RU2524364C2 - Способ изготовления конструкционно-теплоизоляционного материала - Google Patents

Способ изготовления конструкционно-теплоизоляционного материала Download PDF

Info

Publication number
RU2524364C2
RU2524364C2 RU2011145253/03A RU2011145253A RU2524364C2 RU 2524364 C2 RU2524364 C2 RU 2524364C2 RU 2011145253/03 A RU2011145253/03 A RU 2011145253/03A RU 2011145253 A RU2011145253 A RU 2011145253A RU 2524364 C2 RU2524364 C2 RU 2524364C2
Authority
RU
Russia
Prior art keywords
heat
hydrogen peroxide
modifier
portland cement
basalt
Prior art date
Application number
RU2011145253/03A
Other languages
English (en)
Other versions
RU2011145253A (ru
Inventor
Александр Николаевич Лазарев
Михаил Николаевич Ваучский
Аркадий Викторович Крамаренко
Александр Дмитриевич Савчук
Валентин Николаевич Косенков
Аркадий Васильевич Яковлев
Original Assignee
федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации filed Critical федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации
Priority to RU2011145253/03A priority Critical patent/RU2524364C2/ru
Publication of RU2011145253A publication Critical patent/RU2011145253A/ru
Application granted granted Critical
Publication of RU2524364C2 publication Critical patent/RU2524364C2/ru

Links

Landscapes

  • Building Environments (AREA)

Abstract

Изобретение относится к производству конструкционно-теплоизоляционных материалов. Способ изготовления конструкционно-теплоизоляционного материала состоит в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения, заливают в форму изделия и далее проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, при этом в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки - базальтовую микрофибру при следующем соотношении компонентов смеси, мас.%: указанная силикат-глыба 62-64, суперпластификатор С-3 0,01-0,012, портландцемент 10-12, базальтовая микрофибра 0,04-0,1, перекись водорода 0,5-0,7, вода затворения 25. Технический результат - улучшение физико-механических свойств. 1 табл.

Description

Предлагаемое изобретение относится к области производства строительных материалов, а именно к производству теплоизоляционных конструкционных материалов. Предложенный способ предназначен для изготовления теплоизоляционных изделий с минимальными энергозатратами и временем при приемлемых теплофизических (прочностных, звукоизоляционных, теплоизоляционных и т.д.) характеристиках, в том числе и при знакопеременных температурных воздействиях.
Известны способы получения сырьевых смесей для изготовления теплоизоляционного материала по авторскому свидетельству СССР №272879, 1967 г., МПК С04В 38/08 - [1] и по авторскому свидетельству СССР №1282468, 1985 г., МПК С04В 38/02 - [2].
Недостатком аналогов является то, что получаемые по ним теплоизоляционные материалы обладают низкой прочностью при сжатии, высокими пожароопасностью и водопоглощением.
Также известен «Способ получения сырьевых смесей для изготовления теплоизоляционного материала» по авторскому свидетельству СССР №1396511, 1993 г., МПК С04В 38/02, С04В 28/26 - [3], включающий перемешивание тонкомолотой силикат-глыбы 100 мас.ч., кремнефтористого натрия 18-20 мас.ч., порообразователя 5-10 мас.ч., минерального наполнителя 8-16 мас.ч. и вспенивающегося полистирола 20-30 мас.ч., загрузку смеси в форму и последующее вспенивание, причем сначала гранулы вспенивающего полистирола перемешивают с 16-24 мас.ч. водного раствора силиката натрия плотностью 1,3-1,5 г/см3, затем вводят тонкомолотую силикат-глыбу, после чего в полученную смесь вводят остальные компоненты и перемешивают. Другими словами, способ изготовления теплоизоляционного конструкционного материала состоит в измельчении силикат-глыбы, смешивании ее с модификатором, упрочняющей добавкой, вспенивающим реагентом и водой затворения и последующей тепловой обработке.
Способ позволяет повысить прочность (на сжатие) полученного теплоизоляционного материала, а также снизить его пожароопасность и водопоглощение. Однако можно указать на следующие недостатки аналога [3]:
во-первых, использование полистирола значительно уменьшает пожаростойкость теплоизоляционного материала, получаемого из смеси;
во-вторых, большие энергозатраты на тепловую обработку;
в-третьих, повышенная трудоемкость технологии последовательного смешивания компонентов смеси (обязательным является первоначальное перемешивание гранул пенополистирола с водным раствором силиката натрия).
Указанные недостатки решаются в прототипе заявляемого изобретения - заявке: «Способ изготовления теплоизоляционного конструкционного материала» №2007121986 от 20.12.2008 г., МПК С04В 28/00 - [4], включающий измельчение силикат-глыбы, смешивание ее с модификатором, упрочняющей добавкой, вспенивающим реагентом и водой затворения и последующую тепловую обработку, при этом измельчение силикат-глыбы осуществляют до удельной поверхности 2500 см2/г, в качестве модификатора используют лигносульфонат, в качестве упрочняющей добавки - портландцемент, в качестве вспенивающего реагента - перекись водорода, при следующем соотношении компонентов смеси, мас.%: указанная силикат-глыба 62-64, лигносульфонат 0,04-0,06, портландцемент 5-7, перекись водорода 0,5-0,7, вода затворения 30, тепловую обработку изделия осуществляют токами СВЧ в течение 15 минут при температуре 300°С.
Недостатком прототипа является то, что применение в нем лигносульфоната не обеспечивает хорошей растекаемости, требуется больше воды затворения, что существенно ухудшает его физико-механические свойства. Кроме того, прототип обладает сравнительно низкой прочностью на растяжение (изгиб, скалывание), а также низкими динамической прочностью и работой разрушения.
Указанные недостатки аналогов и прототипа ставят задачи по улучшению растекаемости предложенного конструкционно-теплоизоляционного материала и его физико-механических свойств. В частности, существенного увеличения прочности на растяжение (на изгиб, скалывание и т.д.), а также на увеличение динамической прочности и работы разрушения.
Указанные задачи решаются тем, что в способе изготовления конструкционно-теплоизоляционного материала, состоящем в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения, заливают в форму изделия и далее проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки используют базальтовую микрофибру при следующем соотношении компонентов смеси, мас.%:
указанная силикат-глыба 62-64
суперпластификатор С-3 0,01-0,012
портландцемент 10-12
базальтовая микрофибра 0,04-0,1
перекись водорода 0,5-0,7
вода затворения 25
При этом так же, как и в прототипе, в состав смеси входят только негорючие материалы, а сам процесс идет при сравнительно невысоких температурах и времени обработки материала.
Кроме того, известен «Восстановленный строительный элемент» по патенту на полезную модель РФ №79579 от 06.06.2008 г., МПК E02D 37/00, E02G 23/02 - [5], строительная смесь которого в своем составе содержит суперпластификатор С-3 и фибру, в том числе и из стальных волокон. Однако аналог [5] предназначен для других целей, имеет высокую теплопроводность, в том числе и из-за высокой теплопроводности фибры из стальных волокон.
Известный аналог: «Многослойная наружная стеновая панель» по патенту на полезную модель РФ №81742 от 27.03.2009 г., МПК Е02С 2/06 - [6], строительная смесь, из которой она изготовлена, в своем составе содержит полистиролбетон, армированный фиброй, в том числе и базальтовой. Как недостаток аналога [6] следует отметить, что входящий в его состав полистирол горюч и при этом применение такого состава в строительных конструкциях сильно ограничено.
Известный аналог: «Смесь для пенобетона» по патенту РФ №2306300 от 20.09.2007 г., МПК С04В 38/10 - [7], содержит в своем составе базальтовую фибру, но в остальном имеет совсем другие компоненты, чем в заявляемом техническом решении. При этом как недостаток аналога [7] можно отметить его низкую прочность.
Также известен аналог: «Способ изготовления пенокерамических изделий» по патенту РФ №2251540 от 10.05.2005 г., МПК С04В 38/02 - [8], содержащий в своем составе базальтовую фибру, но при его изготовлении необходим высокотемпературный обжиг при температуре 940÷980°С, а это требует высокие энергозатраты на производство изделий и, как следствие, приводит к резкому увеличению их стоимости.
Таким образом, реализация предложенного способа изготовления конструкционно-теплоизоляционного материала заключается в следующем:
силикат-глыбу измельчают в шаровой мельнице до образования частиц с поверхностью 2500 см2/г, смешивают с упрочняющей добавкой (портландцементом), модификатором (суперпластификатором С-3), базальтовой микрофиброй, вспенивающим агентом (перекисью водорода) и водой затворения и помещают смесь в форму. Форма со смесью подвергается тепловой обработке токами сверхвысокой частоты (СВЧ) при t=300°С и времени обработки 15 минут.
По предложенному способу приготовления нового конструкционно-теплоизоляционного материала была проведена серия экспериментов на опытном производстве. При этом состав смеси для конструкционного теплоизоляционного материала брался согласно формуле заявляемого изобретения.
Один из вариантов выполнения «Конструкционно-теплоизоляционного материала» в составе ингредиентов приведен в следующем единичном соотношении, мас.%:
указанная силикат-глыба 63
суперпластификатор С-3 0,01
портландцемент 11,29
базальтовая микрофибра 0,1
перекись водорода 0,6
вода затворения 25
Результаты проведенных экспериментов на опытном производстве по производству конструкционно-теплоизоляционного материала:
плотность: 398-417 кг/м3;
предел прочности при сжатии: 2,5-4,5 МПа;
теплопроводность: 0,085-0,098 Вт/(м·К).
Проведение тепловой обработки смеси полем токов СВЧ создает условия равномерного нагрева и вспучивания смеси компонентов. Обеспечивается равномерность пористой структуры изготавливаемого конструкционно-теплоизоляционного материала и его качества (стабильности его теплофизических свойств).
Также в предложенном способе исключен промежуточный процесс варки жидкого стекла и введена тепловая обработка токами СВЧ при t=300°С. Известные способы аналоги (из негорючих материалов) включают тепловую обработку при температурах, равных 1000-1200°С, и времени обработки в течение ~9 часов.
Сравнительные энергозатраты на производство известных строительных конструкционно-теплоизоляционных материалов и по предлагаемому способу изготовления конструкционно-теплоизоляционного материала приведены в таблице 1.
Таблица 1
Сравнительные энергозатраты
№п/п Наименование материала Энергозатраты, кВт/м3
1 Минеральная вата 10000
2 Пенобетон, газобетон 1700
3 Кирпич 500
4 Древесина 180
5 Предложенный конструкционно-теплоизоляционный материал 190
Таким образом, реализация предложенного способа позволит достичь существенного улучшения растекаемости предложенного конструкционно-теплоизоляционного материала и его физико-механических свойств. В частности, увеличения прочности на растяжение (на изгиб, скалывание и т.д.), а также на увеличение динамической прочности и работы на разрушение. При этом энергозатраты и трудоемкость производства конструкционно-теплоизоляционных изделий при их приемлемых теплофизических характеристиках будут на минимальном уровне.
Использование базальтовой микрофибры в малом количестве позволит существенно увеличить прочность (в том числе и динамическую) изделий и работу на их разрушение, то есть их физико-механические свойства. Уменьшение количества воды затворения дополнительно увеличивает прочность готовых изделий и уменьшает энергозатраты на удаление излишней влаги при тепловой обработке. При этом обработка токами СВЧ позволяет получить температуру внутри изделия выше, чем на поверхности, что способствует равномерному нагреву и выделению излишней влаги и газов по всему объему изделия. Это приведет к образованию равномерной пористой структуры изделия. Равномерный состав и пористость теплоизоляционного изделия обеспечивают одинаковые прочностные и теплофизические и другие характеристики по всему объему материала, а также позволяют его использовать как облицовочный, так и в качестве элементов несущих и самонесущих конструкций, в качестве заполнения строительных конструкций.
Использование принципиально новой исходной смеси, обеспечивающей получение нового конструкционно-теплоизоляционного материла при сравнительно низких температурах (t=300°C) и тепловой обработкой ее в поле токов СВЧ позволяет получить равномерные физико-механические характеристики по всей массе изделия при минимальном времени обработки.
Элементы строительных конструкций, изготовленные по предложенному способу, можно использовать для многоэтажного строительства как ограждающие и самонесущие, а для малоэтажного строительства - как несущие и ограждающие.
Изготовленные элементы строительных конструкций, в которых применялись блоки из предложенного конструкционно-теплоизоляционного материала, эксплуатируются с 2008 года без видимых признаков деструкции последних.
Реализация способа изготовления конструкционно-теплоизоляционного материала в совокупности признаков формулы изобретения является новым для способов изготовления теплоизоляционных материалов, что соответствует критерию"новизна".
Вышеприведенная совокупность признаков не известна в настоящее время из уровня техники и не следует из общеизвестных правил, способов изготовления конструкционно-теплоизоляционных материалов, и это доказывает соответствие критерию "изобретательский уровень".
Реализация предложенного способа изготовления конструкционно-теплоизоляционного материала с указанной совокупностью существенных признаков не представляет никаких конструктивно-технических и технологических трудностей, отсюда следует соответствие критерию "промышленная применимость".
Список использованных источников
1. Авторское свидетельство СССР №272879, 1967 г., МПК С04В 38/08.
2. Авторское свидетельство СССР №1282468, 1985 г., МПК С04В 38/02.
3. Авторское свидетельство СССР №1396511, 1993 г., МПК С04В 38/02, С04В 28/26.
4. Прототип - заявка на изобретение №2007121986 от 20.12.2008 г., МПК С04В 28/00.
5. Патент на полезную модель РФ №79579 от 06.06.2008 г., МПК E02D 37/00, E02G 23/02.
6. Патент на полезную модель РФ №81742 от 27.03.2009 г., МПК Е02С 2/06.
7. Патент РФ №2306300 от 20.09.2007 г., МПК С04В 38/10.
8. Патент РФ №2251540 от 10.05.2005 г., МПК С04В 38/02.

Claims (1)

  1. Способ изготовления конструкционно-теплоизоляционного материала, заключающийся в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения, заливают в форму изделия и далее проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, отличающийся тем, что в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки используют базальтовую микрофибру при следующем соотношении компонентов смеси, мас.%:
    указанная силикат-глыба 62-64 суперпластификатор С-3 0,01-0,012 портландцемент 10-12 базальтовая микрофибра 0,04-0,1 перекись водорода 0,5-0,7 вода затворения 25
RU2011145253/03A 2011-11-08 2011-11-08 Способ изготовления конструкционно-теплоизоляционного материала RU2524364C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011145253/03A RU2524364C2 (ru) 2011-11-08 2011-11-08 Способ изготовления конструкционно-теплоизоляционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011145253/03A RU2524364C2 (ru) 2011-11-08 2011-11-08 Способ изготовления конструкционно-теплоизоляционного материала

Publications (2)

Publication Number Publication Date
RU2011145253A RU2011145253A (ru) 2013-05-20
RU2524364C2 true RU2524364C2 (ru) 2014-07-27

Family

ID=48788782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011145253/03A RU2524364C2 (ru) 2011-11-08 2011-11-08 Способ изготовления конструкционно-теплоизоляционного материала

Country Status (1)

Country Link
RU (1) RU2524364C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637680C2 (ru) * 2016-04-07 2017-12-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Способ изготовления конструкционно-теплоизоляционного материала
RU2768860C1 (ru) * 2021-04-19 2022-03-25 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ изготовления теплоизоляционного материала с применением переработанных твердых бытовых отходов
RU2769011C1 (ru) * 2021-04-12 2022-03-28 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ изготовления конструкционно-теплоизоляционного материала с применением продуктов переработки твердых коммунальных отходов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004882A1 (de) * 1978-04-20 1979-10-31 BASF Aktiengesellschaft Verfahren zur Herstellung von Brandschutz-Formkörpern auf Basis von Alkalisilikaten
RU2060238C1 (ru) * 1995-02-21 1996-05-20 Владимир Евгеньевич Козлов Способ изготовления вспученного силикатного материала
RU2306300C1 (ru) * 2006-02-06 2007-09-20 Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Смесь для пенобетона
RU79579U1 (ru) * 2008-06-06 2009-01-10 Федеральное Государственное унитарное предприятие "26 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" (ФГУП 26 ЦНИИ МО РФ) Восстановленный строительный элемент
RU81742U1 (ru) * 2008-11-24 2009-03-27 Общество с ограниченной ответственностью "ЕВРОПРОЕКТ" Многослойная наружная стеновая панель

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004882A1 (de) * 1978-04-20 1979-10-31 BASF Aktiengesellschaft Verfahren zur Herstellung von Brandschutz-Formkörpern auf Basis von Alkalisilikaten
RU2060238C1 (ru) * 1995-02-21 1996-05-20 Владимир Евгеньевич Козлов Способ изготовления вспученного силикатного материала
RU2306300C1 (ru) * 2006-02-06 2007-09-20 Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Смесь для пенобетона
RU79579U1 (ru) * 2008-06-06 2009-01-10 Федеральное Государственное унитарное предприятие "26 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" (ФГУП 26 ЦНИИ МО РФ) Восстановленный строительный элемент
RU81742U1 (ru) * 2008-11-24 2009-03-27 Общество с ограниченной ответственностью "ЕВРОПРОЕКТ" Многослойная наружная стеновая панель

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637680C2 (ru) * 2016-04-07 2017-12-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Способ изготовления конструкционно-теплоизоляционного материала
RU2769011C1 (ru) * 2021-04-12 2022-03-28 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ изготовления конструкционно-теплоизоляционного материала с применением продуктов переработки твердых коммунальных отходов
RU2768860C1 (ru) * 2021-04-19 2022-03-25 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ изготовления теплоизоляционного материала с применением переработанных твердых бытовых отходов

Also Published As

Publication number Publication date
RU2011145253A (ru) 2013-05-20

Similar Documents

Publication Publication Date Title
KR101737811B1 (ko) 내화성 및 우수한 단열 성능을 가진 무기질 발포 모르타르와 그 제조방법 및 이를 이용한 무기질 발포 모르타르의 보수공법
CN102815903A (zh) 一种发泡水泥保温板的制备方法
CN104829187A (zh) 一种用于墙体自保温的新型泡沫混凝土砌块及其生产方法
CN106242426A (zh) 外墙保温材料及其制备方法
KR101782845B1 (ko) 친수성 나노 에어로겔 파우더를 사용한 고단열 경량 기포 콘크리트 조성물 및 이를 이용한 경량 기포 콘크리트 제조방법
CN105367121A (zh) 一种镁水泥基泡沫砌块及其制备方法
CN104556954A (zh) 一种磷酸镁水泥基多孔材料及其制备方法
KR100853754B1 (ko) 건축용 고강도 내화성형체 및 그 제조방법
RU2524364C2 (ru) Способ изготовления конструкционно-теплоизоляционного материала
CN102320804B (zh) 非承重保温砖
KR102034611B1 (ko) 방수형 기포콘크리트 블록의 습식 제조방법
CN110698148A (zh) 一种发泡墙体材料及其制备方法
CN108546048A (zh) 一种泡沫混凝土复合墙板芯材及其制备方法
RU2455253C1 (ru) Способ получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер
KR100568932B1 (ko) 경량콘크리트 및 그 제조 방법
BG65746B1 (bg) Метод за производство на блокове за зидария и облицовка
DE2853333C2 (de) Verfahren zur Herstellung eines mineralischen Schaumstoffes
RU2769011C1 (ru) Способ изготовления конструкционно-теплоизоляционного материала с применением продуктов переработки твердых коммунальных отходов
CN108203260A (zh) 一种含有纳米微粉的发泡保温板
RU2637680C2 (ru) Способ изготовления конструкционно-теплоизоляционного материала
RU2768860C1 (ru) Способ изготовления теплоизоляционного материала с применением переработанных твердых бытовых отходов
RU2251540C1 (ru) Способ изготовления пенокерамических изделий
RU2536693C2 (ru) Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона
KR100603031B1 (ko) 건축용 무기질 자연발열 경량기포 조성물 및 그 제조방법
RU2405757C1 (ru) Облегченная пеноцементная композиция

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20140505

MM4A The patent is invalid due to non-payment of fees

Effective date: 20141109