RU2694038C1 - Бумажные и картонные продукты - Google Patents

Бумажные и картонные продукты Download PDF

Info

Publication number
RU2694038C1
RU2694038C1 RU2018132247A RU2018132247A RU2694038C1 RU 2694038 C1 RU2694038 C1 RU 2694038C1 RU 2018132247 A RU2018132247 A RU 2018132247A RU 2018132247 A RU2018132247 A RU 2018132247A RU 2694038 C1 RU2694038 C1 RU 2694038C1
Authority
RU
Russia
Prior art keywords
coating layer
mass
paper
microfibrillated cellulose
substrate
Prior art date
Application number
RU2018132247A
Other languages
English (en)
Inventor
Пер СВЕНДИНГ
Джонатан Стюарт ФИППС
Йоханнес Критцингер
Том ЛАРСОН
Таня СЕЛИНА
Дэвид СКЬЮЗ
Original Assignee
Фиберлин Текнолоджис Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фиберлин Текнолоджис Лимитед filed Critical Фиберлин Текнолоджис Лимитед
Application granted granted Critical
Publication of RU2694038C1 publication Critical patent/RU2694038C1/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/32Multi-ply with materials applied between the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/06Layered products comprising a layer of paper or cardboard specially treated, e.g. surfaced, parchmentised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/02Chemical or chemomechanical or chemothermomechanical pulp
    • D21H11/04Kraft or sulfate pulp
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/14Secondary fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/52Cellulose; Derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/38Multi-ply at least one of the sheets having a fibrous composition differing from that of other sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)

Abstract

Изобретение относится к бумажной промышленности и касается бумажных и картонных продуктов, имеющих оптические, поверхностные и/или механические свойства, которые делают их подходящими, в частности для печати. Продукты содержат субстрат, содержащий целлюлозу, и покровный слой, содержащий микрофибриллированную целлюлозу и неорганические твердые частицы. Изобретение также относится к способам получения таких бумажных и картонных продуктов и соответствующему применению указанных бумажных и картонных продуктов. Микрофибриллированную целлюлозу и неорганический материал в форме частиц (состоящий из твердых частиц) наносят на стадии, когда влажный субстрат находится в процессе формования на проволочной сетке бумагоделательной машины, что тем самым позволяет избежать дополнительных затрат на более масштабное оборудование и технику, а также на отдельную сушку покрытия. Микрофибриллированная целлюлоза облегчает нанесение неорганических твердых частиц на поверхность влажного бумажного или картонного субстрата, при нанесении их таким образом, за счет улавливания неорганических твердых частиц на поверхности субстрата и путем придания композиционному материалу достаточной прочности и подходящей пористой структуры, что делает его пригодным для печати и других видов конечного применения. 2 н. и 27 з.п. ф-лы, 7 ил., 4 табл.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к бумажным или картонным продуктам, содержащим субстрат и по меньшей мере один покровный слой, содержащий композиционный материал из микрофибриллированной целлюлозы и по меньшей мере одного неорганического материала в форме частиц (состоящего из твердых частиц) в количестве, подходящем для придания улучшенных оптических, поверхностных и/или механических свойств таким бумажным или картонным продуктам, что делает их подходящими для печати и других видов конечного применения, к способам получения бумажных или картонных продуктов посредством процесса нанесения композиционного материала, состоящего из микрофибриллированной целлюлозы и по меньшей мере одного неорганического материала в форме частиц, на влажный субстрат на проволочной сетке в мокрой части бумагоделательной машины и к соответствующему применению указанных бумажных и картонных продуктов.
УРОВЕНЬ ТЕХНИКИ
Бумажная и картонная продукция является многочисленной и разнообразной. Существует постоянная потребность в улучшении качества бумажных и картонных продуктов, имеющих оптические, поверхностные и/или механические свойства, которые делают их подходящими для печати и других видов конечного применения, и в улучшении способов получения таких бумажных и картонных продуктов, имеющих улучшенные печатные и поверхностные свойства, например, за счет снижения стоимости, обеспечения более энергосберегающего и экологически безопасного процесса и/или улучшения способности бумажного продукта к переработке для повторного использования.
Облицовочный картон с белой поверхностью обычно изготавливают на мультиформерной бумагоделательной машине. Верхний слой облицовочного картона с белой поверхностью часто содержит слегка очищенное беленое крафт (короткое) волокно древесины твердых пород, которое может содержать наполнитель в количестве не более примерно 20% масс. Верхний слой обычно наносят для покрытия основания слоем, улучшающим визуальный вид облицовочного картона и обеспечивающим поверхность с высокой яркостью, подходящую для печати или в качестве основания для покрытия. Обычно используют слой на основе целлюлозной массы, поскольку базовый слой, как правило, содержит либо небеленую крафт-целлюлозу, либо вторично переработанный картон («ОСС», старые контейнеры из гофрокартона) и является, таким образом, очень шершавым и неподходящим для покрытия с помощью обычного оборудования. Облицовочные картоны с белой поверхностью чаще всего используют для флексографической печати, хотя их можно использовать и для офсетной печати, при этом все большее значение приобретают технологии струйной печати.
С сокращением традиционной печати и сортов писчей бумаги многие фабрики стремились переделать свои машины, предназначенные для получения бумаги для полиграфии, на изготовление облицовочного картона или других упаковочных продуктов. Переделка однослойной машины в мультиформер требует большой реконструкции и капиталовложений, причем без этого такая машина будет ограничена изготовлением простых сортов облицовочного картона. Нанесение подходящего кроющего композиционного материала для получения облицовочного картона с белой поверхностью с помощью подходящего аппарата для нанесения покрытий, работающего в мокрой части бумагоделательной машины, обеспечит простую и недорогую возможность экономичного получения на такой машине облицовочных картонов с белой поверхностью. Нанесение суспензии с низким содержанием твердой фазы, состоящей из микрофибриллированной целлюлозы и органического материала в форме частиц, на поверхность субстрата облицовочного картона на этом этапе в процессе производства облицовочного картона позволит осуществить дренирование облицовочного картона с белой поверхностью с помощью существующих элементов дренирования и прессование и сушку полученного облицовочного картона с белой поверхностью как обычного листа.
Нанесение покрытия на влажный, свежесформованный субстрат вызывает сложности. Среди таких сложностей одна из проблем состоит в том, что поверхность влажного субстрата будет гораздо более шероховатой, чем спрессованный и высушенный лист. По этой причине суспензия для формирования покровного слоя композиционного материала, состоящего из микрофибриллированной целлюлозы и органического материала в форме частиц, должна создавать при подходящем расходе однородный поток или завесу композиционного материала. Кроме того, для получения контурного покрытия суспензию для формирования покровного слоя необходимо вводить на влажное полотно равномерно. После прессования и сушки покровный слой должен представлять собой поверхность, подходящую либо непосредственно для печати, либо для однослойного покрытия. Поэтому для готового облицовочного картона с белой поверхностью низкая пористость и хорошая поверхностная прочность являются очень важными свойствами.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Согласно первому аспекту настоящего изобретения предложен бумажный или картонный продукт, содержащий:
(i) целлюлозосодержащий субстрат; и
(ii) покровный слой, содержащий неорганический материал в форме частиц и по меньшей мере примерно 5% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя;
при этом массовое отношение неорганического материала в форме частиц к микрофибриллированной целлюлозе в покровном слое составляет от примерно 20:1 до примерно 3:1 и, кроме того, покровный слой имеет яркость, составляющую по меньшей мере примерно 65% согласно стандарту ISO 11475.
Согласно некоторым вариантам реализации картонные продукты представляют собой картон с белой поверхностью или облицовочный картон с белой поверхностью.
Согласно второму аспекту настоящего изобретения предложен бумажный или картонный продукт, содержащий:
(i) целлюлозосодержащий субстрат; и
(ii) покровный слой, содержащий неорганический материал в форме частиц в количестве от примерно 67% масс. до примерно 90% масс. и по меньшей мере примерно 10% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя, при этом указанный покровный слой присутствует в бумажном или картонном продукте в количестве от примерно 15 г/м2 до примерно 40 г/м2.
Согласно некоторым вариантам реализации второго аспекта покровный слой присутствует в указанном продукте в количестве от примерно 20 г/м2 до примерно 30 г/м2, в частности, по меньшей мере примерно 30 г/м2.
Согласно некоторым вариантам реализации первого и второго аспекта измеренная (согласно стандарту ISO 11475 (F8; D65 - 400 нм)) яркость покровного слоя увеличена по сравнению с измеренной яркостью поверхности субстрата, противоположной покровному слою.
Согласно некоторым вариантам реализации покровный слой предпочтительно обеспечивает хорошее оптическое и физическое покрытие поверх темного субстрата, например, субстрата с яркостью от 15 до 25, за счет возможности обеспечения улучшенной яркости, составляющей по меньшей мере примерно 65%, по меньшей мере примерно 70% или по меньшей мере примерно 80% при массе покрытия примерно 30 г/м2.
Согласно некоторым вариантам реализации предложенный продукт содержит или представляет собой картонный продукт и согласно некоторым вариантам реализации предложенный продукт представляет собой картон с белой поверхностью, тарный картон или облицовочный картон. Кроме того, улучшение яркости может быть обеспечено путем применения первого и второго аспектов при покрытиях примерно 30 г/м2, с достижением уровней яркости 80% или более по сравнению с обычными покрытиями с белой поверхностью, как правило требующими граммаж от 50 до 60 г/м2, при более низких загрузках наполнителя, составляющих обычно от 5 до 15% масс.
Согласно третьему аспекту предложен бумажный или картонный продукт, содержащий:
(i) целлюлозосодержащий субстрат; и
(ii) покровный слой, содержащий неорганический материал в форме частиц в количестве от примерно 67% масс. до примерно 92% масс. и микрофибриллированную целлюлозу в количестве от 5% масс. до примерно 30% масс. в расчете на общую массу покровного слоя.
Согласно некоторым вариантам реализации массовое отношение неорганических твердых частиц к микрофибриллированной целлюлозе в покровном слое составляет от примерно 8:1 до примерно 1:1, или от примерно 6:1 до примерно 3:1, или от примерно 5:1 до примерно 2:1, или от примерно 5:1 до примерно 3:1, или примерно 4:1 до примерно 3:1.
Согласно четвертому аспекту настоящего изобретения предложен способ получения бумажного или картонного продукта, включающий: (а) обеспечение влажного полотна из целлюлозной массы; (b) обеспечение суспензии для формирования покровного слоя на влажном полотне из целлюлозной массы, при этом: (i) суспензию для формирования покровного слоя обеспечивают в количестве, составляющем от 15 г/м2 до 40 г/м2 и (ii) суспензия для формирования покровного слоя содержит достаточное количество микрофибриллированной целлюлозы для получения продукта с покровным слоем, содержащим по меньшей мере примерно 5% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя; (iii) и суспензия для формирования покровного слоя содержит неорганический материал в форме частиц и микрофибриллированную целлюлозу. Согласно дополнительным вариантам реализации покровный слой составляет по меньшей мере примерно 10% масс., по меньшей мере примерно 20% масс. или не более примерно 30% масс. в расчете на общую массу покровного слоя.
Согласно пятому аспекту настоящее изобретение относится к применению покровного слоя, содержащего по меньшей мере примерно 20% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя, в качестве белого верхнего слоя на картонном субстрате. Согласно дополнительным вариантам реализации настоящее изобретение относится к применению покровного слоя, содержащего не более примерно 30% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя, в качестве белого верхнего слоя на картонном субстрате. Согласно некоторым вариантам реализации настоящее изобретение относится к применению покровного слоя, содержащего неорганический материал в форме частиц в количестве от примерно 67% масс. до примерно 92% масс. и микрофибриллированную целлюлозу в количестве от примерно 5% масс. до примерно 30% масс. в расчете на общую массу покровного слоя.
Согласно шестому аспекту настоящее изобретение относится к формированию завесы или пленки через щелевое отверстие, находящееся при нормальном давлении или под давлением, поверх влажного субстрата на проволочной сетке мокрой части бумагоделательной машины с нанесением покровного слоя на субстрат для получения бумажного или картонного продукта согласно первому - третьему аспектам.
Согласно некоторым дополнительным вариантам реализации композиционный материал из микрофибриллированной целлюлозы и неорганических порошкообразных материалов можно нанести в качестве белого верхнего слоя или другого верхнего слоя. Указанный процесс можно предпочтительно осуществить с применением дешевого оборудования для нанесения покрытий, такого как установка для нанесения покрытий поливом, установка для нанесения покрытий экструдером под давлением, установка для нанесения покрытий с применением вторичного напорного ящика или установка для нанесения покрытий через щель, находящуюся при нормальном давлении или под давлением, по сравнению с нанесением обычного вторичного волокнистого слоя или покрытия на сухой или полусухой бумажный или картонный продукт. Кроме того, для удаления воды можно использовать существующие элементы дренирования и прессовую часть бумагоделательной машины, такую как дренажный стол длинносеточной бумагоделательной машины. Покровный слой из микрофибриллированной целлюлозы и неорганического материала в форме частиц обладает способностью оставаться поверх субстрата и обеспечивать хорошее оптическое и физическое покрытие при низкой основной массе бумажного или картонного продукта.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
На фиг. 1 показано формование листов, полученных при варьировании граммажа согласно примеру 1.
Фиг.2 представляет собой график, демонстрирующий яркость листов, полученных при варьировании граммажа согласно примеру 1.
Фиг. 3 представляет собой график, демонстрирующий показатель шероховатости PPS листов, полученных при варьировании граммажа согласно примеру 1.
Фиг. 4 представляет собой кривую яркости относительно уровней массы покрытий для испытаний 1-4, описанных в примере 2.
Фиг. 5 представляет собой полученное с помощью сканирующего электронного микроскопа изображение субстрата, покрытого 35 г/м2 покровным слоем, содержащим 20% масс. микрофибриллированной целлюлозы и 80% масс. измельченного карбоната кальция, нанесенным на 85 г/м2 субстрат в точке измерения Т2.
Фиг. 6 представляет собой полученное с помощью сканирующего электронного микроскопа изображение субстрата, покрытого 48 г/м2 покровным слоем, содержащим 20% масс. микрофибриллированной целлюлозы, 20% масс. измельченного карбоната кальция и 60% масс. талька, нанесенным на 85 г/м2 субстрат в точке измерения Т4.
Фиг. 7 представляет собой поперечное сечение образца, напечатанного посредством флексографии.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Неожиданно было обнаружено, что слой, содержащий композиционный материал из неорганического материала в форме частиц и микрофибриллированной целлюлозы, можно нанести на бумажное полотно в мокрой части бумагоделательной машины (такой как длинносеточная бумагоделательная машина), сразу же после формирования влажной линии и когда полотно все еще содержит менее 10-15% масс. твердых веществ. Бумага или картон с покровным слоем, изготовленный с помощью предложенного способа, обеспечивает полезные оптические свойства (например, яркость), а также снижение массы и/или улучшение поверхностных свойств (например, гладкость и низкую пористость) при сохранении подходящих механических свойств (например, прочности, необходимой для конечного применения).
Под «покровным» слоем подразумевают, что покровный слой наносят или подают на субстрат, причем указанный субстрат может содержать промежуточные слои или прослойки, расположенные ниже покровного слоя. Согласно некоторым вариантам реализации покровный слой представляет собой наружный слой, т.е., не содержит сверху другого слоя. Согласно некоторым вариантам реализации граммаж покровного слоя составляет по меньшей мере от примерно 15 г/м2 до примерно 40 г/м2.
Под «микрофибриллированной целлюлозой» понимают целлюлозную композицию, в которой микрофибриллы целлюлозы высвобождаются или частично высвобождаются в виде отдельных частиц или в виде агрегатов меньшего размера по сравнению с волокнами целлюлозы перед микрофибриллированием. Микрофибриллированную целлюлозу можно получить путем микрофибриллирования целлюлозы, в том числе, но не ограничиваясь ими, с применением способов, описанных в настоящем документе. Типичные целлюлозные волокна (т.е., целлюлозная масса перед микрофибриллированием или целлюлозная масса, которая еще не была фибриллирована), подходящие для применения в бумажном производстве, содержат более крупные агрегаты из сотен или тысяч отдельных микрофибрилл целлюлозы. При микрофибриллировании целлюлозы конкретные характеристики и свойства, в том числе, но не ограничиваясь ими, характеристиками и свойствами, описанные в настоящем документе, передаются микрофибриллированной целлюлозе и композициям, содержащим микрофибриллированную целлюлозу
Существует множество видов бумаги или картона, которые можно получить с помощью предложенных композиций микрофибриллированной целлюлозы и неорганических порошкообразных материалов и с применением производственных процессов, описанных в настоящем документе. Не существует четкого разграничения между бумажными и картонными продуктами. Последние, как правило, представляют собой более толстые материалы на бумажной основе с повышенными значениями граммажа. Картон может состоять из одного слоя, на который можно нанести покровный слой композиционного материала из микрофибриллированной целлюлозы и неорганического материала в форме частиц, или картон может представлять собой многослойный субстрат. Настоящее изобретение относится к многочисленным формам картона, включая, например и без ограничения, коробочный картон или картон (cartonboard), в том числе складные виды картона и негнущиеся жесткие коробки и складной коробочный картон; например, упаковочный картон для жидкостей. Картон может представлять собой макулатурный картон или макулатурный мелованный картон. Картон может представлять собой крафт-картон, слоистый картон. Картон может представлять собой чистоцеллюлозный мелованный картон из беленой целлюлозы или чистоцеллюлозный мелованный картон из небеленой целлюлозы. К картонным продуктам согласно настоящему изобретению относятся различные формы тарного картона, такие как гофрированный картон (который представляет собой строительный материал, а не бумажный или картонный продукт сам по себе), облицовочный картон или толстый переплетный картон. Картон, описанный в настоящем документе, может подходить для обертывания и упаковки различных готовых продуктов, в том числе, например, продуктов питания.
Согласно некоторым вариантам реализации предложенный продукт представляет собой или содержит тарный картон, при этом субстрат и покровный слой подходят для применения в тарном картоне или в качестве тарного картона. Согласно некоторым вариантам реализации предложенный продукт представляет собой или содержит лайнер, выбранный из темного крафт-лайнера, крафт-лайнера с белым покровным слоем, тест-лайнера, тест-лайнера с белым покровным слоем, темного облегченного вторично переработанного лайнера, разноцветного тест-лайнера и вторично переработанного лайнера с белым покровным слоем.
Согласно некоторым вариантам реализации предложенный продукт представляет собой или содержит картон.
Согласно некоторым вариантам реализации предложенный продукт представляет собой или содержит крафт-бумагу.
Согласно некоторым вариантам реализации субстрат содержит картонный продукт или подходит для применения в картонном продукте или в качестве картонного продукта. Согласно некоторым вариантам реализации субстрат подходит для применения в картонном продукте с белой поверхностью, например, в качестве облицовочного картона. Согласно некоторым вариантам реализации предложенный продукт содержит или представляет собой картонный продукт, например, облицовочный картон. Согласно некоторым вариантам реализации предложенный продукт содержит или представляет собой картонный продукт с белой поверхностью, например, облицовочный картон. Согласно таким вариантам реализации картонный продукт может представлять собой гофрированный картон, например, представлять собой продукт, содержащий субстрат и покровный слой в качестве облицовочного картона. Согласно некоторым вариантам реализации картонный продукт представляет собой одинарный, однослойный, двухслойный или трехслойный гофрированный картон.
Если не указано иное, количества приведены в расчете на общую сухую массу покровного слоя и/или субстрата.
Если не указано иное, размерные свойства частиц, упоминаемые в настоящем документе применительно к неорганическим порошкообразным материалам, измеряют хорошо известным способом путем осаждения материала в форме частиц в полностью диспергированном состоянии в водной среде с помощью устройства Sedigraph 5100, поставляемого компанией Micromeritics Instruments Corporation, Норкросс, Джорджия, США (телефон: +1 770 662 3620; веб-сайт: www.micromeritics.com) и называемого в настоящем документе «прибором Micromeritics Sedigraph 5100». Такой прибор обеспечивает измерения и диаграмму суммарного массового процента частиц, имеющих размер, именуемый в данной области техники «эквивалентным сферическим диаметром» (э.с.д.), меньший, чем заданные значения э.с.д. Средний размер частиц d50 представляет собой значение определенное таким образом для э.с.д. частиц, при котором имеется 50% по массе частиц, эквивалентный сферический диаметр которых меньше, чем указанное значение d50.
Альтернативно, там, где это указывается, размерные свойства частиц, упоминаемые в настоящем документе применительно к неорганическим порошкообразным материалам, измеряют с помощью хорошо известного общепринятого способа, применяемого в области рассеяния лазерного излучения, с использованием прибора Malvern Mastersizer S, поставляемого компанией Malvern Instruments Ltd (или с применением других способов, обеспечивающих по существу тот же результат). При использовании метода рассеяния лазерного излучения размер частиц в порошках, суспензиях и эмульсиях можно измерить с помощью дифракции лазерного луча на основе применения теории Ми. Такой прибор обеспечивает измерения и диаграмму суммарного объемного процента частиц, имеющих размер, именуемый в данной области техники «эквивалентным сферическим диаметром» (э.с.д.), меньший, чем заданные значения э.с.д. Средний размер частиц d50 представляет собой значение, определенное таким образом для э.с.д. частиц, при котором имеется 50% по объему частиц, эквивалентный сферический диаметр которых меньше, чем указанное значение d50.
Если не указано иное, размерные свойства частиц, микрофибриллированных целлюлозных материалов измеряют с помощью хорошо известного общепринятого способа, применяемого в области рассеяния лазерного излучения, с использованием прибора Malvern Mastersizer S, поставляемого компанией Malvern Instruments Ltd (или с применением других способов, обеспечивающих по существу тот же результат).
Подробности методики, используемой для исследования распределений частиц по размерам в смесях неорганического материала в форме частиц и микрофибриллированной целлюлозы с применением прибора Malvern Mastersizer S, приведены ниже.
Покровный слой
Согласно некоторым вариантам реализации покровный слой содержит по меньшей мере примерно 5% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя. Согласно некоторым вариантам реализации покровный слой содержит от примерно 5% масс. до примерно 30% масс. микрофибриллированной целлюлозы, например, от 5% масс. до примерно 25% масс., или от примерно 10% масс. до примерно 25% масс., или от примерно 15% масс. до примерно 25% масс., или от примерно 17,5% масс. до примерно 22,5% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя.
Согласно некоторым вариантам реализации покровный слой содержит по меньшей мере примерно 67% масс. неорганического материала в форме частиц, или по меньшей мере примерно 70% масс. неорганического материала в форме частиц, или по меньшей мере примерно 75% масс. неорганического материала в форме частиц, или по меньшей мере примерно 80% масс. неорганического материала в форме частиц, или по меньшей мере примерно 85% масс. неорганического материала в форме частиц, или по меньшей мере примерно 90% масс. неорганического материала в форме частиц в расчете на общую массу покровного слоя, и, необязательно, от 0 до 3% масс. других добавок.
Согласно некоторым вариантам реализации микрофибриллированная целлюлоза и неорганический материал в форме частиц обеспечивают граммаж покровного слоя от примерно 15 г/м2 до примерно 40 г/м2. Согласно этому и другим вариантам реализации массовое отношение неорганических твердых частиц к микрофибриллированной целлюлозе в покровном слое составляет примерно 20:1, или примерно 10:1, или примерно 5:1, или примерно 4:1, или примерно 3:1, или примерно 2:1.
Согласно некоторым вариантам реализации покровный слой содержит от примерно 70% масс. до примерно 90% масс. неорганического материала в форме частиц и от примерно 10% масс. до примерно 30% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя и необязательно не более 3% масс. других добавок.
Согласно некоторым вариантам реализации покровный слой необязательно может содержать дополнительное органическое соединение, т.е., органическое соединение, отличное от микрофибриллированной целлюлозы.
Согласно некоторым вариантам реализации покровный слой необязательно может содержать катионный полимер, анионный полимер и/или гидроколлоид полисахаридной природы.
Согласно некоторым вариантам реализации покровный слой необязательно может содержать воск, полиолефины и/или силикон.
Согласно некоторым вариантам реализации покровный слой не содержит оптически отбеливающего вещества.
Согласно некоторым вариантам реализации покровный слой состоит в основном из неорганического материала в форме частиц и микрофибриллированной целлюлозы и по существу содержит не более примерно 3% масс., например, не более примерно 2% масс., или не более примерно 1% масс., или не более примерно 0,5% масс. добавок, отличных от неорганического материала в форме частиц и микрофибриллированной целлюлозы. Согласно таким вариантам реализации покровный слой может содержать не более примерно 3% масс. добавок, выбранных из флокулянта, средства формования/средства дренирования (например, хлорида поли(акриламид-со-диаллилдиметиламмония, Polydadmac® (Полидадмак)), водорастворимого загустителя, крахмала (например, катионного крахмала), проклеивающего средства, например, канифоли, алкилкетенового димера («AKD»), алкенилянтарного ангидрида («ASA») или аналогичных материалов, и их комбинаций, например, не более примерно 2% масс. перечисленных добавок, или не более примерно 1% масс. перечисленных добавок, или не более примерно 0,5% масс. перечисленных добавок.
Согласно некоторым вариантам реализации авторы изобретения обнаружили, что при добавлении небольших количеств средств для повышения удерживаемости/средств дренирования, таких как раствор хлорида поли(акриламид-со-диаллилдиметиламмония) (Polydadmac® (Полидадмак)), в отличие от гораздо больших количеств, применяемых в обычном бумажном производстве, пониженное количество средства для повышения удерживаемости обеспечивает микромасштабную флокуляцию без видимого негативного воздействия на формование субстрата, но приводит к положительному воздействию на обезвоживание. Это приводит к значительному улучшению скорости обезвоживания.
Согласно некоторым вариантам реализации покровный слой состоит из неорганического материала в форме частиц и микрофибриллированной целлюлозы и по существу содержит менее примерно 0,25% масс., например, менее примерно 0,1% масс. или не содержит добавок, отличных от неорганического материала в форме частиц и микрофибриллированной целлюлозы, т.е., добавок, выбранных из флокулянта, средства формования/средства дренирования (например, раствора хлорида поли(акриламид-со-диаллилдиметиламмония) (Polydadmac® (Полидадмак))), водорастворимого загустителя, крахмала (например, катионного крахмала) и их комбинаций.
Микрофибриллированную целлюлозу можно получить из любого подходящего источника.
Согласно некоторым вариантам реализации микрофибриллированная целлюлоза имеет d50, составляющий от примерно 5 мкм до примерно 500 мкм, измеренный с помощью рассеяния лазерного излучения. Согласно некоторым вариантам реализации d50 микрофибриллированной целлюлозы равен или меньше примерно 400 мкм, например, равен или меньше примерно 300 мкм, или равен или меньше примерно 200 мкм, или равен или меньше примерно 150 мкм, или равен или меньше примерно 125 мкм, или равен или меньше примерно 100 мкм, или равен или меньше примерно 90 мкм, или равен или меньше примерно 80 мкм, или равен или меньше примерно 70 мкм, или равен или меньше примерно 60 мкм, или равен или меньше примерно 50 мкм, или равен или меньше примерно 40 мкм, или равен или меньше примерно 30 мкм, или равен или меньше примерно 20 мкм, или равен или меньше примерно 10 мкм.
Согласно некоторым вариантам реализации микрофибриллированная целлюлоза имеет модальный размер частиц волокна, составляющий примерно от 0,1 до 500 мкм. Согласно некоторым вариантам реализации модальный размер частиц волокна микрофибриллированной целлюлозы составляет по меньшей мере примерно 0,5 мкм, например, по меньшей мере примерно 10 мкм, или по меньшей мере примерно 50 мкм, или по меньшей мере примерно 100 мкм, или по меньшей мере примерно 150 мкм, или по меньшей мере примерно 200 мкм, или по меньшей мере примерно 300 мкм, или по меньшей мере примерно 400 мкм.
Дополнительно или альтернативно, микрофибриллированная целлюлоза может иметь крутизну волокон, равную или большую примерно 10, как измерено с применением прибора Malvern. Крутизну волокон (т.е., крутизну распределения волокон по размерам) определяют в соответствии со следующей формулой:
Figure 00000001
Микрофибриллированная целлюлоза может иметь крутизну волокон, равную или меньшую примерно 100. Микрофибриллированная целлюлоза может иметь крутизну волокон, равную или меньшую примерно 75, или равную или меньшую примерно 50, или равную или меньшую примерно 40, или равную или меньшую примерно 30. Микрофибриллированная целлюлоза может иметь крутизну волокон от примерно 20 до примерно 50, или от примерно 25 до примерно 40, или от примерно 25 до примерно 35, или от примерно 30 до примерно 40.
Неорганический материал в форме частиц может, например, представлять собой карбонат или сульфат щелочноземельного металла, такой как карбонат кальция, карбонат магния, доломит, гипс, водную кандитную глину, такую как каолин, галлуазит или комовая глина, безводную (кальцинированную) кандитную глину, такую как метакаолин или полностью кальцинированный каолин, тальк, слюду, гантит, гидромагнезит, измельченное стекло, перлит или диатомовую землю, или волластонит, или диоксид титана, или гидроксид магния, или тригидрат алюминия, известь, графит или их комбинации.
Согласно некоторым вариантам реализации неорганический материал в форме частиц содержит или представляет собой карбонат кальция, карбонат магния, доломит, гипс, безводную кандитную глину, перлит, диатомовую землю, волластонит, гидроксид магния или тригидрат алюминия, диоксид титана или их комбинации.
Примером неорганического материала в форме частиц, подходящего для применения в настоящем изобретении, является карбонат кальция. В дальнейшем настоящее изобретение может обсуждаться на примере карбоната кальция и в отношении аспектов, в которых карбонат кальция перерабатывают и/или обрабатывают. Настоящее изобретение не следует ограничивать такими вариантами реализации.
Карбонат кальция в форме частиц, применяемый в настоящем изобретении, можно получить из природного источника путем измельчения. Измельченный карбонат кальция (GCC) обычно получают путем дробления и затем измельчения минерального источника, такого как мел, мрамор или известняк, который впоследствии может быть подвергнут стадии классификации частиц по крупности для получения продукта с требуемой степенью измельчения. Для получения продукта, имеющего требуемую степень измельчения и/или цвет, можно также использовать и другие методы, такие как отбеливание, флотация и магнитное разделение. Твердый материал в форме частиц можно подвергнуть самоизмельчению, т.е. путем истирания между частицами самого твердого материала, или, альтернативно, в присутствии абразивного материала в форме частиц, содержащего частицы другого материала, отличного от измельчаемого карбоната кальция. Указанные способы можно осуществить в присутствии или в отсутствии диспергатора и биоцидов, которые могут быть добавлены на любой стадии процесса.
Осажденный карбонат кальция (РСС) может использоваться в настоящем изобретении в качестве источника карбоната кальция в форме частиц и может быть получен любым из известных способов, существующих в данной области техники. В серии монографий TAPPI (Техническая ассоциация целлюлозно-бумажной промышленности) №30, «Рареr Coating Pigments)), стр. 34-35 описаны три основных промышленных способа получения осажденного карбоната кальция, который подходит для применения при получении продуктов, используемых в бумажной промышленности, но который также можно использовать при практической реализации настоящего изобретения. Во всех трех способах сырьевой материал для карбоната кальция, такой как известняк, сначала кальцинируют с получением негашеной извести, а затем негашеную известь гасят в воде с образованием гидроксида кальция или известкового молока. В первом способе известковое молоко непосредственно карбонизируют газообразным диоксидом углерода. Преимущество этого способа состоит в отсутствии образования побочного продукта и относительной легкости контроля свойств и чистоты готового карбоната кальция. Во втором способе известковое молоко приводят в контакт с кальцинированной содой с получением в результате двойного разложения осадка карбоната кальция и раствора гидроксида натрия. При промышленном применении такого способа гидроксид натрия может быть по существу полностью отделен от карбоната кальция. В третьем основном промышленном способе известковое молоко сначала приводят в контакт с хлоридом аммония с образованием раствора хлорида кальция и газообразного аммиака. Затем раствор хлорида кальция приводят в контакт с кальцинированной содой с получением в результате двойного разложения осажденного карбоната кальция и раствора хлорида натрия. В зависимости от конкретного применяемого реакционного процесса могут быть получены кристаллы разнообразных форм и размеров. Тремя основными формами кристаллов РСС являются арагонит, ромбоэдрическая и скаленоэдрическая формы (например, кальцит), которые все, включая их смеси, подходят для применения в настоящем изобретении.
Согласно некоторым вариантам реализации РСС можно получить в процессе производства микрофибриллированной целлюлозы.
Мокрое измельчение карбоната кальция включает получение водной суспензии карбоната кальция, которую затем можно измельчить, необязательно, в присутствии подходящего диспергирующего агента. Для получения большей информации относительно мокрого измельчения карбоната кальция можно обратиться, например, к ЕР-А-614948 (содержание которого в полном объеме включено посредством ссылки).
При получении неорганического материала в форме частиц согласно настоящему изобретению из источников природного происхождения может так случиться, что измельченный материал будут загрязнен некоторыми минеральными примесями. Например, карбонат кальция природного происхождения может присутствовать вместе с другими минералами. Так, согласно некоторым вариантам реализации неорганический материал в форме частиц содержит некоторое количество примесей. Однако в общем случае неорганический материал в форме частиц, применяемый в настоящем изобретении, будет содержать менее примерно 5% по массе или менее примерно 1% по массе других минеральных примесей.
Неорганический материал в форме частиц может иметь распределение частиц по размерам, в котором по меньшей мере примерно 10% по массе частиц имеют э.с.д. менее 2 мкм, например, по меньшей мере примерно 20% по массе, или по меньшей мере примерно 30% по массе, или по меньшей мере примерно 40% по массе, или по меньшей мере примерно 50% по массе, или по меньшей мере примерно 60% по массе, или по меньшей мере примерно 70% по массе, или по меньшей мере примерно 80% по массе, или по меньшей мере примерно 90% по массе, или по меньшей мере примерно 95% по массе, или примерно 100% частиц имеют э.с.д. менее 2 мкм.
Согласно другому варианту реализации неорганический материал в форме частиц имеет распределение частиц по размерам, измеренное с применением прибора Malvern Mastersizer S, в котором по меньшей мере примерно 10% по объему частиц имеют э.с.д. менее 2 мкм, например, по меньшей мере примерно 20% по объему, или по меньшей мере примерно 30% по объему, или по меньшей мере примерно 40% по объему, или по меньшей мере примерно 50% по объему, или по меньшей мере примерно 60% по объему, или по меньшей мере примерно 70% по объему, или по меньшей мере примерно 80% по объему, или по меньшей мере примерно 90% по объему, или по меньшей мере примерно 95% по объему, или примерно 100% частиц по объему имеют э.с.д. менее 2 мкм.
Подробности методики, используемой для исследования распределений частиц по размерам в смесях неорганического материала в форме частиц и микрофибриллированной целлюлозы с применением прибора Malvern Mastersizer S, приведены ниже.
Согласно некоторым вариантам реализации неорганический материал в форме частиц представляет собой каолиновую глину. В дальнейшем этот раздел описания изобретения может обсуждаться на примере каолина и в отношении аспектов, в которых каолин перерабатывают и/или обрабатывают. Настоящее изобретение не следует ограничивать такими вариантами реализации. Так, согласно некоторым вариантам реализации каолин используют в необработанной форме.
Каолиновая глина, применяемая в настоящем изобретении, может представлять собой обработанный материал, полученный из природного источника, а именно, из неочищенного природного каолинового глинистого минерала. Обработанная каолиновая глина может, как правило, содержать по меньшей мере примерно 50% по массе каолинита. Например, большинство промышленно обработанных каолиновых глин содержит более примерно 75% по массе каолинита и может содержать более примерно 90%, в некоторых случаях более примерно 95% по массе каолинита.
Каолиновую глину, применяемую в настоящем изобретении, можно получить из неочищенного природного каолинового глинистого минерала с помощью одного или более других способов, хорошо известных специалистам в данной области техники, например, с помощью известных стадий рафинирования или обогащения.
Например, глинистый минерал можно подвергнуть отбеливанию с помощью восстанавливающего отбеливающего агента, такого как гидросульфит натрия. При применении гидросульфита натрия отбеленный глинистый минерал можно необязательно подвергнуть обезвоживанию и необязательно промывке и снова необязательно обезвоживанию после стадии отбеливания гидросульфитом натрия.
Для удаления примесей глинистый минерал можно обработать, например, с применением методов флокуляции, флотации или магнитного разделения, хорошо известных в данной области техники. Альтернативно, глинистый минерал, применяемый согласно первому аспекту настоящего изобретения, может быть необработанным в виде твердого вещества или в виде водной суспензии.
Способ получения порошкообразной каолиновой глины, применяемой в настоящем изобретении, также может включать одну или более стадий раздробления, например, измельчение или помол. Легкое раздробление крупнозернистого каолина используют для обеспечения его подходящего расслоения. Такое раздробление можно осуществить с помощью шариков или гранул из пластмассы (например, нейлона), песка или керамического средства для измельчения или помола. Крупнозернистый каолин можно очистить для удаления примесей и улучшения физических свойств с помощью хорошо известных методик. Каолиновую глину можно обработать в соответствии с известной методикой классификации частиц по крупности, например, путем просеивания и центрифугирования (или с помощью того и другого), с получением частиц, имеющих необходимое значение d50 или требуемое распределение частиц по размерам.
Субстрат
Субстрат (и микрофибриллированную целлюлозу) можно получить из целлюлозосодержащей массы, которая может быть получена при помощи любой подходящей химической или механической обработки или путем их комбинации, хорошо известной в данной области техники. Целлюлозную массу можно получить из любого подходящего источника, такого как древесина, травы (например, сахарный тростник, бамбук) или тряпье (например, отходы текстильного производства, хлопок, пенька или лен). Целлюлозная масса может быть отбелена в соответствии со способами, хорошо известными специалистам в данной области техники, при этом такие способы, подходящие для применения в настоящем изобретении, будут вполне очевидны. Согласно некоторым вариантам реализации целлюлозная масса является неотбеленной. Отбеленная или неотбеленная целлюлозная масса может подвергаться размолу, рафинированию или и то и другое до обеспечения предварительно заданной степени помола (выражаемой в данной области техники как садкость массы по канадскому стандарту Canadian Standard Freeness (CSF) в см3). Затем из отбеленной или неотбеленной и размолотой целлюлозной массы готовят соответствующее исходное сырье.
Согласно некоторым вариантам реализации субстрат содержит или его получают из крафт-целлюлозы, которая является природно окрашенной (т.е., неотбеленной). Согласно некоторым вариантам реализации субстрат содержит или его получают из темной крафт-целлюлозы, макулатурной массы или их комбинаций. Согласно некоторым вариантам реализации субстрат содержит или его получают из макулатурной массы.
Исходное сырье, из которого получают субстрат, может содержать другие добавки, известные в данной области техники. Например, исходное сырье содержит неионное, катионное или анионное средство для повышения удерживаемости или систему для удержания микрочастиц. Указанное сырье также может содержать проклеивающее средство, которое может представлять собой, например, длинноцепочечный алкилкетеновый димер («AKD»), восковую эмульсию или производное янтарной кислоты, например, алкенилянтарный ангидрид («ASA»), канифоль плюс алюмокалиевые квасцы или эмульсии катионной канифоли. Исходное сырье для композиции субстрата может также содержать краситель и/или оптически отбеливающее вещество. Исходное сырье может также содержать средства для повышения прочности в сухом и влажном состоянии, такие как, например, крахмал или сополимеры эпихлоргидрина.
Продукт
Согласно некоторым вариантам реализации субстрат имеет граммаж, подходящий для применения в готовом тарном картоне или в качестве готового тарного картона, например, граммаж, составляющий от примерно 50 г/м2 до примерно 500 г/м2. Согласно этому и другим вариантам реализации граммаж покровного слоя может составлять от примерно 10 г/м2 до примерно 50 г/м, в частности, от примерно 15 г/м2 до 40 г/м2 и более конкретно от примерно 20 г/м2 до 30 г/м2.
Согласно некоторым вариантам реализации граммаж субстрата составляет от примерно 75 г/м2 до примерно 400 г/м, например, от примерно 100 г/м2 до примерно 375 г/м2, или от примерно 100 г/м2 до примерно 350 г/м2, или от примерно 100 г/м2 до примерно 300 г/м2, или от примерно 100 г/м2 до примерно 275 г/м2, или от примерно 100 г/м2 до примерно 250 г/м2, или от примерно 100 г/м2 до примерно 225 г/м2, или от примерно 100 г/м2 до примерно 200 г/м2. Согласно этому и другим вариантам реализации граммаж покровного слоя может составлять от примерно 15 г/м2 до 40 г/м2 или от примерно 25 г/м2 до 35 г/м2.
Согласно некоторым вариантам реализации покровный слой имеет граммаж, равный или меньший 40 г/м2, или равный или меньший примерно 35 г/м2, или равный или меньший примерно 30 г/м2, или равный или меньший 25 г/м2, или равный или меньший 22,5 г/м2, или равный или меньший 20 г/м2, или равный или меньший 18 г/м2, или равный или меньший 15 г/м2.
Согласно некоторым вариантам реализации покровный слой имеет граммаж, равный или меньший 40 г/м2, или равный или меньший примерно 35 г/м2, или равный или меньший примерно 30 г/м2, или равный или меньший 25 г/м2, или равный или меньший 22,5 г/м2, или равный или меньший 20 г/м2, или равный или меньший 18 г/м2, или равный или меньший 15 г/м2.
Нанесение покровного слоя, содержащего неорганический материал в форме частиц и микрофибриллированную целлюлозу, предпочтительно обеспечивает производство продукта, например, картона или тарного картона, обладающего комбинацией необходимых оптических, поверхностных и механических свойств, которые достигаются при применении относительно низких количеств покровного слоя с высоким содержанием наполнителя, что, тем самым, обеспечивает снижение массы продукта по сравнению с обычными конфигурациями покровного слоя/субстрата. Кроме того, любое ухудшение механических свойств, которое может происходить после нанесения покровного слоя, может быть скомпенсировано за счет повышения граммажа субстрата, представляющего собой относительно более дешевый материал.
Следовательно, согласно некоторым вариантам реализации предложенный продукт имеет одно или более из следующих свойств:
(i) измеренную (согласно стандарту ISO 11475 (F8; D65 - 400 нм)) яркость покровного слоя, повышенную по сравнению с субстратом в отсутствие покровного слоя, или измеренную яркость поверхности субстрата, противоположной покровному слою, и/или измеренную яркость покровного слоя, составляющую по меньшей мере примерно 60,0% согласно стандарту ISO 11475 (F8; D65 - 400 нм);
(ii) показатель шероховатости PPS (@1000 кПа), измеренный на покровном слое, составляющий не более примерно 6,0 мкм, и/или показатель шероховатости PPS (@1000 кПа), измеренный на покровном слое, который на по меньшей мере 2,0 мкм меньше показателя шероховатости PPS субстрата в отсутствие покровного слоя.
Согласно некоторым вариантам реализации измеренная яркость покровного слоя составляет по меньшей мере примерно 70,0%, например, по меньшей мере примерно 75,0%, или по меньшей мере примерно 80,0%, или по меньшей мере примерно 81,0%, или по меньшей мере примерно 82,0%, или по меньшей мере примерно 83,0%, или по меньшей мере примерно 84,0%, или по меньшей мере примерно 85,0%. Яркость можно измерить с помощью спектрофотометра Elrepho.
Согласно некоторым вариантам реализации предложенный продукт имеет показатель шероховатости PPS (@1000 кПа), измеренный на покровном слое, составляющий менее примерно 5,9 мкм, например, менее примерно 5,8 мкм, или менее примерно 5,7 мкм, или менее примерно 5,6 мкм, или менее примерно 5,5 мкм. Согласно некоторым вариантам реализации показатель шероховатости PPS составляет от примерно 5,0 мкм до примерно 6,0 мкм, например, от примерно 5,2 мкм до примерно 6,0 мкм, или от примерно 5,2 мкм до примерно 5,8 мкм, или от примерно 5,2 мкм до примерно 5,6 мкм.
Согласно некоторым вариантам реализации покровный слой имеет граммаж примерно от 30 до 50 г/м2, яркость по меньшей мере примерно 65,0% и, необязательно, показатель шероховатости PPS менее примерно 5,6 мкм.
Согласно некоторым вариантам реализации на слое, содержащем по меньшей мере примерно 50% масс. микрофибриллированной целлюлозы, предложенный продукт имеет дополнительный слой или прослойку или дополнительные слои или прослойки, например, один или более слоев или прослоек, или по меньшей мере два дополнительных слоя или прослойки, или не более примерно пяти дополнительных слоев или прослоек, или не более примерно четырех дополнительных слоев или прослоек, или не более примерно трех дополнительных слоев или прослоек.
Согласно некоторым вариантам реализации один или по меньшей мере один из дополнительных слоев или прослоек представляет собой барьерный слой или прослойку, или восковый слой или прослойку, или силиконовый слой или прослойку, или комбинацию двух или трех таких слоев.
Еще одной предпочтительной особенностью предложенных субстратов с покровным слоем, содержащих микрофибриллированную целлюлозу и неорганический материал в форме частиц, является улучшенная печать на покровном слое. Обычный лайнер с белой поверхностью, как правило, имеет белую поверхность, состоящую из белой бумаги с относительно низким содержанием наполнителя, обычно в диапазоне от 5 до 15%. В результате такие лайнеры с белой поверхностью обычно являются довольно шероховатыми и рыхлыми с крупнопористой структурой. Это не является идеальным фактором с точки зрения нанесения печатной краски.
Ниже на фиг. 6 продемонстрировано улучшение печати, достигнутое за счет нанесения покровного слоя согласно настоящему изобретению, содержащему микрофибриллированную целлюлозу и органический материал в форме частиц.
В общем, применение такого слоя позволяет получить «более экологичный» упаковочный продукт, поскольку низкая пористость указанного слоя может обеспечить улучшенные свойства при применении защитных покрытий, что позволяет заменить покрытия из воска, ПЭ и силикона и т.п., не подлежащих повторному использованию, на пригодные для повторного использования составы с обеспечением в целом равных или улучшенных рабочих характеристик по сравнению с не подлежащими повторному использованию аналогов.
Способы производства
Предложен способ получения бумажного продукта. Указанный способ включает:
(a) обеспечение влажного полотна из целлюлозной массы; и
(b) обеспечение суспензии для формирования покровного слоя на влажном полотне из целлюлозной массы.
Суспензию для формирования покровного слоя (i) обеспечивают в количестве, составляющем от 15 г/м2 до 40 г/м2; и (ii) суспензия для формирования покровного слоя содержит достаточное количество микрофибриллированной целлюлозы для получения продукта с покровным слоем, содержащим по меньшей мере примерно 5% масс. микрофибриллированной целлюлозы, и (iii) суспензия для формирования покровного слоя содержит по меньшей мере примерно 67% масс. неорганического материала в форме частиц.
Указанный способ представляет собой способ типа «мокрым на мокрое», который отличается от обычных способов нанесения покрытий на бумагу, при которых водное покрытие наносят на по существу сухой бумажный продукт (т.е., «мокрым на сухое»).
Согласно некоторым вариантам реализации суспензию для формирования покровного слоя обеспечивают в количестве, составляющем от 15 г/м2 до 40 г/м2.
Согласно некоторым вариантам реализации суспензия для формирования покровного слоя содержит достаточное количество микрофибриллированной целлюлозы для получения продукта с прочностными свойствами, необходимыми для соответствия требованиям конечного применения. Обычно это означает, что покровный слой содержит по меньшей мере примерно 5% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя (т.е., в расчете на общую сухую массу покровного слоя бумажного продукта).
Суспензию для формирования покровного слоя можно нанести любым подходящим способом нанесения. Согласно одному из вариантов реализации суспензию для формирования покровного слоя наносят через щелевой аппликатор, работающий при нормальном давлении или под давлением, имеющий отверстие, расположенное сверху влажного субстрата на проволочной сетке мокрой части бумагоделательной машины. Примеры известных аппликаторов, которые можно использовать, включают, без ограничения, установки для нанесения покрытий при помощи воздушного шабера, ножевые установки для нанесения покрытий, меловальные установки с распределяющим стержнем, стержневые установки для нанесения покрытий, мультиголовочные установки для нанесения покрытий, установки для нанесения покрытий валиком, установки для нанесения покрытий валиком или ножом, установки для нанесения покрытий с валом, обогреваемым паром, лабораторные установки для нанесения покрытий, установки для нанесения покрытий рифленым валиком, установки для нанесения покрытий контактным способом, аппликаторы с щелевой головкой (в том числе, например, бесконтактные дозирующие аппликаторы с щелевой головкой), струйные установки для нанесения покрытий, системы для нанесения жидкостей, установки для нанесения покрытий реверсивным валиком, напорный ящик, вторичный напорный ящик, установки для нанесения покрытий поливом, установки для нанесения покрытий распылением и установки для нанесения покрытий экструдером.
Согласно некоторым вариантам реализации суспензию для формирования покровного слоя наносят с помощью установки для нанесения покрытий поливом. Кроме того, согласно некоторым вариантам реализации, в которых суспензию для формирования покровного слоя наносят в виде слоя лайнера с белой поверхностью, применение установки для нанесения покрытий поливом может устранить необходимость в бумагоделательной машине с двойным напорным ящиком и в сопутствующих затратах и энергии.
Согласно некоторым вариантам реализации суспензию для формирования покровного слоя наносят путем распыления, например, используя установку для нанесения покрытий распылением.
В предложенном способе желательно применение композиций с высоким содержанием твердых веществ, поскольку при таком способе остается меньше воды для дренирования. Однако, как хорошо известно в данной области техники, уровень твердых веществ не должен быть настолько высоким, чтобы вызвать проблемы с высокой вязкостью и выравниванием.
Способы нанесения можно осуществить с помощью подходящего аппликатора, такого как установка для нанесения покрытий при помощи воздушного шабера, ножевая установка для нанесения покрытий, меловальная установка с распределяющим стержнем, стержневая установка для нанесения покрытий, мультиголовочная установка для нанесения покрытий, установка для нанесения покрытий валиком, установка для нанесения покрытий валиком или ножом, установка для нанесения покрытий с валом, обогреваемым паром, лабораторная установка для нанесения покрытий, установка для нанесения покрытий рифленым валиком, установка для нанесения покрытий контактным способом, аппликатор с щелевой головкой (в том числе, например, бесконтактный дозирующий аппликатор с щелевой головкой и щелевой аппликатор, работающий при нормальном давлении или под давлением), струйная установка для нанесения покрытий, система для нанесения жидкостей, установка для нанесения покрытий реверсивным валиком, напорный ящик, вторичный напорный ящик, установка для нанесения покрытий поливом, установка для нанесения покрытий распылением или установка для нанесения покрытий экструдером, позволяющего нанести суспензию для формирования покровного слоя на субстрат.
Согласно одному из вариантов реализации суспензию для формирования покровного слоя наносят в виде покрытия на субстрат с помощью щелевого отверстия, находящегося при нормальном давлении или под давлением, поверх влажного субстрата на проволочной сетке мокрой части бумагоделательной машины, например, длинносеточной бумагоделательной машины.
Согласно некоторым вариантам реализации влажное полотно из целлюлозной массы содержит более примерно 50% масс. воды в расчете на общую массу влажного полотна из целлюлозной массы, например, по меньшей мере примерно 60% масс., или по меньшей мере примерно 70% масс., или по меньшей мере примерно 80% масс., или по меньшей мере примерно 90% масс. воды в расчете на общую массу влажного полотна из целлюлозной массы. Как правило, влажное полотно из целлюлозной массы содержит примерно от 85 до 95% масс. воды.
Согласно некоторым вариантам реализации суспензия для формирования покровного слоя содержит неорганический материал в форме частиц и достаточное количество микрофибриллированной целлюлозы для получения бумажного продукта с покровным слоем, содержащим по меньшей мере примерно 5% масс микрофибриллированной целлюлозы в расчете на общую массу покровного слоя, так что бумажный продукт содержит достаточно микрофибриллированной целлюлозы для получения бумажного продукта с прочностными свойствами, необходимыми для его конечного применения. Согласно некоторым вариантам реализации суспензия для формирования покровного слоя содержит достаточное количество неорганического материала в форме частиц для получения бумажного продукта с покровным слоем, содержащим по меньшей мере примерно 67% масс. неорганического материала в форме частиц в расчете на общую массу покровного слоя бумажного продукта. Согласно таким вариантам реализации цель состоит в ведении как можно меньшего количества микрофибриллированной целлюлозы и как можно большего количества неорганического материала в форме частиц на поверхность материала субстрата в виде верхнего слоя. Соответственно, предпочтительными являются отношения неорганического материала в форме частиц к микрофибриллированной целлюлозе в покровном слое, составляющие 4:1 или более.
Согласно некоторым вариантам реализации суспензия для формирования покровного слоя имеет общее содержание твердых веществ, составляющее не более примерно 20% масс., например, не более примерно 15% масс., или не более 12% масс., или не более примерно 10% масс., или от примерно 1% масс. до примерно 10% масс., или от примерно 2% масс. до 12% масс., или от примерно 5% масс. до примерно 10% масс., или от примерно 1% масс. до примерно 20% масс., или от примерно 2% масс. до примерно 12% масс. Относительные количества неорганического материала в форме частиц и микрофибриллированной целлюлозы могут варьировать в зависимости от количества каждого компонента, необходимого в готовом продукте.
После нанесения суспензии для формирования покровного слоя и подходящего времени пребывания бумажный продукт подвергают прессованию и сушке, используя любой подходящий способ.
Способы производства микрофибриллированной целлюлозы и неорганического материала в форме частиц
Согласно некоторым вариантам реализации микрофибриллированную целлюлозу можно получить в присутствии или в отсутствии неорганического материала в форме частиц.
Микрофибриллированную целлюлозу получают из волокнистого субстрата, содержащего целлюлозу. Волокнистый субстрат, содержащий целлюлозу, можно получить из любого подходящего источника, такого как древесина, травы (например, сахарный тростник, бамбук) или тряпье (например, отходы текстильного производства, хлопок, пенька или лен). Волокнистый субстрат, содержащий целлюлозу, может быть в форме целлюлозной массы (т.е., суспензии целлюлозных волокон в воде), которую можно получить с помощью любой подходящей химической или механической обработки или путем их комбинации. Например, целлюлозная масса может представлять собой химическую целлюлозу, или химикотермомеханическую целлюлозу, или механическую целлюлозу, или макулатурную массу, или обрезки бумажного производства, или совокупные отходы бумажного производства, или отходы от бумажного производства, или растворимую целлюлозу, целлюлозную массу из кенафа, товарную целлюлозу, частично карбоксиметилированную целлюлозу, целлюлозную массу из абака, целлюлозную массу из болиголова, целлюлозную массу из древесины березы, целлюлозную массу из трав, целлюлозную массу из бамбука, целлюлозную массу из пальмового дерева, целлюлозную массу из арахисовой шелухи или их комбинацию. Целлюлозная масса может быть размолота (например, в размольном станке Валлея) и/или иным образом рафинирована (например, путем обработки в коническом или тарельчатом рафинере) с обеспечением любой предварительно заданной степени помола, выражаемой в данной области техники как садкость массы по канадскому стандарту Canadian Standard Freeness (CSF) в см3. CSF обозначает величину степени помола или степени обезвоживания целлюлозной массы, измеряемую с помощью скорости, с которой может быть дренирована суспензия целлюлозной массы. Например, целлюлозная масса перед микрофибриллированием может иметь садкость массы по канадскому стандарту примерно 10 см3 или больше. Целлюлозная масса может иметь величину CSF примерно 700 см3 или менее, например, величину, равную или меньшую примерно 650 см3, или равную или меньшую примерно 600 см3, или равную или меньшую примерно 550 см3, или равную или меньшую примерно 500 см3, или равную или меньшую примерно 450 см3, или равную или меньшую примерно 400 см3, или равную или меньшую примерно 350 см3, или равную или меньшую примерно 300 см3, или равную или меньшую примерно 250 см3, или равную или меньшую примерно 200 см3, или равную или меньшую примерно 150 см3, или равную или меньшую примерно 100 см3, или равную или меньшую примерно 50 см3.
Затем целлюлозную массу можно подвергнуть обезвоживанию с применением способов, хорошо известных в данной области техники, например, целлюлозную массу можно отфильтровать через сито с получением влажного листа, содержащего по меньшей мере примерно 10% твердых веществ, например, по меньшей мере примерно 15% твердых веществ, или по меньшей мере примерно 20% твердых веществ, или по меньшей мере примерно 30% твердых веществ, или по меньшей мере примерно 40% твердых веществ. Целлюлозная масса может быть использована в нерафинированном виде, то есть не будучи размолота, или обезвожена, или очищена иным образом.
Согласно некоторым вариантам реализации целлюлозную массу можно подвергнуть размолу в присутствии неорганического материала в форме частиц, такого как карбонат кальция.
Для получения микрофибриллированной целлюлозы волокнистый субстрат, содержащий целлюлозу, можно добавить в сосуд для измельчения или гомогенизатор в сухом состоянии. Например, сухие бумажные обрезки можно добавить непосредственно в сосуд измельчителя. Водная среда в сосуде измельчителя будет далее облегчать образование целлюлозной массы.
Стадию микрофибриллирования можно выполнить в любом подходящем аппарате, в том числе, но не ограничиваясь ими, в рафинере. Согласно одному из вариантов реализации стадию микрофибриллирования проводят в сосуде для измельчения в условиях мокрого измельчения. Согласно другому варианту реализации стадию микрофибриллирования осуществляют в гомогенизаторе. Каждый из указанных вариантов реализации более подробно описан ниже.
- мокрое измельчение
Такое измельчение удобно осуществлять общепринятым способом. Указанное измельчение может представлять собой процесс измельчения истиранием в присутствии абразивного материала в форме частиц или может представлять собой процесс самоизмельчения, т.е., процесс, выполняемый в отсутствии абразивного материала. Под абразивным материалом подразумевают среду, отличную от неорганического материала в форме частиц, который согласно некоторым вариантам реализации можно подвергнуть совместному измельчению с волокнистым субстратом, содержащим целлюлозу.
Абразивный материал в форме частиц, при наличии, может представлять собой природный или синтетический материал. Абразивный материал может, например, содержать шарики, гранулы или пеллеты из любого твердого минерального, керамического или металлического материала. Такие материалы могут включать, например, оксид алюминия, диоксид циркония, силикат циркония, силикат алюминия или богатый муллитом материал, получаемый путем кальцинирования каолинитовой глины при температуре в диапазоне от примерно 1300°С до примерно 1800°С. Например, согласно некоторым вариантам реализации используют абразивный материал Carbolite® (Карболит). Альтернативно, можно использовать частицы природного песка с подходящим размером частиц.
Согласно другим вариантам реализации можно использовать абразивный материал из древесины твердых пород (например, древесную муку).
В общем случае тип и размер частиц абразивного материала, выбираемого для применения в настоящем изобретении, могут зависеть от таких свойств, как, например, размер частиц и химический состав сырьевой суспензии измельчаемого материала. Согласно некоторым вариантам реализации абразивный материал в форме частиц содержит частицы со средним диаметром, составляющим от примерно 0,1 мм до примерно 6,0 мм, например, от примерно 0,2 мм до примерно 4,0 мм. Абразивный материал (или среда) может присутствовать в количестве не более примерно 70% по объему относительно объема загрузки. Абразивный материал может присутствовать в количестве, составляющем по меньшей мере примерно 10% по объему относительно объема загрузки, например, по меньшей мере примерно 20% по объему относительно объема загрузки, или по меньшей мере примерно 30% по объему относительно объема загрузки, или по меньшей мере примерно 40% по объему относительно объема загрузки, или по меньшей мере примерно 50% по объему относительно объема загрузки, или по меньшей мере примерно 60% по объему относительно объема загрузки.
Измельчение можно осуществить в одну или более стадий. Например, крупнозернистый неорганический материал в форме частиц можно измельчать в сосуде измельчителя до обеспечения предварительно заданного распределения частиц по размерам, после чего туда добавляют волокнистый материал, содержащий целлюлозу, и продолжают измельчение до получения требуемого уровня микрофибриллирования.
Неорганический материал в форме частиц можно подвергнуть мокрому или сухому измельчению в отсутствии или присутствии абразивного материала. В случае стадии мокрого измельчения крупнозернистый неорганический материал в форме частиц измельчают в водной суспензии в присутствии абразивного материала.
Согласно одному из вариантов реализации средний размер частиц (d50) неорганического материала в форме частиц уменьшается во время процесса совместного измельчения. Например, d50 неорганического материала в форме частиц может быть уменьшен на по меньшей мере примерно 10% (как измерено с помощью прибора Malvern Mastersizer S), например, d50 неорганического материала в форме частиц может быть уменьшен на по меньшей мере примерно 20%, или уменьшен на по меньшей мере примерно 30%, или уменьшен на по меньшей мере примерно 50%, или уменьшен на по меньшей мере примерно 50%, или уменьшен на по меньшей мере примерно 60%, или уменьшен на по меньшей мере примерно 70%, или уменьшен на по меньшей мере примерно 80%, или уменьшен на по меньшей мере примерно 90%. Например, неорганический в форме частиц материал, имеющий d50 2,5 мкм перед совместным измельчением и d50 1,5 мкм после совместного измельчения, будет подвергнут уменьшению размера частиц на 40%..
Согласно некоторым вариантам реализации средний размер частиц неорганического материала в форме частиц незначительно уменьшается во время процесса совместного измельчения. Под «незначительно уменьшается» подразумевают, что d50 неорганического материала в форме частиц уменьшается на менее, чем примерно 10%, например, d50 неорганического материала в форме частиц уменьшается на менее, чем примерно 5%.
Волокнистый субстрат, содержащий целлюлозу, можно подвергнуть микрофибриллированию необязательно в присутствии неорганического материала в форме частиц, с получением микрофибриллированной целлюлозы с d50, составляющим от примерно 5 мкм до примерно 500 мкм, как измерено с помощью рассеяния лазерного излучения. Волокнистый субстрат, содержащий целлюлозу, можно подвергнуть микрофибриллированию необязательно в присутствии неорганического материала в форме частиц, с получением микрофибриллированной целлюлозы с d50, равным или меньшим примерно 400 мкм, например, равным или меньшим примерно 300 мкм, или равным или меньшим примерно 200 мкм, или равным или меньшим примерно 150 мкм, или равным или меньшим примерно 125 мкм, или равным или меньшим примерно 100 мкм, или равным или меньшим примерно 90 мкм, или равным или меньшим примерно 80 мкм, или равным или меньшим примерно 70 мкм, или равным или меньшим примерно 60 мкм, или равным или меньшим примерно 50 мкм, или равным или меньшим примерно 40 мкм, или равным или меньшим примерно 30 мкм, или равным или меньшим примерно 20 мкм, или равным или меньшим примерно 10 мкм.
Волокнистый субстрат, содержащий целлюлозу, можно подвергнуть микрофибриллированию необязательно в присутствии неорганического материала в форме частиц, с получением микрофибриллированной целлюлозы, имеющей модальный размер частиц волокна примерно от 0,1 до 500 мкм и модальный размер частиц неорганического материала в форме частиц от 0,25 до 20 мкм. Волокнистый субстрат, содержащий целлюлозу, можно подвергнуть микрофибриллированию необязательно в присутствии неорганического материала в форме частиц с получением микрофибриллированной целлюлозы, имеющей модальный размер частиц волокна по меньшей мере примерно 0,5 мкм, например, по меньшей мере примерно 10 мкм, или по меньшей мере примерно 50 мкм, или по меньшей мере примерно 100 мкм, или по меньшей мере примерно 150 мкм, или по меньшей мере примерно 200 мкм, или по меньшей мере примерно 300 мкм, или по меньшей мере примерно 400 мкм.
Волокнистый субстрат, содержащий целлюлозу, можно подвергнуть микрофибриллированию необязательно в присутствии неорганического материала в форме частиц с получением микрофибриллированной целлюлозы, имеющей крутизну волокон, как описано выше.
Измельчение можно выполнить в сосуде для измельчения, таком как барабанная мельница (например, стержневая, шаровая и самоизмельчающая мельница), мельница с перемешиванием мелющей среды (например, SAM или Isa Mill), башенная мельница, детритор (detritor) с перемешиванием мелющей среды (SMD) или сосуд для измельчения, содержащий вращающиеся параллельные размольные диски, между которыми подается измельчаемое сырье.
Согласно одному из вариантов реализации сосуд для измельчения представляет собой башенную мельницу. Башенная мельница может содержать неподвижную зону, расположенную выше одной или более зон измельчения. Неподвижная зона представляет собой область, расположенную в направлении верхней части внутреннего пространства башенной мельницы, в которой происходит минимальное измельчение или вообще не происходит измельчение и которая содержит микрофибриллированную целлюлозу и необязательно неорганический материал в форме частиц. Неподвижная зона представляет собой область, в которой частицы абразивного материала осаждаются вниз в одну или более зон измельчения башенной мельницы.
Башенная мельница может содержать сортировочную машину, расположенную выше одной или более зон измельчения. Согласно одному из вариантов реализации сортировочную машину устанавливают наверху и располагают рядом с неподвижной зоной. Сортировочная машин может представлять собой гидроциклон.
Башенная мельница может содержать сито, расположенное выше одной или более зон измельчения. Согласно одному из вариантов реализации сито размещают рядом с неподвижной зоной и/или сортировочной машиной. Сито может иметь размер, позволяющий отделять абразивный материал от конечной водной суспензии, содержащей микрофибриллированную целлюлозу и необязательный неорганический материал в форме частиц, и усиливать осаждение абразивного материала.
Согласно одному из вариантов реализации измельчение осуществляют в условиях поршневого режима потока. В условиях поршневого режима поток через башню является таковым, что происходит ограниченное перемешивание измельчающих материалов, проходящих через башню. Это означает, что в различных точках вдоль длины башенной мельницы вязкость водной среды будет изменяться по мере увеличения тонкости измельчения микрофибриллированной целлюлозы. Таким образом, фактически можно считать, что область измельчения в башенной мельнице содержит одну или более зон измельчения, имеющих характеристическую вязкость. Специалист в данной области техники поймет, что не существует резкой границы между соседними зонами измельчения в отношении вязкости.
Согласно одному из вариантов реализации воду добавляют в верхнюю часть мельницы непосредственно в неподвижную зону, или в сортировочную машину или в сито, расположенные выше одной или более зон измельчения, для уменьшения вязкости водной суспензии, содержащей микрофибриллированную целлюлозу и необязательный неорганический материал в форме частиц, в указанных зонах мельницы. Было установлено, что при разбавлении готовой микрофибриллированной целлюлозы и необязательного неорганического материала в форме частиц в этой точке мельницы улучшается предотвращение уноса абразивного материала в неподвижную зону, и/или сортировочную машину, и/или сито. Кроме того, ограниченное перемешивание через башню позволяет опустить обработку при более высоком содержании твердых веществ в нижнюю часть башни и разбавить сверху ограниченным обратным потоком разбавляющей воды, поступающей обратно в нижнюю часть башни в одну или более зон измельчения. Может быть добавлено любое подходящее количество воды, которое будет эффективным для разбавления вязкости готовой водной суспензии, содержащей микрофибриллированную целлюлозу и необязательный неорганический материал в форме частиц. Воду можно добавлять непрерывно во время процесса измельчения или через равные промежутки времени или в случайные моменты времени.
Согласно другому варианту реализации воду можно добавлять в одну или более зон измельчения через одну или более точек нагнетания воды, расположенных вдоль длины башенной мельницы, или через каждую точку нагнетания воды, расположенную в месте, соответствующем одной или более зонам измельчения. Предпочтительно, чтобы возможность добавлять воду в различных точках вдоль башни позволяла дополнительно регулировать условия измельчения в любом или во всех местах вдоль мельницы.
Башенная мельница может содержать вертикальный лопастной вал, оборудованный серией лопастных вращающихся дисков по всей его длине. Работа роторных лопастных вращающихся дисков создает ряд дискретных зон измельчения по всей мельнице.
Согласно другому варианту реализации измельчение осуществляют в измельчителе с сетчатым фильтром, таком как детритор с перемешиванием мелющей среды. Измельчитель с сетчатым фильтром может содержать одно или более сито(сит) с номинальным размером отверстий, составляющим по меньшей мере примерно 250 мкм, например, номинальный размер отверстий одного или более сит может составлять по меньшей мере примерно 300 мкм, или по меньшей мере примерно 350 мкм, или по меньшей мере примерно 400 мкм, или по меньшей мере примерно 450 мкм, или по меньшей мере примерно 500 мкм, или по меньшей мере примерно 550 мкм, или по меньшей мере примерно 600 мкм, или по меньшей мере примерно 650 мкм, или по меньшей мере примерно 700 мкм, или по меньшей мере примерно 750 мкм, или по меньшей мере примерно S00 мкм, или по меньшей мере примерно 850 мкм, или по меньшей мере примерно 900 мкм, или по меньшей мере примерно 1000 мкм.
Перечисленные только что выше размеры сита применимы к описанным выше вариантам реализации башенной мельницы.
Как указано выше, измельчение можно осуществить в присутствии абразивного материала. Согласно одному из вариантов реализации абразивный материал представляет собой крупнозернистую среду, содержащую частицы со средним диаметром в диапазоне примерно от 1 мм до примерно 6 мм, например, примерно 2 мм, или примерно 3 мм, или примерно 4 мм, или примерно 5 мм.
Согласно другому варианту реализации абразивный материал имеет удельный вес, составляющий по меньшей мере примерно 2,5, например, по меньшей мере примерно 3, или по меньшей мере примерно 3,5, или по меньшей мере примерно 4,0, или по меньшей мере примерно 4,5, или по меньшей мере примерно 5,0, или по меньшей мере примерно 5,5, или по меньшей мере примерно 6,0.
Согласно другому варианту реализации абразивный материал содержит частицы со средним диаметром в диапазоне от примерно 1 мм до примерно 6 мм и имеет удельный вес по меньшей мере примерно 2,5.
Согласно другому варианту реализации абразивный материал содержит частицы со средним диаметром примерно 3 мм и имеет удельный вес примерно 2,7.
Как описано выше, абразивный материал (или среда) может присутствовать в количестве, составляющем не более примерно 70% по объему относительно объема загрузки. Абразивный материал может присутствовать в количестве, составляющем по меньшей мере примерно 10% по объему относительно объема загрузки, например, по меньшей мере примерно 20% по объему относительно объема загрузки, или по меньшей мере примерно 30% по объему относительно объема загрузки, или по меньшей мере примерно 40% по объему относительно объема загрузки, или по меньшей мере примерно 50% по объему относительно объема загрузки, или по меньшей мере примерно 60% по объему относительно объема загрузки.
Согласно одному из вариантов реализации абразивный материал присутствует в количестве, составляющем примерно 50% по объему относительно объема загрузки.
Под термином «загрузка» подразумевают композицию, представляющую собой сырье, подаваемое в сосуд измельчителя. Загрузка содержит воду, абразивный материал, волокнистый субстрат, содержащий целлюлозу и необязательно неорганический материал в форме частиц, и любые другие необязательные добавки, описанные в настоящем документе.
Преимущество применения относительно крупнозернистой и/или тяжелой среды состоит в улучшении (т.е., увеличении) скоростей осаждения и уменьшении уноса среды через неподвижную зону и/или сортировочную машину и/или сито(а).
Дополнительное преимущество от применения относительно крупнозернистого абразивного материала состоит в том, что средний размер частиц (d50) неорганического материала в форме частиц может и не уменьшаться в значительной степени во время процесса измельчения, так что энергия, передаваемая системе измельчения, будет в основном затрачиваться на микрофибриллирование волокнистого субстрата, содержащего целлюлозу.
Еще одно преимущество от применения сит с относительно крупными отверстиями заключается в том, что на стадии микрофибриллирования можно использовать относительно крупнозернистый или тяжелый абразивный материал. Кроме того, применение сит с относительно крупными отверстиями (т.е., с номинальным отверстием, составляющим по меньшей мере примерно 250 мкм) позволяет обрабатывать и удалять из измельчителя продукт с относительно высоким содержанием твердых веществ, что позволяет обрабатывать сырье с относительно высоким содержанием твердых веществ (содержащее волокнистый субстрат, содержащий целлюлозу и неорганический материал в форме частиц) в ходе экономически рентабельного процесса. Как обсуждается ниже, было обнаружено, что сырье с высоким исходным содержанием твердых веществ является оптимальным с точки зрения обеспеченности энергией. Кроме того, также было установлено, что продукт, полученный (при данной энергии) при меньшем содержании твердых веществ, характеризуется более крупным распределением частиц по размерам.
Измельчение можно осуществить в каскаде сосудов для измельчения, один или более из которых может содержать одну или более зон измельчения. Например, волокнистый субстрат, содержащий целлюлозу и неорганический материал в форме частиц, можно измельчать в каскаде из двух или более сосудов для измельчения, например, в каскаде из трех или более сосудов для измельчения, или в каскаде из четырех или более сосудов для измельчения, или в каскаде из пяти или более сосудов для измельчения, или в каскаде из шести или более сосудов для измельчения, или в каскаде из семи или более сосудов для измельчения, или в каскаде из восьми или более сосудов для измельчения, или в каскаде из девяти или более сосудов для измельчения, соединенных последовательно, или каскаде, содержащем до десяти сосудов для измельчения. Каскад сосудов для измельчения может быть последовательно или параллельно функционально связан или представлять собой комбинацию последовательных и параллельных соединений. Материал, выводимый и/или вводимый в один или более сосудов для измельчения в каскаде, может подвергаться одной или более стадиям просеивания и/или одной или более стадиям классификации частиц по крупности.
Технологический цикл может включать комбинацию одного или более сосудов для измельчения и гомогенизатор.
Согласно одному из вариантов реализации измельчение осуществляют в замкнутом цикле. Согласно другому варианту реализации измельчение осуществляют в открытом цикле. Измельчение можно осуществлять в периодическом режиме. Измельчение можно осуществлять в периодическом режиме с рециркуляцией.
Как описано выше, цикл измельчения может включать стадию предварительного измельчения, на которой крупнозернистые неорганические твердые частицы измельчают в сосуде измельчителя до обеспечения предварительно заданного распределения частиц по размерам, после чего волокнистый материал, содержащий целлюлозу, объединяют с предварительно измельченным неорганическим порошкообразным материалом и продолжают измельчение в том же или другом сосуде для измельчения до получения требуемого уровня микрофибриллирования.
Поскольку суспензия измельчаемого материала может иметь относительно высокую вязкость, перед измельчением в суспензию можно добавить подходящий диспергирующий агент. Диспергирующий агент может представлять собой, например, водорастворимый конденсированный фосфат, поликремниевую кислоту или ее соль или полиэлектролит, например, водорастворимую соль поли(акриловой кислоты) или поли(метакриловой кислоты) со среднечисленной молекулярной массой не более 80000. Количество применяемого диспергирующего агента в общем случае будет составлять от 0,1 до 2,0% по массе в расчете на массу сухого неорганического твердого материала в форме частиц. Суспензию можно измельчить подходящим образом при температуре в диапазоне от 4°С до 100°С.
Другие добавки, которые могут быть введены на стадии микрофибриллирования, включают: карбоксиметилцеллюлозу, амфотерную карбоксиметилцеллюлозу, окислители, 2,2,6,6- тетраметилпиперидин-1-оксил (TEMPO), производные TEMPO и ферменты, разлагающие древесину.
Показатель рН суспензии измельчаемого материала может составлять примерно 7 или больше, чем примерно 7 (т.е., быть основным), например, показатель рН суспензии может составлять примерно 8, или примерно 9, или примерно 10, или примерно 11. Показатель рН суспензии измельчаемого материала может составлять менее примерно 7 (т.е., быть кислотным), например, показатель рН суспензии может составлять примерно 6, или примерно 5, или примерно 4, или примерно 3. Показатель рН суспензии измельчаемого материала можно регулировать путем добавления подходящего количества кислоты или основания. Подходящие основания включают гидроксиды щелочных металлов, такие как, например, NaOH. Другими подходящими основаниями являются карбонат натрия и аммиак. Подходящие кислоты включают неорганические кислоты, такие как соляная и серная кислота, или органические кислоты. Примером кислоты является ортофосфорная кислота.
Количество неорганического материала в форме частиц, при наличии, и целлюлозной массы в совместно измельчаемой смеси можно варьировать для получения суспензии, которая подходит для применения в качестве суспензии для формирования покровного слоя или суспензии для формирования слоя или которая может быть дополнительно модифицирована, например, с помощью дополнительного неорганического материала в форме частиц, с получением суспензии, подходящей для применения в качестве суспензии для формирования покровного слоя или суспензии для формирования слоя.
- гомогеншация
Микрофибриллирование волокнистого субстрата, содержащего целлюлозу, можно осуществить во влажных условиях, необязательно, в присутствии неорганического материала в форме частиц, способом, в котором смесь целлюлозной массы и необязательного неорганического материала в форме частиц выдерживают под давлением (например, под давлением примерно 500 бар) и затем направляют в зону с более низким давлением. Скорость, с которой смесь проходит в зону низкого давления, является достаточно высокой, а давление в зоне низкого давления является достаточно низким, чтобы вызвать микрофибриллирование целлюлозных волокон. Например, может возникнуть перепад давления за счет нагнетания смеси через кольцеобразное отверстие, имеющее узкое входное устье и значительно большее выходное устье. Резкое снижение давления при ускоренном движении смеси в большой объем (то есть зону более низкого давления) индуцирует кавитацию, которая вызывает микрофибриллирование. Согласно одному из вариантов реализации микрофибриллирование волокнистого субстрата, содержащего целлюлозу, можно осуществить в гомогенизаторе во влажных условиях необязательно в присутствии неорганического материала в форме частиц. В гомогенизаторе целлюлозную массу и необязательный неорганический материал в форме частиц выдерживают под давлением (например, под давлением приблизительно 500 бар) и продавливают через небольшое сопло или устье. Смесь может быть под давлением, составляющим от примерно 100 до примерно 1000 бар, например, под давлением, равным или большим 300 бар, или равным или большим примерно 500, или равным или большим примерно 200 бар, или равным или большим примерно 700 бар. Гомогенизация подвергает волокна воздействию высоких значений усилий сдвига, так что по мере выхода находящейся под давлением целлюлозной массы из сопла или устья, кавитация приводит к микрофибриллированию целлюлозных волокон в целлюлозной массе. Для улучшения текучести суспензии через гомогенизатор можно добавить дополнительное количество воды. Полученную водную суспензию, содержащую микрофибриллированную целлюлозу и необязательный неорганический материал в форме частиц, можно возвратить обратно во входное отверстие гомогенизатора для многократного прохождения через гомогенизатор. При наличии и когда неорганический материал в форме частиц представляет собой природный пластинчатый минерал, такой как каолин, гомогенизация не только облегчает микрофибриллирование целлюлозной массы, но также может способствовать расслоению пластинчатого материала в форме частиц.
Примером гомогенизатора является гомогенизатор Manton Gaulin (APV).
После выполнения стадии микрофибриллирования водную суспензию, содержащую микрофибриллированную целлюлозу и необязательный неорганический материал в форме частиц, можно пропустить через сито для удаления волокна выше определенного размера и для удаления любого абразивного материала. Например, суспензию можно подвергнуть просеиванию с помощью сита с выбранным номинальным размером отверстий для удаления волокон, не проходящих через такое сито. Номинальный размер отверстий обозначает номинальное центральное расстояние между противоположными сторонами квадратного отверстия или номинальный диаметр круглого отверстия. Сито может представлять собой сито BSS (British standard sieve - стандартное сито британской гранулометрической шкалы) (согласно BS 1796), имеющее номинальный размер отверстий 150 мкм, например, 125 мкм, или 106 мкм, или 90 мкм, или 74 мкм, или 63 мкм, или 53 мкм, 45 мкм, или 38 мкм. Согласно одному из вариантов реализации водную суспензию пропускают через сито BSS с номинальным отверстием 125 мкм. Затем водная суспензия может быть необязательно обезвожена.
Поэтому понятно, что в случае, когда измельченную или гомогенизированную суспензию обрабатывают для удаления волокон с размерами, выше выбранного размера, количество (т.е., % по массе) микрофибриллированной целлюлозы в водной суспензии после измельчения или гомогенизации может быть меньше, чем количество сухого волокна в целлюлозной массе. Таким образом, относительные количества целлюлозной массы и необязательного неорганического материала в форме частиц, подаваемые в измельчитель или гомогенизатор, можно регулировать в зависимости от количества микрофибриллированной целлюлозы, которое требуется в водной суспензии после удаления волокон с размерами выше выбранного размера.
Согласно некоторым вариантам реализации микрофибриллированную целлюлозу можно получить способом, включающим стадию микрофибриллирования волокнистого субстрата, содержащего целлюлозу в водной среде, путем измельчения в присутствии абразивного материала (описанного в настоящем документе), при этом измельчение выполняют в отсутствии неорганического материала в форме частиц. Согласно некоторым вариантам реализации неорганический материал в форме частиц можно добавить после измельчения с получением суспензии для формирования покровного слоя или суспензии для формирования слоя.
Согласно некоторым вариантам реализации после измельчения абразивный материал удаляют.
Согласно другим вариантам реализации абразивный материал сохраняется после измельчения и может служить в качестве неорганического материала в форме частиц или по меньшей мере его части. Согласно некоторым вариантам реализации после измельчения можно добавить дополнительное количество неорганических твердых частиц с получением суспензии для формирования покровного слоя или суспензии для формирования слоя.
Для исследования распределений частиц по размерам в смесях неорганического материала в форме частиц (например, GCC или каолина) и волокон микрофибриллированной целлюлозной массы можно использовать следующую методику.
- карбонат кальция
Образец совместно измельченной суспензии, достаточный для получения 3 г сухого материала, взвешивают в стакане, разбавляют до 60 г деионизированной водой и смешивают с 5 см3 раствора полиакрилата натрия с концентрацией активного вещества 1,5 масс./об.%. Затем при перемешивании добавляют деионизированную воду до получения конечной массы суспензии 80 г.
- каолин
Образец совместно измельченной суспензии, достаточный для получения 5 г сухого материала, взвешивают в стакане, разбавляют до 60 г деионизированной водой и смешивают с 5 см3 раствора 1,0 масс. % карбоната натрия и 0,5 масс. % гексаметафосфата натрия. Затем при перемешивании добавляют деионизированную воду до получения конечной массы суспензии 80 г.
Далее суспензию в виде 1 см3 аликвот добавляют в воду в установке для приготовления образцов, закрепленной на приборе Mastersizer S, до отображения оптимального уровня поглощения света (обычно от 10 до 15%). После этого выполняют анализ светорассеяния. Выбранный диапазон измерений был следующим: 300RF: 0,05-900, длина луча была установлена на 2,4 мм.
Для совместно измельченных образцов, содержащих карбонат кальция и волокно, использовали показатель преломления (RI) карбоната кальция (1,596). Для совместно измельченных образцов каолина и волокна использовали RI каолина (1,5295).
Распределение частиц по размерам рассчитывали на основе теории Ми и получали результат в виде распределения на основе дифференциала объема. Наличие двух четко выраженных пиков интерпретировали как относящиеся к минералу (более тонкий пик) и к волокну (более грубый пик).
Более тонкий пик минерала приводили в соответствие с точками экспериментальных данных и математически вычитали из распределения, чтобы оставить пик волокна, который преобразовывали в интегральную функцию распределения. Аналогичным образом, пик волокна математически вычитали из исходного распределения, чтобы оставить пик минерала, который также преобразовывали в интегральную функцию распределения. Затем обе указанные интегральные кривые можно использовать для расчета среднего размера частиц (d50) и крутизны распределения по размерам (d30/d70×100). Дифференциальную кривую можно использовать для нахождения модального размера частиц обоих минеральной и волокнистой фракций.
ПРИМЕРЫ
Пример 1
1.150 г/м2 темного листа изготавливали в формующем устройстве для отливки листа бумаги вручную. В качестве средства для повышения удерживаемости использовали Percol (RTM) 292 с концентрацией 600 ppm в расчете на общее количество твердых веществ в готовых листах бумаги ручного отлива.
2. После получения темного листа часть удерживаемой воды удаляли путем прессования листа вручную с помощью трех кусков промокательной бумаги. Не наблюдалось адгезии между листами промокательной бумаги и полученным листом.
3. Затем темный основной лист переворачивали вверх дном, чтобы его более гладкая сторона была сверху.
4. Отмеряли определенное количество микрофибриллированной хвойной крафт-целлюлозы Botnia Pine и беленой крафт-целлюлозы и карбоната кальция (Intracarb 60) при общем содержании твердых веществ 7,88% масс. (18% микрофибриллированной целлюлозы) для получения требуемого граммажа белого верхнего слоя (листы получали при 20 г/м2, 25 г/м2, 30 г/м2, 40 г/м2 и 50 г/м2). После этого разбавляли образец микрофибриллированной целлюлозы/карбоната кальция до конечного объема 300 мл, используя водопроводную воду.
5. Полученный образец выливали на темный лист и применяли вакуум. Для облегчения формирования белого верхнего слоя использовали Polydadmac (1 мл 0,2% раствора).
6. Затем собирали отведенную воду и добавляли обратно к формованному листу при применении вакуума в течение 1 минуты.
7. Двухслойный лист переносили в скоростную сушилку Kothen (~89°С, 1 бар) на 15 минут.
8. Образец, оставшийся в остаточной воде (см., стадию 6), собирали на фильтровальной бумаге и использовали для расчета фактического граммажа белого верхнего слоя для каждого отдельного листа.
9. Затем, перед исследованием, каждый лист оставляли на ночь в лаборатории с кондиционированием.
Результаты:
Формование листов, полученных при варьировании граммажа, показано на фигуре 1. Изображения были получены путем сканирования отражения с применением обычного сканера в одинаковых условиях, поэтому их можно было напрямую сравнивать друг с другом.
Яркость полученных листов показана на фигуре 2. Яркость увеличивалась с увеличением г/м2 лайнера с белой поверхностью. Результаты измерения яркости темной стороны двухслойных листов указывали на отсутствие проникновения белого верхнего слоя через темный лист.
Показатель шероховатости PPS уменьшался при более высоких уровнях граммажа белого верхнего слоя (см. фигуру 3). Показатель шероховатости одного только темного листа составлял 7,9 мкм. Это свидетельствует, что при повышении граммажа верхнего слоя поверхность становится более гладкой.
Пример 2
Испытания 1-4
Длинносеточная бумагоделательная машина работала со скоростью 60 футов/мин (18 м/мин). Для нанесения покрытий использовали «вторичный напорный ящик». Такой ящик представлял собой изготовленное по заказу устройство, в котором бумажная масса поступала в ряд «прудов» и затем переливалась через сливную перегородку на полотно. Указанный сделанный на заказ вторичный напорный ящик не требовал такого высокого расхода, как гидравлический сепаратор GL&V, для формирования завесы и поэтому можно было увеличить количество используемых твердых веществ микрофибриллированной целлюлозы и неорганического материала в форме частиц и, тем не менее, обеспечить целевые значения массы покрытия. Работа при более высоком содержании твердых веществ означает, что вторичный напорный ящик можно расположить дальше от основного напорного ящика, в месте, где лист был более уплотненным и, тем не менее, суспензия микрофибриллированной целлюлозы и неорганического материала в форме частиц, применяемая в качестве покровного слоя, может быть все еще в достаточной степени обезвожена перед поступлением в пресс.
При применении вторичного напорного ящика в месте, расположенном на небольшом расстоянии после мокрой линии, для исследования ограничений предложенного способа использовали отношение 1:1 микрофибриллированной целлюлозы к органическому порошкообразному материалу. Было очевидно, что при отношении 1:1 микрофибриллированной целлюлозы к органическому порошкообразному материалу суспензия обезвоживается быстрее, чем при отношении 1:4 микрофибриллированной целлюлозы к органическому порошкообразному материалу, даже если граммаж микрофибриллированной целлюлозы, нанесенной на субстрат, был более высоким. Первоначально покрытие было нанесено при 15 г/м2, затем постепенно без проблем граммаж увеличивали до 30 г/м2. Хотя покрытие было хорошим, при отношении 1:1 микрофибриллированной целлюлозы к органическому порошкообразному материалу содержание наполнителя было недостаточно высоким для обеспечения требуемой яркости.
Расчет г/м2 верхнего слоя по массе листа и зольности выполняли следующим образом.
W = мacca, А = зольность
Нижние индексы t = верхний слой, b = нижний слой, s = двухслойный лист.
Общая зольность листа представляет собой сумму продуктов, содержащих золу, и массы каждого слоя, разделенную на общую массу листа.
Figure 00000002
Зольность нижнего листа измеряли с помощью контрольного листа без покрытия, при этом зольность верхнего слоя непосредственно связана с % масс. суспензии микрофибриллированного вещества и неорганического вещества в форме частиц. Поскольку визуальное исследование листа и полученных методом сканирующей электронной микроскопии (SEM) поперечных сечений показало отсутствие проникновения в основание композиционного материала суспензии для формирования покровного слоя, состоящего из микрофибриллированного вещества и неорганического вещества в форме частиц, было достигнуто 100% удержание. Массу нижнего листа можно исключить из приведенного выше уравнения, поскольку
Figure 00000003
и, таким образом, указанное уравнение можно преобразовать с получением массы верхнего слоя в зависимости от известных количественных параметров.
Figure 00000004
Испытания 1-4
Ряд дополнительных испытаний были проведены с применением установки, используемой в испытании 1. Длинносеточную бумагоделательную машину использовали при различных значениях массы покрытий, нанесенных поверх основания из 100% хвойной небеленой крафт-целлюлозы, рафинированного до примерно 500 мл CSF. Покровный слой состоял из 20% микрофибриллированной целлюлозы, 80% минерала и небольшого количества флокулянта.
Результаты:
Результаты приведены в таблице 1. В таблице 1 использовались следующие сокращения.
BP: Бумага-основа без покрытия
Т1: Примерно 28 г/м2 композиционного верхнего покрытия, 20% микрофибриллированной целлюлозы, 80% GCC.
Т2: Примерно 35 г/м2 композиционного верхнего покрытия, 20% микрофибриллированной целлюлозы, 80% GCC.
Т3: Примерно 42 г/м2 композиционного верхнего покрытия, 20% микрофибриллированной целлюлозы, 80% GCC.
Т4: Примерно 48 г/м2 композиционного верхнего покрытия, 20% микрофибриллированной целлюлозы, 20% GCC, 60% талька.
Figure 00000005
Figure 00000006
В результате проведенных испытаний были получены результаты измерения яркости, пористости и гладкости при различных значениях массы покрытий, варьирующих от 28 г/м2 до 48 г/м2. Влияние на стойкость к расслаиванию, измеренную на тестовом аппарате Scott bond tester, отсутствовало, поскольку разрыв в испытании на z-направленную прочность всегда происходил в основном листе, т.е., покровный слой был прочнее, чем основание. Яркость относительно массы покрытия приведена на графике на фиг. 4.
Сканирующее электронно-микроскопическое изображение субстрата с покрытием в точке Т2 показано на фиг. 5. Покровный слой был нанесен при 35 г/м2 и состоял из 20% масс. микрофибриллированной целлюлозы и 80% масс. измельченного карбоната кальция, нанесенных на 85 г/м2 субстрат. На фиг. 5 ясно видно, что покровный слой образовался в виде отдельного верхнего слоя без [проникновения в субстрат основания]. На фиг. 6 приведено SEM изображение в точке измерения 4. Покрытие было нанесено при 48 г/м2 и покровный слой содержал 20% масс. микрофибриллированной целлюлозы и 20% масс. измельченного карбоната кальция и 60% масс,. талька (т.е., отношение микрофибриллированной целлюлозы и неорганического материала в форме частиц составляло 1:4), нанесенных на 85 г/м2 субстрат. Изображение на фиг. 6 ясно указывает, что покровный слой был нанесен таким образом, чтобы он в соответствии с требованием оставался в виде слоя на поверхности субстрата.
Сравнительное испытание:
Ниже в таблице 2 представлены данные об обычном облицовочном картоне с белой поверхностью, полученном на аналогичной бумагоделательной машине, но с применением обычного покровного слоя, нанесенного на субстрат основания с 82 г/м2. Основание было сделано из небеленого хвойного крафт-волокна и белый верхний слой был изготовлен из беленого крафт-волокна древесины твердых пород (березы), при этом типичный диапазон загрузок наполнителя составлял не более 20%. Целью было обеспечение основания с 80 г/м2 и обеспечение белого слоя с 60 г/м2. В таблице 2 приведен типичный результат без микрофибриллированной целлюлозы, при котором в белом листе использовали 15% масс, загрузку РСС скаленоэдрической формы (Optical НВ). Основание было несколько прочнее, чем в случае испытаний 1-4, описанных выше, но можно видеть, что падение показателей механических свойств в результате добавления верхнего слоя также является довольно большим. С учетом того, что слой с покровным слоем, описанный в испытаниях 1-4, может достигать целевого значения яркости при более низком граммаже, чем обычный субстрат с белой поверхностью, для зафиксированного общего граммажа применение технологии FiberLean позволит производителю картона использовать более высокую долю небеленого длинного волокна в продукте и, таким образом, получать более прочный и более жесткий продукт.
Ниже в таблице 2 приведены типичные свойства различных сортов обычного облицовочного картона
Figure 00000007
Figure 00000008
Для демонстрации печатных свойств облицовочных картонов с белой поверхностью согласно настоящему изобретению на фиг. 7 приведено поперечное сечение образца, напечатанного посредством флексографии. Краска находится в верхней части покровного слоя, как и должно быть.
Пример 3
В соответствии с установкой и параметрами, указанными в примерах 1 и 2, было исследовано непрерывное производство субстратов с покрытием, имеющих различные массы покрытия, и субстратов основания. В испытаниях 5-7 использовали бумагу-основу (BP), изготовленную из 70% древесины твердых пород и 30% древесины хвойных пород, очищенных вместе до значения CSF приблизительно 400 мл при целевом граммаже 70 г/м2. Покрытия, нанесенные на BP в испытаниях 5-7, обозначены как:
Т5, приблизительно 20 г/м2 композиционного покрытия (20% MFC, 80% GCC, без добавок) на бумаге-основе BP
Т6, приблизительно 30 г/м2 композиционного покрытия (20% MFC, 80% GCC, без добавок) на бумаге-основе BP
Т7, приблизительно 40 г/м2 композиционного покрытия (20% MFC, 80% GCC, без добавок) на бумаге-основе BP
В таблице 3 представлены данные, полученные в испытаниях 5-7.
Figure 00000009
Из данных, представленных в таблице 4, очевидно, что заданная яркость покровного слоя, нанесенного на темный субстрат, была достигнута во всех испытаниях 5-7.
Пример 4
В таблице 4 приведены данные о печатных рабочих характеристиках субстратов облицовочного картона с покровным слоем.
Сравнительные контрольные образцы 1 и 2 включали промышленную бумагу для струйной печати с покрытием и промышленную бумагу для струйной для печати без покрытия, соответственно. Образец печати состоял из:
30 г/м2 композиционного покрытия (20% MFC, 80% GCC) на пористой основе (70% древесины твердых пород и 30% древесины хвойных пород, CSF приблизительно 400 мл, 70 г/м2). Бумагу получали в непрерывном производственном процессе. Образец печати был изготовлен в соответствии с примером 3. Струйную печать типа «с рулона на рулон» наносили со скоростью 50 м/мин.
В таблице 4 представлен результат печати сравнительных контрольных образцов 1 (специализированная бумага для струйной печати, с покрытием и каландрированная) и 2 (бумага без покрытия, подходящая для струйной печати) по сравнению с образцом печати согласно варианту реализации настоящего изобретения.
Figure 00000010

Claims (35)

1. Бумажный или картонный продукт, содержащий: (i) целлюлозосодержащий субстрат; и
(ii) покровный слой, содержащий неорганический материал в форме частиц и от примерно 5% масс. до 30% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя, при этом содержание неорганического материала в форме частиц составляет от 67% масс. до 92% масс. в расчете на общую массу покровного слоя, при этом неорганический материал в форме частиц может иметь распределение частиц по размерам, где от по меньшей мере 20% до по меньшей мере 95% по массе частиц имеют э.с.д. менее 2 мкм, и, кроме того, измеренная (согласно стандарту ISO 11475 (F8; D65 - 400 нм)) яркость покровного слоя составляет по меньшей мере 65%; и покровный слой имеет граммаж, составляющий от 15 г/м2 до 40 г/м2.
2. Продукт по п. 1, отличающийся тем, что указанный продукт содержит или представляет собой тарный картон с белой поверхностью.
3. Продукт по п. 2, отличающийся тем, что субстрат имеет граммаж, подходящий для применения в тарном картоне, при этом указанный граммаж составляет от 50 г/м2 до 500 г/м2.
4. Продукт по п. 1, отличающийся тем, что субстрат содержит макулатурную массу, темную крафт-целлюлозу или их комбинации.
5. Продукт по п. 1, отличающийся тем, что неорганический материал в форме частиц и микрофибриллированная целлюлоза составляют более 95% масс. покровного слоя в расчете на общую массу покровного слоя.
6. Продукт по п. 1, отличающийся тем, что покровный слой содержит по меньшей мере 70% масс. неорганического материала в форме частиц в расчете на общую массу покровного слоя.
7. Продукт по п. 1, отличающийся тем, что покровный слой содержит по меньшей мере примерно 80% масс. неорганического материала в форме частиц в расчете на общую массу покровного слоя.
8. Продукт по п. 1, отличающийся тем, что покровный слой содержит по меньшей мере от 10% масс. до 20% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя.
9. Продукт по п. 1, отличающийся тем, что покровный слой содержит по меньшей мере один неорганический материал в форме частиц, выбранный из группы, состоящей из: карбоната кальция, карбоната магния, доломита, гипса, безводной кандитной глины, каолина, перлита, диатомовой земли, волластонита, талька, гидроксида магния, диоксида титана или тригидрата алюминия или их комбинаций.
10. Продукт по п. 9, отличающийся тем, что неорганический материал в форме частиц содержит или представляет собой карбонат кальция.
11. Продукт по п. 1, отличающийся тем, что указанный продукт имеет показатель шероховатости PPS (@1000 кПа), измеренный на покровном слое, составляющий не более примерно 6,0 мкм, и/или показатель шероховатости PPS (@1000 кПа), измеренный на покровном слое, который на по меньшей мере 2,0 мкм меньше показателя шероховатости PPS субстрата в отсутствие покровного слоя.
12. Продукт по п. 1, отличающийся тем, что покровный слой содержит в общей сложности не более 2% масс. добавок, выбранных из группы, состоящей из: флокулянта, средства формования/средства дренирования, водорастворимого загустителя, крахмала, средства для повышения удерживаемости и их комбинаций.
13. Продукт по п. 1, отличающийся тем, что покровный слой не содержит дополнительного органического соединения.
14. Продукт по п. 13, отличающийся тем, что покровный слой не содержит катионный полимер, анионный полимер или гидроколлоид полисахаридной природы.
15. Продукт по п. 1, отличающийся тем, что покровный слой представляет собой наружный слой.
16. Продукт по п. 1, отличающийся тем, что покровный слой не содержит воск, полиолефины и силикон.
17. Продукт по п. 12, отличающийся тем, что субстрат содержит не более 1% масс. средства для повышения удерживаемости в расчете на общую массу субстрата.
18. Продукт по п. 1, отличающийся тем, что покровный слой преимущественно состоит или состоит из неорганических частиц и микрофибриллированной целлюлозы.
19. Продукт по п. 1, отличающийся тем, что покровный слой содержит не более 30% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя.
20. Продукт по п. 1, отличающийся тем, что по меньшей мере один из дополнительных слоев или прослоек представляет собой барьерный слой или прослойку, или восковый слой или прослойку, или силиконовый слой или прослойку.
21. Способ получения бумажного или картонного продукта, включающий:
(a) обеспечение влажного полотна из целлюлозной массы;
(b) обеспечение суспензии для формирования покровного слоя на влажном полотне из целлюлозной массы с помощью аппликатора, подходящего для получения пленки, через щелевое отверстие, находящееся при нормальном давлении или под давлением, поверх влажного субстрата на проволочной сетке мокрой части бумагоделательной машины, при этом:
(i) суспензию для формирования покровного слоя обеспечивают в количестве, составляющем от 15 г/м2 до 40 г/м2;
(ii) суспензия для формирования покровного слоя содержит достаточное количество микрофибриллированной целлюлозы для получения продукта с покровным слоем, содержащим по меньшей мере от 5% масс. до 30% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя; и
(iii) суспензия для формирования покровного слоя содержит достаточное количество неорганического материала в форме частиц для получения продукта с покровным слоем, содержащим по меньшей мере 67% масс. неорганического материала в форме частиц в расчете на общую массу покровного слоя, при этом неорганический материал в форме частиц может иметь распределение частиц по размерам, где от по меньшей мере 20% до по меньшей мере 95% по массе частиц имеют э.с.д. менее 2 мкм.
22. Способ по п. 21, отличающийся тем, что влажное полотно из целлюлозной массы содержит более 50% масс. воды в расчете на общую массу влажного полотна из целлюлозной массы.
23. Способ по п. 21, отличающийся тем, что влажное полотно из целлюлозной массы содержит не более примерно 1% масс. средства для повышения удерживаемости в расчете на общую массу влажного полотна из целлюлозной массы.
24. Способ по п. 21, отличающийся тем, что суспензия для формирования покровного слоя содержит неорганический материал в форме частиц и достаточное количество микрофибриллированной целлюлозы для получения бумажного продукта с покровным слоем, содержащим по меньшей мере 15% масс. микрофибриллированной целлюлозы в расчете на общую массу покровного слоя.
25. Способ по п. 21, отличающийся тем, что суспензию для формирования покровного слоя наносят с помощью щелевого отверстия, находящегося под давлением, поверх влажного субстрата на проволочной сетке мокрой части бумагоделательной машины.
26. Способ по п. 21, отличающийся тем, что суспензию для формирования покровного слоя наносят с помощью установки для нанесения покрытий поливом.
27. Способ по п. 21, также включающий нанесение дополнительного слоя или прослойки или дополнительных слоев или прослоек на покровный слой, содержащий микрофибриллированную целлюлозу и неорганический материал в форме частиц.
28. Способ по п. 27, отличающийся тем, что один из дополнительных слоев или прослоек представляет собой барьерный слой или прослойку, или восковый слой или прослойку, или силиконовый слой или прослойку.
29. Продукт по п. 1, отличающийся тем, что покровный слой преимущественно состоит или состоит из микрофибриллированной целлюлозы.
RU2018132247A 2016-04-05 2017-03-31 Бумажные и картонные продукты RU2694038C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1605797.8 2016-04-05
GB201605797 2016-04-05
PCT/IB2017/000450 WO2017175062A1 (en) 2016-04-05 2017-03-31 Paper and paperboard products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2019120454A Division RU2727605C1 (ru) 2016-04-05 2017-03-31 Бумажные и картонные продукты

Publications (1)

Publication Number Publication Date
RU2694038C1 true RU2694038C1 (ru) 2019-07-08

Family

ID=58737689

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2018132247A RU2694038C1 (ru) 2016-04-05 2017-03-31 Бумажные и картонные продукты
RU2019120454A RU2727605C1 (ru) 2016-04-05 2017-03-31 Бумажные и картонные продукты
RU2020123287A RU2763271C1 (ru) 2016-04-05 2020-07-14 Бумажные и картонные продукты

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2019120454A RU2727605C1 (ru) 2016-04-05 2017-03-31 Бумажные и картонные продукты
RU2020123287A RU2763271C1 (ru) 2016-04-05 2020-07-14 Бумажные и картонные продукты

Country Status (20)

Country Link
US (5) US10214859B2 (ru)
EP (3) EP3440259B1 (ru)
JP (5) JP6656405B2 (ru)
KR (4) KR102537293B1 (ru)
CN (2) CN111501400B (ru)
AU (4) AU2017247687C1 (ru)
BR (1) BR112018069538B1 (ru)
CA (1) CA3019443C (ru)
DK (2) DK3828339T3 (ru)
ES (2) ES2967914T3 (ru)
FI (1) FI3828339T3 (ru)
HR (1) HRP20210460T1 (ru)
HU (1) HUE053667T2 (ru)
MX (1) MX366250B (ru)
PL (2) PL3828339T3 (ru)
PT (2) PT3440259T (ru)
RU (3) RU2694038C1 (ru)
SI (1) SI3440259T1 (ru)
WO (1) WO2017175062A1 (ru)
ZA (1) ZA201807265B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115397897A (zh) * 2020-04-15 2022-11-25 斯道拉恩索公司 包含高度精制的纤维素纤维的多层膜

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201304717D0 (en) * 2013-03-15 2013-05-01 Imerys Minerals Ltd Paper composition
FR3035611B1 (fr) * 2015-04-28 2019-08-09 Centre Technique Du Papier Procede et dispositif de fabrication d'un materiau stratifie comprenant une couche de cellulose fibrillee
EP3417103B1 (en) * 2016-02-19 2023-06-07 Stora Enso Oyj Sheet having improved dead-fold properties
CA3016377A1 (en) * 2016-03-23 2017-09-28 Stora Enso Oyj Board with improved compression strength
EP3440030A1 (en) 2016-04-04 2019-02-13 FiberLean Technologies Limited Compositions and methods for providing increased strength in ceiling, flooring, and building products
US11846072B2 (en) * 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
EP3440259B1 (en) * 2016-04-05 2021-02-24 FiberLean Technologies Limited Paper and paperboard products
EP3585942A1 (en) 2017-02-27 2020-01-01 WestRock MWV, LLC Heat sealable barrier paperboard
EP3382095A1 (en) * 2017-03-30 2018-10-03 Borregaard AS Microfibrillated cellulose foams
SE542093C2 (en) * 2018-02-27 2020-02-25 Stora Enso Oyj Method for production of a paper, board or non-woven product comprising a first ply
SE543549C2 (en) * 2018-03-02 2021-03-23 Stora Enso Oyj Method for manufacturing a composition comprising microfibrillated cellulose
US10550520B2 (en) * 2018-04-05 2020-02-04 Gl&V Canada Inc. Method with a horizontal jet applicator for a paper machine wet end
SE543039C2 (en) * 2018-06-27 2020-09-29 Stora Enso Oyj A corrugated board and use of a linerboard in the manufacturing of a corrugated board to reduce the washboard effect
DE102018118271A1 (de) * 2018-07-27 2020-01-30 Delfortgroup Ag Leichtes trennbasispapier
AU2019352606B2 (en) * 2018-10-01 2023-08-10 Outlier Solutions, Llc Re-pulpable insulated paper products and methods of making and using the same
PT115074B (pt) 2018-10-10 2020-10-26 The Navigator Company, S.A. Flocos de cargas minerais conjugadas com microfibrilas e nanofibrilas de celulose para aplicação na produção de material papeleiro com propriedades papeleiras melhoradas
SE543520C2 (en) * 2018-11-14 2021-03-16 Stora Enso Oyj Surface treatment composition comprising nanocellulose and particles comprising a salt of a multivalent metal
CN110804697A (zh) * 2019-10-23 2020-02-18 金川集团股份有限公司 一种废旧印花镍网脱膜的方法
EP4077805A1 (en) * 2019-12-17 2022-10-26 WestRock MWV, LLC Coated paper and paperboard structures
FI129547B (en) * 2020-07-01 2022-04-14 Betulium Oy Process for the preparation of a dried product comprising non-wood cellulose microfibrils and a dried product prepared with the
US20220228320A1 (en) * 2021-01-19 2022-07-21 Solenis Technologies, L.P. Treated substrates and methods of producing the same
CN117136263A (zh) * 2021-04-02 2023-11-28 菲博林科技有限公司 纸和纸板产品
WO2022208160A1 (en) * 2021-04-02 2022-10-06 Fiberlean Technologies Limited Improved microfibrillated coating compositions, processes and applicators therefor
SE2151336A1 (en) * 2021-10-29 2023-04-30 Stora Enso Oyj Highly refined pulp from fibers obtained from used beverage cartons
EP4198197A1 (en) * 2021-12-20 2023-06-21 Mondi AG Method for producing a multi-layer packaging paper or board
CN114335899A (zh) * 2022-01-30 2022-04-12 中材锂膜有限公司 复合涂层隔膜及其制备方法
SE546123C2 (en) * 2022-11-18 2024-05-28 Stora Enso Oyj Method for manufacturing a cellulose-based laminate comprising a mineral-based layer
US20240240404A1 (en) 2023-01-13 2024-07-18 Shree Krishna Paper Mills And Industries Limited Unbleached natural brown copier paper and process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183596B1 (en) * 1995-04-07 2001-02-06 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
WO2013132017A1 (en) * 2012-03-09 2013-09-12 Philip Morris Products S.A. Layered sheetlike material comprising cellulose fibres
RU2505635C2 (ru) * 2009-05-15 2014-01-27 Имерис Минералз Лимитед Композиция наполнителя для бумаги
WO2014072912A1 (en) * 2012-11-09 2014-05-15 Stora Enso Oyj Ply for a board from an in-line production process

Family Cites Families (312)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US57307A (en) 1866-08-21 Improved fabric to be used as a substitute for japanned leather
US168783A (en) 1875-10-11 Improvement in gasoline-burners
US259537A (en) 1882-06-13 hawkins
US199745A (en) 1878-01-29 Improvement in lubricators for steam-engines
US2006209A (en) 1933-05-25 1935-06-25 Champion Coated Paper Company Dull finish coated paper
GB563621A (en) 1942-09-16 1944-08-23 Geigy Colour Company Ltd Improvements in preparation of compounds possessing the guanidine residue
GB663621A (en) 1943-07-31 1951-12-27 Anglo Internat Ind Ltd Method of preparing a hydrophilic cellulose gel
US3075710A (en) 1960-07-18 1963-01-29 Ignatz L Feld Process for wet grinding solids to extreme fineness
US3560334A (en) 1965-09-27 1971-02-02 Mead Corp Apparatus for incorporating additive dispersions to wet webs of paper
US3794558A (en) 1969-06-19 1974-02-26 Crown Zellerbach Corp Loading of paper furnishes with gelatinizable material
DE2151445A1 (de) 1970-11-03 1972-05-04 Tamag Basel Ag Verfahren zum Aufbereiten von Tabakersatzpflanzenteilen zu einer Tabakersatzfolie
US3794556A (en) 1970-12-30 1974-02-26 Dow Corning Primer composition for adhering silicone elastomer to substrates
CH548071A (fr) 1971-07-23 1974-04-11 Paillard Sa Generateur de caracteres.
US3765921A (en) 1972-03-13 1973-10-16 Engelhard Min & Chem Production of calcined clay pigment from paper wastes
SU499366A1 (ru) 1972-10-23 1976-01-15 Всесоюзное научно-производственное объединение целлюлозно-бумажной промышленности Способ размола волокнистых материалов
IT1001664B (it) 1973-11-08 1976-04-30 Sir Soc Italiana Resine Spa Prodotto microfibroso adatto ad es sere impiegato nella produzione di carte sintetiche e relativo procedi mento di ppreparazione
US3921581A (en) 1974-08-01 1975-11-25 Star Kist Foods Fragrant animal litter and additives therefor
US4026762A (en) 1975-05-14 1977-05-31 P. H. Glatfelter Co. Use of ground limestone as a filler in paper
US4087317A (en) 1975-08-04 1978-05-02 Eucatex S.A. Industria E Comercio High yield, low cost cellulosic pulp and hydrated gels therefrom
FI54818C (fi) 1977-04-19 1979-03-12 Valmet Oy Foerfarande foer foerbaettring av en termomekanisk massas egenskaper
DE2831633C2 (de) 1978-07-19 1984-08-09 Kataflox Patentverwaltungs-Gesellschaft mbH, 7500 Karlsruhe Verfahren zur Herstellung eines Brandschutzmittels
JPS5581548A (en) 1978-12-13 1980-06-19 Kuraray Co Ltd Bundle of fine fiber and their preparation
US4229250A (en) 1979-02-28 1980-10-21 Valmet Oy Method of improving properties of mechanical paper pulp without chemical reaction therewith
US4464267A (en) 1979-03-06 1984-08-07 Enterra Corporation Preparing fire-fighting concentrates
US4460737A (en) 1979-07-03 1984-07-17 Rpm, Inc. Polyurethane joint sealing for building structures
US4318959A (en) 1979-07-03 1982-03-09 Evans Robert M Low-modulus polyurethane joint sealant
US4356060A (en) 1979-09-12 1982-10-26 Neckermann Edwin F Insulating and filler material comprising cellulose fibers and clay, and method of making same from paper-making waste
US4374702A (en) 1979-12-26 1983-02-22 International Telephone And Telegraph Corporation Microfibrillated cellulose
DE3015250C2 (de) 1980-04-21 1982-06-09 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Verfahren und Einrichtung zur Aufbereitung von Mineralfaserschrott unterschiedlicher Beschaffenheit, insbesondere hinsichtlich seiner organischen Bestandteile
AU546999B2 (en) * 1980-05-28 1985-10-03 Eka A.B. Adding binder to paper making stock
US4510020A (en) 1980-06-12 1985-04-09 Pulp And Paper Research Institute Of Canada Lumen-loaded paper pulp, its production and use
US4452722A (en) 1980-10-31 1984-06-05 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4500546A (en) 1980-10-31 1985-02-19 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4378381A (en) 1980-10-31 1983-03-29 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4487634A (en) 1980-10-31 1984-12-11 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4464287A (en) 1980-10-31 1984-08-07 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
DE3164599D1 (en) 1980-10-31 1984-08-09 Itt Ind Gmbh Deutsche Suspensions containing microfibrillated cullulose, and process for their preparation
US4452721A (en) 1980-10-31 1984-06-05 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4341807A (en) 1980-10-31 1982-07-27 International Telephone And Telegraph Corporation Food products containing microfibrillated cellulose
CH648071A5 (en) 1981-06-15 1985-02-28 Itt Micro-fibrillated cellulose and process for producing it
NL190422C (nl) 1981-06-15 1994-02-16 Itt Tot microfibrillen gefibrilleerde cellulose, werkwijze voor de bereiding daarvan, alsmede papierprodukt dat dergelijke tot microfibrillen gefibrilleerde cellulose bevat.
JPS59132926A (ja) 1983-01-18 1984-07-31 Hitachi Maxell Ltd 撹「はん」媒体の分離機構
JPS59144668A (ja) 1983-02-03 1984-08-18 長谷虎紡績株式会社 カ−ペツト用タフテイングマシン
US4481076A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Redispersible microfibrillated cellulose
US4481077A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Process for preparing microfibrillated cellulose
US4474949A (en) 1983-05-06 1984-10-02 Personal Products Company Freeze dried microfibrilar cellulose
SE441109B (sv) 1984-01-19 1985-09-09 Svenska Traeforskningsinst Papper med forbettrade ytegenskaper samt sett att framstella detsamma
US4744987A (en) 1985-03-08 1988-05-17 Fmc Corporation Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation
GB8508431D0 (en) 1985-04-01 1985-05-09 English Clays Lovering Pochin Paper coating apparatus
US5104411A (en) 1985-07-22 1992-04-14 Mcneil-Ppc, Inc. Freeze dried, cross-linked microfibrillated cellulose
US4820813A (en) 1986-05-01 1989-04-11 The Dow Chemical Company Grinding process for high viscosity cellulose ethers
US4705712A (en) 1986-08-11 1987-11-10 Chicopee Corporation Operating room gown and drape fabric with improved repellent properties
SE455795B (sv) 1986-12-03 1988-08-08 Mo Och Domsjoe Ab Forfarande och anordning for framstellning av fyllmedelshaltigt papper
US4761203A (en) 1986-12-29 1988-08-02 The Buckeye Cellulose Corporation Process for making expanded fiber
US5244542A (en) 1987-01-23 1993-09-14 Ecc International Limited Aqueous suspensions of calcium-containing fillers
WO1988008899A1 (en) 1987-05-04 1988-11-17 Weyerhaeuser Company Bacterial cellulose as surface treatment for fibrous web
JP2528487B2 (ja) 1987-12-10 1996-08-28 日本製紙株式会社 填料歩留りの改善されたパルプの製造方法及び紙の製造方法
US5227024A (en) 1987-12-14 1993-07-13 Daniel Gomez Low density material containing a vegetable filler
US5061346A (en) 1988-09-02 1991-10-29 Betz Paperchem, Inc. Papermaking using cationic starch and carboxymethyl cellulose or its additionally substituted derivatives
US4983258A (en) 1988-10-03 1991-01-08 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
US4952278A (en) 1989-06-02 1990-08-28 The Procter & Gamble Cellulose Company High opacity paper containing expanded fiber and mineral pigment
JPH0611793B2 (ja) 1989-08-17 1994-02-16 旭化成工業株式会社 微粒化セルロース系素材の懸濁液及びその製造方法
US5009886A (en) 1989-10-02 1991-04-23 Floss Products Corporation Dentifrice
US5312484A (en) 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
US5279663A (en) 1989-10-12 1994-01-18 Industrial Progesss, Inc. Low-refractive-index aggregate pigments products
US5228900A (en) 1990-04-20 1993-07-20 Weyerhaeuser Company Agglomeration of particulate materials with reticulated cellulose
JP2976485B2 (ja) 1990-05-02 1999-11-10 王子製紙株式会社 微細繊維化パルプの製造方法
US5274199A (en) 1990-05-18 1993-12-28 Sony Corporation Acoustic diaphragm and method for producing same
US5152872A (en) * 1990-10-15 1992-10-06 Stone-Consolidated Inc. Apparatus for the wet end coating of paper
US5316621A (en) 1990-10-19 1994-05-31 Kanzaki Paper Mfg. Co., Ltd. Method of pulping waste pressure-sensitive adhesive paper
JP2940563B2 (ja) 1990-12-25 1999-08-25 日本ピー・エム・シー株式会社 リファイニング助剤及びリファイニング方法
US5098520A (en) 1991-01-25 1992-03-24 Nalco Chemcial Company Papermaking process with improved retention and drainage
GB9101965D0 (en) 1991-01-30 1991-03-13 Sandoz Ltd Improvements in or relating to organic compounds
FR2672315B1 (fr) 1991-01-31 1996-06-07 Hoechst France Nouveau procede de raffinage de la pate a papier.
US5223090A (en) 1991-03-06 1993-06-29 The United States Of America As Represented By The Secretary Of Agriculture Method for fiber loading a chemical compound
KR100212121B1 (ko) 1991-07-02 1999-08-02 미리암 디. 메코너헤이 피브리드 중점제
JPH0598589A (ja) 1991-10-01 1993-04-20 Oji Paper Co Ltd セルロース粒子微細繊維状粉砕物の製造方法
JP3241076B2 (ja) * 1992-01-07 2001-12-25 三菱重工業株式会社 紙の製造方法
DE4202598C1 (ru) 1992-01-30 1993-09-02 Stora Feldmuehle Ag, 4000 Duesseldorf, De
US5240561A (en) 1992-02-10 1993-08-31 Industrial Progress, Inc. Acid-to-alkaline papermaking process
FR2689530B1 (fr) 1992-04-07 1996-12-13 Aussedat Rey Nouveau produit complexe a base de fibres et de charges, et procede de fabrication d'un tel nouveau produit.
US5510041A (en) 1992-07-16 1996-04-23 Sonnino; Maddalena Process for producing an organic material with high flame-extinguishing power, and product obtained thereby
AU5005993A (en) 1992-08-12 1994-03-15 International Technology Management Associates, Ltd. Algal pulps and pre-puls and paper products made therefrom
GB2274337B (en) 1993-01-18 1996-08-07 Ecc Int Ltd Aspect ratio measurement
GB2275876B (en) 1993-03-12 1996-07-17 Ecc Int Ltd Grinding alkaline earth metal pigments
DE4311488A1 (de) 1993-04-07 1994-10-13 Sued Chemie Ag Verfahren zur Herstellung von Sorptionsmitteln auf der Basis von Cellulosefasern, zerkleinertem Holzmaterial und Tonmineralien
US5385640A (en) 1993-07-09 1995-01-31 Microcell, Inc. Process for making microdenominated cellulose
US5837376A (en) 1994-01-31 1998-11-17 Westvaco Corporation Postforming decorative laminates
US5443902A (en) 1994-01-31 1995-08-22 Westvaco Corporation Postforming decorative laminates
JP3421446B2 (ja) 1994-09-08 2003-06-30 特種製紙株式会社 粉体含有紙の製造方法
FR2730252B1 (fr) 1995-02-08 1997-04-18 Generale Sucriere Sa Cellulose microfibrillee et son procede d'obtention a partir de pulpe de vegetaux a parois primaires, notamment a partir de pulpe de betteraves sucrieres.
FR2730251B1 (fr) 1995-02-08 1997-04-18 Generale Sucriere Sa Cellulose microfibrillee et son procede d'obtention a partir de pulpe de betteraves sucrieres
JP2967804B2 (ja) 1995-04-07 1999-10-25 特種製紙株式会社 超微細フィブリル化セルロース及びその製造方法並びに超微細フィブリル化セルロースを用いた塗工紙の製造方法及び染色紙の製造方法
FR2739383B1 (fr) 1995-09-29 1997-12-26 Rhodia Ag Rhone Poulenc Microfibrilles de cellulose a surface modifiee - procede de fabrication et utilisation comme charge dans les materiaux composites
US5840320A (en) 1995-10-25 1998-11-24 Amcol International Corporation Method of applying magnesium-rich calcium montmorillonite to skin for oil and organic compound sorption
JPH09124702A (ja) 1995-11-02 1997-05-13 Nisshinbo Ind Inc アルカリに溶解するセルロースの製造法
DE19543310C2 (de) 1995-11-21 2000-03-23 Herzog Stefan Verfahren zur Herstellung eines organischen Verdickungs- und Suspensionshilfsmittels
EP0790135A3 (de) 1996-01-16 1998-12-09 Haindl Papier Gmbh Verfahren zum Herstellen eines Druckträgers für das berührungslose Inkjet-Druckverfahren, nach diesem Verfahren hergestelltes Papier und dessen Verwendung
DE19601245A1 (de) 1996-01-16 1997-07-17 Haindl Papier Gmbh Rollendruckpapier mit Coldset-Eignung und Verfahren zu dessen Herstellung
JPH09209295A (ja) * 1996-01-30 1997-08-12 Mead Corp:The 耐摩耗オーバーレイシートの製造方法
FI100670B (fi) 1996-02-20 1998-01-30 Metsae Serla Oy Menetelmä täyteaineen lisäämiseksi selluloosakuituperäiseen massaan
DE19627553A1 (de) 1996-07-09 1998-01-15 Basf Ag Verfahren zur Herstellung von Papier und Karton
US6117305A (en) 1996-07-12 2000-09-12 Jgc Corporation Method of producing water slurry of SDA asphaltene
PL331147A1 (en) 1996-07-15 1999-06-21 Rhodia Chimie Sa Doping of cellulose nanofibrils with carboxycellulose of low substitution degree
AT405847B (de) 1996-09-16 1999-11-25 Zellform Ges M B H Verfahren zur herstellung von rohlingen oder formkörpern aus zellulosefasern
US6074524A (en) 1996-10-23 2000-06-13 Weyerhaeuser Company Readily defibered pulp products
US6083582A (en) 1996-11-13 2000-07-04 Regents Of The University Of Minnesota Cellulose fiber based compositions and film and the process for their manufacture
US5817381A (en) 1996-11-13 1998-10-06 Agricultural Utilization Research Institute Cellulose fiber based compositions and film and the process for their manufacture
JP2001504696A (ja) 1996-11-19 2001-04-10 ジョナサン ダラス トイ 植物処理材及びその方法
JPH10158303A (ja) 1996-11-28 1998-06-16 Bio Polymer Res:Kk 微細繊維状セルロースのアルカリ溶液又はゲル化物
JPH10237220A (ja) 1996-12-24 1998-09-08 Asahi Chem Ind Co Ltd 水性懸濁状組成物及び水分散性乾燥組成物
FI105112B (fi) 1997-01-03 2000-06-15 Megatrex Oy Menetelmä ja laite kuitupitoisen materiaalin kuiduttamiseksi
US6159335A (en) 1997-02-21 2000-12-12 Buckeye Technologies Inc. Method for treating pulp to reduce disintegration energy
US6037380A (en) 1997-04-11 2000-03-14 Fmc Corporation Ultra-fine microcrystalline cellulose compositions and process
US6117804A (en) 1997-04-29 2000-09-12 Han Il Mulsan Co., Ltd. Process for making a mineral powder useful for fiber manufacture
US20020031592A1 (en) 1999-11-23 2002-03-14 Michael K. Weibel Method for making reduced calorie cultured cheese products
EP0986672B1 (en) 1997-06-04 2002-11-27 Pulp and Paper Research Institute of Canada Use of dendrimeric polymers for the production of paper and board
CN1086189C (zh) 1997-06-12 2002-06-12 食品机械和化工公司 超细微晶纤维素组合物及其制备方法
WO1998056826A1 (en) 1997-06-12 1998-12-17 Fmc Corporation Ultra-fine microcrystalline cellulose compositions and process for their manufacture
US6579410B1 (en) 1997-07-14 2003-06-17 Imerys Minerals Limited Pigment materials and their preparation and use
FR2768620B1 (fr) 1997-09-22 2000-05-05 Rhodia Chimie Sa Formulation buccodentaire comprenant des nanofibrilles de cellulose essentiellement amorphes
FI106140B (fi) 1997-11-21 2000-11-30 Metsae Serla Oyj Paperinvalmistuksessa käytettävä täyteaine ja menetelmä sen valmistamiseksi
FR2774702B1 (fr) 1998-02-11 2000-03-31 Rhodia Chimie Sa Association a base de microfibrilles et de particules minerales preparation et utilisations
PT1114219E (pt) * 1998-02-20 2004-03-31 L Air Liquide Sa A Dir Con Sur Processo de sintese de carbonato de calcio e produto obtido
CA2324459A1 (en) 1998-03-23 1999-09-30 Pulp And Paper Research Institute Of Canada Method for producing pulp and paper with calcium carbonate filler
CA2328205A1 (en) 1998-04-16 1999-10-28 Megatrex Oy Method and apparatus for processing pulp stock derived from a pulp or paper mill
US20040146605A1 (en) 1998-05-11 2004-07-29 Weibel Michael K Compositions and methods for improving curd yield of coagulated milk products
US6102946A (en) 1998-12-23 2000-08-15 Anamed, Inc. Corneal implant and method of manufacture
WO2000066510A1 (en) 1999-04-29 2000-11-09 Imerys Pigments, Inc. Pigment composition for employment in paper coating and coating composition and method employing the same
US6726807B1 (en) 1999-08-26 2004-04-27 G.R. International, Inc. (A Washington Corporation) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
MXPA02008773A (es) 2000-03-09 2003-02-12 Hercules Inc Celulosa microfibrilar. estabilizada..
DE10115941B4 (de) 2000-04-04 2006-07-27 Mi Soo Seok Verfahren zur Herstellung von Fasern mit funktionellem Mineralpulver und damit hergestellte Fasern
AU5967101A (en) 2000-05-10 2001-11-20 Rtp Pharma Inc Media milling
EP1158088A3 (de) 2000-05-26 2003-01-22 Voith Paper Patent GmbH Verfahren und Vorrichtung zur Behandlung einer Faserstoffsuspension
WO2001098231A1 (fr) 2000-06-23 2001-12-27 Kabushiki Kaisha Toho Material Materiau a base de beton pour la creation d'espaces verts
BR0114443A (pt) 2000-10-04 2003-07-01 James Hardie Res Pty Ltd Materiais compostos de fibrocimento usando fibras celulósicas encoladas
US6787497B2 (en) 2000-10-06 2004-09-07 Akzo Nobel N.V. Chemical product and process
US7048900B2 (en) 2001-01-31 2006-05-23 G.R. International, Inc. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment
US20060201646A1 (en) 2001-03-14 2006-09-14 Savicell Spa Aqueous suspension providing high opacity to paper
DE10115421A1 (de) 2001-03-29 2002-10-02 Voith Paper Patent Gmbh Verfahren und Aufbereitung von Faserstoff
FI117870B (fi) 2001-04-24 2011-06-27 M Real Oyj Päällystetty kuiturata ja menetelmä sen valmistamiseksi
FI117872B (fi) 2001-04-24 2007-03-30 M Real Oyj Täyteaine ja menetelmä sen valmistamiseksi
FI117873B (fi) 2001-04-24 2007-03-30 M Real Oyj Kuiturata ja menetelmä sen valmistamiseksi
DE10122331B4 (de) 2001-05-08 2005-07-21 Alpha Calcit Füllstoff Gesellschaft Mbh Verfahren zur Wiederverwertung von Spuckstoff sowie dessen Verwendung
US20020198293A1 (en) 2001-06-11 2002-12-26 Craun Gary P. Ambient dry paints containing finely milled cellulose particles
JP2002370227A (ja) 2001-06-15 2002-12-24 National Institute Of Advanced Industrial & Technology 誘導加熱によるタイヤ中の金属線除去方法
US20030094252A1 (en) 2001-10-17 2003-05-22 American Air Liquide, Inc. Cellulosic products containing improved percentage of calcium carbonate filler in the presence of other papermaking additives
FR2831565B1 (fr) 2001-10-30 2004-03-12 Internat Paper Sa Nouvelle pate a papier mecanique blanchie et son procede de fabrication
TWI238214B (en) 2001-11-16 2005-08-21 Du Pont Method of producing micropulp and micropulp made therefrom
JP3641690B2 (ja) 2001-12-26 2005-04-27 関西ティー・エル・オー株式会社 セルロースミクロフィブリルを用いた高強度材料
EA006451B1 (ru) 2002-02-02 2005-12-29 Фойт Пэйпер Патент Гмбх Способ обработки волокон, содержащихся в суспензии волокнистого материала
FI20020521A0 (fi) 2002-03-19 2002-03-19 Raisio Chem Oy Paperin pintakäsittelykoostumus ja sen käyttö
CN101404892B (zh) 2002-05-14 2012-04-04 Fmc有限公司 微晶纤维素组合物
US7381294B2 (en) 2002-07-18 2008-06-03 Japan Absorbent Technology Institute Method and apparatus for manufacturing microfibrillated cellulose fiber
JP2005538863A (ja) 2002-08-15 2005-12-22 ドナルドソン カンパニー,インコーポレイティド 微孔性のポリマーによる紙のコーティング
US20040108081A1 (en) 2002-12-09 2004-06-10 Specialty Minerals (Michigan) Inc. Filler-fiber composite
SE0203743D0 (sv) 2002-12-18 2002-12-18 Korsnaes Ab Publ Fiber suspension of enzyme treated sulphate pulp and carboxymethylcellulose for surface application in paperboard and paper production
JP3867117B2 (ja) 2003-01-30 2007-01-10 兵庫県 扁平セルロース粒子を用いた新規複合体
US7022756B2 (en) 2003-04-09 2006-04-04 Mill's Pride, Inc. Method of manufacturing composite board
US7037405B2 (en) 2003-05-14 2006-05-02 International Paper Company Surface treatment with texturized microcrystalline cellulose microfibrils for improved paper and paper board
FI119563B (fi) 2003-07-15 2008-12-31 Fp Pigments Oy Menetelmä ja laite paperin-, kartongin- tai muun vastaavan valmistuksessa käytettävän kuitumateriaalin esikäsittelemiseksi
CA2437616A1 (en) 2003-08-04 2005-02-04 Mohini M. Sain Manufacturing of nano-fibrils from natural fibres, agro based fibres and root fibres
DE10335751A1 (de) 2003-08-05 2005-03-03 Voith Paper Patent Gmbh Verfahren zum Beladen einer Faserstoffsuspension und Anordnung zur Durchführung des Verfahrens
US6893492B2 (en) 2003-09-08 2005-05-17 The United States Of America As Represented By The Secretary Of Agriculture Nanocomposites of cellulose and clay
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
US7726592B2 (en) 2003-12-04 2010-06-01 Hercules Incorporated Process for increasing the refiner production rate and/or decreasing the specific energy of pulping wood
US20050256262A1 (en) 2004-03-08 2005-11-17 Alain Hill Coating or composite moulding or mastic composition comprising additives based on cellulose microfibrils
US20070157851A1 (en) 2004-04-13 2007-07-12 Kita-Boshi Pencil Co. Ltd. Liquid clay
US20070226919A1 (en) 2004-04-23 2007-10-04 Huntsman International Llc Method for Dyeing or Printing Textile Materials
BRPI0402485B1 (pt) 2004-06-18 2012-07-10 compósito contendo fibras vegetais, resìduos industriais e cargas minerais e processo de fabricação.
JP2006008857A (ja) 2004-06-25 2006-01-12 Asahi Kasei Chemicals Corp 高分散性セルロース組成物
SE530267C3 (sv) 2004-07-19 2008-05-13 Add X Biotech Ab Nedbrytbar förpackning av en polyolefin
ATE537298T1 (de) 2004-10-15 2011-12-15 Stora Enso Ab Verfahren zur herstellung von papier oder pappe sowie das danach hergestellte papier- oder pappeprodukt
WO2006048280A1 (de) 2004-11-03 2006-05-11 J. Rettenmaier & Söhne GmbH & Co. KG Cellulosehaltiger füllstoff für papier-, tissue- oder kartonprodukte sowie herstellungsverfahren hierfür sowie einen solchen füllstoff enthaltendes papier-, tissue- oder kartonprodukt oder hierfür verwendete trockenmischung
EP1743976A1 (en) 2005-07-13 2007-01-17 SAPPI Netherlands Services B.V. Coated paper for offset printing
DE102004060405A1 (de) 2004-12-14 2006-07-06 Voith Paper Patent Gmbh Verfahren und Vorrichtung zum Beladen von in einer Suspension enthaltenen Fasern oder enthaltenem Zellstoff mit einem Füllstoff
US20060266485A1 (en) 2005-05-24 2006-11-30 Knox David E Paper or paperboard having nanofiber layer and process for manufacturing same
US7700764B2 (en) 2005-06-28 2010-04-20 Akzo Nobel N.V. Method of preparing microfibrillar polysaccharide
CN101208476A (zh) 2005-07-12 2008-06-25 沃依特专利有限责任公司 用于在纤维料悬浮液中包含的纤维装填的方法
WO2007014161A2 (en) 2005-07-22 2007-02-01 Sustainable Solutions, Inc. Cotton fiber particulate and method of manufacture
WO2007069262A1 (en) 2005-12-14 2007-06-21 Hilaal Alam A method of producing nanoparticles and stirred media mill thereof
US20070148365A1 (en) 2005-12-28 2007-06-28 Knox David E Process and apparatus for coating paper
JP5419120B2 (ja) 2006-02-02 2014-02-19 中越パルプ工業株式会社 セルロースナノ繊維を用いる撥水性と耐油性の付与方法
AU2007212781B2 (en) 2006-02-08 2011-01-27 Stfi-Packforsk Ab Method for the manufacturing of microfibrillated cellulose
ATE538246T1 (de) 2006-02-23 2012-01-15 Rettenmaier & Soehne Gmbh & Co Rohpapier und verfahren zu dessen herstellung
US8187421B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Absorbent sheet incorporating regenerated cellulose microfiber
US8187422B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Disposable cellulosic wiper
US7718036B2 (en) 2006-03-21 2010-05-18 Georgia Pacific Consumer Products Lp Absorbent sheet having regenerated cellulose microfiber network
JP4831570B2 (ja) 2006-03-27 2011-12-07 木村化工機株式会社 機能性粒子含有率の高い機能性セルロース材料及びその製造方法
GB0606080D0 (en) 2006-03-27 2006-05-03 Imerys Minerals Ltd Method for producing particulate calcium carbonate
US7790276B2 (en) 2006-03-31 2010-09-07 E. I. Du Pont De Nemours And Company Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto
EP2014828B1 (en) 2006-04-21 2014-03-05 Nippon Paper Industries Co., Ltd. Cellulose-based fibrous material
WO2008008576A2 (en) 2006-07-13 2008-01-17 Meadwestvaco Corporation Selectively reinforced paperboard cartons
US8444808B2 (en) 2006-08-31 2013-05-21 Kx Industries, Lp Process for producing nanofibers
JP5614986B2 (ja) 2006-09-12 2014-10-29 ミードウエストベコ・コーポレーション マイクロプレートレットセルロース粒子を含有する板紙
BRPI0622031A2 (pt) 2006-11-21 2014-04-22 Garcia Carlos Javier Fernandez Processo de pré-mistura e fibramento a seco
EP1936032A1 (en) 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product
KR20090106471A (ko) 2006-12-21 2009-10-09 아크조 노벨 엔.브이. 셀룰로스 제품의 제조 방법
JP2008169497A (ja) 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd ナノファイバーの製造方法およびナノファイバー
GB0702248D0 (en) 2007-02-05 2007-03-14 Ciba Sc Holding Ag Manufacture of Filled Paper
CN101855401B (zh) 2007-04-05 2013-01-02 阿克佐诺贝尔股份有限公司 提高纸的光学性能的方法
FI120651B (fi) 2007-04-30 2010-01-15 Linde Ag Menetelmä energiankulutuksen vähentämiseksi massasuspension jauhatuksessa paperinvalmistusprosessissa
US8992728B2 (en) 2007-11-26 2015-03-31 The University Of Tokyo Cellulose nanofiber, production method of same and cellulose nanofiber dispersion
DE102007059736A1 (de) 2007-12-12 2009-06-18 Omya Development Ag Oberflächenmineralisierte organische Fasern
CN101932416B (zh) 2007-12-21 2013-12-04 三菱化学株式会社 纤维复合体
JP5351417B2 (ja) 2007-12-28 2013-11-27 日本製紙株式会社 セルロースの酸化方法、セルロースの酸化触媒及びセルロースナノファイバーの製造方法
WO2009116273A1 (ja) * 2008-03-19 2009-09-24 三菱電機株式会社 電力変換装置
JP4981735B2 (ja) 2008-03-31 2012-07-25 日本製紙株式会社 セルロースナノファイバーの製造方法
EP2267222B1 (en) 2008-03-31 2018-05-16 Nippon Paper Industries Co., Ltd. Additive for papermaking and paper containing the same
KR101216891B1 (ko) 2008-03-31 2012-12-28 도판 인사츠 가부시키가이샤 위상차판, 그의 제조 방법 및 액정 표시 장치
PL2268864T3 (pl) 2008-04-03 2017-02-28 Innventia Ab Kompozycja do powlekania papieru do drukowania
SE0800807L (sv) 2008-04-10 2009-10-11 Stfi Packforsk Ab Nytt förfarande
JP5186998B2 (ja) 2008-05-19 2013-04-24 村田機械株式会社 光測距装置
RU2011101414A (ru) 2008-06-17 2012-07-27 Акцо Нобель Н.В. (NL) Целлюлозный продукт
US7776807B2 (en) 2008-07-11 2010-08-17 Conopco, Inc. Liquid cleansing compositions comprising microfibrous cellulose suspending polymers
FI20085760L (fi) 2008-08-04 2010-03-17 Teknillinen Korkeakoulu Muunnettu komposiittituote ja menetelmä sen valmistamiseksi
MX2008011629A (es) 2008-09-11 2009-08-18 Copamex S A De C V Papel antiadherente resistente al calor, a grasa y al quebrado, y proceso para producir el mismo.
FI122032B (fi) 2008-10-03 2011-07-29 Teknologian Tutkimuskeskus Vtt Kuitutuote, jossa on barrierkerros ja menetelmä sen valmistamiseksi
RU2533542C2 (ru) 2008-11-28 2014-11-20 Кайор Инк. Измельчение и уплотнение частиц биомассы
EP2196579A1 (en) 2008-12-09 2010-06-16 Borregaard Industries Limited, Norge Method for producing microfibrillated cellulose
JP2010168716A (ja) 2008-12-26 2010-08-05 Oji Paper Co Ltd 微細繊維状セルロースシートの製造方法
FI124724B (fi) 2009-02-13 2014-12-31 Upm Kymmene Oyj Menetelmä muokatun selluloosan valmistamiseksi
WO2010102802A1 (en) 2009-03-11 2010-09-16 Borregaard Industries Limited, Norge Method for drying microfibrilated cellulose
US8268391B2 (en) 2009-03-13 2012-09-18 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
DK2236545T3 (en) 2009-03-30 2014-12-01 Omya Int Ag A process for the preparation of nano-fibrillar cellulose gels
PL3617400T3 (pl) 2009-03-30 2023-01-02 Fiberlean Technologies Limited Zastosowanie zawiesin nanofibrylarnej celulozy
WO2010113805A1 (ja) 2009-03-31 2010-10-07 日本製紙株式会社 塗工紙
FI124464B (fi) 2009-04-29 2014-09-15 Upm Kymmene Corp Menetelmä massalietteen valmistamiseksi, massaliete ja paperi
SE533509C2 (sv) 2009-07-07 2010-10-12 Stora Enso Oyj Metod för framställning av mikrofibrillär cellulosa
SE533510C2 (sv) 2009-07-07 2010-10-12 Stora Enso Oyj Metod för framställning av mikrofibrillär cellulosa
FI124142B (fi) 2009-10-09 2014-03-31 Upm Kymmene Corp Menetelmä kalsiumkarbonaatin ja ksylaanin saostamiseksi, menetelmällä valmistettu tuote ja sen käyttö
BR112012009141B1 (pt) 2009-10-20 2020-10-13 Basf Se processo para a produção de papel, papelão e cartolina que possuem alta resistência a seco, e, composição aquosa
SE0950819A1 (sv) 2009-11-03 2011-05-04 Stora Enso Oyj Ett bestruket substrat, en process för tillverkning av ett bestruket substrat, en förpackning och en dispersionsbestrykning
US9175441B2 (en) 2009-11-06 2015-11-03 Stora Enso Oyj Process for the production of a paper or board product and a paper or board produced according to the process
EP2501753A4 (en) 2009-11-16 2014-01-22 Kth Holding Ab NANOPAPIER RESISTANT
FI123289B (fi) 2009-11-24 2013-01-31 Upm Kymmene Corp Menetelmä nanofibrilloidun selluloosamassan valmistamiseksi ja massan käyttö paperinvalmistuksessa tai nanofibrilloiduissa selluloosakomposiiteissa
SE535014C2 (sv) 2009-12-03 2012-03-13 Stora Enso Oyj En pappers eller kartongprodukt och en process för tillverkning av en pappers eller kartongprodukt
SE534932C2 (sv) 2009-12-21 2012-02-21 Stora Enso Oyj Ett pappers eller kartongsubstrat, en process för tillverkning av substratet och en förpackning bildad av substratet
KR101856793B1 (ko) * 2010-03-31 2018-06-20 엔바이로센트 아이엔씨. 후각 자극 물질들에 대한 방법들, 조성물들 및 물품들
EP2386682B1 (en) 2010-04-27 2014-03-19 Omya International AG Process for the manufacture of structured materials using nano-fibrillar cellulose gels
SI2386683T1 (sl) 2010-04-27 2014-07-31 Omya International Ag Postopek za proizvodnjo kompozitnih materialov na osnovi gela
SE536744C2 (sv) 2010-05-12 2014-07-08 Stora Enso Oyj En process för tillverkning av en komposition innehållande fibrillerad cellulosa och en komposition
SE536746C2 (sv) 2010-05-12 2014-07-08 Stora Enso Oyj En komposition innehållande mikrofibrillerad cellulosa och en process för tillverkning av en komposition
EP2576902B1 (en) 2010-05-27 2020-03-25 Kemira Oyj Cellulosic barrier composition
CN102933767B (zh) 2010-05-27 2016-05-18 凯米拉公司 包含阴离子聚合物的纤维素阻隔组合物
EP2395148A1 (de) 2010-06-11 2011-12-14 Voith Patent GmbH Verfahren zum Herstellen eines gestrichenen Papiers
SE1050985A1 (sv) 2010-09-22 2012-03-23 Stora Enso Oyj En pappers eller kartongprodukt och en process förtillverkning av en pappers eller en kartongprodukt
CA2810424C (en) * 2010-10-01 2018-04-03 Fpinnovations Cellulose-reinforced high mineral content products and methods of making the same
FI123224B (fi) 2010-11-05 2012-12-31 Nordkalk Oy Ab Kuitutuote ja menetelmä sen valmistamiseksi
GB201019288D0 (en) * 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
FI126513B (fi) 2011-01-20 2017-01-13 Upm Kymmene Corp Menetelmä lujuuden ja retention parantamiseksi ja paperituote
CN103502529B (zh) 2011-01-21 2016-08-24 Fp创新研究中心 高长径比纤维素纳米长丝及其生产方法
JP5771033B2 (ja) * 2011-03-23 2015-08-26 日本製紙株式会社 多層紙の製造方法
US9447540B2 (en) 2011-05-13 2016-09-20 Stora Enso Oyj Process for treating microfibrillated cellulose and microfibrillated cellulose treated according to the process
SE536780C2 (sv) 2011-10-26 2014-08-05 Stora Enso Oyj Förfarande för framställning av en dispersion som innefattarnanopartiklar samt en dispersion framställd enligt förfarandet
SE1250261A1 (sv) 2011-10-31 2013-05-01 Billerudkorsnaes Gaevle Froevi Ab Bestrykningskomposition, ett förfarande för bestrykning av ett substrat, ettbestruket substrat, ett förpackningsmaterial och vätskeförpackning
EP2607397A1 (en) * 2011-12-21 2013-06-26 Clariant International Ltd. Fluorochemical composition and use thereof
MX366743B (es) * 2012-04-13 2019-07-04 Sigma Alimentos Sa De Cv Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo.
FI124556B (en) 2012-04-26 2014-10-15 Stora Enso Oyj A hydrophobic bonded fibrous web and a method of making a bonded web
FI124235B (en) 2012-04-26 2014-05-15 Stora Enso Oyj Fiber-based paper or cardboard web and method of manufacturing the same
US20130292279A1 (en) * 2012-05-04 2013-11-07 R.J. Reynolds Tobacco Company Transparent moisture barrier coatings for containers
GB2502955B (en) 2012-05-29 2016-07-27 De La Rue Int Ltd A substrate for security documents
EP2861429B1 (de) * 2012-06-15 2016-06-08 Schoeller Technocell GmbH & Co. KG Empfangsschicht für digitale druckverfahren mit nanofibrillierter cellulose
HUE032595T2 (en) 2012-06-15 2017-10-30 Univ Maine System Separation paper and process for its production
FI126571B (fi) 2012-06-28 2017-02-28 Nordkalk Oy Ab Päällystyskoostumuksen käyttö maalina
FR2992982B1 (fr) * 2012-07-06 2015-04-24 Roquette Freres Suspensions aqueuses de dioxyde de titane et de matiere amylacee cationique destinees a la fabrication de papier et de carton
CN103590283B (zh) 2012-08-14 2015-12-02 金东纸业(江苏)股份有限公司 涂料及应用该涂料的涂布纸
FR2994983B1 (fr) 2012-08-30 2015-03-13 Inst Polytechnique Grenoble Couche d'opacification d'un support papier
BR112015006159A2 (pt) 2012-09-24 2017-07-04 Paper And Fibre Res Institute composição de revestimento de nanocelulose, seus usos e método para sua fabricação
EP2730698A1 (en) 2012-11-09 2014-05-14 UPM-Kymmene Corporation A material for packaging of foodstuff, and a package for foodstuff
SE538243C2 (sv) * 2012-11-09 2016-04-12 Stora Enso Oyj Förfarande för att bilda och därefter torka ett kompositmaterial innefattande en mikrofibrillerad cellulosa
US20140155301A1 (en) 2012-11-30 2014-06-05 Api Intellectual Property Holdings, Llc Processes and apparatus for producing nanocellulose, and compositions and products produced therefrom
GB201222285D0 (en) * 2012-12-11 2013-01-23 Imerys Minerals Ltd Cellulose-derived compositions
ES2398119B2 (es) 2012-12-27 2013-09-16 Universidad Politécnica de Madrid Sistema de panelización de alta eficiencia energética y de formas libres
SE1350057A1 (sv) 2013-01-18 2014-07-19 Förfarande för tillverkning av mikrofibrillerad cellulosa från ett föregångsmaterial
WO2014116946A1 (en) 2013-01-25 2014-07-31 Xanofi, Inc. Wet laid non-woven substrate containing polymeric nanofibers
CN103966888B (zh) * 2013-02-05 2016-08-03 金东纸业(江苏)股份有限公司 复合物及其制备方法,应用其的浆料及纸张
EP3603963B1 (en) 2013-03-14 2021-06-30 Smart Planet Technologies, Inc. Repulpable and recyclable composite packaging articles and related methods
CN110714359B (zh) 2013-03-15 2022-04-26 纤维精益技术有限公司 处理微纤化纤维素的方法
FR3003581B1 (fr) 2013-03-20 2015-03-20 Ahlstroem Oy Support fibreux a base de fibres et de nanofibrilles de polysaccharide
EP2799618B1 (en) * 2013-04-29 2016-04-27 Blankophor GmbH & Co. KG Use of micronized cellulose and fluorescent whitening agent for surface treatment of cellulosic materials
JP6313755B2 (ja) 2013-05-08 2018-04-18 日本製紙株式会社 紙製バリア包装材料
CN105324530B (zh) * 2013-06-20 2018-01-19 巴斯夫欧洲公司 微纤维化的纤维素组合物的制备方法
FI127368B (fi) * 2013-06-20 2018-04-30 Metsae Board Oyj Menetelmä kuituradan valmistamiseksi sekä kuitutuote
FI125942B (en) 2013-07-26 2016-04-15 Upm Kymmene Corp A method of modifying a nanofibril cellulose composition
FR3008904B1 (fr) 2013-07-26 2015-07-31 Inst Polytechnique Grenoble Procede de formation d'une couche hydrophobe
WO2015032432A1 (en) 2013-09-05 2015-03-12 Mondi Ag Food wrap paper and method of manufacturing same
CA2832775C (en) * 2013-11-13 2017-01-17 Meng Jun Li A novel fwa formulation used for the papermaking process
US9399840B2 (en) 2013-12-30 2016-07-26 Api Intellectual Property Holdings, Llc Sulfite-based processes for producing nanocellulose, and compositions and products produced therefrom
EP3117039B1 (en) 2014-03-14 2020-05-06 Stora Enso Oyj A method for manufacturing a packaging material and a packaging material made by the method
PT3140454T (pt) 2014-05-07 2020-02-25 Univ Maine System Produção de elevada eficiência de celulose nanofibrilada
PT2944621T (pt) * 2014-05-15 2017-07-05 Omya Int Ag Produto placa de fibra que compreende um material contendo carbonato de cálcio
CN106661833B (zh) 2014-05-30 2019-02-12 鲍利葛公司 微原纤化纤维素
CN106471079B (zh) 2014-06-26 2021-01-05 芬欧汇川特种纸纸业有限公司 包含纳米纤维状纤维素的释放内衬
WO2016067180A1 (en) 2014-10-28 2016-05-06 Stora Enso Oyj A method for manufacturing microfibrillated polysaccharide
SE539366C2 (en) 2014-12-18 2017-08-15 Stora Enso Oyj Process for the production of paper or board coated with a coating comprising microfibrillated cellulose and a water retention agent
JP6314094B2 (ja) * 2015-01-22 2018-04-18 大王製紙株式会社 複合紙の製造方法及び複合紙
WO2016185332A1 (en) 2015-05-15 2016-11-24 Stora Enso Oyj Paper or board material having a surface coating layer comprising a mixture of microfibrillated polysaccharide and filler
US10954634B2 (en) * 2016-01-19 2021-03-23 Gpcp Ip Holdings Llc Nanofibrillated cellulose ply bonding agent or adhesive and multi-ply absorbent sheet made therewith
EP3440030A1 (en) 2016-04-04 2019-02-13 FiberLean Technologies Limited Compositions and methods for providing increased strength in ceiling, flooring, and building products
EP3440259B1 (en) * 2016-04-05 2021-02-24 FiberLean Technologies Limited Paper and paperboard products
US11846072B2 (en) * 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
PL3445900T3 (pl) * 2016-04-22 2022-07-11 Fiberlean Technologies Limited Włókna obejmujące mikrofibrylarną celulozę oraz sposoby wytwarzania włókien i włókniny z tych materiałów
SE541716C2 (en) 2017-10-11 2019-12-03 Stora Enso Oyj Oxygen Barrier Film comprising microfibrillated cellulose
SE542579C2 (en) * 2017-12-21 2020-06-09 Stora Enso Oyj Heat-sealable packaging material
CN111936697A (zh) * 2018-03-30 2020-11-13 日本制纸株式会社 羧甲基化微原纤化纤维素纤维和其组合物
US10550520B2 (en) 2018-04-05 2020-02-04 Gl&V Canada Inc. Method with a horizontal jet applicator for a paper machine wet end
SE543520C2 (en) 2018-11-14 2021-03-16 Stora Enso Oyj Surface treatment composition comprising nanocellulose and particles comprising a salt of a multivalent metal
SE545297C2 (en) * 2019-06-27 2023-06-20 Stora Enso Oyj A paper or papperboard packaging material comprising a gas barrier film
EP3805453A1 (en) 2019-10-10 2021-04-14 BillerudKorsnäs AB Paper production
US20220316140A1 (en) * 2021-04-02 2022-10-06 Fiberlean Technologies Limited Microfibrillated coating compositions, processes and applicators therefor
EP4337826A1 (en) * 2021-05-10 2024-03-20 WestRock MWV, LLC Coated paperboard containers and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183596B1 (en) * 1995-04-07 2001-02-06 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
RU2505635C2 (ru) * 2009-05-15 2014-01-27 Имерис Минералз Лимитед Композиция наполнителя для бумаги
WO2013132017A1 (en) * 2012-03-09 2013-09-12 Philip Morris Products S.A. Layered sheetlike material comprising cellulose fibres
WO2014072912A1 (en) * 2012-11-09 2014-05-15 Stora Enso Oyj Ply for a board from an in-line production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115397897A (zh) * 2020-04-15 2022-11-25 斯道拉恩索公司 包含高度精制的纤维素纤维的多层膜

Also Published As

Publication number Publication date
HRP20210460T1 (hr) 2021-04-30
JP6656405B2 (ja) 2020-03-04
JP7090589B2 (ja) 2022-06-24
RU2727605C1 (ru) 2020-07-22
US20200392670A1 (en) 2020-12-17
PL3440259T3 (pl) 2021-06-28
JP2020045603A (ja) 2020-03-26
EP3440259A1 (en) 2019-02-13
CN109072551A (zh) 2018-12-21
CA3019443C (en) 2020-09-15
US11274399B2 (en) 2022-03-15
ZA201807265B (en) 2019-06-26
AU2021201286A1 (en) 2021-03-18
JP2022081636A (ja) 2022-05-31
KR20200039816A (ko) 2020-04-16
US10801162B2 (en) 2020-10-13
US10214859B2 (en) 2019-02-26
ES2857512T3 (es) 2021-09-29
CA3019443A1 (en) 2017-10-12
US20240102249A1 (en) 2024-03-28
EP4303361A3 (en) 2024-03-13
JP2023093616A (ja) 2023-07-04
MX366250B (es) 2019-07-03
HUE053667T2 (hu) 2021-07-28
BR112018069538B1 (pt) 2023-01-17
ES2967914T3 (es) 2024-05-06
SI3440259T1 (sl) 2021-07-30
AU2017247687B2 (en) 2020-01-23
RU2763271C1 (ru) 2021-12-28
FI3828339T3 (fi) 2023-12-28
US20190127920A1 (en) 2019-05-02
EP3828339B1 (en) 2023-11-29
AU2017247687A1 (en) 2018-11-22
US20170284030A1 (en) 2017-10-05
DK3828339T3 (da) 2024-01-02
AU2019284017B2 (en) 2020-12-03
JP7267478B2 (ja) 2023-05-01
JP2019510890A (ja) 2019-04-18
KR20220070558A (ko) 2022-05-31
AU2019284017A1 (en) 2020-01-23
PL3828339T3 (pl) 2024-03-11
PT3828339T (pt) 2024-01-02
DK3440259T3 (da) 2021-03-29
AU2017247687C1 (en) 2020-04-16
PT3440259T (pt) 2021-03-26
AU2022252721A1 (en) 2022-11-03
EP4303361A2 (en) 2024-01-10
EP3440259B1 (en) 2021-02-24
CN111501400A (zh) 2020-08-07
AU2021201286B2 (en) 2022-07-14
KR102401845B1 (ko) 2022-05-25
US11732421B2 (en) 2023-08-22
WO2017175062A1 (en) 2017-10-12
US20220154408A1 (en) 2022-05-19
KR102174033B1 (ko) 2020-11-05
MX2018011892A (es) 2019-01-10
KR20180132769A (ko) 2018-12-12
KR20210078576A (ko) 2021-06-28
KR102269338B1 (ko) 2021-06-28
CN111501400B (zh) 2022-06-03
CN109072551B (zh) 2020-02-04
BR112018069538A2 (pt) 2019-04-16
JP7090588B2 (ja) 2022-06-24
EP3828339A1 (en) 2021-06-02
KR102537293B1 (ko) 2023-05-26
JP2020045604A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
RU2694038C1 (ru) Бумажные и картонные продукты
US20240133123A1 (en) Method of paper and paperboard products
WO2022208160A1 (en) Improved microfibrillated coating compositions, processes and applicators therefor
WO2022208159A1 (en) Paper and paperboard products