子束彎曲所不 需要的電場或磁場成分較小。因此,帶狀離子束的厚度的 不均勻程度係比習知技術低。 【實施方式】 以下,就本發明之離子植入裝置,根據所附圖示所顯 示之較佳實施形態來詳加說明。 第1圖係本發明之離子植入裝置之一實施形態之離子 植入裝置1 〇的俯視圖。第2圖係離子植入裝置1 〇的側視 -9- 200903555 圖。 離子植入裝置10係由離子束的上游側依序具有:具 備離子源的射束整形部20 ;具備質量分離磁鐵及調整單 元的射束輸送部3 0 ;在處理對象基板(以下稱爲處理基 板)進行離子植入的處理部6 0 ;及控制部8 0。射束整形 部20、射束輸送部30及處理部60係由未圖示之真空殼 體所包圍,藉由真空泵而維持一定的真空度(1〇-5至 I(T3Pa) 〇 在本發明中,根據由離子源朝向處理基板前進的離子 束流動’將離子源之側稱爲上游側,將處理基板之側稱爲 下游側。 射束整形部20係具有小型的離子源22。離子源22 係在產生離子束的部分,使用伯納型(Bernas-type) 或 弗利曼型(Freeman-type )的電漿產生機,以使離子束由 小型的離子源22發散的方式予以拉出。在伯納型離子源 中,係在金屬腔室內具備熱絲(filament )及反射板,在 其外側具備磁鐵。對該離子源22之真空中的金屬腔室內 供給含有用於離子植入之原子的氣體,在熱絲流動電流而 釋出熱電子,使設在金屬腔室兩側的反射板間往返。在該 狀態下,藉由對金屬腔室施加預定的電弧電壓,而使電弧 放電產生,藉此使被供給至金屬腔室內的氣體電離,而產 生電漿。將該所產生的電漿由設在金屬腔室之側壁的取出 孔,使用拉出電極將電漿拉出,藉此由金屬腔室放射離子 束24。 -10- 200903555 本實施形態的離子源22係使用小型的離子源 發散的離子束。在本發明中,除了小型離子源以外 構成爲由大型離子源,產生具有大致一定之射束寬 致平行的帶狀離子束。此外,亦可藉由複數個離子 生離子束。 所產生的離子束24係由離子束之端附近的電 較低的區域至成爲離子束之主區域的電流密度較高 ,依位置的不同,電流密度係連續性產生變化,因 其交界並不明確。但是,在本發明中,將離子束之 的電流密度超過預定値的部分作爲離子束之端,而 子束2 4的線。 由離子源22所產生的離子束係如第2圖所 子束之端25a、25b發散,另一方面,如第1圖所 在離子束之端2k、25d發散,但是在離子束之端 2 5 d的發散程度較低。如上所示之離子束的發散程 同係可依離子源2 2之取出孔的形狀及拉出電極的 決定。 如此所產生的離子束的剖面形狀係形成離子 25c、25d間之長度的射束厚度比離子束之端25a、 之長度的射束寬度小的形狀,亦即呈帶狀。該離子 束寬度係以具有比處理基板的寬幅寬的射束寬度的 以整形。 其中,離子束由於係具有正電荷的粒子流,如 所示,到達處理部70之帶狀離子束之端25 c、25 d 而產生 ,亦可 度的大 源而產 流密度 的區域 此原本 端附近 設定離 示在離 示,亦 2 5c、 度的不 構成來 束之端 25b間 束的射 方式予 第1圖 係藉由 -11 - 200903555 因離子束的電荷所造成之斥力的作用而顯示發散 在本發明中,無論是如上所示之發散的離子束、 的離子束,在本發明中均可適用。 在離子源22所產生的離子束24係形成爲帶 至射束輸送部3 0。 射束輸送部3 0係具有:質量分離磁鐵3 2、 40及分離開縫50。射束輸送部30係在將離子异 束厚度方向(第1圖中之端25c至25d間的厚度 厚度變薄而使離子束24收斂後,使離子束24照 部60的處理基板所構成。 質量分離磁鐵32係在由磁鈪34所形成之角 的內側,如第2圖所示,使一對磁極3 6相向而 磁極3 6周圍捲繞線圏3 8所構成的電磁鐵。一 | 所形成的磁場係以形成爲相同方向的方式以串聯 38’連接於未圖示之電源而被供給電流。 由第1圖所示之離子束之端25c、25d的軌 離子束24係形成爲稍微擴散的離子束24而入射 離磁鐵32。該離子束24係通過一對磁極36之 帶狀離子束的厚度方向具有曲率的方式,使離子 進行方向彎曲,且以在後述之分離開縫的位置收 予以整形。 一對磁極3 6間之朝向內側的面係使其局部 變其傾斜位置而予以調整,藉此以曲率不同之圓 續的面或環面等複雑的連續曲面所構成^此外, 。但是, 或是收斂 狀而前進 透鏡要素 ί 24的射 方向)的 射在處理 型筒構造 設置,在 付磁極3 6 連接線圏 道可知, 至質量分 間,以在 束24的 斂的方式 傾斜或改 柱面相連 以使磁極 -12- 200903555 3 6的一部分作動的方式構成,兩側的磁極端面3 7相對於 離子束24所呈角度係予以調整。其中,在質量分離磁鐵 32亦可設置由磁軛34而在離子束24之側越過線圈38而 延伸的場夾(field clamp )。此外,亦可構成爲調整線圈 3 8的形狀,而形成爲所希望的離子束形狀。 已通過質量分離磁鐵32的離子束24係在離子源22 之電發密度及未圖示之拉出電極及質量分離磁鐵32的磁 場的影響下,以使電流密度的不均在一定以下,例如5 % 以下的方式,來調整電漿密度及拉出電極之電壓及質量分 離磁鐵32的磁場。該離子束24係藉由後述的透鏡要素 40,使電流密度的不均減低至1 %左右。 在此,離子束的電流密度係指沿著離子束24的厚度 方向,亦即,沿著離子束之端25c、25d間之長度方向的 射束厚度方向而將電流密度予以積分的積分値,亦即經合 計的合計値。電流密度的不均係指電流密度的射束寬度方 向(第2圖中之端25a至25b間的長度方向)的分布的電 流密度分布對於作爲目標的分布(例如均一的分布)偏移 程度的標準偏差的程度,更具體而言,不均爲1 %以下係 指偏移程度的標準偏差相對於平均電流密度的値的比爲1 %以下。 其中’在本發明中,電流密度分布係除了均勻分布以 外’亦可爲不均一之所希望的分布。例如,爲了配合藉由 CVD法等形成在處理基板62上的薄膜的不均一或熱處理 的不均一 ’意圖按照場所來改變離子植入量,亦會有以將 -13- 200903555 電流密度分布形成爲作爲目標之不均一分布的方式進行調 整的情形。 透鏡要素40係將帶狀離子束24的一部分,在該帶狀 離子束24的面內朝向射束寬度的方向彎曲,而調整離子 束24之射束寬度方向中之電流密度分布的調整單元。透 鏡要素40係配置在離子束24的厚度比通過質量分離磁鐵 32之離子束24的厚度較薄的離子束的收斂位置52附近 的區域,在該區域中調整離子束2 4的電流密度分布。 在透鏡要素4 0中,係在包夾離子束2 4的兩側的磁軛 42,將電磁鐵44成對而且朝離子束24之射束寬度方向成 列而設置複數個。該等電磁鐵44係將帶狀離子束24的射 束厚度方向的中心面爲中心,設置在兩側之對稱位置。電 磁鐵44係由以電磁軟鐵所形成的磁極46及被捲繞在磁極 46周圍的線圈48所構成,以使成對的電磁鐵44的其中 一方的電磁鐵44所形成磁場朝向另一方的電磁鐵44的方 式,線圈48的線係相對於一對電磁鐵44而呈串聯連接。 如上所示,相對向之成對的電磁鐵44在磁軛42之上,以 橫斷射束寬度整體的方式設置有複數組。電磁鐵44之成 對的個數係1 〇至2 0左右。 其中,第1圖及第2圖所示之透鏡要素40係一例, 但並非限定於此。離子束2 4係藉由離子源2 2及離子源 22之未圖示的拉出電極,甚至藉由質量分離磁鐵32,以 接近於預定之電流密度分布的方式以某程度予以調整,因 此藉由透鏡要素40所進行的調整係可爲緩和的調整。因 -14- 200903555 此,若爲藉由透鏡要素40而平穩地產生磁場者即可。 此外’透鏡要素40係除了使用磁場進行調整以外, 亦可如後所述使用電場來進行離子束24之調整。但是, 基於以下理由’透鏡要素40係以使用磁場者爲佳。亦即 ,抑制將離子束24周圍以雲狀包圍而以低速不一致地進 行運動的電子會因離子束24中之正電荷彼此的斥力而使 離子束24本身發散的特性,但是爲了不會對於該電子造 成較大的影響,透鏡要素40係以使用磁場爲佳。 在透鏡要素40之成對的電磁鐵44之間設有分離開縫 50。分離開縫50在第2圖中並未圖示,其係由以橫斷離 子束24之端25a、25b的方式設置細長的孔(開縫)的非 磁性體構件所構成。利用質量分離磁鐵3 2予以彎曲的離 子束24係在質量分離磁鐵32之下游側於射束厚度方向中 在收斂位置5 2予以收斂,但是在該收斂位置5 2設有分離 開縫50,因而僅使具有預定質量與電荷的離子粒子通過 。亦即,分離開縫50係設在離子束24在射束厚度方向中 予以收斂的收斂位置5 2,透鏡要素4 0係設在與分離開縫 5 〇相重疊的位置。 離子束24中,未具有預定質量及電荷的離子粒子由 於未在收斂位置收斂,因此衝撞分離開縫5 0的壁面而被 阻止朝下游側移動。因此,分離開縫50係必須使用對於 離子粒子的衝撞所造成磨損具有耐性的素材,例如適於使 用石墨。離子粒子的衝撞係當相對於垂直具有傾斜角度而 衝撞壁面時,磨損較爲嚴重,因此分離開縫5 0最好係以 -15- 200903555 具備離子粒子相對於壁面大致呈垂直地衝撞的形狀爲佳。 在分離開縫50中,當離子粒子衝撞時,分離開縫5 之材料的一部分接收到離子粒子的衝撞能量而作爲粒子以 物理性飛散,而且因熱所造成的氣化而形成爲氣體而飛散 。此時,射束輸送部3 0係形成爲低壓環境,因此上述飛 散會有以直線擴散之虞。因此,必須以使離子粒子所衝撞 的部分不會由處理基板看到的方式設定分離開縫50的形 狀,俾以使經飛散的粒子或氣體等之材料成分不會到達下 游側之處理基板。例如如第1圖所示,在分離開縫5 0上 游側的離子粒子所衝撞的部分係設置具有面積較大之衝撞 面的凸緣54,藉由該凸緣54,阻止所飛散的材料成分到 達處理基板。此外,在離子束24所通過之分離開縫50的 孔的內壁面’即使離子粒子衝撞在該內壁面,亦使所飛散 的材料成分不會直接到達處理基板的方式,形成爲無法由 處理基板看透離子粒子所衝撞的面的形狀。形狀例如係以 在上游側具有形成傾斜(9 0度)之段差面的鋸狀凹凸形 狀爲佳。 分離開縫5 0係必須爲非磁性體,俾以不會對透鏡要 素4〇所形成的磁場造成影響。此外,分離開縫50亦可配 置使成分離開縫50與透鏡要素40相鄰接,而不會配置成 與透鏡要素40的位置相重疊。 如後所述’當使用採用電場來調整離子束24的透鏡 要素90來替代透鏡要素4〇時,考慮到難以選定不會影響 電场的材料、及在分離開縫50表面沈積導電性膜而對電 -16- 200903555 場造成影響的情形,透鏡要素90係以配置成與分 5 〇鄰接爲佳。此時,分離開縫5 0係必須配置在離 的收斂位置52,因此將透鏡要素90配置成鄰接於 縫50。 此外,分離開縫50之離子束24之厚度方向之 開口寬度可爲予以固定者,但以可予以可變調整爲 按照應植入至處理基板的離子量,而且按照有無植 高之離子的必要性,來調整開縫的開口寬度,且可 當地調整離子粒子的分離性能。此外,會有將收 52中之離子束24的厚度減薄爲10數mm左右的 另一方面,離子束24的軌道係受到離子種類、離 量及離子粒子的電荷影響而並非恆爲一定。因此, 開口寬度係以可視情況予以調整爲佳。 利用分離開縫50分別成不需要的離子粒子而 定的離子粒子所構成,而且利用透鏡要素40而使 度分布予以調整後的離子束24係一面擴展射束厚 面進至處理部6 0。 處理部6 0係具有:一面將處理基板6 2由第1 下側搬送至上側一面進行離子植入之未圖示的移動 及用以計測離子束24之電流密度分布的法拉: Far ad ay Cup ) 64 ° 處理基板62係例示半導體晶圓或玻璃基板。 2 4的射束寬度係藉由質量分離磁鐵3 2所進行的調 第2圖所示,相較於處理基板62的寬幅較爲寬廣。 離開縫 子束24 分離開 開縫的 佳。可 入純度 藉此適 斂位置 情形, 子束能 開縫的 僅以預 電流密 度,一 圖中的 機構; 第杯( 離子束 整,如 -17- 200903555 此外,如第2圖所示,照射在處理基板62的離子束 24係以隨著愈前進至下游側的處理基板62,位置愈降低 的方式,在圖中下側呈傾斜。此係由於處理基板62藉由 未圖示之基台,由處理基板62的背面利用重力而予以保 持,而且使離子束24相對於處理基板62呈垂直入射之故 。之所以由背面保持處理基板62,係因爲在曝露於離子 束之處理基板62的前面並無法設置夾治具等保持機構之 故。 當處理基板62爲玻璃板時,大部分爲一邊爲lm見 方的正方形形狀且厚度爲〇.5mm的板,較容易彎曲。此 外,由於在玻璃板的前面施加有供微細電路元件等之用的 加工,因此爲了避免微塵或粒子附著,亦無法藉由夾件( clamp )等而由處理面之側接觸。因此,如第2圖所示, 最好使處理基板62傾斜而利用重力而由背面予以保持。 在處理基板62配置位置的下游側設有法拉第杯64。 法拉第杯64係在射束寬度的方向以比離子束24之射束寬 度更寬的範圍設置複數個。構成爲:各法拉第杯64之接 受離子束24的面的射束厚度方向的長度比離子束24的射 束厚度長,沿著離子束24的射束厚度方向之電流密度分 布的合計値一次予以計測。在射束寬度方向係鄰接排列有 複數個法拉第杯64,因此,在射束寬度方向中,按每一 法拉第杯64的各位置,以離散方式計測電流密度的合計 値。 法拉第杯64係具有接受離子粒子的杯部分、及未圖 -18- 200903555 示之2次電子捕捉機構。2次電子捕捉機構係用以防止因 離子粒子衝撞法拉第杯6 4內面所發生的2次電子漏洩至 法拉第杯64之外的捕捉機構。當2次電子漏洩至法拉第 杯64之外時,會對電流密度的計測造成誤差之故。除了 使用磁場的捕捉功能以外,2次電子捕捉機構亦可採用使 用電場之捕捉功能的任一者。 法拉第杯64的個數只要視需要而使其增加即可,當 提升計測精度時,只要增加個數即可,與透鏡要素40之 電磁極44的設置個數無關。爲了精度佳地計測電流密度 之數%的不均,法拉第杯64的設置個數係以100個左右 爲佳,但若爲20至40個左右,亦可由電流密度分布而精 度佳地進行離子束24之調整。 法拉第杯64係除了如第1圖、第2圖所示排列複數 個之形態以外,亦可以使單一的法拉第杯朝向離子束24 的射束寬度方向由端至端橫斷的方式移動,以位置與電流 密度成對來進行計測。在該方法中,係僅使用1個法拉第 杯,即可精度佳地進行計測。 本實施形態的處理部60係使處理基板62朝上下方向 移動而進行離子植入者,但是在本發明中,除此之外,亦 可使處理基板以圓弧狀運動,或者載置於圓盤上而使其旋 轉運動而照射離子束的方式。若爲圓弧狀運動或旋轉運動 ,由於旋轉半徑依場所而異,因此處理基板的各位置係相 對於離子束而移動。因此,爲了進行均一的離子植入,必 須考量處理基板之各位置的移動,來調整離子束的電流密 -19- 200903555 度分布。 其中,第1圖、第2圖所不之法拉第杯64的各個 與控制部8 0中的計測器8 2相連接’利用各法拉第杯 予以計測所得之電流密度合計値係被傳送至計測器82。 控制部8 0係具有:計測器8 2、控制器8 4、及電 8 6 〇 計測器82係使用由各法拉第杯64所傳送的資料’ 計算出電流密度分布的部分。所得電流密度分布的結果 利用控制器8 4 ’連同電流値一起決定在哪一個透鏡要 4 0的電磁鐵4 4的線圈4 8流通電流的部分。應流通電 的電磁鐵44的位置及其電流値係可構成爲利用控制器 予以自動設定,亦可由操作者以手動輸入。此外,亦可 成爲:按電流密度分布的每—模式(Pattern ) ’先將已 定應流通電流的電磁鐵44的位置及其電流値的資訊記 在未圖示之記憶體,逐次叫出該資訊而予以設定。 電源部8 6係根據由控制器8 4所決定之電磁鐵4 4 位置與電流値,對相對應的電磁鐵44供給電流的部分 藉此可決定應流通電流的電磁鐵44的位置與電流値’ 由在該電磁鐵44流通電流’而在離子束24中與電磁 44相對應的位置,藉由磁場將離子粒子的移動方向彎 ,而調整電流密度分布。 在如上所示之離子植入裝置1〇中,由離子源22所 生的離子束24係將在質量分離磁鐵32中經擴展射束寬 之帶狀離子束24予以整形’之後,利用分離開縫50 ’ 係 64 源 而 係 素 流 84 構 設 憶 的 〇 藉 鐵 曲 產 度 僅 -20- 200903555 使由具有預定質量及電荷的離子粒子所構成的離子束24 通過而被供給至處理部6 0。在處理部6 0中,係利用處理 基板6 2進行離子植入’但是在離子植入前,利用法拉第 杯64計測離子束24的電流密度,且利用計測器82求出 電流密度分布。當該電流密度分布非爲所希望的分布時, 控制器84係決定對透鏡要素40的哪一個電磁鐵44流通 多少程度的電流’且根據該決定,電源8 6係供給至已決 定出電流的電磁鐵44。 另一方面’透鏡要素40係設在離子束24的收斂位置 附近’因此通過透鏡要素40之離子束24的射束厚度係比 通過質量分離磁鐵32時之離子束32的射束厚度薄。在該 射束厚度變薄之收斂位置52的附近區域,透鏡要素40係 形成磁場’因此對於厚度變薄的離子束2 4所作用的磁場 成分係在離子束的厚度方向具有大致一定的値,而且該値 係接近於離子束24之射束厚度方向之中心位置的値。因 此,離子束24中之射束厚度方向的各部分係受到一定磁 場的作用而朝相同方向以相同角度彎曲。因此,可調整精 度較高的離子束的電流密度分布。 如上所示’在本發明中,由於作用在由透鏡要素4〇 所形成之磁場的離子束24的厚度較薄,因此朝射束寬度 方向彎曲的磁場成分係無關於離子束24中之厚度方向的 位置而接近於一定’而可將離子束24中之射束寬度方向 之所希望位置的離子束按照目標予以彎曲。因此,可精度 佳地調整離子束2 4的電流密度分布。 -21 - 200903555 其中,在上述實施形態中,透鏡要素40係使用由 磁鐵44所形成之磁場的離子束24的調整,但亦可爲使 如第3圖(a )、( b )所示之電場的離子束24的調整。 第3圖(a )係用於替代透鏡要素40之透鏡要素 的俯視圖,第3圖(b )係用以說明透鏡要素90之內部 說明圖。 透鏡要素90係設在離子束24之收斂位置52的下 側。 在本發明中,透鏡要素90亦可設置成在與通過位 上游側的質量分離磁鐵3 2的離子束24的射束厚度相比 較薄之離子束的收斂位置5 2附近的區域,調整離子束 電流密度分布,如第3圖(a ) 、( b )所示,設置在與 離開縫5 0的位置相鄰接的位置。 透鏡要素90係透過絕緣導入端子93而將真空殼 1 1 〇外側的端子92與內側的支撐件94相連接,在支撐 94的前端側設有電極9 1。端子92係與第1圖所示之控 部8 0的電源8 6相連接。如第3圖(b )所示,電極91 端子92、絕緣端子93、支撐件94的組係自離子束24 端2 5 a至端2 5 b爲止朝射束寬度方向排列有複數個。以 該電極91相對應的方式,形成爲相同構造的電極91在 夾離子束2 4之相反側的對稱位置朝射束寬度方向排列 複數個。電極91的個數係與上述透鏡要素40中之電磁 44的成對個數相同,爲10至20左右。 對於透鏡要素90的電極91係施加有DC電壓之同 電 用 90 的 游 於 爲 的 分 體 件 制 、 之 與 包 有 鐵 極 -22- 200903555 的同電壓,在電極91之間形成相對於離子束24的射束厚 度方向的中心面呈線對稱的電場。例如,藉由對電極9 1 施加正的電壓,離子束24係利用以回避電場的方式在電 場兩側彎曲,來調整離子束的電流密度。 如第3圖(a) 、(b)所示,在透鏡要素90之上游 側及下游側係由真空殼體110立設有屏蔽電極95a、95b 。屏蔽電極95a、95b係以電極91爲中心而設在對稱的位 置,透鏡要素90所形成的電場以不會在透鏡要素90的區 域以外對離子束24造成影響的方式來遮蔽電場者。 將分離開縫5 0之下游側的端面5 6的形狀加工成與屏 蔽電極95a相同的形狀,且延伸至真空殼體110的內面爲 止’藉此使其亦具有與屏蔽電極95a相同的功能。此時, 最好以電極91爲中心,而在與分離開縫50的端面56的 位置呈對稱的位置設置屏蔽電極95b。 此外’本發明亦可構成第4圖所示之離子植入裝置。 桌4圖所7^之離子植入裝置100與第1圖所示之離子 植入裝置10相同,具有:射束整形部20、具備質量分離 磁鐵及調整單元的射束輸送部30、在處理基板進行離子 植入的處理部60、及控制部80。射束整形部20、射束輸 送部30及處理部60係被未圖示之真空殼體所包圍,藉由 真空泵來維持一定的真空度(1〇·5至l(T3Pa)。 射束輸送部30係具有:質量分離磁鐵32、透鏡要素 4〇、及分離開縫50,處理部60係具有:將處理基板62 一面由第4圖中的下側搬送至上側,一面進行離子植入的 -23- 200903555 未圖示之移動機構;及用以計測離子束24之電流密度 布的法拉第杯74。透鏡要素40係僅在設於質量分離磁 32之上游側不同,除此以外之各部分的構成相同,因 省略說明。其中,透鏡要素40可進行使用磁場之離子 2 4的調整,亦可進行使用如第3圖(a )、( b )所示 電場的調整。 另一方面,射束整形部20係具有複數個具有相同 能的離子源22a、22b、22c,由該等離子源22a至22c 產生的離子束24a至24c係以在位置49收斂的方式配 有各離子源22a至22c。透鏡要素90係在位置49的附 區域調整離子束。亦即,在離子植入裝置100中,在質 分離磁鐵3 2的上游側,離子束24係以收斂的方式構成 因此在位置4 9的附近區域,可精度佳地調整離子束。 此時,由於透鏡要素4 0與分離開縫5 0相分離,因 以透鏡要素4〇所形成的磁場或電場不會影響分離開縫 ’在分離開縫5 0的形狀或材質等沒有限制的方面較爲 利。此外’欲使用透鏡要素40而將射束寬度方向之預 位置的離子束彎曲時,由於自透鏡要素40至處理基板 的距離較長,因此藉由透鏡要素40來調整電流密度分 的程度亦較小,而不會對於離子束2 4有多餘的影響。 且’供給至透鏡要素40的電流亦較低,因此除了透鏡 素40本身以外’電源86的電容亦較小即可,因此亦可 低製作成本。 以上就本發明之離子植入裝置詳加說明,但本發明 分 鐵 此 束 之 性 所 置 近 旦 里 此 50 有 疋 62 布 而 要 減 並 -24- 200903555 不限定於上述實施形態,在未脫離本發明之主旨的範圍內 ,當然可進行各種改良或變更。 【圖式簡單說明】 第1圖係本發明之離子植入裝置之一實施形態之離子 植入裝置的俯視圖。 第2圖係第1圖所示之離子植入裝置之側視圖。 第3圖(a)係替代第1圖所示之離子植入裝置所使 用之透鏡要素而使用之其他形態之透鏡要素的俯視圖,( b )係說明(a )所示透鏡要素之內部的說明圖。 第4圖係有別於第1圖所示之本發明之離子植入裝置 之其他形態之離子植入裝置的俯視圖。 【主要元件符號說明】 10 :離子植入裝置 2 0 :射束整形部 22、 22a、 22b、 22c:離子源 24 、 24a 、 24b 、 24c :離子束 25a、 25b ' 25c、 25d :端 3 0 :射束輸送部 3 2 :質量分離磁鐵 3 4 :磁軛 3 6 :磁極 3 7 :磁極端面 -25- 200903555 3 8 :線圏 40、90:透鏡要素 4 2 :磁軛 4 4 :電磁鐵 4 6 :磁極 4 8 :線圈 4 9、5 2 :收敛位置 5 〇 :分離開縫 54 :凸緣 6 0 :處理部 62 :處理基板 64 :法拉第杯 8 0 :控制部 8 2 :計測器 8 4 :控制器 8 6 :電源 91 :電極 92 :端子 93 :絕緣端子 9 4 :支撐件 95a、95b:屏蔽電極 1 10 :真空殼體 -26-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation apparatus that performs ion implantation by irradiating a treatment target substrate with a ribbon ion beam. [Prior Art] Nowadays, treatment of ion implantation using an ion implantation apparatus for a glass substrate or a semiconductor substrate used in a flat type display device using a liquid crystal method or an organic LED is prevailing. In particular, in order to efficiently and correctly perform ion implantation for a large substrate, it is required to use a ribbon ion beam having a wide width of the ion beam irradiated to the wide substrate and controlling the current density distribution to a desired distribution. . By forming a beam-shaped ion beam having a beam width wider than the substrate width, the region in the substrate width direction can be processed at one time, and at this time, by moving it in a direction orthogonal to the substrate width direction, The entire substrate can be ion implanted at one time, thereby improving efficiency. On the other hand, the strip-shaped ion beam system treats the same position in the width direction of the substrate in a direction orthogonal to the width direction. Therefore, when the current density distribution of the strip-shaped ion beam is not uniform in the width direction, it is not on the substrate. The portion that is uniformly ion-implanted appears to be linear, and the correct ion implantation process cannot be performed. Therefore, the ribbon ion beam is preferably properly adjusted in such a manner as to form a desired current density distribution. In the ion implantation apparatus described in the following Patent Document 1, the ribbon ion beam is shaped as described above, and the sample as the object to be irradiated is moved relative to the ion beam by -4-200903555, thereby the ion beam is opposed to The sample is scanned. In the apparatus, 'the ion source is used to generate an elongated ribbon ion beam, and the ribbon ion beam generated by the ion source is passed through the path of the mass analysis magnet, and then only the ion species having the desired range of mass numbers are used. Ion implantation is performed by irradiating a sample with an ion beam having a slit for blocking ion species other than the above. At this time, the sample was moved in a direction orthogonal to the longitudinal direction in which the width of the band-shaped ion beam was wide, and ion implantation of the sample was performed. In addition, a position detector useful for investigating the ion beam distribution is set. Similarly, Patent Document 2 listed below discloses an ion implantation apparatus described below. That is, in the apparatus, a large-area ion beam of a longitudinal section is generated in the ion source to which the magnetic screen is applied, and the ion beam is brought close to 90 in the short-side direction by a window frame type magnet. The larger central angle is curved in the same manner, and the unnecessary ions are removed by the slit plate having the vertically long opening, and the ion beam is irradiated to the sample moving in the direction of the short side of the beam. Further, Patent Document 3 listed below describes an ion implantation apparatus shown below. That is, in the apparatus, the ion source includes a desired ion species, and a sheet-shaped ion beam having a width wider than a short side of the substrate is generated, and the sheet ion beam is bent by the mass separation magnet. The sheet surface is oriented in an orthogonal direction to select and derive the desired ion species. At this time, the separation slit is used, and the desired ion species is selected and passed through in cooperation with the mass separation magnet. Thereafter, ion implantation is performed by reciprocating the substrate in a direction orthogonal to the sheet surface of the ion beam in the irradiation region of the ion beam which has been separated by slitting, and -5 - 200903555. (Patent Document 1) Japanese Patent Laid-Open Publication No. Hei No. Hei. No. 2005-327713 (Patent Document 3). (Problems to be Solved by the Invention) However, in the above Patent Documents 1 to 3, the current density distribution of the ion beam is measured using a position detector for investigating the distribution of the ribbon ion beam described in Patent Document 1. There is a problem that the current density distribution of the ribbon ion beam is adjusted even if the result is adjusted, and the adjustment cannot be performed with high precision. That is, the above adjustment is performed by bending a part of the ribbon ion beam to be small in the plane of the ribbon ion beam to supplement the current density of the portion having a lower current density. In order to bend a part of the ribbon ion beam in the plane of the ribbon ion beam, an electric field or a magnetic field is used in a region of one of the ion beams. In this case, for example, in the case of an electric field, the electric field must have a slope in the in-plane direction of the strip-shaped ion beam, and in the case of a magnetic field, the magnetic field must have a magnetic field component perpendicular to the surface of the strip-shaped ion beam. However, the band ion beam system has a thickness at this time, and the electric field and the magnetic field are distributed in a three-dimensional state, so that the thickness of the band-shaped ion beam becomes uneven by the influence of the electric field or the magnetic field component which is not required for the above bending. . Therefore, it is possible to reduce the selectivity bS when the separation of the desired ion species is performed by using the separation slit, and even to mistake the separation of the aforementioned portion -6 - 200903555 of the ribbon ion beam to be bent, thereby The ion beam of the uniform current density distribution of the sample of the target substrate is subjected to ion implantation. As described above, it is impossible to accurately measure a part of the ribbon ion beam to a desired degree. In recent years, when ion implantation is performed, further control of the angle of entry or temperature management is required, but the unevenness of the above-mentioned ribbon ion beam makes the management more difficult. Therefore, the present invention has been made in order to solve the above problems, and an object of the present invention is to provide an ion implantation apparatus capable of bending a part of a ribbon ion beam into a strip-shaped plane to be small and accurately adjusting the current density distribution with high precision and uniformity. Adjust the current density distribution. (Means for Solving the Problem) In order to achieve the above object, the present invention provides an ion implantation method in which ion beam implantation is performed on a substrate to be processed by irradiating a ribbon ion beam having a beam width wider than that of the substrate to be processed. The feature is that the beam shaping unit includes an ion beam source, and the generated ion beam is formed into a ribbon ion beam; the ribbon ion beam is irradiated onto the processing target substrate; and the beam beam is provided: a mass separation magnet that bends a traveling direction of the belt in a thickness direction of a ribbon ion beam in the beam width direction of the ribbon beam; and a thickness direction of the ribbon ion beam The current density in the total 値 is the current density of the ribbon ion beam expressed by the distribution in the aforementioned degree direction, and is not shown, and an ion beam is provided to the thickness of the curved beam bundle, for example, the device can be inserted into the device to be wider and more implanted. The ion unit, the transfer unit, and the adjustment unit that adjusts the beam width distribution 200003555 to the orthogonal ion, The thickness of the ion beam is reduced in thickness, and after the ribbon ion beam is converged, the tape is bundled into the processing portion to form the strip when the thickness of the ribbon ion beam is larger than the mass separation magnet. The adjustment unit is disposed such that the band ion current density distribution is adjusted in a region in the vicinity of the convergence position of the ion beam before the thickness of the ion beam is thin. In this case, it is preferable that the mass separation magnet converges in the thickness direction of the band ion, and a separation slit that passes the predetermined subparticles is provided at the converging position, and the adjustment unit is provided in the separation slit The location is at the same or the adjacent location. Further, it is preferable that the adjustment unit is formed in pairs on both sides in the thickness direction of the strip-shaped ion beam, and is formed by a plurality of magnets provided along the width direction, and the separation slit is composed of a non-magnetic body. Alternatively, it is preferable that the adjustment unit is formed in pairs on both sides in the thickness direction of the strip shape, and is formed by a plurality of pairs of electrodes along the width direction, and is adjacent to the position of the separation slit. The unit is provided with an electric field shield for an electric field formed by the electrodes on the side of the adjacent separation slit adjacent thereto. Further, the beam shaping unit further includes a plurality of ion sources that generate the ion beam, and the plurality of ion sources are configured such that the band beam generated by the plasma source converges at a point in the thickness direction of the ion beam The adjustment unit adjusts the current density distribution degree of the ion beam in a region near the position where the aforesaid point is preliminarily disposed, and is disposed from the overlapping pairs of the dice beam passing through the beam of the band, and shields It is preferable that the strip ion arrangement is configured such that the above-mentioned adjustment unit is disposed in the form of the square -8-200903555. (Effect of the Invention) In the ion implantation apparatus of the present invention, the strip-shaped ion beam is irradiated onto the substrate to be processed after the thickness of the strip-shaped ion beam is reduced in thickness and the ribbon-shaped ion beam is converged. At this time, the adjustment unit adjusts the current density distribution of the ion beam in a region where the thickness of the ribbon ion beam is closer to the convergence position of the ion beam which is thinner than the thickness of the ribbon ion beam of the mass separation magnet. Therefore, the magnetic field component or the electric field component acting on the strip-shaped ion beam having a reduced thickness has a substantially constant enthalpy in the thickness direction of the ion beam, and the enthalpy is close to the center of the beam thickness direction of the ribbon ion beam. The 値 in the position. Therefore, the portions of the ribbon ion beam in the thickness direction of the beam are subjected to a certain magnetic field and are bent at the same angle in the same direction. Therefore, the current density distribution of the ion beam with higher precision can be adjusted, for example, a uniform current density distribution. Further, since the current density distribution of the ion beam is adjusted in a region where the thickness of the ion beam is thin, the electric field or magnetic field component which is unnecessary for the ion beam bending is small. Therefore, the degree of unevenness of the thickness of the ribbon ion beam is lower than that of the prior art. [Embodiment] Hereinafter, the ion implantation apparatus of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings. Fig. 1 is a plan view showing an ion implantation apparatus 1 according to an embodiment of the ion implantation apparatus of the present invention. Figure 2 is a side view of the ion implantation device 1 -9- 200903555. The ion implantation apparatus 10 includes, in order from the upstream side of the ion beam, a beam shaping unit 20 including an ion source, a beam transport unit 30 including a mass separation magnet and an adjustment unit, and a processing target substrate (hereinafter referred to as processing). The substrate is a processing unit 60 that performs ion implantation; and a control unit 80. The beam shaping unit 20, the beam transport unit 30, and the processing unit 60 are surrounded by a vacuum casing (not shown), and maintain a constant degree of vacuum (1〇-5 to I(T3Pa) in the present invention by a vacuum pump. The side of the ion source is referred to as the upstream side and the side of the processing substrate is referred to as the downstream side based on the flow of the ion beam advancing toward the processing substrate by the ion source. The beam shaping unit 20 has a small ion source 22. The ion source 22 is in the portion where the ion beam is generated, using a Bernas-type or Freeman-type plasma generator to pull the ion beam out by the small ion source 22 In the Bernard-type ion source, a filament and a reflector are provided in the metal chamber, and a magnet is provided on the outer side of the ion source 22, and the metal chamber in the vacuum of the ion source 22 is supplied for ion implantation. The atomic gas flows a current in the hot wire to release hot electrons, and reciprocates between the reflecting plates disposed on both sides of the metal chamber. In this state, the arc discharge is performed by applying a predetermined arc voltage to the metal chamber. Produced, thereby being supplied to The gas in the chamber is ionized to generate plasma. The generated plasma is extracted from the side wall of the metal chamber, and the plasma is pulled out by using the pull-out electrode, thereby discharging the ion beam from the metal chamber. 24. -10-200903555 The ion source 22 of the present embodiment uses an ion beam diverged by a small ion source. In the present invention, in addition to a small ion source, a large ion source is formed to have a substantially uniform beam width. Parallel ribbon ion beam. In addition, a plurality of ionized ion beams may be used. The generated ion beam 24 is obtained from a lower electric region near the end of the ion beam to a current density which becomes the main region of the ion beam. High, depending on the position, the continuity of the current density changes, because the boundary is not clear. However, in the present invention, the current density of the ion beam exceeds the predetermined 値 as the end of the ion beam, and the beamlet The line of the ion beam 22 is diverged as shown in Fig. 2 at the ends 25a, 25b of the beam, and on the other hand, as shown in Fig. 1 at the ends 2k, 25d of the ion beam, but in the ion Shu Zhi The divergence of the 2 5 d is relatively low. The divergence of the ion beam as shown above can be determined by the shape of the extraction hole of the ion source 2 2 and the extraction of the electrode. The cross-sectional shape of the ion beam thus generated is the formation of ions. The shape of the beam between the lengths of 25c and 25d is smaller than the beam width of the end 25a of the ion beam, that is, a strip shape. The ion beam width is a beam having a wider width than the processing substrate. The width of the ion beam is generated by a stream of particles having a positive charge, as shown, reaching the ends 25 c, 25 d of the ribbon beam of the processing unit 70, and can also be produced by a large source. In the region of density, the vicinity of the original end is set to be separated from the display, and the mode of beaming between the end 25b of the beam that does not form the beam is given to the first image by -11 - 200903555 due to the charge of the ion beam. The repulsion is shown to be divergent in the present invention, and the diverging ion beam or ion beam as described above can be applied to the present invention. The ion beam 24 generated at the ion source 22 is formed to be brought to the beam transport portion 30. The beam transport unit 30 has mass separation magnets 3 2, 40 and separation slits 50. The beam transport unit 30 is configured by thinning the thickness in the ion beam thickness direction (the thickness between the ends 25c to 25d in the first figure is thinned, and the ion beam 24 is converged, and the ion beam 24 is processed on the substrate 60. The mass separation magnet 32 is inside the corner formed by the magnetic yoke 34. As shown in Fig. 2, the pair of magnetic poles 36 are opposed to each other, and the electromagnets formed by the coils 38 are wound around the magnetic poles 36. The formed magnetic field is supplied in a series connection 38' to a power source (not shown) so as to be formed in the same direction. The orbital ion beam 24 of the ends 25c and 25d of the ion beam shown in Fig. 1 is formed as The slightly diffused ion beam 24 is incident on the magnet 32. The ion beam 24 is curved in the thickness direction of the strip-shaped ion beam of the pair of magnetic poles 36 so that the ions are bent in the direction and separated by a slit which will be described later. The position of the pair of magnetic poles 3 6 toward the inner side is adjusted to be partially changed to the inclined position, thereby forming a continuous curved surface such as a circular surface or a toroidal surface having different curvatures. , but, or converging The projection of the lens element ί 24 is arranged in the processing cylinder structure, and it is known that the magnetic poles 3 6 are connected to the line, and the mass is divided so as to be inclined in the manner of the bundle 24 or the cylinders are connected to each other to make the magnetic pole - 12- 200903555 3 A part of the action is constructed, and the magnetic pole faces 37 on both sides are adjusted with respect to the angle of the ion beam 24. Here, a field clamp which is extended by the yoke 34 and passes over the coil 38 on the side of the ion beam 24 may be provided in the mass separation magnet 32. Further, it may be configured to adjust the shape of the coil 38 to form a desired ion beam shape. The ion beam 24 that has passed through the mass separation magnet 32 is influenced by the electric density of the ion source 22 and the magnetic field of the drawing electrode and the mass separation magnet 32 (not shown) so that the current density is not constant, for example, In a manner of 5% or less, the plasma density and the voltage of the pull-out electrode and the magnetic field of the mass separation magnet 32 are adjusted. The ion beam 24 is reduced in the current density by about 1% by the lens element 40 which will be described later. Here, the current density of the ion beam refers to an integral 値 which integrates the current density along the thickness direction of the ion beam 24, that is, the direction of the beam thickness along the longitudinal direction between the ends 25c and 25d of the ion beam. That is, the total amount of totals. The unevenness of the current density refers to the degree of shift of the current density distribution of the distribution of the current density in the beam width direction (the length direction between the ends 25a to 25b in FIG. 2) to the target distribution (for example, a uniform distribution). The degree of the standard deviation, more specifically, not more than 1% means that the ratio of the standard deviation of the degree of shift to the 电流 of the average current density is 1% or less. Wherein 'in the present invention, the current density distribution is other than uniform distribution' may also be a heterogeneous desired distribution. For example, in order to compensate for the non-uniformity of the film formed on the processing substrate 62 by the CVD method or the like, or to change the ion implantation amount according to the place, the current density distribution of -13-200903555 may be formed as A situation in which adjustment is made in a manner in which the target is unevenly distributed. The lens element 40 is an adjustment unit that adjusts a current density distribution in the beam width direction of the ion beam 24 by bending a part of the strip-shaped ion beam 24 in the direction of the beam width in the plane of the strip-shaped ion beam 24. The lens element 40 is disposed in a region where the thickness of the ion beam 24 is closer to the convergence position 52 of the ion beam which is thinner than the thickness of the ion beam 24 passing through the mass separation magnet 32, and the current density distribution of the ion beam 24 is adjusted in this region. In the lens element 40, the yokes 42 on both sides of the ion beam 24 are sandwiched, and the electromagnets 44 are paired and arranged in a plurality of rows in the beam width direction of the ion beam 24. The electromagnets 44 are centered on the center plane in the thickness direction of the strip-shaped ion beam 24, and are disposed at symmetrical positions on both sides. The electromagnet 44 is composed of a magnetic pole 46 formed of electromagnetic soft iron and a coil 48 wound around the magnetic pole 46 such that the magnetic field formed by one of the pair of electromagnets 44 faces the other magnetic field. In the form of the electromagnet 44, the coils of the coils 48 are connected in series with respect to the pair of electromagnets 44. As described above, the pair of electromagnets 44 are provided on the yoke 42 so as to have a complex array across the entire beam width. The number of pairs of electromagnets 44 is about 1 〇 to about 20. The lens elements 40 shown in FIGS. 1 and 2 are merely examples, but are not limited thereto. The ion beam 24 is adjusted to some extent by a pull-out electrode (not shown) of the ion source 2 and the ion source 22, even by the mass separation magnet 32, so as to be close to a predetermined current density distribution. The adjustment made by the lens element 40 can be a gentle adjustment. In the case of -14-200903555, it is sufficient if the magnetic field is smoothly generated by the lens element 40. Further, the lens element 40 can be adjusted by using an electric field to adjust the ion beam 24 as described later. However, for the following reasons, the lens element 40 is preferably a magnetic field. That is, the suppression of the electrons that are surrounded by the cloud beam 24 and surrounded by the cloud at a low speed and inconsistently moving at a low speed causes the ion beam 24 itself to diverge due to the repulsive force of the positive charges in the ion beam 24, but in order not to The electrons have a large influence, and the lens element 40 is preferably a magnetic field. A split slit 50 is provided between the pair of electromagnets 44 of the lens elements 40. The separation slit 50 is not shown in Fig. 2, and is composed of a non-magnetic member in which elongated holes (slit) are provided so as to traverse the ends 25a and 25b of the ion beam 24. The ion beam 24 bent by the mass separation magnet 32 is converged at the convergence position 52 in the beam thickness direction on the downstream side of the mass separation magnet 32, but the separation slit 50 is provided at the convergence position 52, and thus Only ion particles having a predetermined mass and charge are passed through. That is, the separation slit 50 is provided at a convergence position 5 2 where the ion beam 24 converges in the beam thickness direction, and the lens element 40 is disposed at a position overlapping the separation slit 5 。. In the ion beam 24, the ion particles which do not have a predetermined mass and electric charge do not converge at the convergence position, so they collide with the wall surface of the separation slit 50 and are prevented from moving toward the downstream side. Therefore, the separation slit 50 must use materials which are resistant to abrasion caused by collision of ion particles, for example, graphite. The impact of the ionic particles is more severe when the wall is impacted against the vertical angle. Therefore, the separation slit 50 is preferably -15-200903555. The shape in which the ion particles collide substantially perpendicularly with respect to the wall surface is good. In the separation slit 50, when the ion particles collide, a part of the material separating the slits 5 receives the collision energy of the ion particles and physically scatters as particles, and is formed into a gas due to vaporization by heat. . At this time, since the beam transporting unit 30 is formed in a low-pressure environment, the above-described scattering may be diffused in a straight line. Therefore, it is necessary to set the shape of the separation slit 50 so that the portion against which the ion particles collide is not seen by the processing substrate, so that the material components such as the scattered particles or gas do not reach the processing substrate on the downstream side. For example, as shown in Fig. 1, the portion where the ion particles on the upstream side of the separation slit 50 collide is provided with a flange 54 having a large collision surface, and the flange 54 prevents the scattered material composition. Arrived at the processing substrate. Further, in the inner wall surface of the hole separating the slits 50 through which the ion beam 24 passes, even if the ion particles collide with the inner wall surface, the scattered material components do not directly reach the processing substrate, and the substrate cannot be processed. Look through the shape of the surface that the ion particles collide with. The shape is preferably, for example, a saw-like concavo-convex shape having a step surface which is inclined (90 degrees) on the upstream side. The separation slit 50 must be a non-magnetic body, and the 俾 does not affect the magnetic field formed by the lens element. Further, the separation slit 50 may be arranged such that the component exits the slit 50 adjacent to the lens element 40 without being disposed to overlap the position of the lens element 40. As will be described later, when a lens element 90 that uses an electric field to adjust the ion beam 24 is used instead of the lens element 4, it is considered that it is difficult to select a material that does not affect the electric field, and a conductive film is deposited on the surface of the separation slit 50. In the case of the electric-16-200903555 field, the lens element 90 is preferably arranged adjacent to the sub- 5 〇. At this time, the separation slit 50 must be disposed at the convergence position 52, so that the lens element 90 is disposed adjacent to the slit 50. Further, the width of the opening of the ion beam 24 separating the slits 50 in the thickness direction may be fixed, but may be variably adjusted to the amount of ions to be implanted into the substrate to be processed, and in accordance with the presence or absence of ions of the planting height. To adjust the opening width of the slit, and to adjust the separation performance of the ion particles locally. Further, the thickness of the ion beam 24 in the film 52 is reduced to about 10 mm, and the orbit of the ion beam 24 is not always constant due to the ion species, the ion amount, and the charge of the ion particles. Therefore, the width of the opening is preferably adjusted as appropriate. The ion beam 24, which is formed by separating the slits 50 into unnecessary ion particles, is formed, and the ion beam 24 whose lens distribution is adjusted by the lens element 40 is extended to the processing unit 60 while extending the beam thickness. The processing unit 60 has a movement (not shown) for performing ion implantation while transferring the processing substrate 62 from the first lower side to the upper side, and a farad for measuring the current density distribution of the ion beam 24: Far ad ay Cup The 64° processing substrate 62 is a semiconductor wafer or a glass substrate. The beam width of 24 is adjusted by the mass separation magnet 32. As shown in Fig. 2, the width of the substrate 62 is wider than that of the substrate 62. It is better to leave the slit bundle 24 and leave the slit. The purity can be adjusted to the position of the position, the beam can be slit only by the pre-current density, the mechanism in the figure; the first cup (ion beam consolidation, such as -17-200903555, as shown in Figure 2, illumination The ion beam 24 of the processing substrate 62 is inclined downward in the drawing so that the position of the ion beam 24 is increased toward the downstream processing substrate 62. This is because the processing substrate 62 is not shown. The back surface of the processing substrate 62 is held by gravity, and the ion beam 24 is incident perpendicularly to the processing substrate 62. The substrate 62 is held by the back surface because of the substrate 62 exposed to the ion beam. In the front, it is impossible to set the holding mechanism such as the jig. When the processing substrate 62 is a glass plate, most of them have a square shape with a side of lm square and a thickness of 〇. 5mm board, easier to bend. Further, since the processing for the fine circuit element or the like is applied to the front surface of the glass plate, it is not possible to contact the side of the processing surface by a clamp or the like in order to avoid adhesion of fine dust or particles. Therefore, as shown in Fig. 2, it is preferable that the processing substrate 62 is inclined and held by the back surface by gravity. A Faraday cup 64 is provided on the downstream side of the position at which the processing substrate 62 is disposed. The Faraday cup 64 is provided in a plurality of ranges wider than the beam width of the ion beam 24 in the direction of the beam width. The length of the surface of the Faraday cup 64 that receives the ion beam 24 in the thickness direction of the beam is longer than the thickness of the beam of the ion beam 24, and the total of the current density distribution along the thickness direction of the beam of the ion beam 24 is once Measurement. Since a plurality of Faraday cups 64 are arranged adjacent to each other in the beam width direction, the total enthalpy of the current density is measured discretely for each position of each of the Faraday cups 64 in the beam width direction. The Faraday Cup 64 has a cup portion that receives ionic particles and a second electron capture mechanism that is not shown in Figures -18-200903555. The secondary electron capture mechanism is used to prevent the capture mechanism from leaking into the Faraday cup 64 by the collision of the ionic particles against the inside of the Faraday cup 64. When the second electron leaks out of the Faraday cup 64, it causes an error in the measurement of the current density. In addition to the magnetic field capture function, the secondary electron capture mechanism can also use any of the capture functions using the electric field. The number of the Faraday cups 64 may be increased as needed, and when the measurement accuracy is improved, the number of the Faraday cups 64 may be increased regardless of the number of the electromagnetic poles 44 of the lens element 40. In order to accurately measure the unevenness of the current density, the number of the Faraday cups 64 is preferably about 100, but if it is about 20 to 40, the ion beam can be accurately performed by the current density distribution. 24 adjustments. In addition to the plurality of Faraday cups 64 arranged in the first and second figures, the single Faraday cup can be moved toward the beam width direction of the ion beam 24 from end to end. The measurement is performed in pairs with the current density. In this method, only one Faraday cup is used, and measurement can be performed with high precision. The processing unit 60 of the present embodiment moves the processing substrate 62 in the vertical direction to perform ion implantation. However, in the present invention, the processing substrate may be moved in an arc shape or placed in a circle. A method in which the disk is rotated to illuminate the ion beam. In the case of an arcuate motion or a rotational motion, since the radius of rotation varies depending on the place, each position of the processing substrate moves relative to the ion beam. Therefore, in order to perform uniform ion implantation, it is necessary to measure the movement of each position of the substrate to adjust the current density of the ion beam. In addition, each of the Faraday cups 64 of the first figure and the second figure is connected to the measuring device 8 2 of the control unit 80. The total current density measured by the respective Faraday cups is transmitted to the measuring device 82. . The control unit 80 has a measuring unit 8 2, a controller 8.4, and an electric unit. The measuring unit 82 calculates a current density distribution using the data transmitted by each of the Faraday cups 64. The result of the resulting current density distribution is determined by the controller 8 4 ′ together with the current 値 in the portion of the coil 48 where the electromagnet 4 4 of the lens 4 40 flows current. The position of the electromagnet 44 to be circulated and its current system can be configured to be automatically set by the controller or manually input by the operator. In addition, the pattern of the current density distribution may be used. Set it up for information. The power supply unit 6.8 determines the position and current of the electromagnet 44 to which the current should flow according to the position of the electromagnet 44 determined by the controller 84 and the current 値, and the current is supplied to the corresponding electromagnet 44. The current density distribution is adjusted by bending the moving direction of the ion particles by the magnetic field at a position corresponding to the electromagnetic wave 44 in the ion beam 24 by the current flowing through the electromagnet 44. In the ion implantation apparatus 1A shown above, the ion beam 24 generated by the ion source 22 is shaped by the extended beam width of the ribbon ion beam 24 in the mass separation magnet 32, and then separated by The slit 50' is 64-sourced and the templating flow 84 is constructed. The ferrule yield is only -20-200903555. The ion beam 24 composed of ion particles having a predetermined mass and electric charge is passed through to the processing unit 6. 0. In the processing unit 60, ion implantation is performed by the processing substrate 62. However, before the ion implantation, the current density of the ion beam 24 is measured by the Faraday cup 64, and the current density distribution is obtained by the measuring device 82. When the current density distribution is not a desired distribution, the controller 84 determines which of the electromagnets 44 of the lens element 40 flows a current ', and according to the determination, the power supply 86 is supplied to the determined current. Electromagnet 44. On the other hand, the lens element 40 is disposed near the convergence position of the ion beam 24. Therefore, the beam thickness of the ion beam 24 passing through the lens element 40 is thinner than the beam thickness of the ion beam 32 when passing through the mass separation magnet 32. In the vicinity of the convergence position 52 where the thickness of the beam is thinned, the lens element 40 forms a magnetic field. Therefore, the magnetic field component acting on the ion beam 24 having a reduced thickness has a substantially constant enthalpy in the thickness direction of the ion beam. Moreover, the lanthanum is close to the 中心 of the center position of the beam bundle in the thickness direction of the beam. Therefore, portions of the ion beam 24 in the thickness direction of the beam are subjected to a certain magnetic field and are bent at the same angle in the same direction. Therefore, the current density distribution of the ion beam with higher accuracy can be adjusted. As described above, in the present invention, since the thickness of the ion beam 24 acting on the magnetic field formed by the lens element 4 is thin, the magnetic field component bent in the beam width direction is irrelevant to the thickness direction of the ion beam 24. The position is close to a certain ', and the ion beam at the desired position in the beam width direction in the ion beam 24 can be bent according to the target. Therefore, the current density distribution of the ion beam 24 can be adjusted with high precision. -21 - 200903555 In the above embodiment, the lens element 40 is adjusted by using the ion beam 24 of the magnetic field formed by the magnet 44, but may be as shown in Figs. 3(a) and (b). Adjustment of the ion beam 24 of the electric field. Fig. 3(a) is a plan view of a lens element for replacing the lens element 40, and Fig. 3(b) is a view for explaining the inside of the lens element 90. The lens element 90 is disposed below the convergence position 52 of the ion beam 24. In the present invention, the lens element 90 may be disposed so as to adjust the ion beam in a region near the convergence position 5 2 of the ion beam which is thinner than the beam thickness of the ion beam 24 passing through the mass separation magnet 3 2 on the upstream side of the bit. The current density distribution is provided at a position adjacent to the position away from the slit 50 as shown in Figs. 3(a) and (b). The lens element 90 is connected to the inner support member 94 via the insulating lead-in terminal 93 via the outer side of the vacuum case 1 1 , and the electrode 9 1 is provided on the front end side of the support 94. The terminal 92 is connected to the power supply 86 of the control unit 80 shown in Fig. 1. As shown in Fig. 3(b), the electrode 91 terminal 92, the insulating terminal 93, and the support member 94 are arranged in plural in the beam width direction from the ion beam 24 end 2 5 a to the end 2 5 b. In a manner corresponding to the electrode 91, the electrodes 91 formed in the same configuration are arranged in a plurality of symmetrical positions on the opposite side to the ion beam 24 in the beam width direction. The number of the electrodes 91 is the same as the number of pairs of the electromagnetic waves 44 in the lens element 40, and is about 10 to 20. The electrode 91 of the lens element 90 is applied with a DC voltage and a floating body of the same electric 90, and is formed with the same voltage as the iron electrode-22-200903555, and forms an ion with respect to the electrode 91. The center plane of the beam 24 in the thickness direction of the beam is a line symmetrical electric field. For example, by applying a positive voltage to the electrode 9 1 , the ion beam 24 is curved on both sides of the electric field to avoid the electric field, thereby adjusting the current density of the ion beam. As shown in Fig. 3 (a) and (b), shield electrodes 95a and 95b are vertically provided on the upstream side and the downstream side of the lens element 90 by the vacuum casing 110. The shield electrodes 95a and 95b are disposed symmetrically around the electrode 91, and the electric field formed by the lens element 90 shields the electric field so as not to affect the ion beam 24 outside the area of the lens element 90. The shape of the end face 56 on the downstream side of the separation slit 50 is processed into the same shape as the shield electrode 95a and extends to the inner face of the vacuum casing 110, thereby making it also have the same function as the shield electrode 95a. . At this time, it is preferable that the shield electrode 95b is provided at a position symmetrical with the position of the end surface 56 of the separation slit 50, centering on the electrode 91. Further, the present invention can also constitute the ion implantation apparatus shown in Fig. 4. The ion implantation apparatus 100 of the table 4 is the same as the ion implantation apparatus 10 shown in Fig. 1, and has a beam shaping unit 20, a beam transport unit 30 including a mass separation magnet and an adjustment unit, and processing. The substrate is subjected to ion implantation processing unit 60 and control unit 80. The beam shaping unit 20, the beam transport unit 30, and the processing unit 60 are surrounded by a vacuum casing (not shown), and maintain a constant degree of vacuum (1 〇·5 to 1 (T3Pa)) by a vacuum pump. The portion 30 includes a mass separation magnet 32, a lens element 4A, and a separation slit 50. The processing unit 60 has ion implantation while transferring the processing substrate 62 from the lower side to the upper side in FIG. -23- 200903555 A moving mechanism not shown; and a Faraday cup 74 for measuring the current density of the ion beam 24. The lens element 40 is different only on the upstream side of the mass separation magnetic 32, and other parts The configuration of the lens is the same as that of the lens element 40, and the adjustment of the electric field as shown in Fig. 3 (a) and (b) can be performed. The beam shaping section 20 has a plurality of ion sources 22a, 22b, 22c having the same energy, and the ion beams 24a to 24c generated by the plasma sources 22a to 22c are provided with respective ion sources 22a to 22c in a manner converging at the position 49. The lens element 90 is attached to the area at position 49. In the ion implantation apparatus 100, on the upstream side of the mass separation magnet 32, the ion beam 24 is configured to be convergent, so that the ion beam can be accurately adjusted in the vicinity of the position 49. At this time, since the lens element 40 is separated from the separation slit 50, the magnetic field or electric field formed by the lens element 4〇 does not affect the separation slit 'the shape or material of the separation slit 50 is not limited. In addition, when the ion beam of the pre-position in the beam width direction is to be bent using the lens element 40, since the distance from the lens element 40 to the processing substrate is long, the current is adjusted by the lens element 40. The degree of density is also small, and does not have an extra influence on the ion beam 24. The current supplied to the lens element 40 is also low, so that the capacitance of the power source 86 is small except for the lens element 40 itself. However, the production cost of the ion implantation apparatus of the present invention is described in detail above, but the nature of the present invention is reduced by the fact that the 50 is 疋62 cloth and is reduced by -24-2009035 The present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. Fig. 1 is a view showing an ion of an embodiment of the ion implantation apparatus of the present invention. A plan view of the implant device. Fig. 2 is a side view of the ion implant device shown in Fig. 1. Fig. 3(a) is used in place of the lens element used in the ion implant device shown in Fig. 1. (b) is a plan view showing the inside of the lens element shown in (a). Fig. 4 is a view different from the other aspect of the ion implantation apparatus of the present invention shown in Fig. 1. Top view of the ion implant device. [Description of main component symbols] 10: ion implantation apparatus 20: beam shaping section 22, 22a, 22b, 22c: ion source 24, 24a, 24b, 24c: ion beam 25a, 25b' 25c, 25d: terminal 3 0 : beam transport unit 3 2 : mass separation magnet 3 4 : yoke 3 6 : magnetic pole 3 7 : magnetic pole surface - 25 - 200903555 3 8 : coil 40, 90: lens element 4 2 : yoke 4 4 : electromagnet 4 6 : magnetic pole 4 8 : coil 4 9 , 5 2 : convergence position 5 〇: separation slit 54 : flange 6 0 : processing portion 62 : processing substrate 64 : Faraday cup 80 : control portion 8 2 : measuring device 8 4: controller 8 6 : power supply 91 : electrode 92 : terminal 93 : insulated terminal 9 4 : support member 95a, 95b: shield electrode 1 10 : vacuum housing -26-

Claims (1)

200903555 十、申請專利範圍 1 · 一種離子植入裝置,係在處理對象基板照射具有 比該處理對象基板的寬幅更寬的射束寬度的帶狀離子束而 進行離子植入的離子植入裝置,其特徵爲具有: 射束整形部,具備產生離子束的離子源,且將所產生 的離子束整形成帶狀離子束; 處理部,將前述帶狀離子束照射在處理對象基板;以 及 射束輸送部,具備:以在與前述帶狀離子束之前述射 束寬度方向呈正交的帶狀離子束的厚度方向具有曲率的方 式將前述帶狀離子束的行進方向予以彎曲的質量分離磁鐵 ;及用以將在前述帶狀離子束的厚度方向中的電流密度合 計値以前述射束寬度方向的分布予以表示的前述帶狀離子 束的電流密度分布進行調整的調整單元,在將前述帶狀離 子束的前述厚度方向的厚度減薄而使前述帶狀離子束收斂 後,使前述帶狀離子束進至前述處理部, 以在前述帶狀離子束的厚度比通過前述質量分離磁鐵 時之前述帶狀離子束的厚度薄之前述帶狀離子束的收斂位 置附近的區域,調整前述帶狀離子束的電流密度分布的方 式配置有前述調整單元。 2.如申請專利範圍第1項之離子植入裝置,其中, 前述質量分離磁鐵係使前述帶狀離子束在前述厚度方向中 收斂,在該收斂的位置,設有使預定的離子粒子通過的分 離開縫, -27- 200903555 前述調整單元係設在與前述分離開縫的位置相重疊的 位置或相鄰接的位置。 3. 如申請專利範圍第2項之離子植入裝置,其中, 前述調整單元係在前述帶狀離子束之前述厚度方向的兩側 成對,且由沿著前述寬度方向設有複數對的磁鐵所構成, 前述分離開縫係由非磁性體所構成。 4. 如申請專利範圍第2項之離子植入裝置,其中, 前述調整單元係在前述帶狀離子束之前述厚度方向的兩側 成對,且由沿著前述寬度方向設有複數對的電極所構成, 與前述分離開縫的位置鄰接而設, 前述調整單元係在鄰接的前述分離開縫之側具備用以 遮蔽藉由前述電極所形成之電場的電場屏蔽。 5. 如申請專利範圍第1項之離子植入裝置,其中, 前述射束整形部係具備複數個產生前述帶狀離子束的離子 源’而且將由該等離子源所產生的帶狀離子束在前述離子 束的厚度方向中以一點予以收斂的方式配置前述複數個離 子源, 前述調整單元係以在前述一點予以收斂的位置附近的 區域調整前述離子束的電流密度分布的方式配置有前述調 整單元。 -28-200903555 X. Patent Application No. 1 An ion implantation apparatus is an ion implantation apparatus that performs ion implantation by irradiating a treatment target substrate with a ribbon ion beam having a beam width wider than a width of the substrate to be processed. The beam shaping unit includes: an ion source that generates an ion beam, and the generated ion beam is formed into a ribbon ion beam; and the processing unit irradiates the band ion beam on the substrate to be processed; The beam transporting unit includes a mass separating magnet that bends a traveling direction of the strip-shaped ion beam so as to have a curvature in a thickness direction of a strip-shaped ion beam orthogonal to the beam width direction of the strip-shaped ion beam. And an adjustment unit for adjusting the current density distribution of the ribbon ion beam expressed by the distribution of the current density in the thickness direction of the ribbon ion beam in the beam width direction, The thickness of the ion beam in the thickness direction is reduced, and after the ribbon ion beam is converged, the ribbon ion beam is advanced to the foregoing The adjustment unit adjusts the current density of the ribbon ion beam in a region in which the thickness of the ribbon ion beam is smaller than a thickness of the ribbon ion beam when the mass separation magnet is passed through the mass separation beam. The distribution method is configured with the aforementioned adjustment unit. 2. The ion implantation apparatus according to claim 1, wherein the mass separation magnet causes the ribbon ion beam to converge in the thickness direction, and at the converged position, a predetermined ion particle is provided. Separating the slit, -27- 200903555 The aforementioned adjusting unit is disposed at a position overlapping the position at which the slit is separated or an adjacent position. 3. The ion implantation apparatus of claim 2, wherein the adjustment unit is paired on both sides in the thickness direction of the ribbon ion beam, and a plurality of pairs of magnets are provided along the width direction. In this configuration, the separation slit is composed of a non-magnetic material. 4. The ion implantation apparatus of claim 2, wherein the adjustment unit is paired on both sides in the thickness direction of the ribbon ion beam, and is provided with electrodes of a plurality of pairs along the width direction. The adjustment unit is provided adjacent to the position at which the slit is separated, and the adjustment unit includes an electric field shield for shielding an electric field formed by the electrode on the side of the adjacent separation slit. 5. The ion implantation apparatus of claim 1, wherein the beam shaping section has a plurality of ion sources generating the ribbon ion beam and the ribbon ion beam generated by the plasma source is in the foregoing The plurality of ion sources are disposed so as to converge at a point in the thickness direction of the ion beam, and the adjustment unit arranges the adjustment unit such that the current density distribution of the ion beam is adjusted in a region in the vicinity of a position where the point converges. -28-
TW097111420A 2007-03-29 2008-03-28 Ion implanter TWI371055B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086525A JP4288288B2 (en) 2007-03-29 2007-03-29 Ion implanter

Publications (2)

Publication Number Publication Date
TW200903555A true TW200903555A (en) 2009-01-16
TWI371055B TWI371055B (en) 2012-08-21

Family

ID=39830906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097111420A TWI371055B (en) 2007-03-29 2008-03-28 Ion implanter

Country Status (5)

Country Link
JP (1) JP4288288B2 (en)
KR (1) KR101071581B1 (en)
CN (1) CN101606217B (en)
TW (1) TWI371055B (en)
WO (1) WO2008123421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486991B (en) * 2012-08-31 2015-06-01 Sen Corp Ion implantation methods and ion implantation devices

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226577B2 (en) * 2009-03-27 2013-07-03 三井造船株式会社 Ion implantation apparatus and ion beam adjustment method
JP5316899B2 (en) 2010-04-13 2013-10-16 日新イオン機器株式会社 Ion implantation method and ion implantation apparatus
CN102800550B (en) * 2011-05-27 2015-08-26 日新离子机器株式会社 Ion implantation apparatus
JP5585788B2 (en) * 2011-05-27 2014-09-10 日新イオン機器株式会社 Ion implanter
JP5648919B2 (en) * 2011-08-17 2015-01-07 日新イオン機器株式会社 Ion implanter
JP2015050382A (en) * 2013-09-03 2015-03-16 富士通セミコンダクター株式会社 Semiconductor device manufacturing method and semiconductor manufacturing apparatus
TWI501286B (en) * 2014-06-27 2015-09-21 Advanced Ion Beam Tech Inc Ion implanter
JP7132828B2 (en) * 2018-11-13 2022-09-07 住友重機械イオンテクノロジー株式会社 Ion implanter and beam parker
CN111261477B (en) * 2018-12-03 2022-08-02 北京中科信电子装备有限公司 Double-outlet parallel lens
CN110643954B (en) * 2019-10-21 2024-03-01 上海新柯隆真空设备制造有限公司 Coating equipment, ion source and grid structure
CN114724910A (en) * 2022-06-10 2022-07-08 浙江中科尚弘离子装备工程有限公司 Ribbon ion beam implantation system
CN115637414A (en) * 2022-10-31 2023-01-24 江苏省特种设备安全监督检验研究院 Ultrasonic-assisted ion implantation device and processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078714B2 (en) * 2004-05-14 2006-07-18 Nissin Ion Equipment Co., Ltd. Ion implanting apparatus
JP4882456B2 (en) * 2006-03-31 2012-02-22 株式会社Ihi Ion implanter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486991B (en) * 2012-08-31 2015-06-01 Sen Corp Ion implantation methods and ion implantation devices

Also Published As

Publication number Publication date
KR20090108059A (en) 2009-10-14
TWI371055B (en) 2012-08-21
WO2008123421A1 (en) 2008-10-16
JP4288288B2 (en) 2009-07-01
KR101071581B1 (en) 2011-10-10
JP2008243765A (en) 2008-10-09
CN101606217A (en) 2009-12-16
CN101606217B (en) 2011-11-02

Similar Documents

Publication Publication Date Title
TW200903555A (en) Ion implanter
US7078714B2 (en) Ion implanting apparatus
US8455837B2 (en) Ion implanter, ion implantation method and program
JP4882456B2 (en) Ion implanter
US7326941B2 (en) Apparatus and methods for ion beam implantation using ribbon and spot beams
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
TWI243394B (en) Hybrid scanning system and methods for ion implantation
JP2007525811A (en) Ion beam current adjustment
TWI360148B (en)
TWI827743B (en) Ion implantation system and method for providing non-uniform flux of scanned ribbon ion beam
US20090314206A1 (en) Sheet Plasma Film-Forming Apparatus
TW201730911A (en) Ion implantation system and process
JP4468336B2 (en) Ion beam implantation apparatus and method
TW200807516A (en) An ion beam guide tube
JP2007059395A (en) Ion beam implanting device and method
KR101398729B1 (en) Ion implantation apparatus
US20200152409A1 (en) Ion implanter and beam park device
JP4426424B2 (en) Ion implantation apparatus and ion beam generation method
JP5226577B2 (en) Ion implantation apparatus and ion beam adjustment method
US20200203124A1 (en) Ion implantation system
JP5585788B2 (en) Ion implanter
JP2004192905A (en) Ion implanter