RU2617911C2 - Магнитный подшипник с компенсацией силы - Google Patents

Магнитный подшипник с компенсацией силы Download PDF

Info

Publication number
RU2617911C2
RU2617911C2 RU2014138426A RU2014138426A RU2617911C2 RU 2617911 C2 RU2617911 C2 RU 2617911C2 RU 2014138426 A RU2014138426 A RU 2014138426A RU 2014138426 A RU2014138426 A RU 2014138426A RU 2617911 C2 RU2617911 C2 RU 2617911C2
Authority
RU
Russia
Prior art keywords
magnetic
shaft
magnetic device
coils
bearing
Prior art date
Application number
RU2014138426A
Other languages
English (en)
Other versions
RU2014138426A (ru
Inventor
Роланд БИТТНЕР
Маркус ХЕСЛЕ
Хилмар КОНРАД
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2014138426A publication Critical patent/RU2014138426A/ru
Application granted granted Critical
Publication of RU2617911C2 publication Critical patent/RU2617911C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0463Details of the magnetic circuit of stationary parts of the magnetic circuit with electromagnetic bias, e.g. by extra bias windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Изобретение относится к устройству магнитного подшипника. Устройство магнитного подшипника содержит первое магнитное устройство, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси, второе магнитное устройство, которое является независимым от первого магнитного устройства, для компенсации предопределенной силы, которая воздействует на вал (2), причем второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству. Первое магнитное устройство имеет первую систему (10) катушек, а второе магнитное устройство имеет вторую систему (12) катушек, каждая система катушек имеет соответственно множество пар полюсов, и количество пар полюсов второй системы (12) катушек точно на единицу меньше, чем количество пар полюсов первой системы (10) катушек. Первое магнитное устройство служит для центрирования вала (2), а второе магнитное устройство противодействует силе тяжести. Таким способом может компенсироваться сила тяжести или силы, вызванные дисбалансом. Технический результат: создание усовершенствованного способа для установки в магнитных подшипниках вращающегося вала, с помощью которого могут компенсироваться предопределенные силы, действующие на вал. 5 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к устройству магнитного подшипника с магнитным устройством, которое выполнено кольцеобразным и имеет центральную ось, для удержания вала с возможностью поворота посредством магнитных сил на центральной оси.
В обычных радиальных магнитных подшипниках, которые не имеют постоянно возбужденного предварительного намагничивания, известно применение обмотки трехфазного тока для генерации стационарного предварительного намагничивания. Для этого можно сослаться, например, на публикацию DE 2358527 А1. Представленный там активный магнитный подшипник оснащен вращательным приводом, состоящим из статора и ротора с воздушным зазором, контролируемым датчиками. На вращающееся магнитное поле, вырабатываемое за счет возбуждения обмоток статора трехфазным током, накладывается управляющее поле, которое генерируется обмотками в статоре посредством выходных токов усилителей.
Кроме того, публикация ЕР 2148104 А1 раскрывает магнитный радиальный подшипник, который имеет расположенные распределенным образом в окружном направлении электромагниты. Электромагниты имеют общую катушку для генерации предварительного намагничивания и многофазного вращающегося магнитного поля. Первые и вторые половины катушек соединены вместе в нулевой точке в соединении звездой. Обе нулевые точки предусмотрены для подключения к источнику питания постоянного тока для возбуждения предварительного намагничивания. Остальные концы катушек предусмотрены для параллельного подключения к соответствующему многофазному преобразователю-регулятору напряжения трехфазного (переменного) тока для возбуждения вращающегося магнитного поля.
Магнитные подшипники служат для установки вращающихся валов. При этом они должны компенсировать силу тяжести, которая статически действует на вал. Кроме того, они должны также компенсировать и другие предварительно определенные силы, например силы, образованные из-за дисбаланса. Для компенсации этих предопределенных сил и одновременно для центрирования вала необходимо соответствующим образом проектировать управление или регулирование магнитного подшипника, а также катушки магнитного подшипника.
Из публикации DE 2342767 А1 также известно типовое устройство магнитного подшипника. При этом, например, в постоянном магните чашеобразной формы размещен электромагнит, и оба они взаимодействуют с дополнительным подвешенным над ними постоянным магнитом.
В публикации WO 95/20260 А1 раскрыта индукционная машина со специальной обмоткой для комбинированной генерации крутящего момента и поперечного усилия. Подобная электрическая машина с установленным в магнитных подшипниках ротором также известна из публикации DE 9112183 U1.
Кроме того, в публикации US 3791704 А раскрыт магнитный подшипник, в котором постоянные магниты по своему положению регулируются с возможностью перестановки посредством винта.
Таким образом, задача настоящего изобретения состоит в том, чтобы предложить устройство магнитного подшипника, которое может быть изготовлено более экономичным образом. Кроме того, должен быть предложен усовершенствованный способ для установки в магнитных подшипниках вращающегося вала, с помощью которого могут компенсироваться предопределенные силы, действующие на вал.
В соответствии с изобретением эта задача решается устройством магнитного подшипника согласно пункту 1 формулы изобретения.
Предпочтительным образом, установка в подшипниках вала осуществляется с помощью двух различных независимых друг от друга устройств магнитных подшипников. Первое устройство магнитного подшипника обеспечивает то, что вал удерживается на центральной оси подшипника, а второе устройство магнитного подшипника, кроме того, ответственно за то, чтобы компенсировать предопределенную силу, действующую на вал. С помощью этого разделения функций первое устройство магнитного подшипника может быть спроектировано заметно меньшим, так как оно не должно дополнительно, например, постоянным образом также компенсировать силу тяжести. Тем самым, в частности, также можно уменьшать определение размеров электронных компонентов для устройства магнитного подшипника.
В одной форме выполнения второе магнитное устройство может иметь постоянные магниты. Это предпочтительно, в частности, в том случае, когда сила тяжести вала должна компенсироваться, так как тогда для этой компенсации не требуется электрический ток, так как необходимая магнитная сила прикладывается за счет одного или нескольких постоянных магнитов.
В особенности, радиальное расстояние между постоянным магнитом и центральной осью первого магнитного устройства для компенсации предопределенной силы может быть регулируемым посредством встроенного в устройство магнитного подшипника регулирующего устройства. Это было бы, например, предпочтительным в том случае, когда предопределенная сила может изменяться. Если, например, масса на валу или в подшипнике изменяется, то изменяется и подлежащая компенсации сила тяжести, так что предпочтительным является соответствующее регулирование. Если на валу или в подшипнике возникают дисбалансы, то также является предпочтительным эти дисбалансы посредством регулирования соответствующим образом компенсировать.
Второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству. Тем самым могут компенсироваться предопределенные силы во всех радиальных направлениях.
Специальным образом, первое магнитное устройство имеет первую систему катушек, а второе магнитное устройство - вторую систему катушек, а также каждая система катушек имеет, соответственно, несколько пар полюсов, и количество пар полюсов второй системы катушек точно на единицу меньше или больше, чем количество пар полюсов первой системы катушек. За счет этого усиливаются два полюса одного направления (например, северного полюса; один из первого магнитного устройства, а другой из второго магнитного устройства) на одной стороне устройства магнитного подшипника, а на противолежащей стороне ослабляются два полюса противоположного направления (северный полюс и южный полюс; один из первого магнитного устройства, а другой из второго магнитного устройства).
Тем самым можно целенаправленно генерировать силу в направлении усиливающихся полюсов.
Кроме того, устройство магнитного подшипника может иметь первый преобразователь переменного тока (инвертор) для управления первым магнитным устройством и второй преобразователь переменного тока для управления вторым магнитным устройством. Тем самым устройство подшипника может снабжаться, например, от системы постоянного напряжения, как это типично предоставляется в распоряжение в электрических транспортных средствах или гибридных транспортных средствах.
Если предопределенной силой является сила тяжести, то является предпочтительным, если второе магнитное устройство имеет второе регулирующее устройство, посредством которого второе магнитное устройство может регулироваться для компенсации действующей на вал силы тяжести. Тем самым больше не требуется, чтобы первое магнитное устройство компенсировало силу тяжести, так что оно может быть выполнено с соответственно уменьшенными размерами.
Если предопределенная сила вызывается из-за дисбаланса вала или на валу или в подшипнике, то второе магнитное устройство может иметь второе регулирующее устройство, с помощью которого второе магнитное устройство может регулироваться для компенсации предопределенной силы. Тем самым становится возможным компенсировать также динамические силы, которые могут действовать в различных радиальных направлениях.
Настоящее изобретение далее поясняется более подробно со ссылками на чертежи, на которых показано следующее:
Фиг. 1 - поперечное сечение магнитного подшипника с постоянными магнитами для компенсации силы тяжести;
Фиг. 2 - схема преобразователя переменного тока для работы устройства магнитного подшипника с двумя системами катушек; и
Фиг. 3 - конфигурация магнитного поля соответствующего изобретению магнитного подшипника.
Описанные ниже примеры выполнения представляют предпочтительные формы выполнения предложенного изобретения.
В примере на фиг. 1 представлено продольное сечение магнитного подшипника. Он имеет центральную ось 1, вокруг которой с возможностью поворота должен устанавливаться вал 2. Кроме того, магнитный подшипник имеет корпус 3, в котором размещены магнитные устройства для установки в подшипниках. Типичным образом подобный магнитный подшипник имеет первое магнитное устройство, которое служит для центрирования вала 2. Это первое магнитное устройство на фиг. 1 для наглядности чертежа не показано. Оно содержит систему катушек с несколькими катушками, которые размещены распределенным образом по окружности.
На вал действует сила тяжести, которая в представлении на фиг. 1 направлена вниз. Поэтому в устройстве магнитного подшипника, здесь внутри корпуса 3, предусмотрено дополнительное второе магнитное устройство, которое противодействует силе тяжести. В примере на фиг. 1 второе магнитное устройство имеет постоянный магнит 4. Постоянный магнит 4 может состоять из нескольких отдельных магнитов. Он имеет, при рассмотрении в осевом направлении, предпочтительно дугообразную форму, причем его расстояние от вала 2 предпочтительным образом повсюду одинаково.
Посредством центрального винта 5 магнитная сила, воздействующая на вал 2, может устанавливаться посредством изменения расстояния до вала. Если вместо постоянного магнита применяется электромагнит, то напряженность поля и тем самым сила притяжения дополнительно или альтернативно реализуется за счет изменения электрического тока.
Слева и справа от винта 5 могут предусматриваться направляющие штифты 6, чтобы направлять постоянный магнит 4, если его расстояние от вала 2 изменяется. Установка расстояния между постоянным магнитом 4 и валом 2 может осуществляться, например, с помощью динамометрического датчика 7. Если в примере на фиг. 1 устройство магнитного подшипника имеет улавливающий подшипник 8, то этот улавливающий подшипник 8 через динамометрический датчик 7 может опираться на корпус 3. Улавливающий подшипник 8 может представлять собой, например, свободный шарикоподшипник, который при отказе магнитного подшипника механически улавливает вал 2. Если теперь расстояние между постоянным магнитом 4 и валом 2 устанавливается таким образом, что сила тяжести вала 2 предпочтительно компенсируется, то динамометрический датчик 7 еще измеряет вес улавливающего подшипника 8. Тем самым можно оптимально установить компенсацию силы тяжести посредством второго магнитного устройства (здесь постоянного магнита 4).
Расстояние между постоянным магнитом 4 и валом 2 может сокращаться до тех пор, пока не будет достигнута фиксация без проворачивания вала 4. Тем самым магнит 4 может применяться как своего рода тормоз со стопорным устройством. В случае генераторов ветровой энергии можно, таким образом, проще выполнять ремонтные работы.
В одном выполнении магнитного подшипника магнит, как уже упоминалось, имеет кривизну, которая примерно соответствует внешнему радиусу вала 2. Так, воздушный зазор 9 между валом и магнитом может сокращаться, а эффективная сила магнита может повышаться.
В другом выполнении магнитного подшипника изменение расстояния 9 между магнитом 4 и валом 2 автоматизировано. Изменение расстояния может осуществляться управляемым или регулируемым образом. Параметром регулирования является, например, сила, измеряемая динамометрическим датчиком 7. На основе этой силы может выполняться регулирование, причем предпочтительно устанавливаются максимальное и минимальное значения силы. В контуре регулирования для регулирования силы, в котором расстояние от магнита 4 до вала 2 является параметром регулирования, может устанавливаться минимальное значение параметра регулирования, спадание ниже которого не допускается.
Если вал 2 должен иметь немагнитный материал, то вал может быть оснащен магнитной кольцевой насадкой (манжетой). Она может также выполняться из листов, чтобы минимизировать вихревые токи. Для минимизации потерь на вихревые токи также можно снабдить вал из магнитомягкого материала соответствующей манжетой.
Представленный на фиг. 1 подшипник может также, что не заявляется здесь, представлять собой механический подшипник с магнитным компенсационным блоком. В этом случае представленный на фиг. 1 подшипник 8 был бы обычным подшипником качения (например, шариковым или роликовым подшипником) и не потребовалось бы предусматривать первое магнитное устройство для центрирования вала. Даже при простом стационарном магнитном поле второго магнитного устройства (постоянного магнита 2), которое снижает действующую на подшипник весовую нагрузку, за счет этой разгрузки можно, таким образом, достичь увеличенного срока службы подшипника. Это может иметь преимущество в том случае, если замена подшипников является трудно реализуемой и сопряженной с высокими затратами (например, в морских ветроэнергоцентрах).
На основе фиг. 2 и 3 далее поясняется пример выполнения соответствующего изобретению устройства магнитного подшипника, в котором второе магнитное устройство для компенсации предопределенной силы, действующей на вал (например, силы тяжести или сил, вызванных дисбалансом), имеет электромагнит. Схема на фиг. 2 показывает возможную схемотехническую структуру подобного устройства магнитного подшипника. Устройство содержит для центрирования вала (на фиг. 2 не показано), например, трехфазную систему 10 катушек. Преобразователь 11 переменного тока питает эту первую систему 10 катушек. Кроме того, преобразователь 11 переменного тока имеет управляющее или регулирующее устройство, чтобы регулировать токи через первую систему 10 катушек таким образом, что предопределенная сила, воздействующая на вал, компенсируется посредством магнитного поля системы 10 катушек. Соответствующий контур регулирования, с помощью которого, например, измеряется сила, действующая на вал 2, или смещение вала относительно центральной оси 1 на фиг. 2 не показаны.
Устройство магнитного подшипника, кроме того, содержит второе магнитное устройство, которое содержит вторую систему 12 катушек. Обе системы 10 и 12 катушек являются независимыми одна от другой, и вторая система 12 катушек здесь также управляется от отдельного преобразователя 13 переменного тока. Этот преобразователь 13 переменного тока и здесь формирует трехфазный ток для трехфазной системы 12 катушек.
Снабжение обоих преобразователей 11 и 13 переменного тока осуществляется в данном примере через промежуточный контур 14. Промежуточный контур 14 запитывается, в свою очередь, от выпрямителя, который выпрямляет, например, однофазный переменный ток.
Также второй преобразователь 13 переменного тока может иметь устройство регулирования, с помощью которого можно регулировать вызванные второй системой катушек магнитные силы компенсации в зависимости от различных измеряемых параметров. Так для определения дисбаланса можно измерять ускорение или отклонение вала и подавать на регулятор, встроенный в преобразователь 13 переменного тока.
Регулятор во втором преобразователе 13 переменного тока может иметь меньшую точность регулирования, чем регулятор в первом преобразователе 11 переменного тока, так как последний должен обеспечивать точное центральное позиционирование ротора.
Со схемой согласно фиг. 2 можно реализовать магнитное поле, которое схематично показано на фиг. 3. При этом следует отметить, что первое магнитное устройство с первой системой 10 катушек и второе магнитное устройство со второй системой 12 катушек выполнены, соответственно, кольцеобразными и размещены концентрично. За счет этого магнитные поля обоих магнитных устройств перекрываются так, как показано на фиг. 3.
Пример согласно фиг. 3 также относится к первому магнитному устройству с восьмиполюсной обмоткой. То есть система 10 катушек имеет восемь распределенных по окружности полюсов и, тем самым, число р=4 пары полюсов. Второе магнитное устройство, напротив, имеет шестиполюсную обмотку. То есть вторая система 12 катушек имеет шесть полюсов, распределенных по окружности, и, тем самым, число р=3 пары полюсов. На фиг. 3 восемь полюсов первой системы катушек, которая отвечает за центрирование вала, обозначены большими буквами N и S. Шесть распределенных по окружности полюсов второй системы 12 катушек обозначены буквами n и s. В положении, соответствующем 12 часам, полюса обеих систем катушек перекрываются, как и в положении, соответствующем 6 часам. Если теперь обе системы 10 и 12 катушек обтекаются током так, что получаются представленные на фиг. 3 магнитные полюса, то магнитные поля в верхней половине кольцеобразной конфигурации магнитов усиливаются, так как, соответственно, северные полюса N, n и южные полюса S, s находятся очень близко. В противоположность этому, в нижней половине конфигурации магнитов, соответственно, южный полюс S, s и северный полюс N, n находятся очень близко. Из-за этого происходит ослабление соответствующего магнитного поля. К моменту времени при совокупности магнитов согласно фиг. 3, волна, пробегающая также внутри устройства магнитного подшипника, была бы отклонена вверх. Это могло бы служить для компенсации силы тяжести. Подобная совокупность магнитов может также динамически поворачиваться в самых различных направлениях, так что тем самым, например, может компенсироваться дисбаланс.
Если, например, во время функционирования тела вращения (вала с соответственно установленными компонентами) устанавливается дисбаланс, то этот дисбаланс может компенсироваться с помощью описанного устройства магнитного подшипника. В принципе, можно вместо второй системы 12 катушек, как отмечалось выше, использовать постоянный магнит 4, воздушный зазор которого по отношению к телу вращения может изменяться регулируемым образом.
В другой форме выполнения изобретения магнит может использоваться для того, чтобы, например, в целях тестирования возбуждать или ослаблять колебание в теле вращения.

Claims (10)

1. Устройство магнитного подшипника с
- первым магнитным устройством, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси,
- вторым магнитным устройством, которое является независимым от первого магнитного устройства, для компенсации предопределенной силы, которая воздействует на вал (2), причем второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству,
- первое магнитное устройство имеет первую систему (10) катушек, а второе магнитное устройство имеет вторую систему (12) катушек, каждая система катушек имеет соответственно множество пар полюсов, и количество пар полюсов второй системы (12) катушек точно на единицу меньше, чем количество пар полюсов первой системы (10) катушек,
- причем первое магнитное устройство служит для центрирования вала (2), и второе магнитное устройство противодействует силе тяжести.
2. Устройство магнитного подшипника по п. 1, причем второе магнитное устройство имеет постоянный магнит (4).
3. Устройство магнитного подшипника по п. 2, причем радиальное расстояние между постоянным магнитом (4) и центральной осью первого магнитного устройства для компенсации предопределенной силы является регулируемым за счет встроенного в устройство магнитного подшипника первого регулирующего устройства.
4. Устройство магнитного подшипника по любому из пп. 1-3, которое содержит первый преобразователь (11) переменного тока для управления первым магнитным устройством и второй преобразователь (13) переменного тока для управления вторым магнитным устройством.
5. Устройство магнитного подшипника по п. 1 или 2, причем предопределенной силой является сила тяжести, и второе магнитное устройство имеет второе регулирующее устройство, посредством которого второе магнитное устройство может регулироваться для компенсации действующей на вал (2) силы тяжести.
6. Устройство магнитного подшипника по п. 1 или 2, причем предопределенная сила вызывается из-за дисбаланса вала или на валу, и второе магнитное устройство имеет второе регулирующее устройство, с помощью которого второе магнитное устройство может регулироваться для компенсации предопределенной силы.
RU2014138426A 2012-02-24 2013-02-19 Магнитный подшипник с компенсацией силы RU2617911C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012202842.0 2012-02-24
DE102012202842A DE102012202842A1 (de) 2012-02-24 2012-02-24 Magnetische Lagerung mit Kraftkompensation
PCT/EP2013/053244 WO2013124259A1 (de) 2012-02-24 2013-02-19 Magnetische lagerung mit kraftkompensation

Publications (2)

Publication Number Publication Date
RU2014138426A RU2014138426A (ru) 2016-04-10
RU2617911C2 true RU2617911C2 (ru) 2017-04-28

Family

ID=47827153

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014138426A RU2617911C2 (ru) 2012-02-24 2013-02-19 Магнитный подшипник с компенсацией силы

Country Status (6)

Country Link
US (1) US9755477B2 (ru)
EP (1) EP2817526B1 (ru)
CN (1) CN104145126B (ru)
DE (1) DE102012202842A1 (ru)
RU (1) RU2617911C2 (ru)
WO (1) WO2013124259A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3057209B1 (de) * 2015-02-14 2019-07-17 Franke & Heydrich KG Antriebssystem in Form eines Torque-Motors
DE102015016055A1 (de) * 2015-12-11 2017-06-14 Saurer Germany Gmbh & Co. Kg Elektrischer Antrieb und Offenend-Spinneinrichtung mit dem elektrischen Antrieb
EP3255758A1 (de) 2016-06-07 2017-12-13 Siemens Aktiengesellschaft Läufer für eine reluktanzmaschine
GB2555471A (en) * 2016-10-31 2018-05-02 Onesubsea Ip Uk Ltd Magnetic preloading of bearings in rotating machines
JP7388934B2 (ja) * 2020-01-24 2023-11-29 三菱重工業株式会社 磁気ギアード回転電機
CN115411906B (zh) * 2022-08-02 2024-06-04 清华大学 直线电机装置及其重力补偿组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342767A1 (de) * 1973-08-24 1975-03-27 Cambridge Thermionic Corp Magnetlagerung
SU1711681A3 (ru) * 1988-03-12 1992-02-07 Форшунгсцентрум Юлих, Гмбх (Фирма) Магнитный опорный узел ротора с посто нными магнитами дл воспри ти радиальных усилий на опорах
US5939813A (en) * 1995-08-24 1999-08-17 Sulzer Electronics Ag Gap tube motor
US6043580A (en) * 1995-10-06 2000-03-28 Sulzer Turbo Ag Rotodynamic machine for the forwarding of a fluid
EP2148104A1 (de) * 2008-07-21 2010-01-27 Siemens Aktiengesellschaft Magnetisches Radiallager sowie magnetisches Lagersystem mit Stromversorgung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791704A (en) * 1971-08-06 1974-02-12 Cambridge Thermionic Corp Trimming apparatus for magnetic suspension systems
DE2358527C3 (de) 1973-11-20 1980-04-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Radiales aktives magnetisches Lager
DE2406790A1 (de) * 1974-02-09 1975-08-14 Licentia Gmbh Radiales aktives magnetisches lager mit drehantrieb
DE2457084A1 (de) 1974-02-09 1976-06-10 Licentia Gmbh Radiales aktives magnetisches lager
DE9112183U1 (de) * 1990-10-11 1992-02-13 Siemens AG, 8000 München Elektrische Maschine mit einem magnetisch gelagerten Läufer
WO1995020260A1 (de) * 1994-01-19 1995-07-27 Sulzer Electronics Ag Induktionsmaschine mit spezialwicklung zur kombinierten erzeugung eines drehmoments und einer querkraft in derselben
US6100618A (en) 1995-04-03 2000-08-08 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
DE10043302A1 (de) * 2000-09-02 2002-03-14 Forschungszentrum Juelich Gmbh Magnetlagerung
JP2003021140A (ja) * 2001-07-06 2003-01-24 Sankyo Seiki Mfg Co Ltd 制御型ラジアル磁気軸受
US6603230B1 (en) * 2002-01-30 2003-08-05 Honeywell International, Inc. Active magnetic bearing assembly using permanent magnet biased homopolar and reluctance centering effects
CN101696713B (zh) * 2009-10-15 2011-06-22 山东科技大学 一种永磁上吸下斥结构的低功耗内转子径向磁轴承

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342767A1 (de) * 1973-08-24 1975-03-27 Cambridge Thermionic Corp Magnetlagerung
SU1711681A3 (ru) * 1988-03-12 1992-02-07 Форшунгсцентрум Юлих, Гмбх (Фирма) Магнитный опорный узел ротора с посто нными магнитами дл воспри ти радиальных усилий на опорах
US5939813A (en) * 1995-08-24 1999-08-17 Sulzer Electronics Ag Gap tube motor
US6043580A (en) * 1995-10-06 2000-03-28 Sulzer Turbo Ag Rotodynamic machine for the forwarding of a fluid
EP2148104A1 (de) * 2008-07-21 2010-01-27 Siemens Aktiengesellschaft Magnetisches Radiallager sowie magnetisches Lagersystem mit Stromversorgung

Also Published As

Publication number Publication date
EP2817526A1 (de) 2014-12-31
DE102012202842A1 (de) 2013-08-29
EP2817526B1 (de) 2016-05-04
US20150048725A1 (en) 2015-02-19
CN104145126A (zh) 2014-11-12
WO2013124259A1 (de) 2013-08-29
CN104145126B (zh) 2016-08-24
US9755477B2 (en) 2017-09-05
RU2014138426A (ru) 2016-04-10

Similar Documents

Publication Publication Date Title
RU2617911C2 (ru) Магнитный подшипник с компенсацией силы
US10444106B2 (en) Balancing method for balancing at high speed a rotor of a rotary machine
Nussbaumer et al. Magnetically levitated slice motors—An overview
KR100403857B1 (ko) 자기부상모터
US20110163622A1 (en) Combination Radial/Axial Electromagnetic Actuator
NZ589730A (en) Compensating a non-uniform air gap of an electric machine by varying the flux density across the gap
US10044307B2 (en) Arrangement and method for force compensation in electrical machines
JP2000197392A (ja) 風力発電装置
EP3257139A1 (en) Power generator assembly for rotating applications
Sugimoto et al. A vibration reduction method of one-axis actively position regulated single-drive bearingless motor with repulsive passive magnetic bearings
KR101291577B1 (ko) 등속운동용 자기 베어링 시스템
JPH09308185A (ja) フライホイール装置
Asama et al. Suspension force investigation for consequent-pole and surface-mounted permanent magnet bearingless motors with concentrated winding
US6362549B1 (en) Magnetic bearing device
JP4081828B2 (ja) 同心多軸モータ
JP3710547B2 (ja) ディスク型磁気浮上回転機械
US20170133916A1 (en) Generator
CN104533946B (zh) 一种由轴向磁轴承实现转子五自由度悬浮结构
EP2694828B1 (en) A conical magnetic bearing
EP3714528B1 (en) Apparatus and method for modular stabilization of hubless rotors
JP2020010586A (ja) 可変磁束界磁型同期発電機を有する風力発電システム
WO2019102060A1 (en) Apparatus and method for multiple axis stabilization of hubless rotors
JP2014053979A (ja) 回転電機及び風力発電システム
CA3229699A1 (en) Concentrated-winding electrical machines with floating exciter
RU2003121103A (ru) Подшипник системы энергонезависимого активного магнитного подвеса ротора

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190220