RU2638951C1 - Способ дезактивации твердых радиоактивных отходов ледяными гранулами - Google Patents

Способ дезактивации твердых радиоактивных отходов ледяными гранулами Download PDF

Info

Publication number
RU2638951C1
RU2638951C1 RU2016146797A RU2016146797A RU2638951C1 RU 2638951 C1 RU2638951 C1 RU 2638951C1 RU 2016146797 A RU2016146797 A RU 2016146797A RU 2016146797 A RU2016146797 A RU 2016146797A RU 2638951 C1 RU2638951 C1 RU 2638951C1
Authority
RU
Russia
Prior art keywords
srw
waste
ice
water
radioactive
Prior art date
Application number
RU2016146797A
Other languages
English (en)
Inventor
Ольга Анатольевна Горбунова
Андрей Геннадьевич Гришин
Виктор Николаевич Коваленко
Александр Васильевич Иванов
Александр Васильевич Бухаров
Original Assignee
Федеральное государственное унитарное предприятие "Предприятие по обращению с радиоактивными отходами "РосРАО""
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Предприятие по обращению с радиоактивными отходами "РосРАО"" filed Critical Федеральное государственное унитарное предприятие "Предприятие по обращению с радиоактивными отходами "РосРАО""
Priority to RU2016146797A priority Critical patent/RU2638951C1/ru
Application granted granted Critical
Publication of RU2638951C1 publication Critical patent/RU2638951C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к области обращения с радиоактивными отходами. Способ дезактивации твердых радиоактивных отходов (ТРО) включает воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды. Обработку поверхности ТРО проводят ускоренными ледяными гранулами. Проводят входной и выходной радиационный контроль отходов. Сортировку ТРО в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов. Талая вода после дезактивации проходит полную очистку от радионуклидов. Дезактивация ТРО осуществляется путем воздействия на них потока сферических монодиспресных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 м/с, полученных при температуре не выше минус 50оС. Изобретение позволяет повысить экономичность и эффективность очистки и снизить объем ТРО. 6 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области обращения с радиоактивными отходами и может быть использовано для дезактивации твердых радиоактивных отходов (ТРО) различного морфологического состава (металлические отходы, крупные фрагменты железобетона и др.).
Известна «Установка для очистки поверхности» RU 2309832 [2], включающая изготовление ледяных гранул из потока воды, ускорение ледяных гранул и обработку поверхности гранулами.
Недостатком является практическая неприменимость для очистки поверхностей от радиоактивных загрязнений.
Известен «Способ дробеструйной очистки поверхности бетонных и железобетонных конструкций перед ремонтом» RU 2457049 [3], включающий обработку поверхности бетона и железобетона дробью под давлением, обработку дробью ведут под давлением 7 атм, расход дроби составляет 9-11 кг/м2, производительность 20-40 м2/ч, продолжительность воздействия 2,0-2,5 мин/м2.
Недостатком известного способа сухой абразивной очистки при дезактивации радиоактивно загрязненных поверхностей является интенсивное радиоактивное пылеобразование (истирающийся абразив, сухие частицы загрязнений), как следствие – потребность во влажном пылеподавлении, дезактивации оборудования и рабочей зоны с большим количеством воды, образование значительных объемов вторичных ЖРО. Кроме того, дробеструйные камеры громоздки и не годятся для мобильного исполнения, металлическая дробь является расходным материалом, что также препятствует мобильности и автономности работы устройства. Расходный материал в процессе работы требует регулярной дезактивации, со временем превращается во вторичные ТРО, работа с которыми требует дополнительных операций, причем объем ТРО на захоронение дополнительно увеличивается.
Наиболее близким техническим решением является «Способ дезактивации конструкций и устройство для его осуществления» RU 93016037 [1], включающий насыщение кристаллической влагой бетонной поверхности путем подачи переохлажденного нейтрального газа (СО2) и последующее воздействие высокотемпературной струей.
Известное устройство [1] не использует расходные материалы и не производит дополнительных ТРО.
Недостатком указанного способа и устройства для его осуществления является образование в процессе дезактивации радиоактивного аэрозольного тумана углекислого газа, что опасно для персонала, радиоактивно загрязняет все помещение и влечет образование большого количества жидких радиоактивных отходов (ЖРО) со взвесями твердых радиоактивных частиц. Кроме того, температура заморозки «сухого льда» из СО2 значительно ниже замерзания водяного льда, что требует больших энергозатрат, а твердость ледяных гранул СО2 меньше, чем песка, металлической дроби и других абразивов, что снижает качество дезактивации поверхности.
Техническим результатом предлагаемого изобретения является снижение опасности для персонала, повышение экономичности и эффективности очистки, снижение объема ТРО, отправляемого на захоронение, снижение объемов образования вторичных радиоактивных отходов.
Технический результат достигается тем, что способ дезактивации твердых радиоактивных отходов (ТРО), включающий воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды характеризуется тем, что обработку поверхности ТРО проводят ускоренными ледяными гранулами, проводят входной и выходной радиационный контроль отходов, сортировку их в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов, причем талая вода после дезактивации проходит полную очистку от радионуклидов.
Дезактивация поверхностей ТРО может осуществляется путем воздействия на них потока сферических монодисперсных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 м/с, полученных при температуре не выше минус 50°С. Указанные параметры потока ледяных гранул достаточно легко осуществимы и обладают достаточной эффективностью для удаления загрязнений, в том числе радиоактивных, сконцентрированных, как правило, в поверхностных слоях отходов (в ржавчине, окалине, лакокраске, карбонизированном «старом» поверхностном слое бетона и пр.).
Крупные предметы ТРО можно фрагментировать средствами фрагментации (например, стол для фрагментации с гидравлическими ножницами, аппарат плазменной резки или др.), что позволит сократить габариты рабочей камеры дезактивации.
Рабочая камера дезактивации может содержать средства пылеподавления, например распылитель воды в рабочей камере, что позволит дополнительно снизить содержание радиоактивной пыли и аэрозолей в воздухе рабочей зоны.
Система очистки талой воды после дезактивации может содержать узел микрофильтрации, например центробежный сепаратор и/или тканевый мешочный фильтр. Указанные устройства позволят эффективно удалять механические примеси, которые затем установленным порядком собираются и утилизируются как вторичные ТРО.
Система очистки воды может содержать узел селективной сорбции радионуклидов, например фильтр-контейнер с твердым сорбентом (ионообменным, ферроцианидным или иным) для различных радионуклидов. Отработанные сорбенты установленным порядком собираются и утилизируются как вторичные ТРО.
Система очистки воды может содержать узел мембранной очистки низконапорным обратным осмосом, что позволит осуществить более тщательную очистку воды. Концентрат после мембранной очистки установленным порядком собирается и утилизируется как вторичные жидкие радиоактивные отходы (ЖРО).
Устройство разгона ледяных гранул может содержать блок осушки воздуха, что позволит избежать конденсации воды на поверхности ледяных гранул и повысить эффективность и стабильность результатов дезактивации.
Принципиальная блок-схема дезактивации ТРО показана на фиг. 1, где:
1 – исходные ТРО;
2 – участок приема контейнеров с ТРО;
3 – извлечение ТРО из контейнера;
4 – сортировка ТРО по габариту;
5 – входной радиационный контроль;
6 – фрагментация ТРО;
7 – промежуточный радиационный контроль;
8 – склад (контейнер) безопасных твердых промышленных отходов;
9 – ТРО на дезактивацию;
10 – камера дезактивации;
11 – выходной радиационный контроль;
12 – твердые радиоактивные отходы;
13 – приготовление водных ледяных гранул;
14 – разгон водных ледяных гранул;
15 – микрофильтрация;
16 – узел селективной сорбции радионуклидов;
17 – очистка низконапорным обратным осмосом;
18 – пылеподавление распылением воды;
19 – емкость для сбора концентрата (ЖРО) после мембранной очистки;
20 – приточно-вытяжная вентиляция;
21 – воздух из атмосферы;
22 – сброс очищенного воздуха в атмосферу;
23 – фильтрованная вода;
24 – техническая вода;
25 – талая вода.
Способ реализуется следующим образом: исходные твердые радиоактивные отходы (ТРО), размещенные в сертифицированном контейнере, поступают на участок приема контейнеров 1. Далее ТРО извлекают из контейнера 3, сортируют по габариту 4 и проводят входной радиационный контроль 5. По результатам радиационного контроля и, при необходимости, фрагментации нерадиоактивные фрагменты исходных отходов отправляют в контейнер для сбора твердых промышленных отходов 8. Если фрагменты ТРО по габариту больше размера дезактивационной камеры, их фрагментируют на участке фрагментации ТРО 6, после которого проводят промежуточный радиационный контроль 7. Радиационно-безопасные фрагменты отправляют на склад безопасных твердых промышленных отходов 8. Радиоактивно загрязненные фрагменты подходящего размера отправляют в камеру дезактивации водными ледяными гранулами 10.
Для дезактивации изготавливают ледяные водяные монодисперсные гранулы 13, затем их разгоняют 14 и подают в камеру дезактивации 10. Образующуюся в результате дезактивации талую воду 25 при необходимости подогревают для плавления оставшихся ледяных гранул (на фиг.1 не показано), подвергают микрофильтрации центробежным насосом и/или тканевым фильтром 15, сорбции радионуклидов твердым сорбентом 16, далее фильтрованная вода 23 очищается низконапорным обратным осмосом 17 и снова подается на приготовление ледяных гранул 13. Концентрат от фильтра 17 собирается в емкости для сбора ЖРО 19, а твердые осадки из фильтров 15 и узла 16 собираются в сертифицированный контейнер для вторичных ТРО 12.
После дезактивации проводят выходной радиационный контроль отдезактивированных отходов 11, по результатам которого фрагменты чистых отходов отправляют в контейнер для сбора твердых промышленных отходов 8 для дальнейшего использования или утилизации как бытовой отход, а неотдезактивированные ТРО – в сертифицированный контейнер для вторичных ТРО 12 для дальнейшей переработки и захоронения.
Способ также использует активную приточно-вытяжную вентиляцию, при необходимости с подогревателем воздуха 20, которая забирает воздух из атмосферы 21 и после использования и очистки, сбрасывает в атмосферу 22. Отработанные фильтры вытяжной вентиляции собираются в сертифицированный контейнер для вторичных ТРО 12.
Технический результат – снижение опасности для персонала достигается существенным снижением образования радиоактивных аэрозолей при проведении процесса дезактивации.
Технический результат – повышение экономичности достигается исключением «сухого льда» и сухого абразива (металлической дроби, песка, купершлака и др.) из процесса.
Технический результат – повышение эффективности очистки и снижение объема ТРО достигается применением ускоренных ледяных водяных гранул, позволяющих механически удалять и одновременно смывать паром радиоактивные поверхностные загрязнения, переводя после дезактивации и сортировки значительную часть отходов из категории радиоактивных в категорию твердых промышленных отходов с последующей более дешевой утилизацией либо повторным использованием.
Технический результат – снижение объемов образования вторичных радиоактивных отходов достигается за счет использования в качестве абразива замороженной воды – материала, доступного и рециклирующего за счет системы водоочистки.
Промышленное применение. Изобретение может с успехом применяться для производства и эксплуатации устройств дезактивации ТРО.

Claims (7)

1. Способ дезактивации твердых радиоактивных отходов (ТРО), включающий воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды, отличающийся тем, что обработку поверхности ТРО проводят ускоренными ледяными гранулами, проводят входной и выходной радиационный контроль отходов, сортировку их в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов, причем талая вода после дезактивации проходит полную очистку от радионуклидов, дезактивация поверхностей ТРО осуществляется путем воздействия на них потока сферических монодиспресных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 м/с, полученных при температуре не выше минус 50оС.
2. Способ по п.1, отличающийся тем, что крупные предметы ТРО фрагментируют средствами фрагментации.
3. Способ по п.1, отличающийся тем, что рабочая камера содержит средства пылеподавления.
4. Способ по п.1, отличающийся тем, что система очистки воды содержит узел микрофильтрации.
5. Способ по п.1, отличающийся тем, что система очистки воды содержит узел селективной сорбции радионуклидов.
6. Способ по п.1, отличающийся тем, что система очистки воды содержит узел мембранной очистки низконапорным обратным осмосом.
7. Способ по п.1, отличающийся тем, что устройство разгона ледяных гранул содержит блок осушки воздуха.
RU2016146797A 2016-11-29 2016-11-29 Способ дезактивации твердых радиоактивных отходов ледяными гранулами RU2638951C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016146797A RU2638951C1 (ru) 2016-11-29 2016-11-29 Способ дезактивации твердых радиоактивных отходов ледяными гранулами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016146797A RU2638951C1 (ru) 2016-11-29 2016-11-29 Способ дезактивации твердых радиоактивных отходов ледяными гранулами

Publications (1)

Publication Number Publication Date
RU2638951C1 true RU2638951C1 (ru) 2017-12-19

Family

ID=60718961

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016146797A RU2638951C1 (ru) 2016-11-29 2016-11-29 Способ дезактивации твердых радиоактивных отходов ледяными гранулами

Country Status (1)

Country Link
RU (1) RU2638951C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681301C1 (ru) * 2018-03-23 2019-03-06 Владимир Витальевич Виноградов Способ дезактивации поверхностей твердых объектов
RU2711292C1 (ru) * 2018-11-21 2020-01-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Способ дезактивации элемента конструкции ядерного реактора
CN114131032A (zh) * 2021-11-27 2022-03-04 南华大学 用于去除核废金属放射性的专用钢丸制备***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU92016556A (ru) * 1990-06-05 1995-01-27 Сименс АГ Способ и устройство для дезактивации радиоактивно зараженных поверхностей
RU2309832C2 (ru) * 2005-10-25 2007-11-10 Александр Васильевич Бухаров Установка для очистки поверхности
CN201045226Y (zh) * 2007-01-15 2008-04-09 郝大忠 薄片墙板结构
RU2481659C2 (ru) * 2011-03-22 2013-05-10 Юрий Иванович Сорокин Способ комплексной переработки твердых радиоактивных отходов методом плавления в электрической печи постоянного тока
US20130263890A1 (en) * 2012-03-20 2013-10-10 Mid-American Gunite, Inc. Cleaning of radioactive contamination using dry ice
CN204045226U (zh) * 2014-09-05 2014-12-24 武汉海王新能源工程技术有限公司 一种用于清除放射物的干冰去污装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU92016556A (ru) * 1990-06-05 1995-01-27 Сименс АГ Способ и устройство для дезактивации радиоактивно зараженных поверхностей
RU2309832C2 (ru) * 2005-10-25 2007-11-10 Александр Васильевич Бухаров Установка для очистки поверхности
CN201045226Y (zh) * 2007-01-15 2008-04-09 郝大忠 薄片墙板结构
RU2481659C2 (ru) * 2011-03-22 2013-05-10 Юрий Иванович Сорокин Способ комплексной переработки твердых радиоактивных отходов методом плавления в электрической печи постоянного тока
US20130263890A1 (en) * 2012-03-20 2013-10-10 Mid-American Gunite, Inc. Cleaning of radioactive contamination using dry ice
CN204045226U (zh) * 2014-09-05 2014-12-24 武汉海王新能源工程技术有限公司 一种用于清除放射物的干冰去污装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Лазерная дезактивация металлических поверхностей. Авто диссертации на соискание ученой степени кандидата наук. Санкт-Петербург, 2012. *
Лазерная дезактивация металлических поверхностей. Автореферат диссертации на соискание ученой степени кандидата наук. Санкт-Петербург, 2012. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681301C1 (ru) * 2018-03-23 2019-03-06 Владимир Витальевич Виноградов Способ дезактивации поверхностей твердых объектов
RU2711292C1 (ru) * 2018-11-21 2020-01-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Способ дезактивации элемента конструкции ядерного реактора
CN114131032A (zh) * 2021-11-27 2022-03-04 南华大学 用于去除核废金属放射性的专用钢丸制备***
CN114131032B (zh) * 2021-11-27 2024-05-28 南华大学 用于去除核废金属放射性的专用钢丸制备***

Similar Documents

Publication Publication Date Title
RU2638951C1 (ru) Способ дезактивации твердых радиоактивных отходов ледяными гранулами
TWI444249B (zh) 用於處理廢研磨漿液以回收可再利用之成分的方法和裝置
JPS60178399A (ja) 放射性物質で汚染された部分を除染するための方法及び装置
KR101744849B1 (ko) 오염토양의 정화처리 시스템 및 정화처리 방법
KR101396416B1 (ko) 열 변형 파쇄를 이용한 복합오염 토양의 유류와 중금속 동시 탈리 장치 및 이를 포함하는 복합오염 토양의 정화 시스템 및 방법
US5302324A (en) Method for decontaminating substances contaminated with radioactivity, and method for decontaminating the materials used for said decontamination
KR100789054B1 (ko) 친환경 블라스트 장치
KR101000371B1 (ko) 오일 미스트 집진장치
KR101102060B1 (ko) 샌드 블라스터 시스템
CN104353663A (zh) 一种具有出料除尘功能的土壤热脱附处理***
JP2014174115A (ja) 土壌からの放射性セシウム除去方法
FR3036635A1 (fr) Procede de traitement des poussieres retirees d'une surface par un outil et equipement permettant la mise en oeuvre dudit procede
CN109185897A (zh) 一种高氯危废焚烧烟气的气体净化及飞灰处理***及方法
CN107854946A (zh) 一种气溶胶颗粒物处理方法及其气溶胶颗粒物处理设备
US5503591A (en) Apparatus for decontaminating substances contaminated with radioactivity
JP2019013904A (ja) アスベスト含有汚水処理装置
CN105457431A (zh) 深度脱湿除尘净化装置
KR101729033B1 (ko) 폐형광램프의 하이브리드 친환경 재활용 처리시스템
KR20100107299A (ko) 방사성 폐유 처리장치 및 이를 이용한 방사성 폐유 처리방법
JP2003088726A (ja) 湿式排ガス処理方法およびそのシステム
RU100235U1 (ru) Установка обеззараживания
JP6098822B2 (ja) 飛灰洗浄装置および飛灰洗浄方法
JP5850779B2 (ja) 放射性セシウムを含む土壌の処理・貯蔵システムと、それを用いた処理・貯蔵方法
JP2011136872A (ja) 人工骨材製造システム、攪拌装置及び濾過装置
JP4902327B2 (ja) 汚染土壌の浄化方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181130