RU2544005C2 - Способ обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания - Google Patents

Способ обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания Download PDF

Info

Publication number
RU2544005C2
RU2544005C2 RU2011140019/07A RU2011140019A RU2544005C2 RU 2544005 C2 RU2544005 C2 RU 2544005C2 RU 2011140019/07 A RU2011140019/07 A RU 2011140019/07A RU 2011140019 A RU2011140019 A RU 2011140019A RU 2544005 C2 RU2544005 C2 RU 2544005C2
Authority
RU
Russia
Prior art keywords
engine
flow
signal
value
intake mode
Prior art date
Application number
RU2011140019/07A
Other languages
English (en)
Other versions
RU2011140019A (ru
Inventor
Александр КОЛЛЕ
Кевен РОБЕР
Бенжамен ГРЕЗЬЯК
Original Assignee
Рено Сас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рено Сас filed Critical Рено Сас
Publication of RU2011140019A publication Critical patent/RU2011140019A/ru
Application granted granted Critical
Publication of RU2544005C2 publication Critical patent/RU2544005C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Изобретение относится к способу обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания. Технический результат - повышение точности измерения расхода воздуха, поступающего в двигатель. Сигнал обрабатывают согласно первой логической схеме, когда двигатель работает в первом режиме впуска, и сигнал обрабатывают согласно второй логической схеме, когда двигатель работает во втором режиме впуска. Первый режим впуска характеризуется приведением в действие клапана EGR высокого давления. Второй режим впуска характеризуется приведением в действие клапана EGR низкого давления. 6 н. и 4 з.п. ф-лы,9 ил.

Description

Изобретение относится к способу обработки сигнала, поступающему от расходомера измерения расхода газов в двигателе внутреннего сгорания, таким образом, чтобы определить количество воздуха, впускаемого в двигатель. Изобретение относится также к способу настройки системы обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания. Изобретение относится также к носителю информации, содержащему программное обеспечение для управления этими способами. Также изобретение относится к системе обработки, системе измерения, содержащей такую систему обработки, и к автотранспортному средству, содержащему такую систему обработки или такую систему измерения.
Будущие экологические нормы вынуждают автопроизводителей улучшать контроль за работой двигателя, то есть управлять двигателем более точно, чтобы снизить его влияние на окружающую среду. Для этого необходимо точно контролировать количество воздуха, подаваемого в камеры сгорания двигателя. Для этой цели используют воздушные расходомеры, измеряющие расход воздуха, питающего двигатель. Речь может идти о любом типе теплового двигателя внутреннего сгорания, в частности о тепловых двигателях внутреннего сгорания независимо от числа рабочих тактов, от способа впрыска и т.д. Таким образом, изобретение можно применять для:
- дизельных двигателей, с наддувом или без него, с любым типом воспламенения,
- бензиновых двигателей с управляемым зажиганием, с наддувом или без него, с любым типом воспламенения,
- двигателей с гибким выбором топлива, использующих смесь бензина и этанола в разных пропорциях,
- газовых двигателей.
В двигателе внутреннего сгорания расход (объемный или массовый) можно измерить при помощи датчика расхода, такого как расходомер или датчик давления. Необработанные сигналы, поступающие от датчика расхода, обрабатывают при помощи компьютерной программы, содержащейся в вычислительном устройстве или электронном блоке управления, при этом компьютерная программа позволяет обрабатывать сигналы и корректировать их, в частности фильтровать, чтобы получать надежные данные, которые можно использовать в алгоритмах управления двигателем. До этой обработки обычно используют картографию для преобразования электрических сигналов в физические данные расхода.
Принцип работы расходомера основан на измерении местной скорости в сечении расходомера, умноженной на площадь этого сечения. Однако этот принцип измерения расхода зависит от двух факторов:
- от профиля скорости в сечении, причем эта скорость не является постоянной вследствие аэродинамических явлений,
- от пульсации потока вследствие цикличной работы двигателя.
Кроме того, режим вращения двигателя и нагрузка являются двумя основными переменными, влияющими на форму пульсации потока, как показано на фиг.1, где представлены четыре кривые временных изменений скорости газов в патрубке двигателя при режимах вращения двигателя 800 об/мин, 1400 об/мин, 1700 об/мин и 2000 об/мин, причем все эти кривые относятся к одной нагрузке в 5 бар.
Для получения точного значения расхода можно использовать картографию, которая составлена в зависимости от нагрузки и от режима двигателя. Схема обработки сигнала, поступающего от расходомера, будет описана ниже со ссылками на фиг.2.
Расходомер 11 выдает электрический сигнал, имеющий частоту и напряжение, зависящие от расхода газа, проходящего через расходомер. Таким образом, частота сигнала является характеристикой расхода газа. Посредством счетчика 12 периодов определяют дискретное значение частоты. Затем при помощи средства 13 линеаризации дискретную частоту преобразуют в дискретный расход. Это средство линеаризации использует линеаризированную кривую расходомера, характеризующую значения расхода газа, проходящего через расходомер, в зависимости от частоты выходного сигнала расходомера. Дискретный расход воздуха является мгновенным значением, которое затем усредняют на половине оборота двигателя при помощи средства 14, затем фильтруют при помощи фильтра 15 первого порядка, чтобы получить на выходе фильтра 15 значение среднего расхода газа. Наконец, этот средний расход воздуха корректирует операционный блок 16, который использует для этой коррекции одно или несколько значений, получаемых из картографии 17. Эта картография 17 дает одно или несколько значений в зависимости от значения нагрузки двигателя и от значения режима вращения двигателя. Таким образом, можно получить точное значение расхода газа при любых значениях пары нагрузка-режим вращения двигателя.
Тем не менее, в будущем и уже в настоящее время в контуры впуска газов, используемых при работе двигателя, предусмотрено добавление различных воздействующих устройств, а именно клапанов и/или заслонок, которые в зависимости от своего положения определяют различные режимы или различные виды впуска в двигатель.
При этом режим впуска в двигатель уже определяется не только параметрами режима вращения двигателя и нагрузки двигателя, но также положениями этих воздействующих устройств. Например, для будущих проектов производства дизельных двигателей, отвечающих норме Евро 6, двигатели будут иметь два режима впуска:
- режим А, при котором рециркуляцию выхлопных газов EGR производят в контуре высокого давления впускного контура,
- режим В, при котором рециркуляцию выхлопных газов EGR производят в контуре низкого давления впускного контура.
При этом если используют описанную выше вычислительную схему после ее настройки, чтобы адаптировать ее для выдачи точных значений расхода газа, когда двигатель работает в режиме А, получают график, показанный на фиг.3. Следует заметить, что когда двигатель работает в режиме А, независимо от расхода воздуха, впускаемого в двигатель, погрешность измерения значения расхода, выдаваемого расходомером, находится в интервале +/-3%.
Однако следует заметить, что когда двигатель работает в режиме В, погрешность измерения значения расхода, выдаваемого расходомером, находится за пределами интервала +/-3% и достигает даже +/-10%, как показано на фиг.4.
Интервал погрешности +/-3% является допустимым пределом погрешности измерения расхода для проектов дизельного двигателя Евро 6.
Различные данные погрешностей предыдущих графиков получают посредством определения разности между расходами, измеренными при помощи расходомера, с получением данных при помощи описанной выше вычислительной схемы и расходами, измеренными при помощи контрольного расходомера, не чувствительного, например, к режимам впуска двигателя, причем этот контрольный расходомер использует анализ состава выхлопных газов двигателя.
Точно так же, вычислительную схему можно настраивать и адаптировать для получения точных значений расхода, когда двигатель работает в режиме впуска В. В этом случае, для требуемой точности не будут иметь уже значения расхода, измеряемые, когда двигатель работает в режиме А.
Одним из решений может быть настройка и адаптация вычислительной схемы по компромиссной логической схеме, чтобы она выдавала значения расхода, которые будут точными как при работе двигателя в режиме А, так и в режиме В. Однако при таком решении требуемой точности невозможно достичь ни в режиме А, ни в режиме В.
Из документа DE 19633680 известен способ коррекции сигнала, выдаваемого расходомером, используемым для измерения массового расхода воздуха в бензиновом двигателе. Расходомер измеряет количество свежего воздуха, впускаемого в двигатель, которое характеризует степень заполнения двигателя воздухом. Сигнал расхода воздуха, выдаваемый расходомером, делится на постоянную и осциллирующую части, чтобы сигнал, полученный на выходе, был необработанным сигналом расхода воздуха за один ход поршня, то есть характеристикой заполнения каждого цилиндра двигателя. Затем этот необработанный сигнал расхода воздуха за один ход поршня корректируют при помощи картографии, зависящей от углового положения дроссельной заслонки, от режима двигателя и от температуры впускаемого воздуха. Эта коррекция позволяет учитывать влияние температуры воздуха на заполнение двигателя за счет учета действительной температуры впускаемого воздуха в сравнении со стандартной температурой воздуха. Этот способ имеет недостатки. С одной стороны, коррекция в зависимости от режима двигателя и от температуры воздуха, впускаемого в двигатель, не позволяет избежать влияния пульсации волн давления во впускном контуре, которые оказывают влияние на заполнение двигателя. С другой стороны, коррекция является чувствительной к разбросам измерений, выдаваемых датчиком температуры и датчиком углового положения дроссельной заслонки.
Из патента US 6556929 известен способ коррекции сигнала, выдаваемого расходомером, посредством анализа характеристики среднего значения и амплитуды необработанного сигнала, выдаваемого этим расходомером. Коррекция, применяемая для необработанного среднего значения сигнала расходомера, зависит от продолжительности фазы впуска двигателя и от калиброванной картографии, которые, в свою очередь, зависят от среднего значения и от амплитуды необработанного сигнала, поступающего от расходомера. Этот способ коррекции имеет свои недостатки. С одной стороны, способ коррекции не учитывает пульсационные явления во впускном трубопроводе. С другой стороны, способ коррекции требует наличия больших вычислительных ресурсов.
Из патента US 7826925 известны два способа коррекции сигнала, поступающего от расходомера. Первый способ состоит в изменении линеаризированной кривой расходомера. Эти кривые, выражающие массовый расход воздуха, проходящего через расходомер, в зависимости от выдаваемого напряжения, корректируют в зависимости от пульсационного состояния воздушного потока. Второй способ состоит в коррекции погрешности, наведенной пульсацией двигателя, при помощи системы фильтрации сигнала, выдаваемого расходомером. Эта система фильтрации объединяет три фильтра (фильтр высоких частот, фильтр низких частот и полосовой фильтр) и средство калиброванного смещения. Каждый фильтр можно деактивировать независимо от других фильтров. Эта система фильтрации сглаживает необработанный сигнал, выдаваемый расходомером. Последнюю коррекцию применяют для сигнала, выходящего из системы фильтрации, при помощи картографии, зависящей от частотных характеристик сигнала. Эти способы имеют недостатки. С одной стороны, не дается ни одного метода идентификации скорректированной линеаризированной кривой расходомера и способ является сложным в применении в системе управления двигателем из-за аэроакустических явлений. С другой стороны, коррекция при помощи системы фильтрации позволяет сглаживать сигнал, выдаваемый расходомером, но не позволяет корректировать физическое влияние пульсационных явлений во впускном трубопроводе двигателя.
Описанные в этих документах способы ограничиваются сглаживанием пульсаций, наводимых двигателем.
Задача изобретения состоит в создании способа обработки сигнала, поступающего от расходомера, позволяющего устранить вышеупомянутые недостатки и усовершенствовать известные способы обработки. В частности, изобретением предлагается простой способ обработки, позволяющий добиваться точного измерения расхода воздуха, впускаемого в двигатель, при этом двигатель может работать на разных режимах впуска.
Согласно изобретению способ обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания, состоит в том, что сигнал обрабатывают согласно первой логической схеме, когда двигатель работает в первом режиме впуска, и в том, что сигнал обрабатывают согласно второй логической схеме, когда двигатель работает во втором режиме впуска.
Первый режим впуска может характеризоваться приведением в действие клапана EGR (рециркуляции отработавших газов) высокого давления.
Второй режим впуска может характеризоваться приведением в действие клапана EGR низкого давления.
Способ обработки может содержать этап преобразования электрической характеристики сигнала, поступающего от расходомера, в мгновенное значение расхода, причем этот этап преобразования осуществляют согласно первой логической схеме, когда двигатель работает в первом режиме впуска, и согласно второй логической схеме, когда двигатель работает во втором режиме впуска.
Способ обработки может содержать этап определения среднего значения таким образом, чтобы на основании значений единовременного расхода получить значение среднего расхода.
Способ обработки может содержать этап коррекции, чтобы на основании значения расхода получить его скорректированное значение, причем этот этап коррекции осуществляют согласно первой логической схеме, когда двигатель работает в первом режиме впуска, и согласно второй логической схеме, когда двигатель работает во втором режиме впуска.
Этап коррекции можно осуществлять при помощи значения, получаемого из картографии, причем это значение зависит от параметров двигателя, в частности от нагрузки и/или от режима вращения двигателя.
Согласно изобретению способ настройки системы обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания, содержит итерацию следующего этапа:
- определяют логическую схему обработки сигнала, поступающего от расходомера, чтобы получить значение расхода на всех режимах впуска, используемых двигателем.
Объектом изобретения является также носитель записи данных, который выполнен с возможностью считывания вычислительным устройством и на котором записана компьютерная программа, содержащая программные средства осуществления этапов описанного выше способа обработки.
Согласно изобретению система обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания, содержит материальные и/или программные средства осуществления описанного выше способа обработки или описанного выше способа настройки.
Согласно изобретению система измерения расхода газов в двигателе внутреннего сгорания содержит описанную выше систему обработки и расходомер.
Согласно изобретению автотранспортное средство содержит описанную выше систему обработки или описанную выше систему измерения.
Прилагаемые чертежи иллюстрируют принцип осуществления способа обработки в соответствии с настоящим изобретением.
На фиг.1 показан график, иллюстрирующий влияние режима вращения двигателя на расход воздуха, впускаемого в двигатель;
на фиг.2 показана схема обработки сигнала, поступающего от расходомера, для определения значения расхода воздуха;
на фиг.3 показан график, иллюстрирующий погрешность измерения при измерении расхода воздуха посредством данного расходомера, когда двигатель работает в первом режиме впуска, при этом система обработки сигнала, поступающего от расходомера, настроена и адаптирована к этому первому режиму впуска;
на фиг.4 показан график, иллюстрирующий погрешность измерения при измерении расхода воздуха посредством этого же расходомера, когда двигатель работает во втором режиме впуска, при этом система обработки сигнала, поступающего от расходомера, настроена и адаптирована к этому второму режиму впуска;
на фиг.5 показана схема обработки сигнала, поступающего от расходомера, для определения значения расхода воздуха, причем эта схема обработки выполнена в соответствии с настоящим изобретением;
на фиг.6 и 7 показаны этапы настройки схемы обработки или системы обработки в соответствии с настоящим изобретением, позволяющей обрабатывать сигнал, поступающий от расходомера, для получения точного значения расхода;
на фиг.8 и 9 показаны графики, иллюстрирующие погрешность измерения при измерении расхода воздуха посредством одного и того же расходомера, когда двигатель работает в первом режиме впуска и во втором режиме впуска, при этом схема обработки сигнала, поступающего от расходомера, настроена и адаптирована в соответствии с настоящим изобретением.
Далее со ссылками на фиг.5 следует описание осуществления системы 100 измерения расхода газов, в частности, впускных газов в двигателе внутреннего сгорания, в частности, двигателя внутреннего сгорания автотранспортного средства.
Система измерения расхода газов в основном содержит расходомер 21 и систему 101 обработки сигнала, например электрического сигнала, поступающего от расходомера.
В описываемом варианте осуществления от расходомера поступает циклический электрический сигнал. Частота этого электрического сигнала определяется расходом газов, измеряемым расходомером. Этот электрический сигнал поступает в систему обработки.
Первое средство 22 подсчета позволяет определить частоту электрического сигнала, поступающего от расходомера. На выходе из средства подсчета считывают это значение частоты. Его направляют в первое средство 23 линеаризации и во второе средство 24 линеаризации. Первое средство линеаризации позволяет преобразовать значение частоты в первое мгновенное или дискретное значение расхода, причем это преобразование осуществляют, предполагая, что двигатель внутреннего сгорания работает в первом режиме впуска. Второе средство линеаризации позволяет преобразовать значение частоты во второе мгновенное или дискретное значение расхода, причем это преобразование осуществляют, предполагая, что двигатель внутреннего сгорания работает во втором режиме впуска.
Оба мгновенных значения расхода поступают на порт 25, на выходе которого получают либо первое мгновенное значение расхода, либо второе мгновенное значение расхода в зависимости от того, работает двигатель в первом режиме впуска (режим А) или во втором режиме впуска (режим В). На этот порт 25 поступает электрический сигнал, например, логический. Значение этого сигнала определяется режимом впуска, в котором работает двигатель. Следовательно, он определяет, какое из двух значений расхода, выдаваемых первым и вторым средствами линеаризации, оказывается на выходе порта 25.
Средство 26 вычисления среднего значения позволяет вычислить среднее мгновенное значение расхода, полученного на выходе порта 25, за данный период, например за половину оборота коленчатого вала двигателя внутреннего сгорания.
Среднее значение, получаемое на выходе средства 26 вычисления, затем фильтруют при помощи средства 27 фильтрации, например, фильтра первого порядка. После этого среднее значение расхода поступает в средство 32 коррекции.
Средство 32 коррекции содержит, например, первое средство 29 определения значения поправки, например, посредством использования картографии, второе средство 30 определения значения поправки, например, посредством использования картографии, логический порт 31 и операционный блок 28 сложения. Первое средство 29 определения значения поправки использует параметры работы двигателя, например нагрузку и/или режим вращения двигателя для определения первого значения поправки. Точно так же, второе средство 30 определения значения поправки использует параметры работы двигателя, например нагрузку и/или режим вращения двигателя для определения второго значения поправки. Первое и второе значения поправки поступают на порт 31 так же, как и электрический сигнал, например, логический. Значение этого сигнала определяется режимом впуска, в котором работает двигатель. Следовательно, он определяет, какое из первого и второго значений поправки, выдаваемых первым и вторым средствами определения, оказывается на выходе порта 31 и выдается в операционный блок 28. Таким образом, это значение поправки складывают со значением среднего расхода воздуха, поступающим от средства 27 фильтрации, на уровне операционного блока 28, что дает на выходе операционного блока 28 скорректированное значение расхода воздуха.
Все средства системы обработки можно интегрировать в вычислительное устройство, содержащее носитель записи или выполненное с возможностью работы с носителем записи. Эти средства или некоторые из этих средств можно выполнить в виде компьютерных программ. Они позволяют управлять и/или применять устройство обработки, являющееся объектом настоящего изобретения.
Благодаря изобретению можно очень точно определять значения расхода газов, впускаемых в двигатель внутреннего сгорания.
Можно предусмотреть различные версии описанного выше варианта осуществления. Например, порты 25 и 31 могут находиться на входе средств 23, 24, 29, 30 таким образом, чтобы производить вычисление только одного мгновенного значения расхода или только одного значения поправки.
Точно также операционный блок 28 может быть оператором умножения. В этом случае значения, получаемые на выходе порта 31, будут уже соответствовать не значениям расхода, а безразмерным коэффициентам.
Наконец, понятно, что система обработки в соответствии с настоящим изобретением может управлять более чем двумя режимами питания. В этом случае она будет содержать более двух средств линеаризации, каждое из которых будет работать согласно разной логической схеме, и более двух средств определения значения поправки, каждое из которых будет работать согласно разной логической схеме. Таким образом, можно использовать одну логику обработки для каждого режима впуска.
Применение режима впуска зависит от различных задач, таких как очистка, регенерация фильтра-улавливателя частиц или наддув. Таким образом, эти режимы впуска соответствуют определенным состояниям двигателя, которые можно идентифицировать и которые определяют состояние логических сигналов, поступающих на порты 25 и 31. За счет этого можно связать с режимом впуска воздуха линеаризированную кривую и картографию коррекции расхода воздуха. Первый вариант питания характеризуется, например, подачей отработавших газов во впускной контур на входе компрессора (активация клапана EGR низкого давления), а второй вариант питания характеризуется, например, подачей отработавших газов во впускной контур на выходе компрессора (активация клапана EGR высокого давления). Предпочтительно различные режимы впуска различаются состоянием (открытое или закрытое) заслонки или клапана впускного контура. В варианте различные режимы впуска различаются состоянием (открытое или закрытое) воздушной заслонки на выходе компрессора или заслонки на входе воздушного фильтра. Предпочтительно различные режимы впуска не дифференцируются двумя приоткрытыми состояниями заслонки или клапана, такими, при которых заслонка приоткрыта на 30°, а клапан приоткрыт на 60°.
Благодаря системе обработки в соответствии с настоящим изобретением, получают следующие результаты:
Когда двигатель работает в режиме А, получают график, показанный на фиг.9. Следует отметить, что, когда двигатель работает в режиме А, при любом расходе воздуха, впускаемого в двигатель, погрешность измерения на значении расхода, выдаваемом расходомером, находится в интервале +/-3%.
Точно так же, когда двигатель работает в режиме В, получают график, показанный на фиг.8. При этом отмечается, что когда двигатель работает в режиме В, при любом расходе воздуха, впускаемого в двигатель, погрешность измерения на значении расхода, выдаваемом расходомером, находится в интервале +/-3%.
Объектом изобретения является также способ настройки системы обработки сигнала, поступающего от расходомера.
На первом этапе выбирают тип двигателя, предназначенного для работы с системой обработки сигнала, поступающего от расходомера, в соответствии с настоящим изобретением.
На втором этапе двигатель запускают для работы в первом режиме питания.
На третьем этапе обеспечивают устойчивую работу двигателя согласно первому набору значений параметров двигателя, например согласно первой паре значений нагрузка/режим вращения двигателя. На этом этапе измеряют и отмечают частоту Fhfm электрического сигнала, выдаваемого расходомером. Точно так же измеряют и отмечают значение контрольного расхода газов Qref, впускаемых в двигатель, причем это измерение осуществляют при помощи очень точной системы измерения расхода, не зависящей от расходомера. Измерение контрольного расхода можно, например, производить посредством измерения состава отработавших газов.
Третий этап повторяют определенное количество раз с разными значениями набора параметров двигателя, чтобы получить возможность построить график, показанный на фиг.6, где на оси абсцисс указана частота электрического сигнала, а на оси ординат - измеренный контрольный расход. Различные итерации третьего этапа позволяют определить правило, например математическое правило, связывающее значения частоты Fhfm и значения контрольного расхода Qref. Это правило будет использовано в средстве линеаризации, которое будет применяться, когда двигатель будет работать в первом режиме питания.
На четвертом этапе для каждой точки работы, использованной на предыдущем этапе, на основании частоты Fhfm сигнала, поступающего от расходомера, определяют значение расхода газов Qhfm, получаемое при помощи определенного ранее правила. Затем определяют разность между этим последним значением расхода и значением контрольного расхода Qref. Отмечают эту разность и значения набора параметров двигателя, позволивших получить частоту Fhfm.
Четвертый этап повторяют для всех точек работы двигателя, чтобы получить возможность построить картографию, показанную на фиг.7, где на оси абсцисс показан режим двигателя, на оси ординат - нагрузка, а сбоку - разность между значением расхода газов Qhfm и значением контрольного расхода газов Qref. Различные итерации четвертого этапа позволяют определить правило (предпочтительно картографию), например математическое правило, связывающее наборы значений параметров, определяющие точки работы, и разности расхода. Это правило будет использовано в средстве коррекции, которое будет применяться, когда двигатель будет работать в первом режиме питания.
Этапы со второго по четвертый повторяют для всех режимов впуска, которые могут использоваться для двигателя.
После этого различные правила и картографии сохраняют в памяти системы обработки сигнала, поступающего от расходомера. Таким образом, сигнал, поступающий от расходомера, можно обрабатывать согласно соответствующей логической схеме в зависимости от режима питания двигателя.
Преимущество заявленного способа обработки сигнала состоит в том, что данный способ позволяет расходомеру, измеряющему расход воздуха, впускаемого в двигатель, выдавать точные измерения расхода воздуха, когда этот двигатель может работать на нескольких разных режимах впуска.

Claims (10)

1. Способ обработки сигнала, поступающего от расходомера (21) измерения расхода газов в двигателе внутреннего сгорания, характеризующийся тем, что сигнал обрабатывают согласно первой логической схеме, когда двигатель работает в первом режиме впуска, и сигнал обрабатывают согласно второй логической схеме, когда двигатель работает во втором режиме впуска, при этом на первом режиме впуска приводят в действие клапан EGR высокого давления, а на втором режиме впуска приводят в действие клапан EGR низкого давления.
2. Способ обработки по п. 1, характеризующийся тем, что содержит этап преобразования электрической характеристики сигнала, поступающего от расходомера, в мгновенное значение расхода, причем этот этап преобразования осуществляют согласно первой логической схеме, когда двигатель работает на первом режиме впуска, и согласно второй логической схеме, когда двигатель работает на втором режиме впуска.
3. Способ обработки по п. 1, характеризующийся тем, что содержит этап определения среднего значения так, чтобы на основании мгновенных значений расхода получить значение среднего расхода.
4. Способ обработки по п. 1, характеризующийся тем, что содержит этап коррекции так, чтобы на основании значения расхода получить значение скорректированного расхода, причем этот этап коррекции осуществляют согласно первой логической схеме, когда двигатель работает на первом режиме впуска, и согласно второй логической схеме, когда двигатель работает на втором режиме впуска.
5. Способ обработки по п. 4, характеризующийся тем, что этап коррекции осуществляют при помощи значения, получаемого из картографии, причем это значение зависит от параметров двигателя, в частности, от нагрузки и/или от режима вращения двигателя.
6. Способ настройки системы обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания, характеризующийся тем, что содержит итерацию следующего этапа:
- определяют логическую схему обработки сигнала, поступающего от расходомера, чтобы получить значение расхода на всех режимах впуска, используемых двигателем, при этом на первом режиме впуска приводят в действие клапан EGR высокого давления, а на втором режиме впуска приводят в действие клапан EGR низкого давления.
7. Носитель записи данных, выполненный с возможностью считывания вычислительным устройством и на котором записана компьютерная программа, содержащая программные средства осуществления этапов способа обработки по одному из пп. 1-5.
8. Система (101) обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания, характеризующаяся тем, что содержит материальные (22, 23, 24, 25, 26, 27, 32) и/или программные средства осуществления способа обработки по одному из пп. 1-5 или способа настройки по п. 6.
9. Система (100) измерения расхода газов в двигателе внутреннего сгорания, характеризующаяся тем, что содержит систему (101) обработки по п. 8 и расходомер (21).
10. Автотранспортное средство, содержащее систему обработки по п. 8 или систему измерения по п. 9.
RU2011140019/07A 2009-03-03 2010-02-26 Способ обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания RU2544005C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0900948A FR2942849B1 (fr) 2009-03-03 2009-03-03 Procede de traitement d'un signal issu d'un debitmetre de mesure d'un debit de gaz dans un moteur a combustion interne
FR0900948 2009-03-03
PCT/FR2010/050341 WO2010100372A1 (fr) 2009-03-03 2010-02-26 Procede de traitement d'un signal issu d'un debitmetre de mesure d'un debit de gaz dans un moteur a combustion interne

Publications (2)

Publication Number Publication Date
RU2011140019A RU2011140019A (ru) 2013-04-10
RU2544005C2 true RU2544005C2 (ru) 2015-03-10

Family

ID=41119855

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011140019/07A RU2544005C2 (ru) 2009-03-03 2010-02-26 Способ обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания

Country Status (7)

Country Link
US (1) US8849591B2 (ru)
EP (1) EP2404047B1 (ru)
JP (1) JP2012519792A (ru)
CN (1) CN102341583B (ru)
FR (1) FR2942849B1 (ru)
RU (1) RU2544005C2 (ru)
WO (1) WO2010100372A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689322B2 (en) 2013-03-14 2017-06-27 GM Global Technology Operations LLC System and method for sampling and processing mass air flow sensor data
DE102013215921A1 (de) * 2013-08-12 2015-03-05 Continental Automotive Gmbh Luftmassenmesser
DE102019126783A1 (de) * 2019-10-04 2021-04-08 systec Controls Meß- und Regeltechnik GmbH Verfahren zur Bestimmung des Massenstroms in einem Verbrennungsmotor
FR3115565B1 (fr) * 2020-10-22 2023-05-26 Renault Sas Procédé et système de correction d’une mesure de débit d’air admis dans un moteur à combustion interne
CN113374592A (zh) * 2021-06-18 2021-09-10 广西玉柴机器股份有限公司 柴油机进气流量计算的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386520A (en) * 1980-01-10 1983-06-07 Nissan Motor Company, Limited Flow rate measuring apparatus
US5069184A (en) * 1988-06-15 1991-12-03 Toyoto Jidosha Kabushiki Kaisha Apparatus for control and intake air amount prediction in an internal combustion engine
RU2296958C2 (ru) * 2005-05-13 2007-04-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. акад. М.Ф. Решетнева" Способ градуировки газовых расходомеров и устройство его реализации
RU2327957C1 (ru) * 2006-11-03 2008-06-27 Общество с ограниченной ответственностью Научно-технический центр "Нордикс-Метрология" (ООО НТЦ "Нордикс-Метрология") Роликолопастной расходомер

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424568A (en) * 1980-01-31 1984-01-03 Hitachi, Ltd. Method of controlling internal combustion engine
JPS5827828A (ja) * 1981-08-11 1983-02-18 Mitsubishi Electric Corp 燃料噴射装置
JPS60252139A (ja) * 1984-05-28 1985-12-12 Nippon Denso Co Ltd エンジンの制御装置
US4664090A (en) 1985-10-11 1987-05-12 General Motors Corporation Air flow measuring system for internal combustion engines
US5537981A (en) * 1992-05-27 1996-07-23 Siemens Aktiengesellschaft Airflow error correction method and apparatus
DE19633680B4 (de) 1995-10-24 2005-10-27 Robert Bosch Gmbh Einrichtung zur Korrektur eines Meßfehlers
DE19933665A1 (de) * 1999-07-17 2001-01-18 Bosch Gmbh Robert Vorrichtung zur Erfassung einer pulsierenden Größe
DE102004047786A1 (de) 2004-10-01 2006-04-06 Robert Bosch Gmbh Verfahren zur Pulsationskorrektur innerhalb eines einen Medienmassenstrom messenden Messgeräts
FR2894623B1 (fr) * 2005-12-08 2008-02-01 Renault Sas Procede de commande d'un moteur comportant une boucle de recirculation de gaz d'echappement de type basse pression
JP5073949B2 (ja) * 2006-02-02 2012-11-14 日立オートモティブシステムズ株式会社 流量測定装置
JP4285528B2 (ja) * 2006-11-06 2009-06-24 トヨタ自動車株式会社 内燃機関の排気再循環システム
JP2008184987A (ja) * 2007-01-31 2008-08-14 Denso Corp 空気流量測定値補正装置
US8359858B2 (en) * 2007-10-30 2013-01-29 Ford Global Technologies, Llc Twin turbocharged engine with reduced compressor imbalance and surge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386520A (en) * 1980-01-10 1983-06-07 Nissan Motor Company, Limited Flow rate measuring apparatus
US5069184A (en) * 1988-06-15 1991-12-03 Toyoto Jidosha Kabushiki Kaisha Apparatus for control and intake air amount prediction in an internal combustion engine
RU2296958C2 (ru) * 2005-05-13 2007-04-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. акад. М.Ф. Решетнева" Способ градуировки газовых расходомеров и устройство его реализации
RU2327957C1 (ru) * 2006-11-03 2008-06-27 Общество с ограниченной ответственностью Научно-технический центр "Нордикс-Метрология" (ООО НТЦ "Нордикс-Метрология") Роликолопастной расходомер

Also Published As

Publication number Publication date
FR2942849A1 (fr) 2010-09-10
RU2011140019A (ru) 2013-04-10
EP2404047B1 (fr) 2017-01-25
US20110313687A1 (en) 2011-12-22
EP2404047A1 (fr) 2012-01-11
JP2012519792A (ja) 2012-08-30
WO2010100372A1 (fr) 2010-09-10
US8849591B2 (en) 2014-09-30
FR2942849B1 (fr) 2011-04-01
CN102341583A (zh) 2012-02-01
CN102341583B (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
RU2264550C2 (ru) Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха
US7748217B2 (en) System and method for modeling of turbo-charged engines and indirect measurement of turbine and waste-gate flow and turbine efficiency
JP4898678B2 (ja) ターボチャージャ速度の判定技法
RU2544005C2 (ru) Способ обработки сигнала, поступающего от расходомера измерения расхода газов в двигателе внутреннего сгорания
US5889204A (en) Device for determining the engine load for an internal combustion engine
CN105736206B (zh) 一种发动机变工况下循环喷油量的在线检测方法及装置
JP5409833B2 (ja) 内燃機関のシリンダ吸入空気量推定装置
JPH11504093A (ja) 内燃機関のシリンダの中に流入する空気流量をモデルを援用して求める方法
JP2007126996A (ja) 機関出力の演算方法及び演算装置
JP2013194586A (ja) 内燃機関のシリンダ吸入空気量および内部egr率の推定装置
CN103670748A (zh) 内燃机的气缸吸入空气量推定装置
JP2015504134A5 (ru)
US20140109570A1 (en) Control device and method for air system of diesel engine
US7139655B2 (en) Intake air parameter estimating device for internal combustion engine
JP2003522888A (ja) 制御弁を介する質量流量を求めるための方法および装置並びにモデル化された吸気管圧を求めるための方法および装置
EP1982064A2 (en) A method of identifying engine gas composition
JP5482718B2 (ja) エンジン適合装置
Unver et al. Modeling and validation of turbocharged diesel engine airpath and combustion systems
KR100752084B1 (ko) 내연기관의 제어장치
US20120296555A1 (en) Method for operating an internal combustion engine
JP4689678B2 (ja) エンジンのポンピング・トルクを推定する方法
US9874164B2 (en) Apparatus and method for controlling air system of diesel engine
CN108779728B (zh) 用于确定内燃发动机的气缸中的充填成分的量的方法和控制装置
JP6515903B2 (ja) 内燃機関の制御装置
US9845771B2 (en) Method for determining the recycled air flow rate and the quantity of oxygen available at the inlet of an internal combustion engine cylinder