TWI501286B - Ion implanter - Google Patents

Ion implanter Download PDF

Info

Publication number
TWI501286B
TWI501286B TW103122293A TW103122293A TWI501286B TW I501286 B TWI501286 B TW I501286B TW 103122293 A TW103122293 A TW 103122293A TW 103122293 A TW103122293 A TW 103122293A TW I501286 B TWI501286 B TW I501286B
Authority
TW
Taiwan
Prior art keywords
ion beam
ion
implanter
parallel
degrees
Prior art date
Application number
TW103122293A
Other languages
Chinese (zh)
Other versions
TW201601187A (en
Original Assignee
Advanced Ion Beam Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Ion Beam Tech Inc filed Critical Advanced Ion Beam Tech Inc
Priority to TW103122293A priority Critical patent/TWI501286B/en
Priority to KR1020140126565A priority patent/KR20160001565A/en
Priority to KR1020140173090A priority patent/KR20160001585A/en
Priority to CN201510298722.4A priority patent/CN105280466B/en
Priority to KR1020150091253A priority patent/KR20160001697A/en
Application granted granted Critical
Publication of TWI501286B publication Critical patent/TWI501286B/en
Publication of TW201601187A publication Critical patent/TW201601187A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species

Description

離子佈植機Ion implanter

本發明是有關於離子佈植機(ion implanter),特別是有關於可以提供非平行離子束(non-parallel ion beam)的離子佈植機。This invention relates to ion implanters, and more particularly to ion implanters that can provide non-parallel ion beams.

在半導體製造領域,目前關於離子束(ion beam)的一大重點是如何利用光學元件(optical component)(像是磁性元件(magnetic component)和電性元件(electric component))使得離子束更為準直化(collimated)與均勻化(uniform),使得讓離子佈植(ion implantation)的結果更容易控制。一般來說,目前商業化產品的離子佈植機,係將離子束調整到發散角度或是收歛角度都不大於三度,也就是經過調整而打到晶圓等工件的離子束基本上都可以視為平行離子束。In the field of semiconductor fabrication, a major focus on ion beams is how to make the ion beam more accurate using optical components such as magnetic components and electric components. Collimated and uniform, making the results of ion implantation easier to control. Generally speaking, the ion implanter of commercial products currently adjusts the ion beam to a divergence angle or a convergence angle of no more than three degrees, that is, an ion beam that is adjusted to hit a workpiece such as a wafer can basically Considered as a parallel ion beam.

準直化與均勻化的離子束已經普遍被應用來製造許多半導體元件,像是平面式場效電晶體(planar Field-Effect Transisor)、動態隨機記憶體等。此外,也已經普遍被應用來製造諸如太陽能電池、發光二極體或是其它元件。但是,對於近年來新發展的鰭狀場效電晶體(Fin Field-Effect Transistor)等等的三維半導體結構,準直化與均勻化之離子束的應用就受到相當的限制。這是由於平行離子束並不能同時佈植一個三維半導體結構的不同側面(side)。Collimated and homogenized ion beams have been commonly used to fabricate many semiconductor components, such as planar field-efect Transisors, dynamic random memories, and the like. In addition, it has also been commonly used to manufacture such as solar cells, light-emitting diodes or other components. However, for the three-dimensional semiconductor structure of the newly developed Fin Field-Effect Transistor and the like in recent years, the application of the collimated and homogenized ion beam is considerably limited. This is because parallel ion beams cannot simultaneously implant different sides of a three-dimensional semiconductor structure.

圖1繪示出一種鰭式場效電晶體的立體結構示意圖,而圖2則繪示出一種以平行離子束對圖1中所繪示出的鰭式場效電晶體進行離子佈植的示意圖。舉例來說,請先參考圖1所示,在製作鰭式場效電晶體100的過程中,必須要使用離子束對每一個鰭片結構110的左側面112、頂面114和右側面116都進行相同佈植濃度和佈植深度的離子佈植,以形成源極/汲極(source/drain)。換句話說,如圖2所示,如果僅使用一個傳統準直化且均勻化的離子束200,特別是僅使用同一組佈植參數值時,由於入射方向220是垂直於鰭片結構110的表 面114但是入射方面210與230並沒有垂直於鰭片結構110的左側面110與右側面116,鰭片結構110的左側面112、頂面114和右側面116將有不同的佈植結果。也就是說,為了達到相同的佈植結果,沿著入射方向210和230入射至鰭片結構110之傳統準直化且均勻化離子束200的佈植參數值,可能與沿著入射方向220入射至鰭片結構110之傳統準直化且均勻化離子束200的佈植參數值有所不同,不論是掃描速率、掃描途徑或是離子束電流與離子束電壓等佈植參數。1 is a schematic perspective view showing a fin field effect transistor, and FIG. 2 is a schematic view showing ion implantation of the fin field effect transistor illustrated in FIG. 1 by a parallel ion beam. For example, referring to FIG. 1 , in the process of fabricating the FinFET 100, the left side 112, the top surface 114, and the right side 116 of each fin structure 110 must be used with an ion beam. Ion implantation of the same implant concentration and implantation depth to form source/drain. In other words, as shown in FIG. 2, if only one conventional collimated and homogenized ion beam 200 is used, particularly when only the same set of implant parameter values are used, since the incident direction 220 is perpendicular to the fin structure 110 table Face 114, but incident sides 210 and 230 are not perpendicular to left side 110 and right side 116 of fin structure 110, and left side 112, top side 114 and right side 116 of fin structure 110 will have different implant results. That is, in order to achieve the same implant result, the conventional collimated and uniformized implant parameter values of the ion beam 200 incident on the fin structure 110 along the incident directions 210 and 230 may be incident along the incident direction 220. The conventional collimation and homogenization ion beam 200 to the fin structure 110 has different implant parameter values, whether it is the scan rate, the scan path, or the implantation parameters such as ion beam current and ion beam voltage.

顯然地,使用傳統準直化且均勻化的離子束200時,對鰭式場效電晶體100等3D半導體結構進行離子佈植的製程複雜度會遠高於對傳統平面半導體結構進行離子佈植的製程複雜度。在製造傳統平面半導體結構時,平行離子束200是以一個固定的入射角度(大多是垂直入射方向)讓平行離子束200掃描晶圓進行離子佈植。相對地,為了對鰭式場效電晶體的左側面112、頂面114和右側面116都進行相同佈植濃度和佈植深度的離子佈植,平行離子束200不只必須以不同的入射角多次掃描晶圓進行離子佈植佈植,而且每次佈植時需要使用不同的佈植參數值。在此,為了改變傳統準直化且均勻化離子束200與具有鰭片結構110之晶圓的入射角度,或是需要扭轉(twist)及或傾斜(tilt)晶圓,或是需要改變離子束200的傳遞路徑。Obviously, when the conventional collimated and homogenized ion beam 200 is used, the process complexity of ion implantation of the 3D semiconductor structure such as the FinFET 100 is much higher than that of the conventional planar semiconductor structure. Process complexity. In fabricating a conventional planar semiconductor structure, the parallel ion beam 200 is such that the parallel ion beam 200 scans the wafer for ion implantation at a fixed angle of incidence (mostly the direction of normal incidence). In contrast, in order to perform ion implantation of the same implant concentration and implantation depth on the left side surface 112, the top surface 114, and the right side surface 116 of the fin field effect transistor, the parallel ion beam 200 must not only have to be at multiple incident angles multiple times. The wafer is scanned for ion implantation, and different implant parameter values are required for each implant. Here, in order to change the conventional collimation and homogenize the incident angle of the ion beam 200 and the wafer having the fin structure 110, it is necessary to twist and or tilt the wafer, or to change the ion beam. The delivery path of 200.

因此,亟需提出適用於諸如鰭狀電晶體等3D半導體結構之新的離子佈植機,甚至是新的離子佈植方法。Therefore, there is a need to propose a new ion implanter suitable for a 3D semiconductor structure such as a fin transistor, or even a new ion implantation method.

本發明提供一種離子佈植機,其可提供非平行離子束,使得工件的不同區域可以被非平行離子束的不同部份所佈植。The present invention provides an ion implanter that provides a non-parallel ion beam such that different regions of the workpiece can be implanted by different portions of the non-parallel ion beam.

本發明提出一種離子佈植機,至少包括離子源與至少一光學元件。離子源提供一離子束,而光學元件係配置於離子束的傳遞路徑上,用以將離子束調整為非平行離子束,其中,當非平行離子束為發散離子束時,其發散角度為大於等於3度但小於等於10度、或是大於5度但小於15度、或是不小於4度也不大於8度、或是小於18度而大於3度,或是大於8度;其中,當非平行離子束為收斂離子束時,其收斂角度為大於等於3度但小於等於10度、或是 大於5度但小於15度、或是不小於4度也不大於8度、或是小於18度而大於3度,或是大於8度。The present invention provides an ion implanter comprising at least an ion source and at least one optical component. The ion source provides an ion beam, and the optical component is disposed on the ion beam transmission path for adjusting the ion beam to a non-parallel ion beam, wherein when the non-parallel ion beam is a divergent ion beam, the divergence angle is greater than Is equal to 3 degrees but less than or equal to 10 degrees, or greater than 5 degrees but less than 15 degrees, or not less than 4 degrees is not greater than 8 degrees, or less than 18 degrees and greater than 3 degrees, or greater than 8 degrees; When the non-parallel ion beam is a convergent ion beam, the convergence angle is 3 degrees or more but 10 degrees or less, or More than 5 degrees but less than 15 degrees, or not less than 4 degrees and no more than 8 degrees, or less than 18 degrees and more than 3 degrees, or greater than 8 degrees.

本發明的一些實施例,更包含用以承載工件之承載裝置,其配置於離子束傳遞路徑並位於光學元件的下游,藉以使得工件的不同部份被非平行離子束的不同部份所佈植。Some embodiments of the present invention further include a carrier device for carrying a workpiece disposed in the ion beam transfer path and downstream of the optical element such that different portions of the workpiece are implanted by different portions of the non-parallel ion beam .

本發明的一些實施例,離子源提供之離子束為點狀離子束或束狀離子束。In some embodiments of the invention, the ion beam provided by the ion source is a spotted ion beam or a beamed ion beam.

本發明的一些實施例,離子源提供之離子束為平行離子束、收斂離子束或發散離子束,而光學元件可將離子源提出離子束調整為諸如發散離子束或收斂離子束之非平行離子束。非平行離子束與平行離子束之間的差異係大於離子源提供離子束與平行離子束之間的差異。In some embodiments of the invention, the ion beam provided by the ion source is a parallel ion beam, a convergent ion beam or a diverging ion beam, and the optical element can adjust the ion source to a non-parallel ion such as a diverging ion beam or a converging ion beam. bundle. The difference between the non-parallel ion beam and the parallel ion beam is greater than the difference between the ion source providing the ion beam and the parallel ion beam.

本發明的一些實施例,光學元件較靠進離子源但較遠離承載裝置。也就是說,在某些實施例,離子源與光學元件之間的距離係短於離子源與承載裝置之間的距離。In some embodiments of the invention, the optical element is closer to the ion source but is further away from the carrier. That is, in some embodiments, the distance between the ion source and the optical element is shorter than the distance between the ion source and the carrier.

本發明的一些實施例,光學元件為磁性元件或電性元件。In some embodiments of the invention, the optical element is a magnetic element or an electrical element.

本發明的一些實施例,光學元件為施加四極磁場於離子束之磁四極矩。本發明又一些實施例,光學元件為磁性元件,包含位於兩支架上的多數個線圈,這兩支架係位於離子束的相對兩側。本發明再一些實施例,光學元件為電性元件,包含位於兩支架上的多數個電極,這兩支架係位於離子束的相對兩側。In some embodiments of the invention, the optical element is a magnetic quadrupole moment that applies a quadrupole magnetic field to the ion beam. In still other embodiments of the invention, the optical component is a magnetic component comprising a plurality of coils on the two brackets, the two brackets being located on opposite sides of the ion beam. In still other embodiments of the invention, the optical component is an electrical component comprising a plurality of electrodes on the two supports, the two stents being located on opposite sides of the ion beam.

本發明的一些實施例,離子源提供之離子束為平行離子束、收斂離子束或發散離子束,而非平行離子束為發散離子束或收斂離子束。In some embodiments of the invention, the ion beam provided by the ion source is a parallel ion beam, a convergent ion beam, or a diverging ion beam, and the non-parallel ion beam is a diverging ion beam or a converging ion beam.

本發明的一些實施例,當離子束為點狀離子束時,非平行離子束與平行離子束之角度分佈差異係等於或小於15度。本發明一些實施例,當離子束為束狀離子束時,非平行離子束與平行離子束之角度分佈差異係等於或小於5度。In some embodiments of the invention, when the ion beam is a spotted ion beam, the angular distribution difference between the non-parallel ion beam and the parallel ion beam is equal to or less than 15 degrees. In some embodiments of the invention, when the ion beam is a beam-shaped ion beam, the difference in angular distribution between the non-parallel ion beam and the parallel ion beam is equal to or less than 5 degrees.

本發明的一些實施例,離子源提供之離子束係被光學元件發散成發散離子束。本發明又一些實施例,離子源提供之離子束係被光學元件收斂成收斂離子束。In some embodiments of the invention, the ion beam provided by the ion source is diverged by the optical element into a diverging ion beam. In still other embodiments of the invention, the ion beam provided by the ion source is converged by the optical element into a converging ion beam.

本發明的一些實施例,離子源提供之離子束係被光學元件收斂,以使離子束先聚焦,然後再發散成該發散式離子束。In some embodiments of the invention, the ion beam provided by the ion source is converged by the optical element such that the ion beam is first focused and then diverged into the divergent ion beam.

本發明的一些實施例,更包含沿著離子束傳輸途徑排列且位於離子源下游之多數個光學元件。Some embodiments of the invention further comprise a plurality of optical elements arranged along the ion beam transport pathway and located downstream of the ion source.

本發明的一些實施例,任一光學元件為磁性元件或電性元件。本發明某些實施例,至少一光學元件為施加四極磁場於離子束之磁四極矩。本發明某些實施例,至少一光學元件為磁性元件,其包含位於兩支架上的多數個線圈,這兩支架係位於離子束的相對兩側。本發明某些實施例,至少一光學元件為電性元件,其包含位於兩支架上的多數個電極,這兩支架係位於離子束的相對兩側。In some embodiments of the invention, any optical component is a magnetic component or an electrical component. In some embodiments of the invention, at least one optical component is a magnetic quadrupole moment that applies a quadrupole magnetic field to the ion beam. In some embodiments of the invention, the at least one optical component is a magnetic component comprising a plurality of coils on the two brackets, the two brackets being located on opposite sides of the ion beam. In some embodiments of the invention, at least one optical component is an electrical component that includes a plurality of electrodes on the two supports that are on opposite sides of the ion beam.

本發明的一些實施例,這些光學元件至少包含配置於離子束傳遞路徑並位於離子源下游的至少一磁性元件,以及配置於離子束傳遞路徑並位於這些磁性元件下游的一電性元件。本發明某些實施例,這些光學元件至少包含配置於離子束傳遞路徑並位於離子源下游至少一磁性元件,以及配置於離子束傳遞路徑並位於二個磁性元件之間一電性元件。本發明某些實施例,這些光學元件至少包含配置於離子束傳遞路徑並位於離子源下游的至少一電性元件,以及配置於離子束傳遞路徑並且位於所有電性元件的下游或是位於二個電性元件間之一磁性元件。In some embodiments of the invention, the optical elements comprise at least one magnetic element disposed in the ion beam transfer path and downstream of the ion source, and an electrical element disposed in the ion beam transfer path and downstream of the magnetic elements. In some embodiments of the invention, the optical elements comprise at least one magnetic element disposed in the ion beam transfer path and located downstream of the ion source, and an electrical element disposed in the ion beam transfer path between the two magnetic elements. In some embodiments of the invention, the optical elements comprise at least one electrical component disposed in the ion beam transfer path and downstream of the ion source, and disposed in the ion beam transfer path and located downstream of all of the electrical components or in two A magnetic element between electrical components.

本發明的一些實施例,這些光學元件之不同部份係調整離子源提供離子束之不同部份。In some embodiments of the invention, different portions of the optical elements are adjusted ion sources to provide different portions of the ion beam.

本發明的一些實施例,離子源提供之離子束係被靠近離子源之至少一光學元件收斂成收斂離子束,然後此收斂離子束被遠離離子源之至少一光學元件發散成此非平行離子束。本發明又一些實施例,離子源提供之離子束係被靠近離子源之至少一光學元件發散成發散離子束,然後此發散離子束被遠離離子源之至少一光學元件收斂成此非平行離子束。In some embodiments of the invention, the ion beam provided by the ion source is converged into a converging ion beam by at least one optical element proximate the ion source, and then the converging ion beam is diverged into the non-parallel ion beam by at least one optical element remote from the ion source. . In still other embodiments of the present invention, the ion beam provided by the ion source is diverged into a divergent ion beam by at least one optical element proximate the ion source, and the divergent ion beam is converged into the non-parallel ion beam by at least one optical component remote from the ion source. .

本發明的一些實施例,離子源提供之離子束係被這些光學元件逐漸發散成此非平行離子束。本發明又一些實施例,離子源提供之離子束係被這些光學元件依序先收斂再發散而形成收斂離子束或發散離子束。In some embodiments of the invention, the ion beam provided by the ion source is gradually diffused by the optical elements into the non-parallel ion beam. In still other embodiments of the invention, the ion beam provided by the ion source is first converged by the optical elements and then diverged to form a convergent ion beam or a diverging ion beam.

本發明的一些實施例,離子源提供之離子束係被這些光學元件逐漸收斂成此非平行離子束。本發明又一些實施例,離子源提供之離子束係被這些光學元件依序先發散再收斂而形成發散離子束或收斂離子束。In some embodiments of the invention, the ion beam provided by the ion source is gradually converged by the optical elements into the non-parallel ion beam. In still other embodiments of the invention, the ion beam provided by the ion source is first dispersed and re-converged by the optical elements to form a diverging ion beam or a converging ion beam.

本發明的一些實施例,離子源提供之離子束係被靠近離子源之至少一光學元件發散成發散離子束,然後被遠離離子源之至少一光學元件所收斂而在聚焦之後形成此非平行離子束。本發明又一些實施例,離子源提供之離子束係被靠近離子源之至少一光學元件收斂成收斂離子束,然後在收斂離子束聚焦之後被遠離離子源之至少一光學元件再發散成非平行離子束。In some embodiments of the invention, the ion beam provided by the ion source is diverged into a diverging ion beam by at least one optical element proximate the ion source, and then converged by at least one optical element remote from the ion source to form the non-parallel ion after focusing bundle. In still other embodiments of the invention, the ion beam provided by the ion source is converged into a convergent ion beam by at least one optical element proximate the ion source, and then diverged into non-parallel by at least one optical element remote from the ion source after focusing of the converging ion beam Ion beam.

本發明的一些實施例,更包含一孔隙裝置,配置於離子束傳遞途徑上並位於光學元件之下游,用以阻擋部份的非平行離子束或是減少部份之非平行離子束的離子濃度。在此,孔隙裝置可為固定開口、可調整開口、遮罩、光罩或其組合。Some embodiments of the present invention further include a pore device disposed on the ion beam transfer path and located downstream of the optical element for blocking a portion of the non-parallel ion beam or reducing the ion concentration of a portion of the non-parallel ion beam . Here, the aperture means can be a fixed opening, an adjustable opening, a mask, a reticle or a combination thereof.

本發明的一些實施例,更包含一孔隙裝置,配置於離子束傳遞途徑上並位於這些光學元件之間,用以阻擋部份的非平行離子束或是減少部份之非平行離子束的離子濃度。在此,孔隙裝置可為固定開口、可調整開口、遮罩、倍縮光罩或其組合。Some embodiments of the present invention further include a pore device disposed on the ion beam transfer path between the optical elements for blocking a portion of the non-parallel ion beam or reducing a portion of the non-parallel ion beam ions concentration. Here, the aperture means can be a fixed opening, an adjustable opening, a mask, a pleated reticle or a combination thereof.

本發明的一些實施例,非平行離子束之橫截面上離子束電流分佈可以為單峰狀電流分佈、兩個單峰狀電流分佈、雙峰狀電流分佈、截頭拋物線狀電流分佈、多峰狀電流分佈或是非對稱狀。In some embodiments of the present invention, the ion beam current distribution on the cross section of the non-parallel ion beam may be a unimodal current distribution, two unimodal current distributions, a bimodal current distribution, a truncated parabolic current distribution, and multiple peaks. The current distribution is either asymmetrical.

本發明的一些實施例,更包括一驅動裝置,用以驅動承載裝置垂直於離子束傳遞路徑呈線性移動。本發明又一些實施例,更包括一驅動裝置,用以驅動承載裝置相對於離子束傳遞路徑傾斜。Some embodiments of the invention further include a drive for driving the carrier to move linearly perpendicular to the ion beam transfer path. Still further embodiments of the present invention further include a driving device for driving the carrier device to tilt relative to the ion beam delivery path.

根據上述討論,本發明所提出之離子佈植機可以提供非平行離子束,其可以同時用非平行離子束之不同部份來佈植工件之不同部份。藉以,當工件掃描通過非平行離子束時,工件上任一部份都可以依序被非平行離子束之 不同部份(不同入射角度)所佈植。也就是說,工件上任一個三維結構,其頂表面、左側表面與右側表面都可以被非平行離子束所佈植。亦即,藉由使用本發明所提出之離子佈植機,三維半導體結構的製程可以簡化。In light of the above discussion, the ion implanter of the present invention can provide a non-parallel ion beam that can simultaneously implant different portions of the workpiece with different portions of the non-parallel ion beam. Therefore, when the workpiece is scanned through the non-parallel ion beam, any part of the workpiece can be sequentially non-parallel ion beam Different parts (different angles of incidence) are implanted. That is to say, any three-dimensional structure on the workpiece, the top surface, the left side surface and the right side surface can be implanted by non-parallel ion beams. That is, the process of the three-dimensional semiconductor structure can be simplified by using the ion implanter proposed by the present invention.

100‧‧‧鰭式場效電晶體100‧‧‧Fin field effect transistor

110‧‧‧鰭片結構110‧‧‧Fin structure

112‧‧‧左側面112‧‧‧ left side

114‧‧‧頂面114‧‧‧ top surface

116‧‧‧右側面116‧‧‧ right side

200‧‧‧離子束200‧‧‧Ion Beam

210、220、230‧‧‧入射方向210, 220, 230‧‧‧ incident direction

300‧‧‧離子佈植機300‧‧‧Ion implanter

310‧‧‧離子源310‧‧‧Ion source

320、320a、320b‧‧‧光學元件320, 320a, 320b‧‧‧ optical components

330‧‧‧承載裝置330‧‧‧ Carrying device

340‧‧‧驅動裝置340‧‧‧ drive

350‧‧‧孔隙裝置350‧‧‧ pore device

352‧‧‧固定孔隙352‧‧‧Fixed pores

400‧‧‧工件400‧‧‧Workpiece

CB‧‧‧收斂式離子束CB‧‧‧Convergent ion beam

DB、DB1、DB2‧‧‧發散式離子束DB, DB1, DB2‧‧‧ divergent ion beam

OB‧‧‧離子束OB‧‧‧ ion beam

P1‧‧‧中央部分Central part of P1‧‧‧

P2‧‧‧外圍部分P2‧‧‧ peripheral part

R1‧‧‧中央區域R1‧‧‧Central Area

R2‧‧‧周邊區域R2‧‧‧ surrounding area

RB‧‧‧環狀離子束RB‧‧‧Ring Ion Beam

圖1繪示習知一種鰭式場效電晶體的立體結構示意圖。FIG. 1 is a schematic perspective view showing a conventional fin field effect transistor.

圖2繪示一種以傳統離子束對圖1中所繪示出的鰭式場效電晶體進行離子佈植的示意圖。2 is a schematic diagram of ion implantation of the fin field effect transistor illustrated in FIG. 1 by a conventional ion beam.

圖3至圖6分別繪示本發明一些實施例的離子佈植機的結構示意圖。3 to 6 are schematic views showing the structure of an ion implanter according to some embodiments of the present invention.

圖7至圖9分別繪示本發明一些實施例的離子佈植機的結構示意圖。7 to 9 are schematic views showing the structure of an ion implanter according to some embodiments of the present invention.

圖10至圖13分別繪示本發明一些實施例的離子佈植機的結構示意圖。10 to 13 are schematic views showing the structure of an ion implanter according to some embodiments of the present invention.

圖14至圖16分別繪示本發明一些實施例的離子佈植機的結構示意圖。14 to 16 are schematic views showing the structure of an ion implanter according to some embodiments of the present invention.

圖17繪示本發明一實施例的離子佈植機的結構示意圖。FIG. 17 is a schematic structural view of an ion implanter according to an embodiment of the present invention.

圖18至圖19分別繪示出本發明一些實施例的離子佈植機的結構示意圖。18 to 19 are schematic views showing the structure of an ion implanter according to some embodiments of the present invention.

圖20-25分別繪示在本發明一些實施例的非平行離子束的離子束橫截面上所測量出的離子束電流分佈圖。20-25 illustrate ion beam current profiles measured on an ion beam cross section of a non-parallel ion beam, respectively, in accordance with some embodiments of the present invention.

本發明將詳細描述如一些實施例如下。然而,除了所揭露之實施例外,本發明亦可以廣泛地運用在其他之實施例。本發明之範圍並不受該些實施例之限定,乃以其後之申請專利範圍為準。而為提供更清楚之描述及使熟悉該項技藝者能理解本發明之發明內容,圖示內各部分並沒有依照其相對之尺寸而繪圖,某些尺寸與其他相關尺度之比例會被突顯而顯得誇張,且不相關之細節部分亦未完全繪出,以求圖示之簡潔。The invention will be described in detail as some examples below. However, the invention may be applied to other embodiments in addition to the disclosed embodiments. The scope of the present invention is not limited by the embodiments, and the scope of the appended claims shall prevail. In order to provide a clearer description and to enable those skilled in the art to understand the present invention, the various parts of the drawings are not drawn according to their relative sizes, and the ratio of certain dimensions to other related dimensions will be highlighted. Exaggerated, and irrelevant details are not completely drawn, in order to simplify the illustration.

本發明提供一種離子佈植機,其提供具有不可忽略之發散角度或不可忽略之收斂角度。相對地,傳統的離子佈植機係產生準直化的離子束,亦即實質上平行的離子束。簡言之,本發明提出之離子佈植機所輸出之非平行離子束的平行度(parallism)小於傳統離子佈植機所輸出之離子束的平行度。舉例來說,非平行離子束可為發散離子束,且其發散角度大於等於3度但小於等於10度。舉例來說,非平行離子束可為收斂離子束,且其收斂角度大於等於3度但小於等於10度。當然,非平行離子束也可以有其它不同的發散角度範圍或是其同不同的收斂角度範圍,或例如大於5度但小於15度,或例如不小於4度也不大於8度,或例如小於18度而大於2度,或例如大於8度等等。事實上,本發明所提供之離子佈植機必不受限於所提供之非平行離子束的可能發散角度範圍及/或可能收斂角度範圍,當實際的發散角度範圍及/或實際的收斂角度範圍係取決於使用本發明之離子佈值機所進行的半導體製程。The present invention provides an ion implanter that provides a non-negligible divergence angle or a non-negligible convergence angle. In contrast, conventional ion implanters produce collimated ion beams, ie, substantially parallel ion beams. In short, the parallelism of the non-parallel ion beam output by the ion implanter of the present invention is smaller than the parallelism of the ion beam output by the conventional ion implanter. For example, the non-parallel ion beam may be a divergent ion beam with a divergence angle greater than or equal to 3 degrees but less than or equal to 10 degrees. For example, the non-parallel ion beam may be a convergent ion beam with a convergence angle greater than or equal to 3 degrees but less than or equal to 10 degrees. Of course, the non-parallel ion beam may also have other different divergence angle ranges or different convergence angle ranges, or for example greater than 5 degrees but less than 15 degrees, or for example no less than 4 degrees and no more than 8 degrees, or for example less than. 18 degrees and greater than 2 degrees, or for example greater than 8 degrees, and the like. In fact, the ion implanter provided by the present invention is not limited to the range of possible divergence angles and/or possible convergence angles of the non-parallel ion beams provided, when the actual divergence angle range and/or the actual convergence angle The range depends on the semiconductor process performed using the ion value machine of the present invention.

本發明提供一種離子佈值機,其使用光學元件來將離子源所產生的離子束調整為非平行離子束。業界習知的,使用磁性元件所產生的磁場或是此用電性元件所產生的電場可以調整離子束,或甚至是調整任何的帶電粒子束。類比於用來調整光束用的透鏡,”束光學”(beam optics)這個術語普遍被用來描述在離子源與用以承載將被佈植工件之承載裝置之間對離子束所進行的調整,而”光學元件”(optical component)這個術語也被用來標示這些磁性元件與這些電性元件。因此,藉由調整這些光學元件的運作,使得各個使用之光學元件皆施加非均勻的力量分佈在通過之離子束(或視為不同的磁場分佈及/或不同的電場分佈),此離子束可以被調整為一非平行離子束。就如同藉由使用凸透鏡及/或凹透鏡可以將光束調整為非平行光束般。也就是,本發明所提出的離子佈值機並不受限於所使用之光學元件的細節,只要這些使用之光學元件可以彈性地調整以提供所需要的非均勻的力量分佈。一般來說,光學元件可以是施加四極磁場於離子束之磁四極矩,在此四極磁場可以在離子束的不同部份施加不同的羅倫斯力量(Lorentz force),不論是力量的大小或是方向。其次,光學元件也可以是分別位於兩個相分離之支架上的多數個線圈(coil),在此任一個線圈都可以產生各自的磁場,使得整個離子束會為這些各自磁場之總合所影響所調整。 當然,光學元件也可以是分別位於兩個相分離之支架上的多數個電極(electrode),在此位於不同支架的任二個電極之間都可以產生橫跨離子束的電場,使得離子束中離子的運動會受其所影響所調整。The present invention provides an ion value machine that uses optical elements to modulate an ion beam produced by an ion source into a non-parallel ion beam. It is well known in the art that the magnetic field generated by the magnetic element or the electric field generated by the electrical component can be used to adjust the ion beam or even to adjust any charged particle beam. Analogous to the lens used to adjust the beam, the term "beam optics" is commonly used to describe the adjustment of the ion beam between the ion source and the carrier used to carry the workpiece to be implanted. The term "optical component" is also used to refer to these magnetic components and these electrical components. Therefore, by adjusting the operation of these optical components, each of the optical components used applies a non-uniform force distribution through the ion beam (or as a different magnetic field distribution and/or a different electric field distribution), and the ion beam can Adjusted to a non-parallel ion beam. Just as by using a convex lens and/or a concave lens, the beam can be adjusted to be a non-parallel beam. That is, the ion value machine proposed by the present invention is not limited to the details of the optical elements used, as long as the optical elements used can be elastically adjusted to provide the desired non-uniform force distribution. In general, the optical component can be a magnetic quadrupole that applies a quadrupole magnetic field to the ion beam, where the quadrupole magnetic field can apply different Lorentz forces in different parts of the ion beam, regardless of the magnitude of the force or direction. Secondly, the optical element can also be a plurality of coils respectively located on two phase-separated holders, each of which can generate a respective magnetic field, so that the entire ion beam will be affected by the sum of these respective magnetic fields. Adjusted. Of course, the optical element can also be a plurality of electrodes respectively located on two phase-separated holders, where an electric field across the ion beam can be generated between any two electrodes of different holders, so that the ion beam is The movement of ions is adjusted by their influence.

請注意這些光學元件的位置會影響其對離子束的調整結果。通常,光學元件的位置傾向於靠近離子源但遠離被佈植的工件,這是因為光學元件與工件之間的距離將影響離子束角度分佈是怎樣地分佈在工件之上。附帶地,不論是點狀離子束或是束狀離子束,這至少一光學元件可以或施加磁場或施加電場在整個或部份的離子束上,藉以調整離子束或甚至是調整諸如大小、形狀與電流分佈等等的離子束參數。當然,由於束狀離子束通常具有比點狀離子束來得多的離子,本發明較能將點狀離子束調整到比較大的收斂角度與發散角度,像是調整到不大於15度,而較會將束狀離子束調整到比較小的收斂角度與發散角度,像是調整到不大於5度。Please note that the position of these optics affects the adjustment of the ion beam. Typically, the position of the optical element tends to be close to the ion source but away from the workpiece being implanted because the distance between the optical element and the workpiece will affect how the ion beam angular distribution is distributed over the workpiece. Incidentally, whether it is a spotted ion beam or a beamed ion beam, the at least one optical element can either apply a magnetic field or apply an electric field over all or part of the ion beam, thereby adjusting the ion beam or even adjusting such as size and shape. Ion beam parameters with current distribution and so on. Of course, since the beam ion beam usually has more ions than the point ion beam, the present invention can adjust the spot ion beam to a relatively large convergence angle and divergence angle, such as adjusting to no more than 15 degrees. The beam ion beam is adjusted to a relatively small convergence angle and divergence angle, such as to be adjusted to no more than 5 degrees.

圖3至圖19分別為根據本發明一些實施例之離子佈植機的結構示意圖,圖20至圖25分別為根據本發明一些實施例之非平行離子束橫截面上的離子束電流分佈輪廓。在這些實施例,非平行離子束或是被示意地畫為發散離子束DB或是被示意地畫為收斂離子束CB。在此,發散離子束DB與收斂離子束CB的平行度(parallism)較離子源310提供之離子束OB的平行度來得差,這是由於光學元件320係被用來將離子源提供離子束OB調整為非平行離子束。無論如何,當離子源310提供之離子束OB是平行度不好的非平行離子束,或是離子源310提供之離子束OB在經未圖示之分析磁鐵(analysis magnet)調整後仍為平行度不好的非平行離子束時,發散離子束DB與收殮離子束CB皆可以是將此離子源310提供離子束OB調整後之平行度較好的非平行離子束。3 through 19 are schematic views of the structure of an ion implanter according to some embodiments of the present invention, and Figs. 20 through 25 are ion beam current distribution profiles on a cross section of a non-parallel ion beam, respectively, according to some embodiments of the present invention. In these embodiments, the non-parallel ion beam is either schematically depicted as a diverging ion beam DB or schematically drawn as a converging ion beam CB. Here, the parallelism of the divergent ion beam DB to the convergent ion beam CB is worse than the parallelism of the ion beam OB provided by the ion source 310, since the optical element 320 is used to provide the ion source with the ion beam OB. Adjust to a non-parallel ion beam. In any case, when the ion beam OB provided by the ion source 310 is a non-parallel ion beam of poor parallelism, or the ion beam OB provided by the ion source 310 is still parallel after being adjusted by an analysis magnet (not shown) When the non-parallel ion beam is not good, both the divergent ion beam DB and the confined ion beam CB may be non-parallel ion beams with better parallelism after the ion source OB is adjusted by the ion source 310.

據此,發散離子束DB與收斂離子束CB都可以同時地垂直入射工件的一部份但也非垂直入射工件的其它部份。舉例來說,如圖3所示,工件400有中央區域R1與周邊區域R2,而發散離子束DB也有中央部份P1與外圍部份P2。在此,中央區域R1對應到中央部份P1而周邊區域R2對應到外圍部份P2。因此,工件400的不同區域可以同時地被發散離子束DB的不同部份所佈植。藉以,當工件400完整地被移動橫越通過發散離子束DB,中央區域R1與 周邊區域R2都可以接續地被中央部份P1與外圍部份P2所佈植。也就是說,藉由使用如此的發散離子束DB,當工件400被掃描通過此非平行離子束一次且僅一次時,離子便可以沿著不同的入射角度被入射到任何位於工件400的三維結構,例如鰭狀結構(Fin structure)。請注意收斂離子束CB也可以當工件400被掃描通過此非平行離子束一次且僅一次時,讓離子沿著不同的入射角度被入射到任何位於工件400的三維結構,例如鰭狀結構(Fin structure)。也就是說,諸如鰭狀結構等三維結構的頂表面與兩個相對的側扁面都可以被非平行離子束所佈植,只要工件400被掃描通過此非平行離子束一且唯一次。顯然地,本發明所提出之離子佈植機比被設計來提供準直化平行離子束的習知離子佈植機,更適用於製造三維結構。Accordingly, both the diverging ion beam DB and the converging ion beam CB can be simultaneously incident perpendicularly to a portion of the workpiece but also not perpendicularly incident to other portions of the workpiece. For example, as shown in FIG. 3, the workpiece 400 has a central region R1 and a peripheral region R2, and the divergent ion beam DB also has a central portion P1 and a peripheral portion P2. Here, the central region R1 corresponds to the central portion P1 and the peripheral region R2 corresponds to the peripheral portion P2. Thus, different regions of the workpiece 400 can be simultaneously implanted by different portions of the diverging ion beam DB. Thereby, when the workpiece 400 is completely moved across the divergent ion beam DB, the central region R1 is The peripheral region R2 can be successively implanted by the central portion P1 and the peripheral portion P2. That is, by using such a divergent ion beam DB, when the workpiece 400 is scanned through the non-parallel ion beam once and only once, the ions can be incident on any three-dimensional structure located in the workpiece 400 along different incident angles. For example, a Fin structure. Note that the converging ion beam CB can also be incident on any three-dimensional structure of the workpiece 400 along a different angle of incidence, such as a fin structure (Fin), when the workpiece 400 is scanned through the non-parallel ion beam once and only once. Structure). That is, the top surface of the three-dimensional structure, such as a fin structure, and the two opposing side flat surfaces can be implanted by non-parallel ion beams as long as the workpiece 400 is scanned through the non-parallel ion beam for a single and unique time. Obviously, the ion implanter of the present invention is more suitable for fabricating three-dimensional structures than conventional ion implanters designed to provide collimated parallel ion beams.

當然,為了提昇離子佈植的成果,也可以掃描工件400通過非平行離子束二次或多次,甚至也可以沿著一個掃描途徑(raster)掃描工件400以確保整個工件400都會被非平行離子束所佈植。此外,使用本發明提出之離子佈植機所提供之非平行離子束時,並不必須去轉動(twist)或傾斜(tilt)工件400,也不必須在掃描週期內改變非平行離子束之傳輸路徑,來在掃描期間改變工件400與非平行離子束的相對方向。雖然,可以視需要選擇這樣作以增加工件400與非平行離子束之間入射角度的可能變化範圍。相較之下。當習知離子佈植機所提供之平行離子束被使用時,便必須或是轉動或傾斜工件400或是改變平行離子束的傳遞路徑,藉以使得工件400可以被此平行離子束分別沿著不同入射角度所佈植。Of course, in order to enhance the results of ion implantation, it is also possible to scan the workpiece 400 through the non-parallel ion beam two or more times, or even scan the workpiece 400 along a scanning path to ensure that the entire workpiece 400 is non-parallel ions. The bundle is planted. In addition, when using the non-parallel ion beam provided by the ion implanter of the present invention, it is not necessary to twist or tilt the workpiece 400, and it is not necessary to change the transmission of the non-parallel ion beam during the scanning period. A path to change the relative orientation of the workpiece 400 and the non-parallel ion beam during the scan. Although, such a choice can be made as needed to increase the range of possible variations in the angle of incidence between the workpiece 400 and the non-parallel ion beam. By comparison. When a parallel ion beam provided by a conventional ion implanter is used, it is necessary to either rotate or tilt the workpiece 400 or change the transmission path of the parallel ion beam, so that the workpiece 400 can be differently separated by the parallel ion beam. The angle of incidence is implanted.

除此之外,本發明所提供之離子佈植機300至少包含離子源310與一光學元件320。離子源310係被配置成提供沿著傳遞路徑X傳遞之離子束OR,而光學元件320係沿著傳遞路徑X排列藉以將此離子束OB調整為非平行離子束。一般來說,雖然未特別圖示,本發明還有被配置於離子源310與光學元件320之間的分析磁鐵,用以將不需要的離子給濾除掉。此外,舉例來說,工件400可以是位於反應室300內部之矽晶圓,工件400係被離子佈植300機之承載裝置330所承載,而且離子佈植機300之驅動裝置340被配置來驅動承載裝置330(等效於驅動工件400),或是帶動承載裝置330相對於發散離子束DB在 Y-Z平面移,或是沿著Y軸或Z軸來傾斜承載裝置330。舉例來說,驅動裝置340可以是線性驅動元件,像是螺桿(lead screw)、導軌(guide rail)與可伸縮手臂(extendable-retractable arm)等等,藉以在Y-Z平面上線性地驅動工件400。此外,當發散離子束DB的參數可以被光學工件320所充份地調整時,諸如大小與形狀等參數,驅動裝置340也可以是諸如掃描手臂(swing arm)等曲線驅動裝置,藉以在Y-Z平面上沿著曲線移動承載裝置330。此外,驅動裝置340還可以是傾斜驅動裝置,藉以讓工件400沿著X軸或Y軸而傾斜。In addition, the ion implanter 300 provided by the present invention includes at least an ion source 310 and an optical element 320. The ion source 310 is configured to provide an ion beam OR that is transmitted along the transfer path X, and the optical element 320 is arranged along the transfer path X to adjust the ion beam OB to a non-parallel ion beam. In general, although not specifically illustrated, the present invention also has an analytical magnet disposed between the ion source 310 and the optical element 320 for filtering out unwanted ions. In addition, for example, the workpiece 400 may be a crucible wafer located inside the reaction chamber 300, the workpiece 400 is carried by the carrier device 330 of the ion implantation apparatus 300, and the driving device 340 of the ion implanter 300 is configured to be driven. Carrying device 330 (equivalent to driving workpiece 400), or driving carrier device 330 relative to divergent ion beam DB The Y-Z plane is moved, or the carrier 330 is tilted along the Y or Z axis. For example, the drive device 340 can be a linear drive element, such as a lead screw, a guide rail, and an extendable-retractable arm, etc., to linearly drive the workpiece 400 in the Y-Z plane. Further, when the parameters of the divergent ion beam DB can be sufficiently adjusted by the optical workpiece 320, such as the size and shape, the driving device 340 can also be a curve driving device such as a swing arm, thereby being in the YZ plane. The carrier 330 is moved along the curve. Further, the driving device 340 may also be a tilt driving device whereby the workpiece 400 is tilted along the X-axis or the Y-axis.

使用光學元件來產生需要之非平行離子束的可能方式有不少。舉例來說,當只有一個光學元件320被使用來產生發散離子束時,本發明所提出之離子佈植機至少有下列的變化。如圖3所示,大致平行的離子束OB被光學元件320調整為發散離子束DB。這是一個基本的變化,光學元件320將離子源310(甚至與分析磁鐵一起作用)提供之大致平行離子束OB予以發散而不是予以準直化。此外,如圖4所示,光學元件320也可以將離子束OB調整為發散離子束DB,亦即將逐漸聚焦成為稍微收斂離子束的離子束OB予以發散成為發散離子束DB。此外,如圖5所示,光學元件320也可以在離子束OB是未充份聚焦而便成輕微發散離子束時,將如此之離子束OB調整為發散離子束DB。在此,發散離子束DB的發散角度大於離子束OB的發散角度。此外,如圖6所示,離子束OB也可以不是直接被發散成為發散離子束DB,而是先被收斂成為收斂離子束CB,然後在收斂離子束CB聚焦之後再讓其發散成為需要之發散離子束。There are many possible ways to use optical components to create the desired non-parallel ion beam. For example, when only one optical element 320 is used to generate a diverging ion beam, the ion implanter of the present invention has at least the following variations. As shown in FIG. 3, the substantially parallel ion beam OB is adjusted by the optical element 320 to a divergent ion beam DB. This is a fundamental change in that the optical element 320 diverges rather than collimating the substantially parallel ion beam OB provided by the ion source 310 (even with the analytical magnet). Further, as shown in FIG. 4, the optical element 320 may also adjust the ion beam OB to a divergent ion beam DB, that is, an ion beam OB that is gradually focused to a slightly convergent ion beam to be diverged into a divergent ion beam DB. Further, as shown in FIG. 5, the optical element 320 may also adjust such an ion beam OB to a divergent ion beam DB when the ion beam OB is not sufficiently focused to form a slightly divergent ion beam. Here, the divergence angle of the divergent ion beam DB is larger than the divergence angle of the ion beam OB. In addition, as shown in FIG. 6, the ion beam OB may not be directly diverged into the divergent ion beam DB, but first converged into the convergent ion beam CB, and then diverged after the converging ion beam CB is focused to become a desired divergence. Ion beam.

相對地,如圖7到圖9所示,當只有一個光學元件320被使用來產生發散離子束時,本發明所提出之離子佈植機至少有下列的變化。如圖7所示,大致平行的離子束OB被光學元件320調整為收斂離子束CB。這是一個基本的變化,光學元件320將離子源310(甚至與分析磁鐵一起作用)提供之大致平行離子束OB予以收斂而不是予以準直化。此外,如圖8所示,光學元件320也可以將離子束OB調整為收斂離子束CB,亦即將逐漸發散成為稍微發散離子束的離子束OB予以收斂成為收斂離子束CB。此外,如圖9所示,光學元件320也可以在離子束OB是未充份聚焦而便成輕微收斂離子束時,將如此之離子束 OB調整為收斂離子束CB。在此,收斂離子束CB的收斂角度大於離子束OB的收斂角度。In contrast, as shown in Figures 7 through 9, when only one optical element 320 is used to produce a divergent ion beam, the ion implanter of the present invention has at least the following variations. As shown in FIG. 7, the substantially parallel ion beam OB is adjusted by the optical element 320 to converge the ion beam CB. This is a fundamental change in that the optical element 320 converges rather than collimating the substantially parallel ion beam OB provided by the ion source 310 (even with the analytical magnet). Further, as shown in FIG. 8, the optical element 320 may adjust the ion beam OB to the convergent ion beam CB, that is, the ion beam OB which gradually diverge into a slightly divergent ion beam converges to become the convergent ion beam CB. In addition, as shown in FIG. 9, the optical element 320 can also be such an ion beam when the ion beam OB is not sufficiently focused to form a slightly convergent ion beam. The OB is adjusted to converge the ion beam CB. Here, the convergence angle of the convergent ion beam CB is larger than the convergence angle of the ion beam OB.

進一步地,本發明所提出之離子佈植機300也可以包含兩個光學元件320a/320b。這二個光學元件320a/320b係沿著離子束傳遞路徑被依序放置在離子源310與工件400之間。在這些實施例中,任一個光學元件320a/320b都可以或是電性元件或是磁性元件。例如,光學元件320a可以是磁性元件,當光學元件320b可以是電性元件時。例如,光學元件320a可以是電性元件,當光學元件320b可以是磁性元件時。Further, the ion implanter 300 proposed by the present invention may also include two optical elements 320a/320b. The two optical elements 320a/320b are sequentially placed between the ion source 310 and the workpiece 400 along the ion beam transfer path. In these embodiments, any of the optical elements 320a/320b may be either an electrical component or a magnetic component. For example, optical element 320a can be a magnetic element when optical element 320b can be an electrical element. For example, optical element 320a can be an electrical element when optical element 320b can be a magnetic element.

具體來說,如圖10所示,離子束OB可先被光學元件320a收斂成一個收斂離子束,然後這個收斂離子束再為光學元件320b所發散而成為發散離子束DB。又例如,如圖11所示,離子束OB可先被光學元件320a發散成為一發散離子束DB1,然後這個發散離子束DB1再為光學元件320b所再度發散而形成另一個發散離子束DB2。在此,發散離子束DB2的發散角度大於發散離子束DB1的發散角度。其次,如圖12所示,離子束OB可被光學元件320a發散成一發散離子束DB1,然後此發散離子束DB1再被光學元件302b給稍微收斂成另一發散離子束DB2。在此,發散離子束DB2的發散角度係小於發散離子束DB1的發散角度。此外,如圖13所示,離子束OB可被光學元件302a發散成為一預發散離子束DB1,然後這個預發散離子束可被光學元件320b所收斂而形成收斂離子束CB。在此,收斂離子束CB在收斂至聚焦之後將再發散而形成另一個發散離子束DB。Specifically, as shown in FIG. 10, the ion beam OB may first be converged by the optical element 320a into a convergent ion beam, which is then diverged by the optical element 320b to become a divergent ion beam DB. For another example, as shown in FIG. 11, the ion beam OB may be first diverged by the optical element 320a into a divergent ion beam DB1, and then the divergent ion beam DB1 is again diverged for the optical element 320b to form another divergent ion beam DB2. Here, the divergence angle of the divergent ion beam DB2 is larger than the divergence angle of the divergent ion beam DB1. Next, as shown in Fig. 12, the ion beam OB can be diverged by the optical element 320a into a divergent ion beam DB1, which is then slightly converged by the optical element 302b into another divergent ion beam DB2. Here, the divergence angle of the divergent ion beam DB2 is smaller than the divergence angle of the divergent ion beam DB1. Further, as shown in FIG. 13, the ion beam OB can be diverged by the optical element 302a into a pre-divergent ion beam DB1, which can then be converged by the optical element 320b to form a convergent ion beam CB. Here, the converging ion beam CB will diverge again after convergence to focus to form another divergent ion beam DB.

相對地,如圖14所示,離子束OB可先被光學元件320a發散成一個發散離子束,然後這個發散離子束再為光學元件320b所收斂而成為收斂離子束CB。又例如,如圖15所示,離子束OB可先被光學元件320a收斂成為一發散離子束CB1,然後這個收斂離子束CB1再為光學元件320b所再度收斂而形成另一個收斂離子束CB2。在此,收斂離子束CB2的收斂角度大於收斂離子束CB1的收斂角度。其次,如圖16所示,離子束OB可被光學元件320a收斂成一收斂離子束CB1,然後此收斂離子束CB1再被光學元件320b給稍微發散成另一 收斂離子束CB2。在此,收斂離子束CB2的收斂角度係小於收斂離子束CB1的收斂角度。In contrast, as shown in FIG. 14, the ion beam OB can be first diverged by the optical element 320a into a divergent ion beam, which is then converged by the optical element 320b to become the converging ion beam CB. For another example, as shown in FIG. 15, the ion beam OB may first be converged by the optical element 320a into a divergent ion beam CB1, and then the converging ion beam CB1 is again converged by the optical element 320b to form another convergent ion beam CB2. Here, the convergence angle of the convergent ion beam CB2 is larger than the convergence angle of the convergent ion beam CB1. Next, as shown in Fig. 16, the ion beam OB can be converged by the optical element 320a into a convergent ion beam CB1, and then the converging ion beam CB1 is again slightly diverged by the optical element 320b into another Convergent ion beam CB2. Here, the convergence angle of the convergent ion beam CB2 is smaller than the convergence angle of the convergent ion beam CB1.

進一步地,在其它未圖示之實施例,本發明所提出之離子佈植機也可以具有三個或更多個光學元件。在此,每一個光學元件可以是磁性元件或是電性元件。換句話說,這些光學元件可以都是磁性元件或都是電性元件,也可以是至少一個磁性元件與至少一個電性元件的組合。除此之外,這些光學元件的配置是彈性的,只要都是位於離子源的下遊,或甚至是都位於分析磁鐵的下游與位於承載裝置(或視為被承載且將被佈植之晶圓)的上游。舉例來說,一個可能配置是最靠近離子源之光學元件為施加磁場於離子束之磁性元件,而其它的光學元件都可以或是施加磁場的磁性元件或是施加電場的電性元件。此外,當至少一個磁性元件與至少一個電性元件被使用時,這些光學元件之間的配置並沒有特別的限制,這些磁性元件與這些電性元件可以依照任何的順序而排列在離子源與承載裝置之間。Further, in other embodiments not shown, the ion implanter proposed by the present invention may also have three or more optical elements. Here, each optical element may be a magnetic element or an electrical element. In other words, these optical elements may be either magnetic elements or both electrical elements, or may be a combination of at least one magnetic element and at least one electrical element. In addition, the configuration of these optical components is elastic, as long as they are both located downstream of the ion source, or even located downstream of the analytical magnet and at the carrier (or are considered to be carried and will be implanted) Upstream of the circle). For example, one possible configuration is that the optical element closest to the ion source is a magnetic element that applies a magnetic field to the ion beam, while other optical elements can be either a magnetic element that applies a magnetic field or an electrical element that applies an electric field. In addition, when at least one magnetic element and at least one electrical element are used, the configuration between the optical elements is not particularly limited, and the magnetic elements and the electrical elements may be arranged in an ion source and a carrier in any order. Between devices.

進一步地,如圖17所示,本發明所提出之離子佈植機300還可以包含孔隙裝置(aperture device)350。當然,孔隙裝置350也可以被應用至其它有圖示或未圖示之實施例,雖然未在此特別描述。在此,孔隙裝置350可以是固定開口(constant aperture device)、可調整開口(variable aperture device)、遮罩(mask)、光罩(reticle)或是這些的組合,並且通常是由石墨(graphite)或任何可以吸收離子束的材料所形成。孔隙裝置350往往是配置於離子束傳遞途徑上並位於光學元件320之下游以及位於承載裝置330與工件400的上游,並傾向靠近工件400。藉以,可以阻擋非平行離子束的一些離子。無論如何,如果需要,本發明也可以將孔隙裝置350安置於任二個相鄰之光學元件320之間或是安置於光學元件320與離子源310之間。舉例來說,在這個實施例中,孔隙裝置350可為具有固定開口352的一個裝置,而這個固定開口352對應到工件400的中央區域R1與這個發散離子束DB的中央部份P1。藉此,孔隙裝置350可以阻止發散離子束DB使其外圍部份P2不能佈植到工件400的週邊部份R2。在某些選項,藉由改變其材料或是改變其結構,像是使用多孔洞材料(porous material),孔隙裝置350可以僅僅阻擋發散離子束DB之中央部份P1的部份離子或是僅僅阻擋發散 離子束DB之外圍部份P2的部份離子,使得工件400之中央部份R1或周邊部份R2的離子濃度可以降低。Further, as shown in FIG. 17, the ion implanter 300 of the present invention may further include an aperture device 350. Of course, the aperture device 350 can also be applied to other embodiments, either illustrated or not, although not specifically described herein. Here, the aperture device 350 may be a constant aperture device, a variable aperture device, a mask, a reticle, or a combination thereof, and is usually made of graphite. Or any material that can absorb the ion beam. The aperture device 350 is often disposed on the ion beam transfer path and downstream of the optical element 320 and upstream of the carrier device 330 and the workpiece 400, and tends to be adjacent to the workpiece 400. Thereby, some ions of the non-parallel ion beam can be blocked. In any event, the present invention may also place the aperture device 350 between any two adjacent optical elements 320 or between the optical element 320 and the ion source 310, if desired. For example, in this embodiment, the aperture device 350 can be a device having a fixed opening 352 that corresponds to the central region R1 of the workpiece 400 and the central portion P1 of the divergent ion beam DB. Thereby, the aperture device 350 can block the diverging ion beam DB from being able to implant the peripheral portion P2 to the peripheral portion R2 of the workpiece 400. In some options, by changing the material or changing its structure, such as using a porous material, the aperture device 350 can block only a portion of the ions of the central portion P1 of the divergent ion beam DB or simply block Divergence A part of the ions of the peripheral portion P2 of the ion beam DB can reduce the ion concentration of the central portion R1 or the peripheral portion R2 of the workpiece 400.

此外,在某些未圖示之實施例,孔隙裝置還可用來阻擋沿著某些方向移動之部份的發散離子束。舉例來說,在離子束被光學元件調整為發散離子束的過程中,某些離子可能並沒有沿著預定的發散角度被傳輸往工件。因此,工件上某些區域的離子佈植濃度會高於預定的值,這是由於這些區域被過度地佈值。在這種狀況,孔隙裝置可以應用來阻擋掉全部或部份之未沿著預定之發散角度進行移度之離子。Moreover, in some embodiments not shown, the aperture means can also be used to block portions of the diverging ion beam that move in certain directions. For example, during the adjustment of the ion beam by the optical element to a diverging ion beam, certain ions may not be transmitted to the workpiece along a predetermined divergence angle. Therefore, the ion implantation concentration of certain areas on the workpiece will be higher than a predetermined value because these areas are excessively laid out. In this case, the pore device can be applied to block all or part of the ions that are not displaced along the predetermined divergence angle.

值得注意的是在所有先前提到的實施例中,光學元件係被用來均勻地對稱於離子束的中線來收斂或發散這個離子束。也就是說,靠近離子束外部輪廓處的離子們之傳遞路徑的變化量比較大,而靠近離子束之中線的離子捫之傳遞路徑的變化量比較少。無論如何,在本發明的其它實施例中,光學元件也是可以用來非均勻地收斂或發散離子束。舉例來說,如圖18與圖19所示,光學元件320a可先將離子束OB調整為環狀離子束RB,然後光學元件320b可將環狀離子束RB進一步地將環狀離子束RB予以非均勻地發散,藉以形成環狀發散離子束DB或環狀收斂離子束CB。在這些實施例中,相較於光學元件320a,不論是靠近離子束外部輪廓處或是靠近離子束中線處,離子們之傳遞路徑的變化量都會比較大,但是靠近介於離子束外部輪廓與離子束中線之間的中間環狀處的離子們之傳遞路徑的變化量則會比較小。對比之下。相較於光學元件320b,靠近離子束外部輪廓處之離子們傳遞路徑的變化量會比較大,但是靠近離子束中線處離子們之傳遞路徑的變化量則會比較小。也就是說,在本發明,離子束的不同部份可以被不同的光學元件分別地進行收斂或進行發散。It is worth noting that in all of the previously mentioned embodiments, the optical element is used to converge or diverge the ion beam uniformly symmetrically to the midline of the ion beam. That is to say, the amount of change in the transmission path of the ions near the outer contour of the ion beam is relatively large, and the variation in the transmission path of the ion cesium near the line in the ion beam is relatively small. In any event, in other embodiments of the invention, the optical elements can also be used to non-uniformly converge or diverge the ion beam. For example, as shown in FIG. 18 and FIG. 19, the optical element 320a may first adjust the ion beam OB to a ring-shaped ion beam RB, and then the optical element 320b may further apply the ring-shaped ion beam RB to the ring-shaped ion beam RB. Non-uniformly diverging, thereby forming an annular divergent ion beam DB or a ring-shaped converging ion beam CB. In these embodiments, compared to the optical element 320a, whether near the outer contour of the ion beam or near the centerline of the ion beam, the ion path will vary greatly, but close to the outer contour of the ion beam. The amount of change in the transfer path of ions at the intermediate ring between the center line of the ion beam is relatively small. By contrast. Compared to the optical element 320b, the amount of change in the ion path of the ions near the outer contour of the ion beam is relatively large, but the amount of change in the ion path of the ions near the center line of the ion beam is relatively small. That is, in the present invention, different portions of the ion beam can be converged or diverged separately by different optical elements.

進一步地,關於所產生的非平行離子束,不論是發散離子束DB或是收斂離子束CB,非平行離子束之橫截面上的離子束電流分佈投射在工件400時的輪廓可以是如圖20所示之單峰狀電流分佈。另一個可能的變化是,關於在圖18與圖19所提到的非平行離子束DB/CB,非平行離子束DB/CB之橫截面上的離子束電流分佈投射在工件400時的輪廓可以是如圖21所示之兩個單峰狀電流分佈。附帶地,在其它未圖示的實施例,非平行離子束之橫截面上的離 子束電流分佈投射在工件400時的輪廓或可以是如圖22所示之雙峰狀電流分佈,或可以是如圖23所示之截頭拋物線狀電流分佈,或可以如圖24所示之多峰狀電流分佈,或可以如圖25所示之是非對稱狀電流分佈,或可以是其它的規則輪廓或不規則輪廓的電流分佈。除此之外,也還可以利用先前討論的孔隙裝置350來調整非平行離子束之橫截面上的離子束電流分佈投射在工件400時的輪廓,藉以形成各種需要的離子束電流分佈。Further, regarding the generated non-parallel ion beam, whether it is the divergent ion beam DB or the convergent ion beam CB, the profile of the ion beam current distribution on the cross section of the non-parallel ion beam projected on the workpiece 400 may be as shown in FIG. 20 . The single peak current distribution shown. Another possible variation is that with respect to the non-parallel ion beam DB/CB mentioned in FIGS. 18 and 19, the profile of the ion beam current distribution on the cross section of the non-parallel ion beam DB/CB is projected on the workpiece 400. It is two unimodal current distributions as shown in FIG. Incidentally, in other embodiments not shown, the cross section of the non-parallel ion beam is separated The profile of the beam current distribution when projected onto the workpiece 400 may be a bimodal current distribution as shown in FIG. 22, or may be a truncated parabolic current distribution as shown in FIG. 23, or may be as shown in FIG. The multi-modal current distribution, or may be an asymmetrical current distribution as shown in FIG. 25, or may be a current distribution of other regular contours or irregular contours. In addition, the previously discussed aperture device 350 can also be utilized to adjust the profile of the beam current distribution on the cross-section of the non-parallel ion beam as it is projected onto the workpiece 400, thereby forming various desired ion beam current distributions.

根據上述的種種調整,離子束可以需要調整成不同的非平行離子束,使得工件之不同部份有不同的佈植結果,如不同的離子濃度。According to the above various adjustments, the ion beam may need to be adjusted to different non-parallel ion beams, so that different parts of the workpiece have different implantation results, such as different ion concentrations.

簡短結論,本發明所提出的離子佈植機可以提供非平行離子束。這個離子束可以同時地以非平行離子束之不同部份來佈植工件的不同區域,亦即離子們可以同時地沿著不同入射角度被打入到工件的不同區域。因此,藉由將讓工件與非平行離子束相互掃描通過,工件上每一個區域都可以接續地被沿著不同的入射角度所佈植。也就是說,對於工作上的任何三維結構,其頂表面與相對二側的側表面都可以在僅僅一次掃描過程中便被非平行離子束所佈植(亦即僅僅一個掃描週期內)。相較之下,習知之離子佈植機所提供的平行離子束,在一個掃描週期內只能佈植三維結構之頂面面與相對二側之側表面這三找的某一者,因此必須進行多次的掃描(亦即需要多個掃描週期)才能完成對三維結構之頂表面與相對二側之側表面的佈植。顯然,使用本發明所提出之離子佈植機的優點是相當明顯的。In brief conclusion, the ion implanter proposed by the present invention can provide a non-parallel ion beam. This ion beam can simultaneously implant different regions of the workpiece with different portions of the non-parallel ion beam, ie ions can be simultaneously driven into different regions of the workpiece at different angles of incidence. Thus, by scanning the workpiece and the non-parallel ion beam through each other, each region of the workpiece can be successively implanted along different angles of incidence. That is, for any three-dimensional structure in operation, both the top surface and the opposite side surfaces can be implanted by non-parallel ion beams during only one scan (ie, only one scan period). In contrast, the parallel ion beam provided by the conventional ion implanter can only implant one of the top surface of the three-dimensional structure and the side surface of the opposite two sides in one scanning period, and therefore must Multiple scans (i.e., multiple scan cycles are required) can be performed to complete the implantation of the top surface and the opposite side surfaces of the three-dimensional structure. Obviously, the advantages of using the ion implanter proposed by the present invention are quite obvious.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其他為脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍。The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; all other equivalent changes or modifications made in the spirit of the present invention should be included in the following. The scope of the patent application.

300‧‧‧離子佈植機300‧‧‧Ion implanter

310‧‧‧離子源310‧‧‧Ion source

320‧‧‧光學元件320‧‧‧Optical components

330‧‧‧承載裝置330‧‧‧ Carrying device

340‧‧‧驅動裝置340‧‧‧ drive

400‧‧‧工件400‧‧‧Workpiece

DB‧‧‧發散式離子束DB‧‧‧Divergent ion beam

OB‧‧‧離子束OB‧‧‧ ion beam

P1‧‧‧中央部分Central part of P1‧‧‧

P2‧‧‧外圍部分P2‧‧‧ peripheral part

R1‧‧‧中央區域R1‧‧‧Central Area

R2‧‧‧周邊區域R2‧‧‧ surrounding area

Claims (38)

一種離子佈植機,包括:一離子源,提供一離子束;以及至少一光學元件,配置於離子束的一傳遞路徑上,用以將離子束調整為非平行離子束,其中,當該非平行離子束為發散離子束時,其發散角度為大於等於3度但小於等於10度、或是大於5度但小於15度、或是不小於4度也不大於8度、或是小於18度而大於3度,或是大於8度;其中,當該非平行離子束為收斂離子束時,其收斂角度為大於等於3度但小於等於10度、或是大於5度但小於15度、或是不小於4度也不大於8度、或是小於18度而大於3度,或是大於8度。 An ion implanter comprising: an ion source providing an ion beam; and at least one optical element disposed on a transfer path of the ion beam for adjusting the ion beam to a non-parallel ion beam, wherein the non-parallel When the ion beam is a divergent ion beam, the divergence angle is greater than or equal to 3 degrees but less than or equal to 10 degrees, or greater than 5 degrees but less than 15 degrees, or not less than 4 degrees and not greater than 8 degrees, or less than 18 degrees. More than 3 degrees, or greater than 8 degrees; wherein, when the non-parallel ion beam is a convergent ion beam, the convergence angle is greater than or equal to 3 degrees but less than or equal to 10 degrees, or greater than 5 degrees but less than 15 degrees, or not Less than 4 degrees is not greater than 8 degrees, or less than 18 degrees and greater than 3 degrees, or greater than 8 degrees. 如申請專利範圍第1項之離子佈植機,更包含用以承載工件之一承載裝置,其配置於離子束傳遞路徑並位於光學元件的下游,使得工件的不同部份被非平行離子束的不同部份所佈植。 The ion implanter of claim 1, further comprising a carrier for carrying the workpiece, disposed in the ion beam transfer path and located downstream of the optical element such that different portions of the workpiece are non-parallel ion beams Different parts are planted. 如申請專利範圍第1項之離子佈植機,其中離子源提供之離子束為點狀離子束或束狀離子束。 The ion implanter of claim 1, wherein the ion beam provided by the ion source is a spot ion beam or a beam ion beam. 如申請專利範圍第1項之離子佈植機,當離子源提供之離子束為點狀離子束時,非平行離子束與平行離子束之角度分佈差異係等於或小於15度。 For example, in the ion implanter of claim 1, when the ion beam provided by the ion source is a point ion beam, the difference in angular distribution between the non-parallel ion beam and the parallel ion beam is equal to or less than 15 degrees. 如申請專利範圍第1項之離子佈植機,當離子源提供之離子束為束狀離子束時,非平行離子束與平行離子束之角度分佈差異係等於或小於5度。 For example, in the ion implanter of claim 1, when the ion beam provided by the ion source is a beam-shaped ion beam, the difference in angular distribution between the non-parallel ion beam and the parallel ion beam is equal to or less than 5 degrees. 如申請專利範圍第1項之離子佈植機,離子源提供之離子束為平行離子束、收斂離子束或發散離子束,而非平行離子束為發散離子束或收斂離子束。 For example, in the ion implanter of claim 1, the ion beam provided by the ion source is a parallel ion beam, a convergent ion beam or a divergent ion beam, and the non-parallel ion beam is a divergent ion beam or a convergent ion beam. 如申請專利範圍第2項之離子佈植機,光學元件的位置係靠近離子束但遠離承載裝置。 As in the ion implanter of claim 2, the position of the optical element is close to the ion beam but away from the carrier. 如申請專利範圍第1項之離子佈植機,光學元件為磁性元件或電性元件。 For example, in the ion implanter of claim 1, the optical component is a magnetic component or an electrical component. 如申請專利範圍第1項之離子佈植機,光學元件為施加四極磁場於離子束之磁四極矩。 For example, in the ion implanter of claim 1, the optical element is a magnetic quadrupole moment applying a quadrupole magnetic field to the ion beam. 如申請專利範圍第1項之離子佈植機,光學元件為磁性元件,包含位於兩支架上的多數個線圈,這兩支架係位於離子束的相對兩側。 The ion implanter of claim 1, wherein the optical component is a magnetic component comprising a plurality of coils on the two brackets, the two brackets being located on opposite sides of the ion beam. 如申請專利範圍第1項之離子佈植機,光學元件為電性元件,包含位於兩支架上的多數個電極,這兩支架係位於離子束的相對兩側。 The ion implanter of claim 1, wherein the optical component is an electrical component comprising a plurality of electrodes on the two supports, the two stents being located on opposite sides of the ion beam. 如申請專利範圍第1項之離子佈植機,離子源提供之離子束係被光學元件發散成發散離子束。 For example, in the ion implanter of claim 1, the ion beam provided by the ion source is diverged into a divergent ion beam by the optical element. 如申請專利範圍第1項之離子佈植機,離子源提供之離子束係被光學元件收斂成收斂離子束。 The ion beam system provided by the ion source is converged by the optical element into a convergent ion beam, as in the ion implanter of claim 1 of the patent application. 如申請專利範圍第1項之離子佈植機,離子源提供之離子束係被光學元件收斂,以使離子束先聚焦,然後再發散成該發散式離子束。 In the ion implanter of claim 1, the ion beam provided by the ion source is converged by the optical element such that the ion beam is first focused and then diverged into the divergent ion beam. 如申請專利範圍第1項之離子佈植機,更包含沿著離子束傳輸途徑排列且位於離子源下游之多數個光學元件。 The ion implanter of claim 1, further comprising a plurality of optical elements arranged along the ion beam transport path and located downstream of the ion source. 如申請專利範圍第15項之離子佈植機,任一光學元件為磁性元件或電性元件。 An ion implanter according to claim 15 wherein any of the optical components is a magnetic component or an electrical component. 如申請專利範圍第15項之離子佈植機,至少一光學元件為施加四極磁場於離子束之磁四極矩。 An ion implanter according to claim 15 wherein the at least one optical component is a magnetic quadrupole moment applying a quadrupole magnetic field to the ion beam. 如申請專利範圍第15項之離子佈植機,至少一光學元件為磁性元件,其包含位於兩支架上的多數個線圈,這兩支架係位於離子束的相對兩側。 An ion implanter according to claim 15 wherein the at least one optical component is a magnetic component comprising a plurality of coils on the two supports, the two stents being located on opposite sides of the ion beam. 如申請專利範圍第15項之離子佈植機,至少一光學元件為電性元件,其包含位於兩支架上的多數個電極,這兩支架係位於離子束的相對兩側。 An ion implanter according to claim 15 wherein the at least one optical component is an electrical component comprising a plurality of electrodes on the two supports, the two stents being located on opposite sides of the ion beam. 如申請專利範圍第15項之離子佈植機,這些光學元件至少包含:至少一磁性元件,配置於離子束傳遞路徑並位於離子源下游;以及一電性元件,配置於離子束傳遞路徑並位於這些磁性元件下游。 The ion implanter of claim 15, wherein the optical component comprises: at least one magnetic component disposed in the ion beam transfer path and located downstream of the ion source; and an electrical component disposed in the ion beam transfer path and located These magnetic elements are downstream. 如申請專利範圍第15項之離子佈植機,這些光學元件至少包含:至少一磁性元件,配置於離子束傳遞路徑並位於離子源下游;以及一電性元件,配置於離子束傳遞路徑並位於二個磁性元件之間。 The ion implanter of claim 15, wherein the optical component comprises: at least one magnetic component disposed in the ion beam transfer path and located downstream of the ion source; and an electrical component disposed in the ion beam transfer path and located Between two magnetic components. 如申請專利範圍第15項之離子佈植機,這些光學元件至少包含:至少一電性元件,配置於離子束傳遞路徑並位於離子源下游;以及一磁性元件,配置於離子束傳遞路徑,並且位於所有電性元件的下游或是位於二個電性元件之間。 The ion implanter of claim 15, wherein the optical component comprises at least: at least one electrical component disposed in the ion beam transfer path and located downstream of the ion source; and a magnetic component disposed in the ion beam transfer path, and It is located downstream of all electrical components or between two electrical components. 如申請專利範圍第15項之離子佈植機,這些光學元件之不同部份係調整離子源提供離子束之不同部份。 For example, in the ion implanter of claim 15, the different parts of these optical components are adjusted ion sources to provide different portions of the ion beam. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被靠近離子源之至少一光學元件收斂成收斂離子束,然後此收斂離子束被遠離離子源之至少一光學元件發散成此非平行離子束。 An ion implanter according to claim 15 wherein the ion beam provided by the ion source is converged into a convergent ion beam by at least one optical component adjacent to the ion source, and then the converging ion beam is diverged by at least one optical component remote from the ion source. Into this non-parallel ion beam. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被靠近離子源之至少一光學元件發散成發散離子束,然後此發散離子束被遠離離子源之至少一光學元件收斂成此非平行離子束。 In the ion implanter of claim 15, the ion beam provided by the ion source is diverged into a divergent ion beam by at least one optical element adjacent to the ion source, and then the divergent ion beam is converged by at least one optical component remote from the ion source. Into this non-parallel ion beam. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被這些光學元件逐漸發散成此非平行離子束。 In the ion implanter of claim 15, the ion beam provided by the ion source is gradually diffused into the non-parallel ion beam by the optical elements. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被這些光學元件依序先收斂再發散而形成收斂離子束或發散離子束。 For example, in the ion implanter of claim 15, the ion beam provided by the ion source is first converged by these optical elements and then diverged to form a convergent ion beam or a divergent ion beam. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被這些光學元件逐漸收斂成此非平行離子束。 In the ion implanter of claim 15, the ion beam provided by the ion source is gradually converged by the optical elements into the non-parallel ion beam. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被這些光學元件依序先發散再收斂而形成發散離子束或收斂離子束。 For example, in the ion implanter of claim 15, the ion beam provided by the ion source is first dispersed by the optical elements and then converged to form a divergent ion beam or a convergent ion beam. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被靠近離子源之至少一光學元件發散成發散離子束,然後被遠離離子源之至少一光學元件所收斂而在聚焦之後形成此非平行離子束。 An ion implanter according to claim 15 wherein the ion beam provided by the ion source is diverged into a divergent ion beam by at least one optical component adjacent to the ion source, and then converged by at least one optical component remote from the ion source to be in focus. This non-parallel ion beam is then formed. 如申請專利範圍第15項之離子佈植機,離子源提供之離子束係被靠近離子源之至少一光學元件收斂成收斂離子束,然後在收斂離子束聚焦之後被遠離離子源之至少一光學元件再發散而形成此非平行離子束。 An ion implanter according to claim 15 wherein the ion beam provided by the ion source is converged into a convergent ion beam by at least one optical element proximate the ion source, and then separated from the ion source by at least one optics after focusing the convergent ion beam. The element is again diverged to form this non-parallel ion beam. 如申請專利範圍第1項之離子佈植機,更包含一孔隙裝置,配置於離子束傳遞途徑上並位於光學元件之下游,用以阻擋部份的非平行離子束或是減少部份之非平行離子束的離子濃度。 The ion implanter of claim 1, further comprising a pore device disposed on the ion beam transfer path and located downstream of the optical element for blocking a portion of the non-parallel ion beam or reducing a portion of the non-parallel ion beam The ion concentration of the parallel ion beam. 如申請專利範圍第32項之離子佈植機,孔隙裝置係為固定開口、可調整開口、遮罩、光罩或其組合。 For example, in the ion implanter of claim 32, the aperture device is a fixed opening, an adjustable opening, a mask, a reticle, or a combination thereof. 如申請專利範圍第15項之離子佈植機,更包含一孔隙裝置,配置於離子束傳遞途徑上並位於這些光學元件之間,用以阻擋部份的非平行離子束或減少部份之非平行離子束的離子濃度。 The ion implanter of claim 15 further comprising a pore device disposed on the ion beam transfer path between the optical elements for blocking a portion of the non-parallel ion beam or reducing a portion of the non-parallel ion beam The ion concentration of the parallel ion beam. 如申請專利範圍第34項之離子佈植機,孔隙裝置係為固定開口、可調整開口、遮罩、倍縮光罩或其組合。 For example, in the ion implanter of claim 34, the aperture device is a fixed opening, an adjustable opening, a mask, a reticle, or a combination thereof. 如申請專利範圍第1項之離子佈植機,此非平行離子束之橫截面上離子束電流分佈為單峰狀電流分佈、兩個單峰狀電流分佈、雙峰狀電流分、截頭拋物線狀電流分佈、多峰狀電流分佈或是非對稱狀。 For example, in the ion implanter of claim 1, the ion beam current distribution on the cross section of the non-parallel ion beam is a single peak current distribution, two single peak current distributions, a double peak current fraction, and a truncated parabola. Current distribution, multimodal current distribution or asymmetry. 如申請專利範圍第2項之離子佈植機,更包括一驅動裝置,用以驅動承載裝置垂直於離子束傳遞路徑呈線性移動。 The ion implanter of claim 2, further comprising a driving device for driving the carrying device to move linearly perpendicular to the ion beam transfer path. 如申請專利範圍第2項之離子佈植機,更包括一驅動裝置,用以驅動承載裝置相對於離子束傳遞路徑傾斜。 The ion implanter of claim 2, further comprising a driving device for driving the carrying device to tilt relative to the ion beam transfer path.
TW103122293A 2014-06-27 2014-06-27 Ion implanter TWI501286B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW103122293A TWI501286B (en) 2014-06-27 2014-06-27 Ion implanter
KR1020140126565A KR20160001565A (en) 2014-06-27 2014-09-23 Ion implanter
KR1020140173090A KR20160001585A (en) 2014-06-27 2014-12-04 Method for ion implantation
CN201510298722.4A CN105280466B (en) 2014-06-27 2015-06-03 Ion implanter
KR1020150091253A KR20160001697A (en) 2014-06-27 2015-06-26 Method for ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103122293A TWI501286B (en) 2014-06-27 2014-06-27 Ion implanter

Publications (2)

Publication Number Publication Date
TWI501286B true TWI501286B (en) 2015-09-21
TW201601187A TW201601187A (en) 2016-01-01

Family

ID=54608166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122293A TWI501286B (en) 2014-06-27 2014-06-27 Ion implanter

Country Status (3)

Country Link
KR (3) KR20160001565A (en)
CN (1) CN105280466B (en)
TW (1) TWI501286B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523084B (en) 2014-11-11 2016-02-21 漢辰科技股份有限公司 Method for ion implantation
US10163657B1 (en) 2017-08-25 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422490A (en) * 1992-06-29 1995-06-06 Sumitomo Electric Industries, Ltd. Focused ion beam implantation apparatus
TW521295B (en) * 1999-12-13 2003-02-21 Semequip Inc Ion implantation ion source, system and method
TWI293767B (en) * 2000-10-30 2008-02-21 Varian Semiconductor Equipment Bi mode ion implantation with non-parallel ion beams
TW200908057A (en) * 2007-04-10 2009-02-16 Sen Corp An Shi And Axcelis Company Ion implantation apparatus and method of converging/shaping ion beam used therefor
US8164070B2 (en) * 2008-12-05 2012-04-24 Nissin Ion Equipment Co., Ltd. Collimator magnet for ion implantation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272441B2 (en) * 1993-01-20 2002-04-08 株式会社アルバック Ion accelerator
US7838842B2 (en) * 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
JP4288288B2 (en) * 2007-03-29 2009-07-01 三井造船株式会社 Ion implanter
US20100065761A1 (en) * 2008-09-17 2010-03-18 Axcelis Technologies, Inc. Adjustable deflection optics for ion implantation
JP5041260B2 (en) * 2010-06-04 2012-10-03 日新イオン機器株式会社 Ion implanter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422490A (en) * 1992-06-29 1995-06-06 Sumitomo Electric Industries, Ltd. Focused ion beam implantation apparatus
TW521295B (en) * 1999-12-13 2003-02-21 Semequip Inc Ion implantation ion source, system and method
TWI293767B (en) * 2000-10-30 2008-02-21 Varian Semiconductor Equipment Bi mode ion implantation with non-parallel ion beams
TW200908057A (en) * 2007-04-10 2009-02-16 Sen Corp An Shi And Axcelis Company Ion implantation apparatus and method of converging/shaping ion beam used therefor
US8164070B2 (en) * 2008-12-05 2012-04-24 Nissin Ion Equipment Co., Ltd. Collimator magnet for ion implantation system

Also Published As

Publication number Publication date
CN105280466B (en) 2019-07-09
KR20160001565A (en) 2016-01-06
KR20160001697A (en) 2016-01-06
TW201601187A (en) 2016-01-01
CN105280466A (en) 2016-01-27
KR20160001585A (en) 2016-01-06

Similar Documents

Publication Publication Date Title
TWI430340B (en) Implant method and implanter by using a variable aperture
TWI363363B (en) Apparatus and method for ion beam implantation using ribbon and spot beams
TWI523084B (en) Method for ion implantation
TWI696214B (en) Ion implantation method and ion implantation device
TWI443716B (en) Method of performing high-tilt implantation, apparatus for implanting ions and method of implanting workpiece
TW201248674A (en) Drawing apparatus and method of manufacturing article
TWI683352B (en) Ion implantation method and ion implantation device
JP6023170B2 (en) Method and apparatus for improved uniformity control using dynamic beamforming
US10515832B2 (en) Laser processing apparatus and method for manufacturing the same
TW201239943A (en) Drawing apparatus and method of manufacturing article
JP6689544B2 (en) Ion implanting apparatus and ion implanting method
TWI688996B (en) Ion implantation device
US9236222B2 (en) Ion implantation apparatus and ion implantation method
TWI501286B (en) Ion implanter
TWI654643B (en) Ion implantation system and method for ion implantation
JP2004517469A (en) Multi-mode ion implantation with non-parallel ion beams
TWI527080B (en) Electrostastatic scanner, ion implantation system, and method for processing ion beam
CN102751155B (en) Beam transmission system and beam transmission method
US20110049383A1 (en) Ion implanter and ion implant method thereof
US8987691B2 (en) Ion implanter and ion implant method thereof
JP2012253093A5 (en)
JP7132847B2 (en) Ion implanter and measurement device
CN102110568A (en) Beam transmission system and method
JP2023530880A (en) Minimum Divergence Ion Beam Adjuster
TWI533358B (en) Ion implanter and ion implant method thereof