RU2593799C2 - Контейнеры, изготовленные из переработанного алюминиевого лома методом ударного прессования - Google Patents

Контейнеры, изготовленные из переработанного алюминиевого лома методом ударного прессования Download PDF

Info

Publication number
RU2593799C2
RU2593799C2 RU2014115212/02A RU2014115212A RU2593799C2 RU 2593799 C2 RU2593799 C2 RU 2593799C2 RU 2014115212/02 A RU2014115212/02 A RU 2014115212/02A RU 2014115212 A RU2014115212 A RU 2014115212A RU 2593799 C2 RU2593799 C2 RU 2593799C2
Authority
RU
Russia
Prior art keywords
aluminum
alloy
aluminum alloy
workpiece
container
Prior art date
Application number
RU2014115212/02A
Other languages
English (en)
Other versions
RU2014115212A (ru
Inventor
Джон Л. САЙЛС
Сэмьюэл МЕЛАНКОН
Энтони ШАТЕ
Стенли М. ПЛАТЕК
Original Assignee
Болл Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47879502&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2593799(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Болл Корпорейшн filed Critical Болл Корпорейшн
Publication of RU2014115212A publication Critical patent/RU2014115212A/ru
Application granted granted Critical
Publication of RU2593799C2 publication Critical patent/RU2593799C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/18Making uncoated products by impact extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/38Details of the container body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extrusion Of Metal (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Изобретение относится к алюминиевым сплавам для использования в производственной технологии ударного прессования для создания формованных контейнеров и других изделий промышленного производства. Алюминиевый сплав для формования металлического контейнера ударным прессованием содержит, мас.%: как минимум около 97 алюминия, как минимум около 0,10 кремния, как минимум около 0,25 железа, как минимум около 0,05 меди, как минимум около 0,07 марганца, как минимум около 0,05 магния. Способ формования металлической заготовки из алюминиевого сплава для изготовления металлического контейнера ударным прессованием включает плавление первичного алюминия с материалом на основе алюминиевого лома в печи с косвенным нагревом для получения переработанного алюминиевого сплава, литье с образованием сляба с предварительно заданной толщиной, горячую прокатку для создания горячекатаной полосы, охлаждение в водном растворе, холодную прокатку, штамповку, отжиг и последующее охлаждение, окончательную отделку заготовки путем придания шероховатости наружной поверхности для создания высокой удельной поверхности. Изобретение направлено на создание легкого и прочного алюминиевого сплава для изготовления тары ударно-вытяжной штамповкой. 3 н. и 17 з.п. ф-лы, 2 пр., 9 табл., 8 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Эта заявка претендует на приоритет в соответствии с §119(е) Кодекса законов США 35 как Предварительная заявка на патент США, серийный номер 61/535,807, поданная 16 сентября 2011 г. и включенная в настоящий документ во всей своей полноте посредством ссылки.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение в основном относится к сплавам, которые, помимо прочих, созданы из переработанных материалов и используются в производстве алюминиевых контейнеров с применением технологического процесса, известного под названием «ударное прессование». В частности, настоящее изобретение имеет отношение к методам, устройствам и составам сплавов, применяемым при изготовлении заготовок, которые используются в производстве контейнеров и других изделий, создаваемых путем ударного прессования.
ПРЕДПОСЫЛКИ СОЗДАНИЯ
Ударное прессование - это технологический процесс, применяемый в производстве металлических контейнеров и других изделий уникальной формы. Данная продукция изготавливается, как правило, из размягченной металлической заготовки, в состав которой входит сталь, магний, медь, алюминий, олово или свинец. Контейнер образуется внутри ограничительной матрицы из холодной заготовки, с которой штамп входит в контакт. В результате силового воздействия штампа металлическая заготовка деформируется с внутренней стороны в области штампа, а также со стороны матрицы параллельно наружной поверхности. Когда начальная форма сформирована, контейнер или другое устройство извлекается из штампа обратным выталкивателем, после чего используются подрезные и фасонные резцы для создания предпочтительной формы устройства. Ударно-вытяжная штампованная тара традиционно включает в себя аэрозольные баллончики и другие емкости высокого давления, для которых имеет значение высокая прочность, и поэтому для их производства используются утолщенный лист металла и более тяжелые материалы, в отличие от обычной алюминиевой тары для напитков. Ввиду наличия требований к толщине и прочности этих контейнеров стоимость их изготовления может быть значительно выше по сравнению с обычными металлическими контейнерами для напитков, для которых обычно используется алюминий 3104. В обычном процессе ударного прессования используется почти чистый или «первичный» алюминий, что обусловлено его уникальными физическими характеристиками. Часто его называют алюминием «1070» или «1050», так как это по меньшей мере на 99,5% чистый алюминий.
Принимая во внимание трудности создания сложных форм из мягких металлов, таких как алюминий, для нормальной работы технологического процесса ударного прессования должны быть предусмотрены критические металлургические характеристики. Это подразумевает, помимо прочего, использование очень чистых, мягких алюминиевых сплавов, которые обычно содержат по меньшей мере около 99% чистого первичного алюминия. Ввиду наличия этого требования использование переработанных материалов, например сплавов на основе алюминия 3104, 3105 или 3004 из алюминиевого лома, не представлялось возможным для применения в технологическом процессе ударного прессования с целью изготовления аэрозольных баллончиков и емкостей для напитков.
Таким образом, возникает существенная потребность в поиске легкого и в то же время прочного алюминиевого сплава для создания ударно-вытяжной штампованной тары и других полезных изделий, а также в использовании алюминиевого лома, получаемого в ходе других производственных процессов. Это принесет пользу окружающей среде и позволит сохранить ценные природные ресурсы.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Таким образом, настоящее изобретение предполагает построение новой системы, устройства и методов применения таких материалов алюминиевого лома, как алюминий 3104, 3004, 3003, 3013, 3103 и 3105 в сочетании с другими металлическими материалами для создания уникального и нового алюминиевого сплава, который может использоваться в технологическом процессе ударного прессования для формирования различных формованных контейнеров и других изделий. Хотя в данном документе применяется обобщенное название «контейнеры», следует понимать, что текущий процесс и составы сплавов могут использоваться в процессе ударного прессования для создания любых видов формованных контейнеров и других изделий промышленного производства.
Поэтому в одном из вариантов осуществления настоящего изобретения для создания металлического контейнера в процессе ударного прессования новый сплав представлен в начальной форме металлической заготовки. Для создания нового повторно используемого сплава в одном из вариантов в состав сплава входит переработанный алюминий 3105 или 3104 и относительно чистый алюминий 1070. В одном варианте повторно используемый алюминиевый сплав, на 40% состоящий из сплава 3104, смешан со сплавом 1070, в состав которого входят следующие элементы:
приблизительно 98,47% алюминия;
приблизительно 0,15% кремния;
приблизительно 0,31% железа;
приблизительно 0,09% меди;
приблизительно 0,41% марганца;
приблизительно 0,49% магния;
приблизительно 0,05% цинка;
приблизительно 0,02% хрома;
и приблизительно 0,01% титана.
В соответствии с данными таблиц, формулами изобретения и подробным описанием ниже в данном документе представлены и рассмотрены различные составы алюминиевых сплавов. Для достижения удовлетворительных результатов в каждом сплаве количество каждого элемента, например кремния (Si), железа (Fe), меди (Cu) и т.д., может варьироваться приблизительно в пределах 15%. Кроме того, специалистам в данной области ясно, что нет необходимости в том, чтобы новые составы сплавов, описанные здесь и используемые в процессе ударного прессования, состояли полностью или частично из переработанных элементов и сплавов. Напротив, сплавы могут быть получены и смешаны из основных материалов, которые не были использованы или задействованы ранее в предыдущих продуктах или процессах.
В другом аспекте настоящего изобретения новый технологический процесс может быть предложен для образования уникальных сплавов и включает, помимо прочего, смешивание различных отходов сплавов с другими первичными металлами с целью создания уникального сплава, специально адаптированного для использования в процессе ударного прессования.
Еще в одном аспекте настоящего изобретения специальные инструменты, например подрезные резцы, и другие устройства, хорошо известные в области производства контейнеров, предполагается использовать с новыми сплавами и во взаимодействии с процессом ударного прессования. Кроме того, предполагается, что настоящее изобретение может применяться также в последующих новых технологиях производства, связанных с использованием новых составов сплавов.
В очередном аспекте настоящего изобретения представлен отдельно формованный контейнер или другое изделие, состоящие из одного или нескольких новых повторно используемых сплавов, предлагаемых и описанных в настоящем документе. Хотя эти контейнеры больше всего подходят для аэрозольных баллончиков и других типов емкостей высокого давления, описанные здесь составы и технологические процессы могут быть использованы для формованного металлического контейнера любого типа.
В различных вариантах осуществления настоящего изобретения предлагаются легкие контейнеры, в состав которых входят повторно используемые материалы. Предоставляется возможность реализовать по крайней мере одно из следующих преимуществ: отношение предела прочности к массе; давление разрыва; давление деформации; сопротивление вдавливанию; устойчивость к царапинам или истиранию; и/или уменьшение веса и содержания металла. Рассматриваются также возможности реализации других преимуществ. Кроме того, аспекты и отличительные признаки настоящего изобретения предполагают возможности для создания контейнеров с повышенной устойчивостью к обратному отжигу, что позволяет использовать материалы выстилания тары, имеющие более высокую температуру затвердевания. В различных вариантах осуществления предполагается применение сплава для изготовления ударно-вытяжной штампованной тары с повышенной устойчивостью к обратному отжигу, в результате чего улучшаются эксплуатационные показатели контейнеров, и для использования покрытий, требующих более высоких значений температуры затвердевания. Рассматриваются также конструкции контейнеров и чертежи инструментов для изготовления таких контейнеров.
В различных вариантах осуществления настоящего изобретения предусматривается использование алюминиевых заготовок и соответствующего повторно используемого материала, из которых изготавливается ударно-вытяжная штампованная тара. Переработанным материалом могут быть промышленные или потребительские отходы металлов, использование которых повышает общую эффективность продукта и технологического процесса. В значительной части существующего лома, например отходов при производстве кружек или чашек, содержится более высокая концентрация легирующих элементов по сравнению с основным сплавом 1070, используемым в настоящее время. Эти легирующие элементы, наряду с тем, что они предлагают различные ценовые и экологические преимущества, изменяют металлургические характеристики алюминия. Например, добавление этих элементов увеличивает диапазон температуры затвердевания. Таким образом, существуют проблемы, связанные с отливкой. При повышении предела текучести пластичность снижается, и возникают проблемы, связанные, к примеру, с прокаткой полосы. Известно, что характеристики рекристаллизации изменяются, и это влечет за собой необходимость в потенциальных изменениях условий термомеханической обработки, включая помимо прочего: температуру прокатки, вытяжку, температуру отжига, процесс отжига и/или продолжительность отжига. Повышенный предел прочности на разрыв и предел текучести увеличивают тоннажные нагрузки при штамповании заготовок.
Кроме того, шероховатость поверхности и смазка заготовок настоящего изобретения являются критически важным условием в связи с измененными металлургическими характеристиками. Тоннажные нагрузки на экструзионном прессе, как правило, выше при использовании заготовок, предусмотренных настоящим изобретением. В различных вариантах осуществления повышенная прочность материалов в настоящем изобретении позволяет достичь стандартных эксплуатационно-технических характеристик контейнеров при значительно меньшей массе контейнера и/или толщине его стенок.
Таким образом, в одном аспекте настоящего изобретения предлагается способ изготовления заготовки, которая используется в процессе ударного прессования, из материала на основе переработанного лома, и заключается этот метод в следующем:
предлагается металлический лом, содержащий по крайней мере один из алюминиевых сплавов 3104, а также 3004, 3003, 3013, 3103 и 3105;
как минимум один из указанных алюминиевых сплавов 3104, а также 3004, 3003, 3013, 3103 и 3104 смешивается, как упоминалось выше, с относительно чистым алюминиевым сплавом для создания повторно используемого алюминиевого сплава;
к указанному выше повторно используемому алюминиевому сплаву добавляется материал из борида титана;
после нагрева создается заготовка с указанным выше повторно используемым алюминиевым сплавом;
указанная выше заготовка из указанного выше повторно используемого алюминиевого сплава деформируется в предпочтительную форму в процессе ударного прессования для создания формованного контейнера.
Раздел «Краткое изложение сущности изобретения» ни в коей мере и ни в каком объеме не должен интерпретироваться как типичный образец описания настоящего изобретения. Описание настоящего изобретения изложено с разными уровнями детализации в разделе «Краткое изложение сущности изобретения», а также на прилагаемых чертежах и в разделе «Подробное описание изобретения», и никакие ограничения в отношении объема описания настоящего изобретения в разделе «Краткое изложение сущности изобретения» не планировались: ни путем включения, ни путем невключения элементов, компонентов и т.д. Дополнительные аспекты описания настоящего изобретения станут более очевидными в разделе «Подробное описание изобретения», в частности, когда они будут представлены вместе с чертежами.
Эти и другие преимущества будут очевидны из описания изобретения (изобретений), представленных в настоящем документе. Вышеописанные варианты, задачи и конфигурации не являются ни окончательными, ни исчерпывающими. Разумеется, возможны другие варианты осуществления изобретения при условии использования, по отдельности или в сочетании, одного или нескольких отличительных признаков, изложенных выше или подробно описанных ниже. В дальнейшем краткое изложение сущности изобретения ни в коей мере и ни в каком объеме не должно интерпретироваться как типичное представление настоящего изобретения. Настоящее изобретение изложено с разными уровнями детализации в кратком изложении сущности изобретения, а также на прилагаемых чертежах и в разделе подробного описания изобретения, и никакие ограничения в отношении объема настоящего изобретения в кратком изложении сущности изобретения не планировались: ни путем включения, ни путем невключения элементов, компонентов и т.д. Дополнительные аспекты настоящего изобретения станут более очевидными в разделе подробного описания изобретения, в частности, когда они будут представлены вместе с чертежами.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На рис. 1 изображен метод изготовления заготовки сплава, созданного из повторно используемого алюминиевого материала.
На рис. 2 изображен метод ударного прессования для использования вместе с повторно используемым алюминиевым материалом.
На рис .3 изображен процесс непрерывного отжига.
На рис. 4 изображено сравнение составов материала 1 и материала 2.
На рис. 5 изображены головка штампа и матрица для прессования.
На рис. 6 изображены значения сопротивления давлению деформации для контейнеров, изготовленных из материала 1 и материала 2.
На рис. 7 изображены значения сопротивления давлению разрыва для материала 1 и материала 2.
На рис. 8 изображены значения массы для образцов из материала 1 и материала 2.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение предлагает значительные преимущества в широком спектре различных видов деятельности. Намерение заявителя состоит в том, чтобы данная спецификация и прилагаемые здесь формулы изобретения по широте охвата отвечали объему и сущности описанного изобретения, несмотря на возможные языковые ограничения, которые продиктованы требованиями, имеющими отношение к конкретным описанным примерам. Для ознакомления специалистов в данной области техники, наиболее тесно связанных с настоящим изобретением, в этом документе описан предпочтительный вариант метода, иллюстрирующего наиболее оптимальный режим, предусмотренный для использования изобретения на практике, со ссылками и приложенными чертежами, которые составляют часть данной спецификации. Иллюстративный метод описан подробно, однако без намерения описать все формы и модификации, в которых изобретение может быть воплощено. Таким образом, описанные варианты осуществления являются иллюстративными, и, поскольку они будут очевидными для специалистов в данной области, могут быть модифицированы различными способами в рамках объема и сущности данного изобретения.
Хотя в последующем тексте дается подробное описание различных многочисленных вариантов осуществления, следует понимать, что правовая область описания определяется формулами изобретения, изложенными в конце этого описания. Подробное описание необходимо рассматривать только как пример - оно не включает все возможные варианты, поскольку описание каждого возможного варианта осуществления было бы практически нецелесообразным или даже невозможным. Многочисленные альтернативные варианты осуществления, которые могут быть реализованы с использованием как современной технологии, так и технологии, разработанной после даты регистрации данного патента, будут по-прежнему находиться в области применения формул изобретения.
В тех случаях когда какой-либо термин, примененный в формуле изобретения в конце данного патента, упоминается в этом патенте в соответствии с одним значением, это делается для ясности и таким образом, чтобы не запутать читателя, но это не предполагает, что такой термин формулы изобретения косвенно или иным образом ограничивается этим единственным значением. И наконец, если элемент формулы изобретения не определен употреблением слова «означает» и в его функции отсутствует подробное перечисление какой-либо структуры, это не предполагает, что объем любого элемента формулы изобретения следует интерпретировать на основании применимости шестого пункта §112 Кодекса законов США 35.
Как указано в тексте и прилагаемых таблицах, различные алюминиевые сплавы определяются многочисленными обозначениями, например 1070 или 3104. Как известно специалистам в данной области, сплав алюминия обозначается в соответствии с его основными легирующими элементами, обычно с помощью четырехзначной маркировки. Первая из этих четырех цифр соответствует группе алюминиевых сплавов, в которых используется основной легирующий элемент, например 2XXX для меди, 3XXX для марганца, 4XXX для кремния и т.д. Таким образом, любые ссылки на различные алюминиевые сплавы соответствуют общепринятым обозначениям в области производства алюминия и штампованной тары.
Обратимся теперь к следующим таблицам, рисункам и фотографиям; новый повторно используемый алюминиевый сплав предназначен для металлических заготовок, из которых в процессе ударного прессования изготавливаются формованные металлические контейнеры и другие изделия. В некоторых случаях в этих чертежах, фотографиях и диаграммах могут быть пропущены детали, которые не являются необходимыми для понимания изобретения или затрудняют восприятие других деталей. Конечно, следует понимать, что изобретение не ограничено конкретными вариантами осуществления, показанными на чертежах.
Во многих диаграммах и примерах, приведенных ниже, для идентификации конкретного сплава может использоваться термин «ReAl» или «RE» и т.д. Термин «ReAl» или « RE» означает просто металл, содержащий переработанный алюминий. В некоторых случаях алюминиевый сплав 3104, хорошо известный в этой области, перерабатывают вместе с другим материалом, как правило, с алюминиевым сплавом 1070. Цифра и знак процента после «ReAl» показывают, сколько процентов переработанного сплава 3104 в сочетании со сплавом 1070 использовалось для создания нового сплава, который применялся в процессе ударного прессования. Например, ReAl 3104 30% или RE 3104-30 означает, что для получения нового сплава, имеющего в своем металлургическом составе кремний (Si), железо (Fe), коперниций (Cn) и т.д., указанные в диаграммах, были объединены 30% сплава 3104 и 70% относительно чистого алюминиевого сплава 1070. В других диаграммах указывается число «3105» и процентное значение в представленном сплаве, например 20% или 40%. Подобно сплаву 3104 термин «3105» обозначает сплав алюминия, который хорошо известен специалистам в этой области; значения 20% или 40% указывают на количество этого сплава, которое смешано с относительно чистым алюминиевым сплавом 1070 для получения нового сплава, из которого изготавливается металлическая заготовка и в процессе ударного прессования создается контейнер, например аэрозольный баллончик. Хотя это не указано в таблице ниже, в процессе создания новых сплавов можно также использовать материал 3004 на основе переработанного лома или не скраповые слитки алюминия 3004. В таблице 1 приведен пример различных составов сплавов, описанных в настоящем документе. Все значения, указанные в таблице, являются приблизительными.
Figure 00000001
В таблице 2 показаны составы повторно используемых материалов для заготовок, в которых чистый алюминий - это сплав алюминия 1070, а материал на основе переработанного лома - это материал 3104 в разных пропорциях. Все значения, указанные в таблице, являются приблизительными.
Figure 00000002
В таблице 3 показаны составы повторно используемых материалов для заготовок, в которых чистый алюминий - это сплав алюминия 1070, а материал на основе переработанного лома - это материал 3105 в разных пропорциях. Все значения, указанные в таблице, являются приблизительными.
Figure 00000003
В таблице 4 показаны составы повторно используемых материалов для заготовок, в которых чистый алюминий - это сплав алюминия 1070, а материал на основе переработанного лома - это материал 3004 в разных пропорциях. Все значения, указанные в таблице, являются приблизительными.
Figure 00000004
На рис. 1 изображен метод для изготовления сплава, созданного из переработанного алюминия 100. Переработанный алюминий обрабатывается для создания заготовок, которые можно использовать в процессе ударного прессования. После создания заготовок их обрабатывают для изготовления контейнера, как показано на рисунке 2, который будет подробно рассмотрен далее.
Одним аспектом настоящего изобретения является метод изготовления повторно используемого алюминиевого материала. Материал заготовки из повторно используемого алюминия может включать в себя алюминий из переработанного лома и чистый алюминий, которые вместе расплавляются и отливаются для создания новой заготовки из переработанного алюминия. Подходящий материал из переработанного алюминия может содержать различные сплавы 3XXX, особенно 3005, 3104, 3105, 3103, 3013 и 3003. Для получения целевого химического состава могут использоваться и другие сплавы в небольших количествах. Сплав из лома 3104 обычно получают с заводов, выпускающих тару для напитков. Источником для сплава 3005 является, как правило, автомобильная промышленность. Чистый алюминий может включать в себя алюминиевый сплав 1070 или 1050. Для получения легирующего элемента материала ReAl могут использоваться разнообразные источники получения лома алюминия.
Для получения целевого химического состава ReAl могут использоваться чистые алюминиевые сплавы, например 1050 или 1070, с элементарными добавками.
Плавление
Брикеты, содержащие алюминий из переработанного лома, расплавляются для облегчения их смешивания с расплавленным чистым алюминием 102. Переработанный лом алюминия может содержать сплавы алюминия 3005, 3104, 3105, 3003, 3013 или 3103. Когда пламя печи касается непосредственно переработанного алюминия, небольшое количество поверхностного алюминия окисляется. При увеличенной площади поверхности, например в прессованных брикетах лома, количество окисленного материала и потери при плавлении будут выше, чем в брикетах имеющих небольшую площадь поверхности. Поэтому вместо печей с прямым ударом пламени лучше использовать плавильные печи с косвенным нагревом материалов.
В частности, плавка может осуществляться в печах нескольких типов.
Например, отражательную печь 112 можно использовать, как правило, для выпуска обычных заготовок, применяемых в ударном прессовании. Алюминий подвергается воздействию прямого удара пламени. При плавлении прессованных брикетов из тонкого алюминия потери в результате плавления могут быть, скорее всего, высокими. Таким образом, отражательная печь 112 не является предпочтительным способом получения заготовок ReAl из-за высоких потерь при плавлении.
Вообще, лучше использовать печь с технологией косвенного нагрева материалов. К печам с косвенным нагревом материалов относятся, помимо прочего, печи с горном бокового дутья, а также вращающиеся печи. Таким образом, в качестве печи можно использовать печь с горном бокового дутья. Алюминий помещается в печь с горном бокового дутья, и газовые горелки отдают тепло расплавленному металлу. Затем расплавленный металл используется для плавления лома. В печи с горном бокового дутья установлена крыльчатка, которая прокачивает плавильную ванну через боковую камеру. Лом алюминия подается в боковую камеру со скоростью, позволяющей основной массе материала расплавиться до того момента, когда она будет подана в область печи с горном бокового дутья, в которой сможет быть подвергнута воздействию прямого удара пламени. Использование печи 110 с горном бокового дутья - предпочтительный способ для плавки металлического лома при производстве материала ReAl.
Как вариант, можно использовать вращающуюся печь 104. Вращающаяся печь 104 похожа на бетономешалку. Лом алюминия переворачивается в одной области вращающегося цилиндра. Пламя направлено в сторону от этой области и нагревает огнеупорную футеровку. Горячая футеровка вращается, соприкасается с алюминием и передает ему энергию. Вращающаяся печь 104 - предпочтительный способ для плавки лома при производстве материала ReAl. Если используется вращающаяся печь 104 или печь 110 с горном бокового дутья, на их выходе лом может быть расплавлен и разлит в слитки, чушки или болванки 106 отдельно от производства заготовок. Эти слитки, чушки или болванки можно плавить во второй отражательной печи 108 с минимальными потерями при плавлении, так как площадь поверхности будет относительно мала.
Если в процессе плавки имеют место повышенные потери при плавлении, необходимо удалить из ванны шлак.
В одном из вариантов осуществления борид титана (TiBor) 114 добавляется в расплавленную смесь алюминиевых сплавов непосредственно перед разливкой, как правило, путем непрерывной подачи алюминия вместе с дисперсными частицами борида титана. Как вариант, TiBor можно добавлять в сплав из алюминиевого лома, пока он (сплав) находится в печи. Во время обработки TiBor может улучшать качество гранулярной структуры материала ReAl. Концентрация TiBor может быть в пределах приблизительно от 0,5 кг до 1,3 кг на метрическую тонну. В некоторых вариантах осуществления концентрация TiBor может быть на уровне примерно 0,6 кг на метрическую тонну.
Отливка
После процесса плавления расплавленный сплав разливают в формы. В процессе отливки с помощью одного из нескольких методов литья расплавленный сплав затвердевает в форме неразрезной плиты любого подходящего размера. В некоторых вариантах осуществления настоящего изобретения получаются слитки примерно 8-14 дюймов в ширину и толщиной примерно 0,75-1,5 дюйма. Скорость отливки должна быть в диапазоне примерно 0,5-0,8 метрической тонны/час/дюйм ширины. В некоторых вариантах осуществления скорость отливки может быть в диапазоне примерно 0,62 метрической тонны/час/дюйм ширины.
Литье может выполняться различными методами, которые обуславливают выбор, например, колесно-ленточной литейной машины 118, литейной машины Hazelett 116, двухвалковой литейной машины 120 и/или блочной литейной машины 122. В колесно-ленточной литейной машине 118 расплавленный алюминий в процессе затвердевания выдерживается между колесом с ребордой и толстой металлической лентой. Лента обертывает колесо примерно на 180°. Для оптимизации и контроля отвода тепла как колесо, так и лента охлаждаются водой с обратной стороны. Как правило, колесно-ленточная литейная машина используется для выпуска заготовок 1070 и 1050. Однако негибкая толстая стальная лента не в состоянии отклоняться и поддерживать контакт со слябом, который дает усадку при кристаллизации. Этот эффект увеличивается при использовании сплавов ReAl, так как кристаллизация происходит в более широком диапазоне температур, в отличие от большинства чистых сплавов, например 1050 и 1070.
В качестве альтернативы можно использовать литейную машину Hazelett 116. При использовании этой машины расплавленный алюминий во время затвердевания удерживается между двумя гибкими стальными лентами. Стальные блоки кристаллизатора установлены цепочкой и образуют стороны литейной формы. Параллельные ленты имеют небольшой наклон вниз, чтобы обеспечить подачу расплавленного алюминия в систему за счет силы тяжести. Для оптимизации и контроля отвода тепла на обратную сторону обеих лент распыляется вода под высоким давлением. Эта вода под высоким давлением также отклоняет ленту для удержания ее в контакте с затвердевающим, сжимающимся слябом. Отклонение ленты позволяет выпускать с помощью литейной машины Hazelett 116 широкий спектр сплавов из алюминия (и других материалов). Как правило, технологический процесс литейной машины Hazelett используется при производстве алюминиевой полосы для строительства, а также может применяться при изготовлении заготовок для ударного прессования.
Альтернативный вариант - использование двухвалковой литейной машины 120. При использовании вышеназванной машины расплавленный алюминий во время затвердевания удерживается между двумя валками противоположного вращения, которые охлаждаются водой. Этот метод обеспечивает достаточно небольшую зону затвердевания и поэтому ограничивается производством относительно тонких «слябов». При такой толщине термин «полоса», вероятно, является более точным, чем сляб. Эта технология используется обычно в производстве алюминиевой фольги.
При другом подходе можно использовать блочную литейную машину 122. При использовании указанной литейной машины расплавленный алюминий во время затвердевания удерживается между серией установленных цепочкой стальных блоков и образует стороны литейной формы. Для оптимизации и контроля отвода тепла блоки охлаждаются водой.
На компоненты литейной машины, которые соприкасаются со слябом можно наносить смазочный порошок. Точнее говоря, в случае необходимости можно использовать графитовый или кварцевый порошок. Во время и по завершении литья особенно важно контролировать температуру. Независимо от используемого технологического процесса литья, во время затвердевания необходимо тщательно контролировать скорость охлаждения и температурный профиль сляба. Для достижения этой цели колесно-ленточная литейная машина 118 уменьшает интенсивность потока охлаждающей воды. В литейной машине Hazelett 116 для точного изменения температуры может контролироваться поток воды для общего управления и поток газа на слябы. Кроме того, важно контролировать условия окружающей среды, особенно поток воздуха рядом с литейной машиной. Управление потоком воздуха имеет особое значение, когда для изменения температуры сляба используется поток газа.
Температура сляба на выходе из литейной машины также должна тщательно контролироваться. Температура сляба на выходе из литейной машины 116 должна быть выше 520°C, однако максимальная температура любой части сляба, выходящего из литейной машины, должна быть меньше 582°C.
Прокатка
После отливки толщина сляба уменьшается примерно с 28-35 мм до заданной толщины в диапазоне примерно 3-14 мм для горячей и холодной прокатки 124/126. Относительное уменьшение толщины для горячей прокатки 124/126 и холодной прокатки 130/132 существенно влияет на металлургическую гранулярную структуру в готовом изделии. Толщина сляба при горячей прокатке может меняться. В некоторых вариантах осуществления толщина сляба после горячей прокатки 124/126 составляет примерно 6-18 мм. Для достижения необходимой толщины сляб пропускается между двумя валками противоположного вращения с зазором, который меньше входной толщины, пока у сляба сохраняется высокая температура в диапазоне 450-550°C. Прокатные станы имеют две распространенные конфигурации. Наиболее распространенной конфигурацией является двухвалковый стан, содержащий только два валка противоположного вращения, которые контактируют со слябом/полосой. Для получения желаемой толщины могут быть использованы два прокатных стана. Однако может использоваться и другое количество прокатных станов: 1, 3 и т.д. По выбору улучшенная конструкция может включать в себя четырехвалковый стан, состоящий из двух валков противоположного вращения, рабочих валков, опорой которым служат два больших валка. При желании может использоваться дополнительный стан горячей прокатки 126. Как вариант, может быть использовано несколько станов горячей прокатки, а слябы для достижения необходимой толщины могут повторно проходить горячую прокатку 124/126.
Во время горячей прокатки 124/126 материал сплава может динамически проходить рекристаллизацию и/или регенерацию. Такая рекристаллизация и/или регенерация являются самоотжиговым процессом, который происходит в слябе/полосе за счет тепла. Температуры, при которых может возникать динамическая рекристаллизация и/или регенерация, зависят от содержания легирующих элементов и, следовательно, могут различаться для сплавов 1050/1070 и ReAl. В большинстве случаев температура динамической рекристаллизации и/или регенерации для материала ReAl составляет примерно 350-550°C.
После горячей прокатки 124/126 горячекатаную полосу погружают в закалочную ванну 128, в которой находится вода, понижающая температуру полосы примерно до условий окружающей среды. После охлаждения полосу подвергают холодной прокатке 130/132. Полоса, у которой может быть температура окружающей среды, пропускается между двумя валками противоположного вращения с зазором, который меньше входной толщины. Как правило, для получения желаемой толщины могут быть использованы два прокатных стана. Однако может использоваться и другое количество прокатных станов: 1, 3 и т.д. При комнатной температуре холоднокатаная полоса не рекристаллизуется. Такая холодная обработка приводит к увеличению предела текучести и уменьшению пластичности материала. Станы холодной прокатки 130/132 могут иметь двухвалковые и четырехвалковые конфигурации. Четырехвалковая конфигурация позволяет лучше контролировать толщину и поэтому является гораздо более предпочтительной для холодной прокатки при получении конечной толщины материала. При желании может использоваться дополнительный стан холодной прокатки 132. Как вариант, может быть использовано несколько станов холодной прокатки, а слябы для достижения необходимой толщины могут повторно проходить холодную прокатку 130/132.
Относительные величины уменьшения толщины для горячей прокатки 124/126 и холодной прокатки 130/132 имеют большое влияние на кинетику регенерации и рекристаллизации во время отжига. Оптимальное соотношение меняется в зависимости от содержания легирующих элементов, производственной мощности прокатного стана и конечной толщины полосы.
Внутреннее трение в полосе вызывает повышение температуры во время холодной прокатки 130/132, в результате чего полоса нагревается. Таким образом, полосы могут быть подвергнуты охлаждению до температуры окружающей среды 134 примерно от 15 до 50°C (предпочтительно 25°C) в течение примерно 4-8 часов после холодной прокатки 130/132. Как вариант, охлажденные полосы можно хранить на складе, чтобы дать им остыть до температуры окружающей среды.
Охлажденные полосы подвергают штамповке 136. Охлажденную полосу разматывают и подают в блок штампов, установленный в прессе. Блок штампов вырезает заготовки круглой формы из полосы, хотя следует понимать, что может быть использована любая форма заготовки, например треугольник, овал, круг, квадрат, ромб, прямоугольник, пятиугольник и т.п., в зависимости от формы матрицы и/или конечного продукта. Для контроля задиров штамповочный инструмент может быть модифицирован. Например, его можно модифицировать так, чтобы фаска матрицы была приблизительно от 0,039 дюйма с углом 25° до 0,050 дюйма с углом 29°.
Отжиг
При желании штампованные заготовки нагревают для рекристаллизации зерен и получения идеально однородной структуры равноосных зерен. Этот процесс уменьшает прочность материала и повышает его пластичность. Отжиг может производиться в камерной печи 138 и/или непрерывным способом 140.
При отжиге штампованных заготовок в камерной печи 138 их можно свободно помещать в удерживающее приспособление, например в корзину из проволочной сетки. Внутри печи несколько удерживающих приспособлений могут быть расположены одно над другим. После закрытия дверцы печи заготовки можно нагреть до заданной температуры и подержать внутри в течение определенного времени. Заданная температура печи составляет предпочтительно примерно 470-600°C, заготовка выдерживается в течение примерно 5-9 часов, однако время отжига и температура тесно связаны между собой, и на них существенно влияет содержание легирующих элементов заготовок. Печь может быть выключена, и заготовки будут постепенно охлаждаться в печи. Ввиду большой массы штампованных заготовок в печи в значительной мере может возникать нестабильность температуры заготовок. Заготовки, расположенные со внешней стороны комплекта, быстрее нагреваются до высокой температуры. Центральные заготовки нагреваются медленнее и никогда не достигают максимальной температуры, в отличие от периферийных заготовок. Кроме того, воздушная сушка заготовок может приводить к образованию оксидов. Для предотвращения или уменьшения образования оксидов в печи может циркулировать инертный газ до тех пор, пока печь нагрета и/или охлаждается. Как вариант, отжиг в камерной печи 138 можно производить в среде инертного газа или вакууме.
В качестве альтернативы штампованные заготовки можно подвергать отжигу непрерывным способом 140. В этом случае заготовки свободно распределяются на сетчатой металлической ленте, подаваемой через многозонную печь. Штампованные заготовки быстро нагревают до пиковой температуры металла, а затем быстро охлаждают. Данная операция может выполняться в воздушной среде. Пиковая температура металла находится в диапазоне примерно от 450 до 570°C. Эта температура влияет на конечные металлургические характеристики. На пиковую температуру для оптимальных металлургических характеристик оказывает влияние содержание легирующих элементов. Непрерывный отжиг 140 - это предпочтительный процесс для производства заготовок ReAl. Непрерывный отжиг 140 обеспечивает два преимущества по сравнению с отжигом в камерной печи. Во-первых, при уменьшении времени воздействия повышенной температуры уменьшается образование оксида на поверхности заготовки. Оксиды алюминия являются проблемой, однако оксиды магния представляют собой главную проблему из-за своих чрезвычайно абразивных свойств. Увеличение содержания оксида магния на поверхности штампованных заготовок может привести к чрезмерным царапинам в процессе ударного прессования. Во время продолжительных рабочих циклов такие царапины являются неприемлемым дефектом качества. Во-вторых, точно контролируемый и однородный тепловой цикл, включая быстрый нагрев, ограничения для времени нахождения в условиях повышенной температуры и быстрое охлаждение, применимые к непрерывному отжигу 140, обеспечивают в результате улучшенную и более равномерно распределенную металлургическую гранулярную структуру. Это в свою очередь позволяет производить ударно-вытяжную штампованную тару повышенной прочности. Усиление прочности позволяет облегчить ударно-вытяжную штампованную тару. На рис. 3 показаны температурные кривые для процесса непрерывного отжига.
Окончательная отделка
По желанию поверхность штампованных заготовок может подвергаться отделке путем придания ей шероховатости. Для окончательной отделки штампованных заготовок могут применяться различные методы. В одном из вариантов осуществления, может быть использован процесс обработки в поворотном барабане 142. В барабан или другой контейнер, который вращается и/или подвергается вибрации, помещают большое число штампованных заготовок. Когда заготовки ударяются о другие заготовки, на одной или обеих заготовках могут оставаться вмятины. Целью придания шероховатости поверхности является увеличение высокой удельной поверхности штампованной заготовки и создание углублений для удержания смазочного материала. Большие грани штампованных заготовок также могут быть обработаны вместе с поверхностями на срезе.
В другом варианте может применяться процесс дробеструйной обработки 144. В процессе дробеструйной обработки 144 большое количество заготовок размещается в закрытом барабане и подвергается ударному воздействию дроби из алюминия или других материалов. От ударов на поверхности заготовок образуются небольшие углубления. Заготовки немного поворачивают, чтобы подвергнуть ударам алюминиевой дроби все поверхности заготовки.
Дробеструйная обработка 144 является предпочтительной в процессе изготовления заготовок из ReAl, и было продемонстрировано, что агрессивная дробеструйная обработка является наиболее эффективным методом удаления оксидов с поверхностей заготовок. Такое удаление поверхностной окиси имеет особое значение при удалении оксида магния, который становится причиной возникновения царапин на ударно-вытяжной штампованной таре, в случае если его удаление с заготовки не было выполнено.
Обработка заготовок
На рис. 2 изображен метод изготовления металлического контейнера 200 с помощью заготовки, выполненной из материала на основе переработанного лома, как показано на рис. 1.
Процесс смазки заготовки 202 может применяться там, где заготовки обрабатывают в поворотном барабане вместе с порошкообразным смазочным материалом. Для этого может использоваться любой подходящий смазочный материал, например Sapilub GR8. Обычно на 100 кг заготовок используется примерно 100 г смазочного материала. Обработка заготовок в поворотном барабане позволяет наносить на них смазочный материал. Если заготовки шероховатые, обработка их в поворотном барабане заставляет смазочный материал попадать в углубления, созданные во время чистовой обработки.
После смазки 202 заготовки штампуют с применением процесса ударного прессования 204. В частности, смазанные заготовки помещают в матрицу из цементированного карбида точной формы. На смазанную заготовку воздействуют стальным штампом также точной формы, и алюминий выдавливается в обратном направлении от матрицы. Формы инструмента обусловлены толщиной стенки выдавленной части трубки контейнера. Хотя этот процесс широко известен как штамповка выдавливанием, наряду с ним, как известно специалистам в этой области, может использоваться процесс прессования методом прямого выдавливания или комбинированного выдавливания.
При желании может быть выполнено сглаживание стенок 206. Контейнер можно поместить между штампом и протяжным штампом с отрицательным зазором. Сглаживание стенок 206 делает стенку трубки тоньше. Повышенная прочность сплава ReAl увеличивает отклонение матрицы. Поэтому для достижения желаемой толщины стенок требуется матрица меньшего размера. Этот дополнительный процесс оптимизирует распределение материала и позволяет получить более длинные трубки.
По желанию, после ударного прессования 204 или сглаживания стенок 206 дно в основании контейнера может быть выполнено в куполообразной форме 208. Полный или частичный купол может быть сформирован либо в конце обработки сглаживанием, либо при обрезке.
После формирования купола контейнер очищают щеткой 210 для удаления поверхностных дефектов. Вращающийся контейнер очищается качающейся металлической или пластмассовой щеткой (как правило, из нейлона). Кроме того, очистка щеткой 210 может выполняться в том случае, если контейнер подвергался сглаживанию стенок 206 и/или формированию купола 208.
После очистки 210 контейнер промывают 212 в растворе каустической соды для удаления смазочных материалов и других загрязнений. Раствор для промывания 212 может включать гидроксид натрия или, как вариант, гидроксид калия, или другие подобные химические вещества, известные специалистам в этой области.
Покрытия
На внутренние стенки контейнера, как правило, через трубку наносится покрытие 214a. В одном из вариантов осуществления может использоваться эпоксидное покрытие. Покрытие может быть нанесено с помощью любого подходящего метода, включая помимо прочего распыление, окрашивание, нанесение кистью, окунание или нечто подобное. Покрытие просушивают при температуре около 200-250°C в течение примерно 5-15 минут.
Грунтовое покрытие 216a, как правило, наносится на внешнюю поверхность контейнера. Грунтовое покрытие может быть белым или прозрачным. Покрытие может быть нанесено с помощью любого подходящего метода, включая, помимо прочего, распыление, окрашивание, нанесение кистью, окунание или нечто подобное. Покрытие просушивают (216b) при температуре около 110-180°C в течение примерно 5-15 минут.
Краски (218a) для декоративной печати также можно наносить на поверхность контейнера с грунтовым покрытием. Краска для декоративной печати может быть нанесена с помощью любого подходящего метода, включая, помимо прочего, распыление, окрашивание, нанесение кистью, окунание, печать или нечто подобное. Краски для декоративной печати просушивают при температуре около 120-180°C в течение примерно 5-15 минут.
Прозрачный лак 220a наносится на трубку. Лак может быть нанесен с помощью любого подходящего метода, включая, помимо прочего, распыление, окрашивание, нанесение кистью, окунание или нечто подобное. Лак просушивают (220b) при температуре около 150-200°C в течение примерно 5-15 минут.
Формирование купола
По желанию купол может быть сформирован 222 или выполнен в основании контейнера. Формирование купола 222 может быть выполнено на этом этапе для того, чтобы обеспечить декорирование вертикальной поверхности контейнера. Преимущество формирования куполообразной формы в два этапа (перед обрезкой 230 и перед сужением 224) заключается в том, что грунтовка распространяется на вертикальную поверхность готовой банки. Однако этот метод может привести к увеличению скорости растрескивания внутреннего покрытия. Эту проблему можно разрешить за счет уменьшения конечной глубины купола до сужения.
Сужение и придание формы
В ряде последовательных операций диаметр отверстия контейнера может быть уменьшен благодаря процессу сужения 224. Количество шагов сужения зависит от уменьшения диаметра контейнера и формы шейки. Для материала из сплава ReAl, как правило, используется более шагов сужения. Более того, при изменении содержания легирующих элементов могут возникать некоторые модификации. Например, в одной модификации условия требуют, чтобы в определенных случаях центральные направляющие сужения были изменены. Более широкие центральные направляющие должны устанавливаться для облегченных контейнеров из материала ReAl, которые в верхней части тоньше.
По желанию может быть сформирована оболочка контейнера 226. Придание формы 228 может происходить на различных этапах. Для сплава ReAl, по сравнению с традиционным процессом ударного прессования, могут требоваться дополнительные этапы придания формы. Подобно сужению, при формировании контейнеров из сплава ReAl должны использоваться шаги меньшего масштаба.
Рельефное тиснение
По желанию инструмент может перемещаться перпендикулярно оси контейнера и оставлять на нем 228 рельефное тиснение. Усилие, прилагаемое во время тиснения 228, при использовании материала КеА1 может быть выше, чем при использовании традиционного материала для ударного прессования, что является результатом формирования более высокой прочности материала по сравнению со сплавами 1070 или 1050.
Обрезка и скручивание
При деформации металла во время сужения 224 могут образовываться неравномерные, нагартованные края. Таким образом, обрезка края 230 выполняется до его скручивания. Ввиду различия анизотропных свойств ReAl в другом профиле во время сужения 224 утолщается. Таким образом, при сильном сужении заготовок и высоком содержании легирующих элементов может возникнуть необходимость в дополнительной обрезке.
Открытый край контейнера скручивают в кольцо 232, чтобы создать монтажную поверхность для аэрозольного клапана. В бутылках для напитков загиб может быть предусмотрен для укупоривания кроненкоркой.
По желанию в верхней части кольца возможна обработка небольшого количества материала, в результате чего образуется так называемая штампованная горловина 234. Штампованная горловина 234 может требоваться для установки определенных аэрозольных клапанов.
Проверка и упаковка
При желании контейнеры могут быть подвергнуты проверке 235. Этапы проверки могут включать в себя испытания в камере, испытания под давлением или другое соответствующее испытание.
Контейнеры можно упаковывать. По желанию контейнеры могут быть объединены в упаковку 238. При объединении в упаковку 238 контейнеры могут быть расположены по группам. Размер группы может меняться и в некоторых вариантах осуществления составлять примерно 100 контейнеров. Размер группы может зависеть от диаметра контейнеров. Группы могут быть объединены пластиковыми лентами или другими аналогичными известными способами. Особое внимание в контейнерах ReAl следует уделять контролю натяжения лент, чтобы предотвратить появление вмятин вследствие сжатия в местах соприкосновения с лентами.
При альтернативном способе упаковки контейнеры размещают на паллетах 240 подобно таре для напитков.
ПРИМЕРЫ
Заготовки, содержащие 25% материала ReAl 3104, проходили тестирование с использованием двух материалов. В материале 1 использовались переплавленные вторичные слитки (ПВС), изготовленные из брикетированного лома для производства банок. Образцы материала 1 были изготовлены на алюминиевых заводах в г. Шербрук (Канада) и штате Вирджиния. Материал 2 содержит расплавленный брикетированный лом. Образцы материала 2 были изготовлены в компании «Copal, S.A.S.» во Франции. На рис. 4 показано сравнение материалов 1 и 2. Материал 1 гораздо ближе по составу к медному лому для производства банок, содержащему 18% материала 3104, за счет значительной потери магния по сравнению с составом материала 2. Тип обработки, используемый для расплавления брикетированного лома 3104, который применяется в производстве банок, может оказывать влияние на окончательный химический состав материала ReAl.
Образцы материала 1 проходили чистовую дробеструйную обработку. Образцы материала 2 проходили чистовую отделку в поворотном барабане.
В таблице 5 показана твердость заготовок после чистовой обработки для эталонного материала 1050, материала 1 и материала 2.
Figure 00000005
Вследствие чистовой обработки значения, приведенные в таблице 5, могут быть выше, чем измеренные после процесса отжига. Твердость материала 1 была примерно на 35% выше, чем у эталонного материала 1050, в то время как твердость материала 2 была примерно на 43% выше, чем у материала 1050.
Использовался смазочный материал Sapilub GR8. В таблице 6 показаны параметры и масса смазочного материала на 100 кг заготовок для эталонного материала 1050, материала 1 и материала 2. Обратите внимание, что смазочный материал для эталонного материала 1050 (GTTX) отличался от смазочного материала для заготовок для материалов 1 и 2 (GR8).
Figure 00000006
Все заготовки подвергаются процессу смазки в автономном поворотном барабане. Разница в степени смазки связана с типом обработки поверхности (поверхность, обрабатываемая в барабане, требует меньше масла, чем поверхность, подвергаемая дробеструйной обработке).
Использовалась моноблочная матрица из стандартного цементированного карбида GJ25 - 1000HV. Головка штампа - Bohler S600 - 680HV. Матрица имела коническую форму.
Трубки были очищены щеткой для того, чтобы можно было легко увидеть и оценить потенциальные следы и царапины. Внутренний лак на контейнерах - PPG НОВА 7940-301/В (эпоксидный фенопласт). Параметры нанесения внутреннего лака из эпоксидного фенопласта PPG 7940 были стандартными. Температура и время затвердевания были примерно 250°C в течение примерно 8 мин 30 с. Во время нанесения внутреннего лака никаких проблем с пористостью не возникло.
На контейнеры было нанесено белое глянцевое грунтовое покрытие. Также на контейнеры было нанесено печатное изображение.
Пример 1
В примере 1 использовались материалы 1 и 2 из заготовок с диаметром примерно 44,65 мм и высотой около 5,5 мм. Масса материала заготовки составляла примерно 23,25 г. Окончательный размер контейнера после обработки, но до обрезки, был примерно 150±10 мм в высоту и примерно 45,14 мм в диаметре. Толщина конечной емкости составляла примерно 0,28±0,03 мм. Конечная масса контейнера составляла примерно 23,22 г. Использовалось стандартное оборудование для суживания.
Как правило, заготовки из материала 1 в целом показывали более высокие результаты: на них не возникало надрезов или царапин ни снаружи, ни внутри трубок. Заготовки из материала 2 более чувствительны к царапинам и являются более абразивными для поверхности головки штампа. После использования заготовок из материала 2 головку штампа требовалось менять по причине ее износа. Для других параметров контейнера может потребоваться штамп большего размера.
Пример 2
В примере 2 использовались материалы 1 и 2 из заготовок с диаметром примерно 44,65 мм и высотой около 5,0 мм. Масса материала заготовки составляла примерно 21,14 г. Окончательные размеры контейнера после обработки, но до обрезки, были примерно 150±10 мм в высоту и примерно 45,14 мм в диаметре. Толщина конечной емкости составляла примерно 0,24±0,03 мм. Конечная масса контейнера составляла примерно 20,65 г. Использовалось регулирующее приспособление большего диаметра. Диаметр регулирующего приспособления составлял примерно 0,1 мм.
Ввиду использования новой фирменной матрицы для прессования и головки штампа эксцентриситет в толщине стенок (<около 0,02 мм) почти отсутствовал. И в этот раз заготовки из материала 1 показали более высокие результаты по сравнению с заготовками из материала 2. Действительно, аналогично результатам эксперимента 1, на контейнерах из материала 1 почти не было видно царапин ни внутри, ни снаружи. Когда использовались заготовки из материала 2, после 6-7 единиц вязкости Кребса царапины появлялись время от времени на внешней стороне и в основном на внутренней стороне контейнера. Кроме того, головка штампа была значительно изношена. На рис. 5 изображены стальная головка штампа и матрица для прессования из цементированного карбида. Поверхность головки штампа после прессования заготовок из материала 1 не имела царапин. Матрица для прессования из цементированного карбида была сильно повреждена по внешней границе. Производительность линий штамповки для обоих экспериментов была примерно 175 единиц/мин и во время этих экспериментов работа проходила без существенных остановок.
В таблице 7 показана сила прессования для образцов, изготовленных с использованием параметров, описанных в эксперименте 1 для материалов 1 и 2 и эксперименте 2 для материалов 1 и 2. Показаны также данные для эталонного материала 1050.
Figure 00000007
Независимо от материала или исходных размеров заготовок, значительного увеличения мощности прессования среди образцов не было. Значения были намного ниже безопасного предела для окончательного размера контейнера.
В таблице 8 показаны параметры трубок для Материалов 1 и 2 с использованием размеров заготовки из Эксперимента 1 и параметры трубок для Материалов 1 и 2 с использованием размеров заготовки из Эксперимента 2.
Figure 00000008
Figure 00000009
Как показано в таблице 8, толщина основания была в пределах допустимого отклонения для всех случаев, кроме материала 2 в эксперименте 2. Значение допустимого отклонения толщины стенки снизу и сверху в эксперименте 2 не было достигнуто для всех материалов.
В таблице 9 показана глубина вдавливания (мм) и пористость (мА), которые являются мерой измерения целостности внутреннего покрытия.
Figure 00000010
Сужение трубок с размерами в соответствии с параметрами Экспериментов 1 и 2 надлежащим образом проводилось для заготовок из материала 1 и материала 2. Для использования легких банок требовались новые регулирующие приспособления для сужения, но все размерные параметры оставались в пределах технических спецификаций. Толщина трубы (примерно от 0,45 до 0,48 мм с белым грунтовым покрытием) перед скручиванием была довольно значительной. Кроме того, длина обрезки при сужении была удовлетворительной и составляла примерно 2,4 мм.
Заготовки, сделанные из обоих материалов 1 и 2, имели пористость после вдавливания на участке сужения. После уменьшения глубины вдавливания уровень пористости вернулся к норме. Кроме того, повторное уменьшение глубины вдавливания для материала 2 помогло решить проблему пористости.
Что касается сопротивления давлению, его результаты даже для легких банок очень впечатляют. Удивительно, но заготовки из материала 1 имеют более высокое сопротивление давлению (примерно +2 бара), даже если они имеют пониженный процент содержания магния и железа по сравнению с заготовками из материала 2. Хотя причина не определена, это может быть следствием непрерывного отжига, который проводился с заготовкой из материала 1, по сравнению с отжигом в камерной печи. На рис. 6 изображено первое сопротивление давлению деформации для банок, в то время как на рис. 7 показано давление разрыва для банок. На рис. 8 изображены массы и составы сплавов контейнеров.
Хотя различные варианты осуществления настоящего изобретения были описаны подробно, очевидно, что специалисты в этой области будут исследовать возможности модификации и изменения этих вариантов осуществления. Однако следует четко понимать, что такие модификации и изменения должны быть в рамках объема и сущности данного изобретения, как указано в следующих формулах изобретения. Кроме того, изобретение (или изобретения), описанные в данном документе, допускают другие варианты осуществления и могут осуществляться на практике различными способами. К тому же, следует понимать, что фразеология и терминология, используемые в этом документе для описания, не должны рассматриваться как какие-либо ограничения. Использование формулировок «включая», «содержащий» или «добавление» и их вариации в этом документе охватывает перечисленные далее элементы и их эквиваленты, а также дополнительные элементы.

Claims (20)

1. Алюминиевый сплав для формования металлического контейнера ударным прессованием, содержащий, мас.%:
как минимум около 97 алюминия (Al);
как минимум около 0,10 кремния (Si);
как минимум около 0,25 железа (Fe);
как минимум около 0,05 меди (Cu);
как минимум около 0,07 марганца (Mn); и
как минимум около 0,05 магния (Mg).
2. Алюминиевый сплав по п. 1, в котором алюминиевый сплав получен плавлением по меньшей мере одного сплава металлического лома и сплава 1070 или 1050, причем по меньшей мере один сплав металлического лома выбран из группы, в которую входят алюминиевые сплавы 3104, 3004, 3003, 3013, 3103 и 3105.
3. Алюминиевый сплав по п. 1, в котором алюминиевый сплав получен плавлением смеси, содержащей 10-60% алюминиевого сплава 3105, 3004, 3003, 3103, 3013 или 3104 и 90% сплава 1070 или 1050.
4. Алюминиевый сплав по п. 1, содержащий, в мас.%:
98,47 алюминия (Al);
0,15 кремния (Si);
0,31 железа (Fe);
0,09 меди (Cu);
0,41 марганца (Mn);
0,49 магния (Mg);
0,05 цинка (Zn);
0,02 хрома (Cr);
0,01 титана (Ti).
5. Алюминиевый сплав по п. 1, содержащий, в мас.%:
не более 99,2 алюминия (Al);
не более 0,40 кремния (Si);
не более 0,50 железа (Fe);
не более 0,20 меди (Cu);
не более 0,65 марганца (Mn);
не более 0,75 магния (Mg).
6. Алюминиевый сплав по п. 1, который сформирован плавлением переработанных алюминиевых материалов и первичного алюминия в процессе косвенного нагрева для уменьшения поверхностного окисления указанного алюминиевого сплава.
7. Алюминиевый сплав по п. 1, который дополнительно содержит борид титана.
8. Способ изготовления контейнера из заготовки алюминиевого сплава по п.7, включающий:
обеспечение металлического лома, содержащего по меньшей мере один из алюминиевых сплавов 3104, 3004, 3003, 3103, 3013 и 3105;
смешивание как минимум одного из указанных сплавов алюминия 3104, 3004, 3003, 3013, 3103 и 3105 с первичным алюминием для создания переработанного алюминиевого сплава;
добавление к полученному переработанному сплаву алюминия материала из борида титана;
получение заготовки из переработанного сплава алюминия;
деформирование указанной заготовки в предпочтительную форму посредством ударного прессования для создания формованного контейнера.
9. Способ по п. 8, в котором указанное смешивание включает в себя нагрев указанных алюминиевых сплавов 3104, 3004, 3003, 3013, 3103 и 3105 и первичного алюминия путем косвенного нагрева.
10. Способ по п. 8, в котором получение заготовки дополнительно включает в себя образование отдельных заготовок из сляба, созданного с помощью литейного оборудования, отжиг указанных отдельных заготовок в непрерывном процессе отжига и чистовую дробеструйную обработку для увеличения площади поверхности.
11. Способ формования металлической заготовки из алюминиевого сплава по п.1 для изготовления металлического контейнера ударным прессованием, включающий:
обеспечение материала на основе алюминиевого лома, содержащего как минимум около 98,5 мас.% алюминия;
добавление первичного алюминия к указанному материалу на основе алюминиевого лома;
плавление указанного первичного алюминия с указанным материалом на основе алюминиевого лома в печи с косвенным нагревом для получения переработанного алюминиевого сплава;
литье указанного переработанного сплава алюминия в литейной машине для образования сляба с предварительно заданной толщиной;
горячую прокатку указанного сляба для уменьшения толщины и создания горячекатаной полосы;
охлаждение указанной горячекатаной полосы в водном растворе для понижения температуры в указанной горячекатаной полосе и формования полосы из указанного сплава;
холодную прокатку полосы для дальнейшего уменьшения предварительно заданной толщины;
штампование полосы из указанного сплава для формования заготовки;
отжиг указанной заготовки посредством нагрева до предварительно заданной температуры и последующего охлаждения; а также
окончательную отделку заготовки путем придания шероховатости наружной поверхности для создания высокой удельной поверхности.
12. Способ по п. 11, который дополнительно включает добавление предварительно заданного количества борида титана в указанный переработанный сплав алюминия.
13. Способ по п. 12, в котором указанный борид титана добавляют в указанный переработанный сплав алюминия после плавления и до литья.
14. Способ по п. 11, в котором плавление выполняют по меньшей мере в одной из печей с горном бокового дутья или вращающейся печи во избежание воздействия прямого удара пламени на упомянутый переработанный алюминиевый сплав.
15. Способ по п. 11, в котором литье выполняют по меньшей мере в одной из колесно-ленточных литейных машин или литейной машине с двумя параллельными лентами.
16. Способ по п. 11, в котором горячую прокатку и холодную прокатку сляба выполняют между двумя валками противоположного вращения, при этом зазор между указанными валками меньше толщины сляба.
17. Способ по п. 11, в котором штампование включает в себя подачу полосы из указанного сплава в блок штампов, установленный в прессе.
18. Способ по п. 11, в котором окончательная отделка включает в себя по меньшей мере одно из подвергания заготовки ударному воздействию дроби и обработке в поворотном барабане.
19. Способ по п. 11, который дополнительно включает смазывание заготовки после окончательной отделки.
20. Способ по п. 11, который дополнительно включает формование металлического контейнера из заготовки.
RU2014115212/02A 2011-09-16 2012-09-14 Контейнеры, изготовленные из переработанного алюминиевого лома методом ударного прессования RU2593799C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161535807P 2011-09-16 2011-09-16
US61/535,807 2011-09-16
PCT/US2012/055390 WO2013040339A1 (en) 2011-09-16 2012-09-14 Impact extruded containers from recycled aluminum scrap

Publications (2)

Publication Number Publication Date
RU2014115212A RU2014115212A (ru) 2015-10-27
RU2593799C2 true RU2593799C2 (ru) 2016-08-10

Family

ID=47879502

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014115212/02A RU2593799C2 (ru) 2011-09-16 2012-09-14 Контейнеры, изготовленные из переработанного алюминиевого лома методом ударного прессования

Country Status (15)

Country Link
US (3) US9663846B2 (ru)
EP (3) EP3141624B1 (ru)
KR (3) KR20160098526A (ru)
CN (2) CN104011237A (ru)
AR (2) AR087892A1 (ru)
AU (4) AU2012308416C1 (ru)
BR (2) BR122018017039B1 (ru)
CA (3) CA2848846C (ru)
HU (2) HUE055985T2 (ru)
MX (1) MX341354B (ru)
RU (1) RU2593799C2 (ru)
SA (1) SA112330856B1 (ru)
SI (2) SI3144403T1 (ru)
UA (1) UA114608C2 (ru)
WO (1) WO2013040339A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718370C1 (ru) * 2019-11-18 2020-04-06 Акционерное общество "Арнест" Сплав на основе алюминия и аэрозольный баллон из этого сплава
RU2721507C1 (ru) * 2016-08-30 2020-05-19 АЛКОА ЮЭсЭй КОРП. Алюминиевый лист с улучшенной формуемостью и алюминиевый контейнер, выполненный из алюминиевого листа
RU2736632C1 (ru) * 2016-12-30 2020-11-19 Болл Корпорейшн Алюминиевый сплав для контейнеров, получаемых ударным выдавливанием, и способ его получения

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX341354B (es) 2011-09-16 2016-08-17 Ball Corp Recipientes extruidos por impacto a partir de chatarra de aluminio reciclada.
DE102012209675A1 (de) * 2012-06-08 2013-12-12 Ball Packaging Europe Gmbh Verfahren zum Bedrucken einer zylindrischen Druckoberfläche einer Getränkedose und bedruckte Getränkedose
CA2908181C (en) * 2013-04-09 2018-02-20 Ball Corporation Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys
DE102013020319B4 (de) * 2013-12-05 2016-05-25 Ulrich Bruhnke Verfahren und Anlage zur Herstellung von Pressbolzen
FR3016639B1 (fr) * 2014-01-21 2017-07-28 Seb Sa Procede de fabrication d'un alliage d'aluminium pour corroyage pour fabriquer des recipients de cuisson
GB2522719B (en) * 2014-02-04 2017-03-01 Jbm Int Ltd Method of manufacture
BR112016021973B1 (pt) 2014-03-25 2021-03-23 Montebello Technology Services Ltd. Método para recozimento de uma pré-conformado de metal de um recipiente, métodos para moldagem por pressão de um recipiente de metal conformado, método para pré-aquecer uma pré-conformado de metal, e, pré-conformado de metal
USD762481S1 (en) 2014-04-11 2016-08-02 iMOLZ, LLC Oval shaped can
EP3240646B1 (en) 2014-12-30 2024-07-17 Montebello Technology Services Ltd. Impact extrusion method and tooling
SI24969A (sl) * 2015-04-03 2016-10-28 TALUM d.d. KidriÄŤevo Aluminijeva zlitina za izdelavo aluminijevih aerosol doz s protismernim izstiskovanjem in postopek za njeno izdelavo
CN105132755A (zh) * 2015-09-18 2015-12-09 张家港市和伟五金工具厂 一种利用废铝制成的铝合金
ES2818186T3 (es) * 2015-10-15 2021-04-09 Novelis Inc Paquete de aleación de aluminio de capas múltiples de alta formación
US11034145B2 (en) 2016-07-20 2021-06-15 Ball Corporation System and method for monitoring and adjusting a decorator for containers
EP3487706A4 (en) 2016-07-20 2020-04-08 Ball Corporation SYSTEM AND METHOD FOR ALIGNING AN INK MARKER OF A DECORATOR
RU2721500C1 (ru) 2016-08-10 2020-05-19 Бол Корпорейшн Устройство и способ декорирования металлического контейнера с помощью цифровой печати на полотне переноса
US10739705B2 (en) 2016-08-10 2020-08-11 Ball Corporation Method and apparatus of decorating a metallic container by digital printing to a transfer blanket
US20180044155A1 (en) 2016-08-12 2018-02-15 Ball Corporation Apparatus and Methods of Capping Metallic Bottles
EP3584196A4 (en) * 2017-02-14 2021-01-20 Teraoka Seiko Co., Ltd. ITEM RECOVERY DEVICE
BR112019016870A2 (pt) 2017-02-16 2020-04-14 Ball Corp aparelho e métodos de formação de fechamentos invioláveis giratórios no gargalo rosqueado de recipientes metálicos
CN110832103B (zh) 2017-07-06 2022-06-03 诺维尔里斯公司 具有大量回收材料的高性能铝合金及其制造方法
JP7046163B2 (ja) 2017-09-15 2022-04-01 ボール コーポレイション ネジ付き容器用の金属栓を形成する装置及び方法
EP3740383A4 (en) 2018-01-19 2021-10-20 Ball Corporation SYSTEM AND METHOD FOR MONITORING AND ADJUSTING A DECORATING DEVICE FOR CONTAINERS
BR112020015545A2 (pt) 2018-02-09 2021-02-02 Ball Corporation método e aparelho para decorar um recipiente metálico por impressão digital em um revestimento de transferência
PL3827108T3 (pl) 2018-07-23 2023-06-19 Novelis, Inc. Wysoce odkształcalne stopy aluminium z recyklingu i sposoby ich wykonywania
DE102018215243A1 (de) 2018-09-07 2020-03-12 Neumann Aluminium Austria Gmbh Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung
DE102018215254A1 (de) * 2018-09-07 2020-03-12 Neuman Aluminium Austria Gmbh Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung
EP3733319A1 (en) 2019-05-02 2020-11-04 TUBEX Tubenfabrik Wolfsberg GmbH A method for manufacturing an aluminium tube, a method for manufacturing an aluminium slug, an aluminium tube and an aluminium slug
CN110104074A (zh) * 2019-05-15 2019-08-09 东北大学 一种铝合金汽车仪表盘支架及其生产工艺方法
CN110144479B (zh) * 2019-05-15 2020-06-16 内蒙古工业大学 原位合成具有分级结构的铝基复合材料的方法
CN110184485A (zh) * 2019-06-05 2019-08-30 福建船政交通职业学院 一种3003铝合金板材及其前处理工艺
EP3808866A1 (en) 2019-10-16 2021-04-21 TUBEX Tubenfabrik Wolfsberg GmbH A method for manufacturing an aluminium tube, a method for manufacturing an aluminium slug, an aluminium tube and an aluminium slug
CN110564983A (zh) * 2019-10-16 2019-12-13 南通众福新材料科技有限公司 一种铝硅铜系铸造铝合金及其生产方法
CN111996423A (zh) * 2020-07-10 2020-11-27 中信渤海铝业控股有限公司 一种太阳能光伏边框用铝合金型材及其制备方法
EP3940100A1 (en) 2020-07-16 2022-01-19 Envases Metalúrgicos De Álava, S.A. Aluminium alloys for manufacturing of aluminium cans by impact extrusion
EP3940099A1 (en) * 2020-07-16 2022-01-19 Envases Metalúrgicos De Álava, S.A. Aluminium alloys for manufacturing of aluminium cans by impact extrusion
EP3940098A1 (en) * 2020-07-16 2022-01-19 Envases Metalúrgicos De Álava, S.A. Aluminium alloys for manufacturing of aluminium cans by impact extrusion
DE102020119466A1 (de) 2020-07-23 2022-01-27 Nussbaum Matzingen Ag Aluminiumlegierung und Verfahren zur Herstellung einer Aluminiumlegierung
EP4130306A1 (de) * 2021-08-04 2023-02-08 Aluminium-Werke Wutöschingen AG & Co.KG Verfahren zur herstellung eines legierungsbandes aus recyceltem aluminium, verfahren zur herstellung eines butzen aus recyceltem aluminium, und legierung aus recyceltem aluminium
CN116219210A (zh) * 2022-12-06 2023-06-06 洛阳龙鼎铝业有限公司 一种再生铝生产厨具用深冲铝板带的工艺方法
EP4400230A1 (en) * 2023-01-10 2024-07-17 Alm, S.L. Process and installation for manufacturing metal containers and metal container obtained with the process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486243A (en) * 1992-10-13 1996-01-23 Kawasaki Steel Corporation Method of producing an aluminum alloy sheet excelling in formability
RU2221891C1 (ru) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029507A (en) 1957-11-20 1962-04-17 Coors Porcelain Co One piece thin walled metal container and method of manufacturing same
GB971258A (en) 1959-11-09 1964-09-30 Reynolds Metals Co Improvements in or relating to the manufacture of wheels
US3232260A (en) 1962-03-01 1966-02-01 Reynolds Metals Co End former and flanger
GB1215648A (en) 1968-06-24 1970-12-16 Dow Chemical Co Method of impact extruding
US3812646A (en) 1972-03-24 1974-05-28 Monsanto Co Supporting a thin walled bottle during capping
JPS5323757B2 (ru) 1974-04-07 1978-07-17
GB1598428A (en) 1977-04-01 1981-09-23 Metal Box Co Ltd Pilfer proof closures
US4243438A (en) 1978-07-21 1981-01-06 Sumitomo Aluminium Smelting Co., Ltd. Production of aluminum impact extrusions
US4269632A (en) 1978-08-04 1981-05-26 Coors Container Company Fabrication of aluminum alloy sheet from scrap aluminum for container components
US4282044A (en) * 1978-08-04 1981-08-04 Coors Container Company Method of recycling aluminum scrap into sheet material for aluminum containers
US4260419A (en) 1978-08-04 1981-04-07 Coors Container Company Aluminum alloy composition for the manufacture of container components from scrap aluminum
JPS5855233B2 (ja) 1978-10-19 1983-12-08 旭化成株式会社 セバシン酸ジメチルエステルの製造方法
FR2457328A1 (fr) 1979-05-25 1980-12-19 Cebal Alliage d'aluminium de type a-gs
US4403493A (en) 1980-02-12 1983-09-13 Ball Corporation Method for necking thin wall metallic containers
US4318755A (en) 1980-12-01 1982-03-09 Alcan Research And Development Limited Aluminum alloy can stock and method of making same
US4411707A (en) 1981-03-12 1983-10-25 Coors Container Company Processes for making can end stock from roll cast aluminum and product
US4732027A (en) 1982-12-27 1988-03-22 American National Can Company Method and apparatus for necking and flanging containers
US4693108A (en) 1982-12-27 1987-09-15 National Can Corporation Method and apparatus for necking and flanging containers
JPS61163233A (ja) 1985-01-11 1986-07-23 Furukawa Alum Co Ltd 非熱処理型快削アルミニウム合金
JPS62263954A (ja) 1986-05-08 1987-11-16 Nippon Light Metal Co Ltd しごき加工用熱処理型アルミニウム合金板の製造法
CN1018353B (zh) 1989-02-17 1992-09-23 三井石油化学工业公司 瓶(罐)及其制造方法
CA2010039C (en) 1989-02-17 1993-12-21 Kazuhito Yamamoto Bottles and methods for making thereof
US5104465A (en) * 1989-02-24 1992-04-14 Golden Aluminum Company Aluminum alloy sheet stock
US5110545A (en) 1989-02-24 1992-05-05 Golden Aluminum Company Aluminum alloy composition
WO1992004477A1 (en) 1990-09-05 1992-03-19 Golden Aluminum Company Aluminum alloy composition
ES2073722T5 (es) 1991-04-17 2000-11-01 Nussbaum Und Guhl Ag Procedimiento y dispositivo para la fabricacion de latas de aluminio con rosca.
US5138858A (en) 1991-07-01 1992-08-18 Ball Corporation Method for necking a metal container body
US5551997A (en) 1991-10-02 1996-09-03 Brush Wellman, Inc. Beryllium-containing alloys of aluminum and semi-solid processing of such alloys
GB9204972D0 (en) 1992-03-06 1992-04-22 Cmb Foodcan Plc Laminated metal sheet
US5355710A (en) 1992-07-31 1994-10-18 Aluminum Company Of America Method and apparatus for necking a metal container and resultant container
US5778723A (en) 1992-07-31 1998-07-14 Aluminum Company Of America Method and apparatus for necking a metal container and resultant container
US5718352A (en) 1994-11-22 1998-02-17 Aluminum Company Of America Threaded aluminum cans and methods of manufacture
US5362341A (en) 1993-01-13 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having high strength and low earing characteristics
JPH06279888A (ja) 1993-01-27 1994-10-04 Takeuchi Press Ind Co Ltd インパクト成形用アルミニウム合金の製造方法およびアルミニウム合金製容器
WO1994016842A1 (de) 1993-01-29 1994-08-04 Mn Maschinenbau & Engineering Martin Nussbaum Verfahren und anordnung zur herstellung von aluminiumdosen für getränke oder lebensmittel
US5522950A (en) 1993-03-22 1996-06-04 Aluminum Company Of America Substantially lead-free 6XXX aluminum alloy
US5394727A (en) 1993-08-18 1995-03-07 Aluminum Company Of America Method of forming a metal container body
US5469729A (en) 1993-11-23 1995-11-28 Ball Corporation Method and apparatus for performing multiple necking operations on a container body
US5448903A (en) 1994-01-25 1995-09-12 Ball Corporation Method for necking a metal container body
US5503690A (en) 1994-03-30 1996-04-02 Reynolds Metals Company Method of extruding a 6000-series aluminum alloy and an extruded product therefrom
US5571347A (en) 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy
JPH0813050A (ja) 1994-07-05 1996-01-16 Nippon Chuzo Kk アルミニウム空缶の再生方法及び再生装置
US6010028A (en) 1994-11-22 2000-01-04 Aluminum Company Of America Lightweight reclosable can with attached threaded pour spout and methods of manufacture
US6010026A (en) 1994-11-22 2000-01-04 Aluminum Company Of America Assembly of aluminum can and threaded sleeve
US5572893A (en) 1994-12-01 1996-11-12 Goda; Mark E. Method of necking and impact extruded metal container
CA2206483C (en) 1994-12-01 1999-09-14 Advanced Monobloc Corporation Method of necking an impact extruded metal container
US5681405A (en) * 1995-03-09 1997-10-28 Golden Aluminum Company Method for making an improved aluminum alloy sheet product
US5772802A (en) 1995-10-02 1998-06-30 Kaiser Aluminum & Chemical Corporation Method for making can end and tab stock
US20010003292A1 (en) 1995-11-01 2001-06-14 T. C. Sun Method for making can end tab stock
US6079244A (en) * 1996-01-04 2000-06-27 Ball Corporation Method and apparatus for reshaping a container body
US5704240A (en) 1996-05-08 1998-01-06 Aluminum Company Of America Method and apparatus for forming threads in metal containers
US6100028A (en) 1996-06-03 2000-08-08 Merck & Co., Inc. DNA polymerase extension assay
US5713235A (en) 1996-08-29 1998-02-03 Aluminum Company Of America Method and apparatus for die necking a metal container
JPH10203573A (ja) 1997-01-20 1998-08-04 Takeuchi Press Ind Co Ltd 圧縮ガス専用低圧吐出容器
GB9707688D0 (en) 1997-04-16 1997-06-04 Metal Box Plc Container ends
US6666933B2 (en) 1997-04-16 2003-12-23 Crown Cork & Seal Technologies Corporation Can end, and method of manufacture therefor
WO1999023266A1 (fr) 1997-10-31 1999-05-14 The Furukawa Electric Co., Ltd. Materiau extrude en alliage d'aluminium destine a des elements structuraux d'une carrosserie de vehicule et son procede de fabrication
JP3349458B2 (ja) 1997-10-31 2002-11-25 古河電気工業株式会社 自動車車体構造部材用アルミニウム合金押出材及びその製造方法
FR2773819B1 (fr) 1998-01-22 2000-03-10 Cebal Alliage d'aluminium pour boitier d'aerosol
US6126034A (en) 1998-02-17 2000-10-03 Alcan Aluminum Corporation Lightweight metal beverage container
FR2775206B1 (fr) 1998-02-26 2000-04-21 Cebal Procede pour realiser un boitier aerosol a col filete
JPH11293363A (ja) * 1998-04-08 1999-10-26 Furukawa Electric Co Ltd:The 自動車部材用アルミニウム合金の製造方法及びこれにより得られる自動車部材
EP0992598A4 (en) 1998-04-08 2002-10-30 Furukawa Electric Co Ltd METHOD FOR PRODUCING AN ALUMINUM ALLOY FOR PLANNING MATERIALS AND USE IN AUTOMOTIVES
FR2781210B3 (fr) 1998-07-17 2000-08-18 Cebal Distributeur de produits cremeux sous pression muni d'un piston etanche
US6630037B1 (en) 1998-08-25 2003-10-07 Kobe Steel, Ltd. High strength aluminum alloy forgings
JP3668081B2 (ja) 1998-12-25 2005-07-06 株式会社神戸製鋼所 アルミニウム合金溶湯の精錬方法およびアルミニウム合金溶湯精錬用フラックス
US6368427B1 (en) * 1999-09-10 2002-04-09 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
CN100376341C (zh) 1999-09-30 2008-03-26 大和制罐株式会社 瓶形罐的制造方法
JP3408213B2 (ja) 1999-10-15 2003-05-19 古河電気工業株式会社 展伸材用アルミニウム合金
TW448120B (en) 1999-11-26 2001-08-01 Takeuchi Press Metal container with thread
JP3561796B2 (ja) 2000-02-02 2004-09-02 武内プレス工業株式会社 ねじ付金属缶
JP2001172728A (ja) 1999-12-15 2001-06-26 Kobe Steel Ltd 廃空調機のリサイクル方法
JP2001181768A (ja) 1999-12-17 2001-07-03 Furukawa Electric Co Ltd:The 自動車構造部材用アルミニウム合金押出し材およびその製造方法
JP4647799B2 (ja) 2000-02-21 2011-03-09 株式会社町山製作所 液状物充填用容器の製造方法
US20010031376A1 (en) 2000-03-22 2001-10-18 Fulton Clarence W. Aluminum alloy composition and process for impact extrusion of long-necked can bodies
CA2302557A1 (en) 2000-03-22 2001-09-22 Algoods Inc. Aluminum alloy composition and process for impact extrusions of long-necked can bodies
JP3886329B2 (ja) 2000-05-26 2007-02-28 株式会社神戸製鋼所 切削用Al−Mg−Si系アルミニウム合金押出材
JP2002173717A (ja) 2000-12-05 2002-06-21 Kobe Steel Ltd 廃銅製品からのアルミニウムのリサイクル方法
DE10062547A1 (de) 2000-12-15 2002-06-20 Daimler Chrysler Ag Aushärtbare Aluminium-Gusslegierung und Bauteil
US6627012B1 (en) 2000-12-22 2003-09-30 William Troy Tack Method for producing lightweight alloy stock for gun frames
US20040025981A1 (en) 2000-12-22 2004-02-12 Tack William Troy Method for producing lightweight alloy stock for impact extrusion
FR2819493B1 (fr) 2001-01-12 2003-03-07 Cebal Recipient distribuant des quantites de produit constantes jusqu'a ce que ledit recipient soit presque completement vide
ATE452832T1 (de) 2001-09-17 2010-01-15 Takeuchi Press Metallbehälter mit an seiner innenfläche angebrachter beschichtung
US20030102278A1 (en) 2001-12-04 2003-06-05 Thomas Chupak Aluminum receptacle with threaded outsert
JP2004083128A (ja) 2001-12-28 2004-03-18 Mitsubishi Materials Corp ボトル缶体およびボトル
JP4074143B2 (ja) 2002-07-02 2008-04-09 ユニバーサル製缶株式会社 金属製ボトル缶
CA2790032C (en) 2001-12-28 2014-07-08 Universal Can Corporation Bottle can member, bottle, and thread forming device
JP4115133B2 (ja) 2002-01-17 2008-07-09 大和製罐株式会社 ボトル型缶およびその製造方法
US20040140237A1 (en) 2002-01-25 2004-07-22 Brownewell Donald L. Metal container and method for the manufacture thereof
TWI289482B (en) 2002-02-15 2007-11-11 Furukawa Sky Aluminum Corp An impact extrusion molded article, an impact extrusion molding method, and an impact extrusion molding apparatus
JP2003268460A (ja) 2002-03-11 2003-09-25 Kobe Steel Ltd アルミニウム合金屑の処理方法
JP2003334631A (ja) 2002-05-20 2003-11-25 Takeuchi Press Ind Co Ltd インパクト成形用アルミニウムスラグの製造方法及びアルミニウムスラグ
FR2842212B1 (fr) 2002-07-11 2004-08-13 Pechiney Rhenalu Element de structure d'avion en alliage a1-cu-mg
US20040035871A1 (en) 2002-08-20 2004-02-26 Thomas Chupak Aluminum aerosol can and aluminum bottle and method of manufacture
US6945085B1 (en) 2002-10-15 2005-09-20 Ccl Container (Hermitage) Inc. Method of making metal containers
JP4101614B2 (ja) 2002-11-01 2008-06-18 住友軽金属工業株式会社 耐食性および耐応力腐食割れ性に優れた高強度アルミニウム合金押出材の製造方法
JP4173388B2 (ja) 2003-03-17 2008-10-29 ユニバーサル製缶株式会社 キャップおよびこのキャップが装着されたボトル
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
WO2004094679A1 (en) 2003-04-24 2004-11-04 Alcan International Limited Alloys from recycled aluminum scrap containing high levels of iron and silicon
WO2005000698A1 (ja) 2003-06-27 2005-01-06 Toyo Seikan Kaisha, Ltd. 容器の開封構造、その開封構造を備えた容器、及びその開封構造の製造方法
ES2427634T3 (es) 2003-08-28 2013-10-31 Universal Can Corporation Equipo de fabricación de botellas
US7147123B2 (en) 2003-09-10 2006-12-12 Takeuchi Press Industries Co., Ltd. Metal cap
JP4159956B2 (ja) 2003-09-26 2008-10-01 ユニバーサル製缶株式会社 ボトル缶およびキャップ付ボトル缶
JP2005193272A (ja) 2004-01-07 2005-07-21 Taisei Kako Co Ltd 金属チューブの衝撃押出成形法並びに成形装置
JP2005280768A (ja) 2004-03-30 2005-10-13 Daiwa Can Co Ltd ボトル型缶およびその製造方法
US7588808B2 (en) 2004-04-16 2009-09-15 Advanced Plastics Technologies Luxembourg S.A. Mono and multi-layer articles and injection molding methods of making the same
FR2873717B1 (fr) 2004-07-27 2006-10-06 Boxal France Soc Par Actions S Procede de fabrication de boitiers d'aerosols.
JP4564328B2 (ja) 2004-10-18 2010-10-20 古河スカイ株式会社 生産性および意匠性に優れる電子機器用筐体
JP4846594B2 (ja) 2004-10-20 2011-12-28 ユニバーサル製缶株式会社 ボトル缶の製造方法
JP4667854B2 (ja) 2004-12-24 2011-04-13 ユニバーサル製缶株式会社 ボトル缶およびその製造方法
CN1673399A (zh) * 2005-03-07 2005-09-28 吕杏根 废旧铝合金熔炼净化再生利用的方法
WO2007029755A1 (ja) 2005-09-09 2007-03-15 Toyo Seikan Kaisha, Ltd. 樹脂被覆シームレスアルミニウム缶及び樹脂被覆アルミニウム合金缶蓋
JP2007106621A (ja) 2005-10-12 2007-04-26 Tokuyama Corp 窒化アルミニウムグリーン体の製造方法
JP5032021B2 (ja) 2005-12-02 2012-09-26 大成化工株式会社 チューブの口部構造及びこの口部構造の製造装置
JP4757022B2 (ja) 2005-12-28 2011-08-24 住友軽金属工業株式会社 耐食性に優れた高強度、高靭性アルミニウム合金押出材および鍛造材、該押出材および鍛造材の製造方法
CN101421166B (zh) 2006-04-17 2011-06-15 大和制罐株式会社 带螺纹的罐容器
US7726165B2 (en) * 2006-05-16 2010-06-01 Alcoa Inc. Manufacturing process to produce a necked container
US7934410B2 (en) 2006-06-26 2011-05-03 Alcoa Inc. Expanding die and method of shaping containers
US8016148B2 (en) 2006-07-12 2011-09-13 Rexam Beverage Can Company Necked-in can body and method for making same
US20080041501A1 (en) * 2006-08-16 2008-02-21 Commonwealth Industries, Inc. Aluminum automotive heat shields
WO2008034801A1 (en) 2006-09-19 2008-03-27 Crown Packaging Technology, Inc Easy open can end with high pressure venting
US8650925B2 (en) 2007-01-05 2014-02-18 Apple Inc. Extrusion method for fabricating a compact tube with internal features
EP2146907B1 (en) 2007-04-13 2016-05-11 CROWN Packaging Technology, Inc. Method of sealing a container with a lid structure with improved abuse resistance
US20080299001A1 (en) * 2007-05-31 2008-12-04 Alcan International Limited Aluminum alloy formulations for reduced hot tear susceptibility
US20080302799A1 (en) 2007-06-08 2008-12-11 Silgan Containers Corporation Metal container with screw-top closure and method of making the same
UA28415U (en) 2007-07-18 2007-12-10 East Ukrainian Volodymyr Dal N Method for manufacturing articles of high density
UA29644U (ru) 2007-07-30 2008-01-25 Любовь Владимировна Шкала Способ ускорения заживления дуоденальных язв
EP2067543A1 (en) 2007-12-06 2009-06-10 Crown Packaging Technology, Inc Bodymaker
JP5290569B2 (ja) 2007-12-19 2013-09-18 武内プレス工業株式会社 ねじ付金属ボトル容器の製造方法及び製造装置。
US20100065528A1 (en) 2008-02-29 2010-03-18 Universal Can Corporation Liner-provided cap and cap-provided threaded container
CA2638403C (en) 2008-04-24 2016-07-19 Alcan International Limited Aluminum alloy for extrusion and drawing processes
CN101294255B (zh) * 2008-06-12 2011-06-08 苏州有色金属研究院有限公司 一种汽车车身板用铝合金及其制造方法
RU2509701C2 (ru) 2008-06-26 2014-03-20 Алкоа Инк. Емкость с двойными стенками и способ ее изготовления
JP4829988B2 (ja) 2009-02-16 2011-12-07 株式会社神戸製鋼所 包装容器蓋用アルミニウム合金板
JP2010202908A (ja) 2009-03-02 2010-09-16 R Nissei:Kk ブリケットおよびその製造方法
WO2010117009A1 (ja) 2009-04-06 2010-10-14 武内プレス工業株式会社 金属ボトル缶
UA44247U (ru) 2009-04-27 2009-09-25 Николай Иванович Никулин Комплекс канализационной системы для населения
US8360266B2 (en) 2009-11-13 2013-01-29 The Coca-Cola Corporation Shaped metal vessel
US20110113732A1 (en) 2009-11-13 2011-05-19 The Coca-Cola Company Method of isolating column loading and mitigating deformation of shaped metal vessels
JP5324415B2 (ja) 2009-12-22 2013-10-23 ユニバーサル製缶株式会社 缶の凹凸検出装置
US8313003B2 (en) 2010-02-04 2012-11-20 Crown Packaging Technology, Inc. Can manufacture
JP5610573B2 (ja) 2010-03-10 2014-10-22 進路工業株式会社 製鋼用アルミニウムブリケット及びその使用方法
WO2011134486A1 (en) 2010-04-26 2011-11-03 Sapa Ab Damage tolerant aluminium material having a layered microstructure
CN101985707A (zh) 2010-11-16 2011-03-16 苏州有色金属研究院有限公司 6系汽车车身用高烘烤硬化性铝合金材料
HUE029731T2 (en) 2010-11-29 2017-03-28 Crown Packaging Technology Inc Clasps
EP2692456B1 (en) 2011-03-28 2018-11-14 Universal Can Corporation Method for manufacturing threaded bottle can and threaded bottle can
JP5887340B2 (ja) 2011-04-19 2016-03-16 ユニバーサル製缶株式会社 ねじ付きボトル缶の製造方法及び製造装置
MX341354B (es) 2011-09-16 2016-08-17 Ball Corp Recipientes extruidos por impacto a partir de chatarra de aluminio reciclada.
EP2817243B1 (en) 2012-02-24 2019-05-01 Crown Packaging Technology, Inc. Aerosol container
US9339864B2 (en) 2012-03-27 2016-05-17 Universal Can Corporation Manufacturing method and manufacturing apparatus of screw-threaded bottle-can
CA2908181C (en) 2013-04-09 2018-02-20 Ball Corporation Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486243A (en) * 1992-10-13 1996-01-23 Kawasaki Steel Corporation Method of producing an aluminum alloy sheet excelling in formability
RU2221891C1 (ru) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721507C1 (ru) * 2016-08-30 2020-05-19 АЛКОА ЮЭсЭй КОРП. Алюминиевый лист с улучшенной формуемостью и алюминиевый контейнер, выполненный из алюминиевого листа
US11433441B2 (en) 2016-08-30 2022-09-06 Kaiser Aluminum Warrick, Llc Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet
RU2736632C1 (ru) * 2016-12-30 2020-11-19 Болл Корпорейшн Алюминиевый сплав для контейнеров, получаемых ударным выдавливанием, и способ его получения
RU2718370C1 (ru) * 2019-11-18 2020-04-06 Акционерное общество "Арнест" Сплав на основе алюминия и аэрозольный баллон из этого сплава

Also Published As

Publication number Publication date
SA112330856B1 (ar) 2018-03-08
CA2848846A1 (en) 2013-03-21
CN110218869A (zh) 2019-09-10
CA2979863C (en) 2019-11-12
RU2014115212A (ru) 2015-10-27
AU2012308416A1 (en) 2014-05-01
MX341354B (es) 2016-08-17
HUE055985T2 (hu) 2022-01-28
KR20140084040A (ko) 2014-07-04
AU2018241184B2 (en) 2020-06-11
AU2012308416B2 (en) 2016-07-14
CA3040764C (en) 2021-06-29
CN104011237A (zh) 2014-08-27
SI3144403T1 (sl) 2021-04-30
CA2979863A1 (en) 2013-03-21
US20130068352A1 (en) 2013-03-21
UA114608C2 (uk) 2017-07-10
SI3141624T1 (sl) 2021-11-30
BR112014006382B1 (pt) 2020-01-07
US10584402B2 (en) 2020-03-10
AU2016204457A1 (en) 2016-07-28
AU2018241184A1 (en) 2018-11-01
US20160230256A1 (en) 2016-08-11
EP3144403B1 (en) 2020-10-21
EP3141624B1 (en) 2021-06-02
KR20160098526A (ko) 2016-08-18
EP3141624A1 (en) 2017-03-15
AR111848A2 (es) 2019-08-28
US20200199715A1 (en) 2020-06-25
EP2756108A4 (en) 2016-03-09
CA3040764A1 (en) 2013-03-21
WO2013040339A1 (en) 2013-03-21
CA2848846C (en) 2019-06-04
US9663846B2 (en) 2017-05-30
AU2020230322B2 (en) 2021-11-25
AR087892A1 (es) 2014-04-23
AU2020230322A1 (en) 2020-10-01
BR112014006382A2 (pt) 2017-04-04
KR20160120799A (ko) 2016-10-18
EP3144403A1 (en) 2017-03-22
EP2756108A1 (en) 2014-07-23
BR122018017039B1 (pt) 2020-01-21
MX2014002907A (es) 2015-01-22
AU2012308416C1 (en) 2016-11-24
HUE053500T2 (hu) 2021-06-28

Similar Documents

Publication Publication Date Title
RU2593799C2 (ru) Контейнеры, изготовленные из переработанного алюминиевого лома методом ударного прессования
RU2642231C2 (ru) Получаемая прессованием ударным выдавливанием алюминиевая бутылка с резьбой на горлышке, изготавливаемая из рециклированного алюминия и усиленных сплавов
AU2020239684B2 (en) Aluminum alloy for impact extruded containers and method of making the same