RU2637680C2 - Способ изготовления конструкционно-теплоизоляционного материала - Google Patents

Способ изготовления конструкционно-теплоизоляционного материала Download PDF

Info

Publication number
RU2637680C2
RU2637680C2 RU2016113473A RU2016113473A RU2637680C2 RU 2637680 C2 RU2637680 C2 RU 2637680C2 RU 2016113473 A RU2016113473 A RU 2016113473A RU 2016113473 A RU2016113473 A RU 2016113473A RU 2637680 C2 RU2637680 C2 RU 2637680C2
Authority
RU
Russia
Prior art keywords
heat
mixture
structural
mixing
modifier
Prior art date
Application number
RU2016113473A
Other languages
English (en)
Other versions
RU2016113473A (ru
Inventor
Аркадий Викторович Крамаренко
Алсу Мансуровна Мустекова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет"
Priority to RU2016113473A priority Critical patent/RU2637680C2/ru
Publication of RU2016113473A publication Critical patent/RU2016113473A/ru
Application granted granted Critical
Publication of RU2637680C2 publication Critical patent/RU2637680C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Изобретение относится к производству конструкционно-теплоизоляционных материалов. В способе изготовления конструкционно-теплоизоляционного материала, включающем измельчение силикат-глыбы до удельной поверхности 2500 см2/г, смешивание ее с модификатором, упрочняющей добавкой - портлантцементом, базальтовой микрофиброй и водой затворения, помещение полученной смеси в форму, тепловую обработку токами СВЧ в течение 15 минут при температуре 300 град С, в качестве модификатора используют гидрофобизатор 136-41 при следующем соотношении компонентов смеси, мас. %: указанная силикат-глыба 65, гидрофобизатор 136-41 0,08, портландцемент 13, базальтовая микрофибра 0,92, вода затворения 21. Технический результат - улучшение физико-механических свойств. 1 табл.

Description

Предлагаемое изобретение относится к области производства строительных материалов, в частности к производству теплоизоляционных конструкционных материалов. Предложенный способ предназначен для изготовления эффективных теплоизоляционных конструкционных материалов, при этом снижая их себестоимость посредством уменьшения энергозатрат и времени изготовления теплоизоляционных изделий при приемлемых теплофизических (прочностных, звукоизоляционных, теплоизоляционных и т.д.) характеристиках, а также при знакопеременных температурных воздействиях.
Известны следующие способы получения сырьевых смесей для изготовления теплоизоляционного материала по авторскому свидетельству:
1) СССР №272879, 1967 г., МПК С04В 38/08 - [1] и по авторскому свидетельству СССР №1282468, 1985 г., МПК С04В 38/02 - [2].
Недостатком аналогов является то, что получаемые по ним теплоизоляционные материалы обладают низкой прочностью при сжатии, высокими пожароопасностью и водопоглощением.
2) «Способ получения сырьевых смесей для изготовления теплоизоляционного материала» по авторскому свидетельству СССР №1396511, 1993 г., МПК С04В 38/02, С04В 28/26 - [3], включающий перемешивание тонкомолотой силикат-глыбы 100 мас. ч., кремнефтористого натрия 18-20 мас. ч., порообразователя 5-10 мас. ч., минерального наполнителя 8-16 мас. ч. и вспенивающегося полистирола 20-30 мас. ч., загрузку смеси в форму и последующее вспенивание, причем сначала гранулы вспенивающего полистирола перемешивают с 16-24 мас. ч. водного раствора силиката натрия плотностью 1,3-1,5 г/см3, затем вводят тонкомолотую силикат-глыбу, после чего в полученную смесь вводят остальные компоненты и перемешивают. То есть способ изготовления теплоизоляционного конструкционного материала состоит в измельчении силикат-глыбы, смешивании ее с модификатором, упрочняющей добавкой, вспенивающим реагентом и водой затворения и последующей тепловой обработке.
Способ позволяет повысить прочность (на сжатие) полученного теплоизоляционного материала, а также снизить его пожароопасность и водопоглощение. Однако можно указать на следующие недостатки аналога [3]:
во-первых, использование полистирола значительно уменьшает пожаростойкость теплоизоляционного материала, получаемого из смеси;
во-вторых, большие энергозатраты на тепловую обработку;
в-третьих, повышенная трудоемкость технологии последовательного смешивания компонентов смеси (обязательным является первоначальное перемешивание гранул пенополистирола с водным раствором силиката натрия).
3) «Способ изготовления теплоизоляционного конструкционного материала» №2007121986 от 20.12.2008 г., МПК С04В 28/00 - [4], включающий измельчение силикат-глыбы, смешивание ее с модификатором, упрочняющей добавкой, вспенивающим реагентом и водой затворения и последующую тепловую обработку, при этом измельчение силикат-глыбы осуществляют до удельной поверхности 2500 см2/г, в качестве модификатора используют лигносульфонат, в качестве упрочняющей добавки портландцемент, в качестве вспенивающего реагента - перекись водорода, при следующем соотношении компонентов смеси, мас. %: указанная силикат-глыба 62-64, лигносульфонат 0,04-0,06, портландцемент 5-7, перекись водорода 0,5-0,7, вода затворения 30, тепловую обработку изделия осуществляют токами СВЧ в течение 15 минут при температуре 300°С.
В данном прототипе решаются недостатки вышесказанного аналога, однако применение в нем лигносульфоната не обеспечивает хорошей растекаемости, требуется больше воды затворения, что существенно ухудшает его физико-механические свойства (увеличение количества воды ведет к увеличению и микропористости цементосодержащего камня).
Кроме того, прототип обладает сравнительно низкой прочностью на растяжение (изгиб, скалывание), а также низкими динамической прочностью и работой разрушения.
4) «Способ изготовления теплоизоляционного конструкционного материала» РФ №2524364 от 4.06.2014 г., включающий измельчение силикат глыбы до удельной поверхности 2500 см2/г, смешивание ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения с последующей теплообработкой, при этом в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки - базальтовую микрофибру при следующем соотношении компонетнов смеси, мас. %: указанная силикат-глыба 62-64, суперпластификатор С-3 0,01-0,012, портландцемент 10-12, базальтовая микрофибра 0,04-0,1, перекись водорода 0,5-0,7, вода затворения 25.
Недостатком аналога является то, то использование суперпластификатора С-3 при изготовлении теплоизоляционного конструкционного материала является причиной образования стойких высолов на поверхности изделия, что может привести к сульфатной коррозии.
Кроме того, данный суперпластификатор является токсичным веществом, так как содержит в своем составе фенол, формальдегид и производные нафталина. Также суперпластификатор С-3 имеет ограниченную сырьевую базу, что приводит к удорожанию изделия в целом.
Указанные недостатки аналогов и прототипа ставят задачи по снижению стоимости, использованию более эффективных ингредиентов, улучшению растекаемости предложенного конструкционно-теплоизоляционного материала и его физико-механических свойств, в частности существенного увеличения прочности на растяжение (на изгиб, скалывание и т.д.), а также на увеличение динамической прочности и работы разрушения.
Указанные задачи решаются тем, что в способе изготовления конструкционно-теплоизоляционного материала, состоящем в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с кремнийорганической жидкостью, упрочняющей добавкой в виде портландцемента и водой затворения, заливают в форму и проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, в качестве модификатора, а также гидрофобизирующей и порообрузующей добавки используют гидрофобизатор 136-41(ГКЖ94), а в качестве дополнительной упрочняющей добавки используют базальтовую микрофибру при следующем соотношении компонентов смеси, мас. %:
Указанная силикат-глыба 65
Гидрофобизатор 136-41 0,08
Портландцемент 13
Базальтовая микрофибра 0,92
Вода затворения 21
При этом так же, как и в прототипе, в состав смеси входят только негорючие материалы, а сам процесс идет при сравнительно невысоких температурах и времени обработки материала.
Кроме того, известен «Восстановленный строительный элемент» по патенту на полезную модель РФ №79579 от 06.06.2008 г., МПК E02D 37/00, E02G 23/02 - [6], строительная смесь которого в своем составе содержит суперпластификатор С-3 и фибру, в том числе и из стальных волокон. Однако аналог [6] предназначен для других целей, имеет высокую теплопроводность, в том числе и из-за высокой теплопроводности фибры из стальных волокон.
Известный аналог: «Многослойная наружная стеновая панель» по патенту на полезную модель РФ №81742 от 27.03.2009 г., МПК Е02С 2/06 - [7], строительная смесь, из которой она изготовлена, в своем составе содержит полистиролбетон, армированный фиброй, в том числе и базальтовой. Как недостаток аналога [7] следует отметить, что входящий в его состав полистирол горюч и при этом применение такого состава в строительных конструкциях сильно ограничено.
Известный аналог: «Смесь для пенобетона» по патенту РФ №2306300 от 20.09.2007 г., МПК С04В 38/10 - [8], содержит в своем составе базальтовую фибру, но в остальном имеет совсем другие компоненты, чем в заявляемом техническом решении. При этом как недостаток аналога [8] можно отметить его низкую прочность.
Также известен аналог: «Способ изготовления пенокерамических изделий» по патенту РФ №2251540 от 10.05.2005 г., МПК С04В 38/02 - [9], содержащий в своем составе базальтовую фибру, но при его изготовлении необходим высокотемпературный обжиг при температуре 940÷980°С, а это требует высокие энергозатраты на производство изделий и, как следствие, приводит к резкому увеличению их стоимости.
Таким образом, реализация предложенного способа изготовления конструкционно-теплоизоляционного материала заключается в следующем: натриевую силикат-глыбу по ГОСТ 13079-93 (растворимое стекло, выпускаемое в виде глыбы от желтоватого до темно-зеленого цвета, используют для изготовления жидкого стекла). Силикатный модуль т.е. мольное соотношение оксида щелочного металла (Na2O) к оксиду кремния (SiO2). составляет 3,2-3,5. Желательно брать 3,2-3,5 в связи с тем, что при увеличении силикатного модуля в процессе химических реакций возрастает число силоксановых связей и, следовательно, кремнезистый каркас делается более жестким и прочным. [10, 11]. Силикат натрия измельчают в шаровой мельнице до образования частиц с поверхностью 2500 см2/г, смешивают с упрочняющей добавкой (портландцементом марки 500 по ГОСТ 10178-85), гидрофобизирующей жидкостью, которая представляет собой полимер этилгидросилоксана (ГКЖ 136-41) по ГОСТ 10834-76, базальтовой микрофиброй (L=12 мм, δ=5-7 мк.) и водой затворения и помещают смесь в форму. Форма со смесью подвергается тепловой обработке токами сверхвысокой частоты (СВЧ) при t=300°C и времени обработки 15 минут.
По предложенному способу приготовления нового конструкционно-теплоизоляционного материала была проведена серия экспериментов на опытном производстве. При этом состав смеси для конструкционного теплоизоляционного материала соответствует формуле заявляемого изобретения.
Один из вариантов выполнения «Конструкционно-теплоизоляционного материала» в составе ингредиентов приведен в следующем единичном соотношении, мас. %:
Указанная силикат-глыба 65
Гидрофобизатор 136-41 0,08
Портландцемент 13
Базальтовая микрофибра 0,92
Вода затворения 21
Результаты проведенных экспериментов на опытном производстве по производству конструкционно-теплоизоляционного материала:
плотность: 398-417 кг/м3;
предел прочности при сжатии: 2,5-4,5 МПа;
теплопроводность: 0,085-0,098 Вт/(м⋅К).
Проведение тепловой обработки смеси полем токов СВЧ создает условия равномерного нагрева и вспучивания смеси компонентов. Обеспечивается равномерность пористой структуры изготавливаемого конструкционно-теплоизоляционного материала и его качества (стабильности его теплофизических свойств).
Также в предложенном способе исключен промежуточный процесс варки жидкого стекла и введена тепловая обработка токами СВЧ при t=300°C. Известные способы аналоги (из негорючих материалов) включают тепловую обработку при температурах, равных 1000-1200°С, и времени обработки в течение ~9 часов.
Сравнительные энергозатраты на производство известных строительных конструкционно-теплоизоляционных материалов, а также по предлагаемому способу изготовления конструкционно-теплоизоляционного материала приведены в таблице 1.
Figure 00000001
Таким образом, реализация предложенного способа позволит достичь существенного улучшения растекаемости предложенного конструкционно-теплоизоляционного материала и его физико-механических свойств, в частности увеличения прочности на растяжение (на изгиб, скалывание и т.д.), а также на увеличение динамической прочности и работы на разрушение. При этом стоимость, энергозатраты и трудоемкость производства конструкционно-теплоизоляционных изделий при их приемлемых теплофизических характеристиках будут минимальны. Использование базальтовой микрофибры в малом количестве позволит существенно увеличить прочность (в том числе и динамическую) изделий и работу на их разрушение, то есть их физико-механические свойства. При этом не допускается резкое введение фибры и перемешивание раствора при высоких скоростях миксера. Рекомендуемая скорость вращения лопастей миксера, исходя из проведенных экспериментов, должна быть порядка 90÷120 об/мин. Уменьшение количества воды затворения дополнительно увеличивает прочность готовых изделий и уменьшает энергозатраты на удаление излишней влаги при тепловой обработке. При этом обработка токами СВЧ позволяет получить температуру внутри изделия выше, чем на поверхности, что способствует равномерному нагреву и выделению излишней влаги и газов по всему объему изделия. Это приведет к образованию равномерной пористой структуры изделия. Равномерный состав и пористость теплоизоляционного изделия обеспечивают одинаковые прочностные и теплофизические и другие характеристики по всему объему материала, а также позволяют его использовать как облицовочный, так и в качестве элементов несущих и самонесущих конструкций, в качестве заполнения строительных конструкций.
Использование принципиально новой исходной смеси, обеспечивающей получение нового конструкционно-теплоизоляционного материла при сравнительно низких температурах (t=300°C) и тепловой обработкой ее в поле токов СВЧ позволяет получить равномерные физико-механические характеристики по всей массе изделия при минимальном времени обработки.
Элементы строительных конструкций, изготовленные по предложенному способу, можно использовать для многоэтажного строительства как ограждающие и самонесущие, а для малоэтажного строительства - как несущие и ограждающие.
Изготовленные элементы строительных конструкций, в которых применялись блоки из предложенного конструкционно-теплоизоляционного материала, эксплуатируются с 2010 года без видимых признаков деструкции последних.
Реализация способа изготовления конструкционно-теплоизоляционного материала в совокупности признаков формулы изобретения является новым для способов изготовления теплоизоляционных материалов, что соответствует критерию "новизна".
Вышеприведенная совокупность признаков не известна в настоящее время из уровня техники и не следует из общеизвестных правил, способов изготовления конструкционно-теплоизоляционных материалов, и это доказывает соответствие критерию "изобретательский уровень".
Реализация предложенного способа изготовления конструкционно-теплоизоляционного материала с указанной совокупностью существенных признаков не представляет никаких конструктивно-технических и технологических трудностей, отсюда следует соответствие критерию "промышленная применимость".
Список использованных источников
1. Авторское свидетельство СССР №272879, 1967 г., МПК С04В 38/08.
2. Авторское свидетельство СССР №1282468, 1985 г., МПК С04В 38/02.
3. Авторское свидетельство СССР №1396511, 1993 г., МПК С04В 38/02, С04В 28/26.
4. Заявка на изобретение №2007121986 от 20.12.2008 г., МПК С04В 28/00.
5. Прототип-заявка на изобретение РФ №2524364 от 4.06.2014 г.
6. Патент на полезную модель РФ №79579 от 06.06.2008 г., МПК E02D 37/00, E02G 23/02.
7. Патент на полезную модель РФ №81742 от 27.03.2009 г., МПК Е02С 2/06.
8. Патент РФ №2306300 от 20.09.2007 г., МПК С04В 38/10.
9. Патент РФ №2251540 от 10.05.2005 г., МПК С04В 38/02.
10. Корнеев В.И., Данилов В.В. Производство и применение растворимого стекла. - Л.: Стройиздат, 1991. - 176 с.
11. Корнеев В.И., Данилов В.В. Растворимое и жидкое стекло. - СПб.: Стройиздат, 1996. - 216 с.

Claims (2)

  1. Способ изготовления конструкционно-теплоизоляционного материала, включающий измельчение силикат-глыбы до удельной поверхности 2500 см2/г, смешивание ее с модификатором, упрочняющей добавкой - портлантцементом, базальтовой микрофиброй и водой затворения, помещение полученной смеси в форму, тепловую обработку токами СВЧ в течение 15 минут при температуре 300 град С, отличающийся тем, что в качестве модификатора используют гидрофобизатор 136-41 при следующем соотношении компонентов смеси, мас. %:
  2. Указанная силикат-глыба 65 Гидрофобизатор 136-41 0,08 Портландцемент 13 Базальтовая микрофибра 0,92 Вода затворения 21
RU2016113473A 2016-04-07 2016-04-07 Способ изготовления конструкционно-теплоизоляционного материала RU2637680C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016113473A RU2637680C2 (ru) 2016-04-07 2016-04-07 Способ изготовления конструкционно-теплоизоляционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016113473A RU2637680C2 (ru) 2016-04-07 2016-04-07 Способ изготовления конструкционно-теплоизоляционного материала

Publications (2)

Publication Number Publication Date
RU2016113473A RU2016113473A (ru) 2017-10-12
RU2637680C2 true RU2637680C2 (ru) 2017-12-06

Family

ID=60120487

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016113473A RU2637680C2 (ru) 2016-04-07 2016-04-07 Способ изготовления конструкционно-теплоизоляционного материала

Country Status (1)

Country Link
RU (1) RU2637680C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU272879A1 (ru) * Н. Я. Рев кин, П. В. Годило, А. Н. Муравьев , В. Л. Векелер Масса для изготовления теплоизоляционногоматериала
EP0004882B1 (de) * 1978-04-20 1981-02-11 BASF Aktiengesellschaft Verfahren zur Herstellung von Brandschutz-Formkörpern auf Basis von Alkalisilikaten
RU2309921C2 (ru) * 2005-08-31 2007-11-10 ООО "Лаборатория строительных полимеров" Связующая водорастворимая композиция для изготовления теплоизоляционных плит из минерального волокна
RU2007121986A (ru) * 2007-06-13 2008-12-20 Военный инженерно-технический университет (RU) Способ изготовления теплоизоляционного конструкционного материала
RU2524364C2 (ru) * 2011-11-08 2014-07-27 федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ изготовления конструкционно-теплоизоляционного материала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU272879A1 (ru) * Н. Я. Рев кин, П. В. Годило, А. Н. Муравьев , В. Л. Векелер Масса для изготовления теплоизоляционногоматериала
EP0004882B1 (de) * 1978-04-20 1981-02-11 BASF Aktiengesellschaft Verfahren zur Herstellung von Brandschutz-Formkörpern auf Basis von Alkalisilikaten
RU2309921C2 (ru) * 2005-08-31 2007-11-10 ООО "Лаборатория строительных полимеров" Связующая водорастворимая композиция для изготовления теплоизоляционных плит из минерального волокна
RU2007121986A (ru) * 2007-06-13 2008-12-20 Военный инженерно-технический университет (RU) Способ изготовления теплоизоляционного конструкционного материала
RU2524364C2 (ru) * 2011-11-08 2014-07-27 федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ изготовления конструкционно-теплоизоляционного материала

Also Published As

Publication number Publication date
RU2016113473A (ru) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6430268B2 (ja) 多孔質ジオポリマー硬化体
CN105801166B (zh) 一种陶粒发泡混凝土及其制备方法
KR101782845B1 (ko) 친수성 나노 에어로겔 파우더를 사용한 고단열 경량 기포 콘크리트 조성물 및 이를 이용한 경량 기포 콘크리트 제조방법
KR101626803B1 (ko) 콘크리트 2차 제품용 경량 기포 콘크리트 조성물 및 이를 이용한 콘크리트 2차 제품 제조 방법
CN105367121A (zh) 一种镁水泥基泡沫砌块及其制备方法
CN108585927A (zh) 一种纳米纤维素气凝胶保温板及其制备方法
CN107009484A (zh) 一种高性能混凝土自保温复合砌块的制备方法
RU2524364C2 (ru) Способ изготовления конструкционно-теплоизоляционного материала
KR102034611B1 (ko) 방수형 기포콘크리트 블록의 습식 제조방법
RU2455253C1 (ru) Способ получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер
RU2637680C2 (ru) Способ изготовления конструкционно-теплоизоляционного материала
KR20110109286A (ko) 고강도 콘크리트용 원료를 이용한 경량 기포 콘크리트 및 그 제조방법
CN108203260A (zh) 一种含有纳米微粉的发泡保温板
RU2561121C2 (ru) Сырьевая смесь для изготовления легкого бетона и способ изготовления легкого бетона из сырьевой смеси
RU2536693C2 (ru) Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона
RU2528323C2 (ru) Cпособ приготовления облегченного кладочного раствора и композиция для облегченного кладочного раствора
RU2769011C1 (ru) Способ изготовления конструкционно-теплоизоляционного материала с применением продуктов переработки твердых коммунальных отходов
JP2012206882A (ja) スケーリング低減コンクリート製品及び当該コンクリート製品の製造方法
RU2768860C1 (ru) Способ изготовления теплоизоляционного материала с применением переработанных твердых бытовых отходов
RU2519146C1 (ru) Гипсоперлит
KR101909086B1 (ko) Pp 섬유 혼합형 단열소재 및 이의 제조 방법
RU2405757C1 (ru) Облегченная пеноцементная композиция
RU2327671C1 (ru) Состав для получения газобетона
JP4409281B2 (ja) 軽量気泡コンクリートの製造方法
RU2717156C1 (ru) Сырьевая смесь для теплоизоляционного бетона

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190408