RU2292946C2 - Система для проведения экзотермических реакций - Google Patents

Система для проведения экзотермических реакций Download PDF

Info

Publication number
RU2292946C2
RU2292946C2 RU2003124506/15A RU2003124506A RU2292946C2 RU 2292946 C2 RU2292946 C2 RU 2292946C2 RU 2003124506/15 A RU2003124506/15 A RU 2003124506/15A RU 2003124506 A RU2003124506 A RU 2003124506A RU 2292946 C2 RU2292946 C2 RU 2292946C2
Authority
RU
Russia
Prior art keywords
reactor
heat exchanger
heat
tubes
outlet chamber
Prior art date
Application number
RU2003124506/15A
Other languages
English (en)
Other versions
RU2003124506A (ru
Inventor
Барри БИЛЛИГ (US)
Барри БИЛЛИГ
Бхупендра Ранибхай БАРЬЯ (US)
Бхупендра Ранибхай БАРЬЯ
Original Assignee
Сайентифик Дизайн Компани, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/779,030 external-priority patent/US7294317B2/en
Application filed by Сайентифик Дизайн Компани, Инк. filed Critical Сайентифик Дизайн Компани, Инк.
Publication of RU2003124506A publication Critical patent/RU2003124506A/ru
Application granted granted Critical
Publication of RU2292946C2 publication Critical patent/RU2292946C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/048Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • F28D7/0091Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Epoxy Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Saccharide Compounds (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к устройствам для проведения экзотермических реакций: молекулярного кислорода и этилена для получения оксида этилена. Блок реактора с холодильником содержит трубчатый реактор 1 и трубчатый теплообменник 7. Реактор 1 имеет входную камеру 5 и выходную камеру 6, заполненные катализатором трубы 2, помещенные внутрь реактора 1 и поддерживаемые входной 3 и выходной 4 трубными решетками. Теплообменник 7 имеет верхний край и нижний край и содержит верхнюю 9 и нижнюю 10 трубные решетки, удерживающие трубы 8. Верхний край теплообменника 7 интегрально прикреплен по периферии отверстия выходной камеры 6 реактора 1, формируя цельную с реактором конструкцию. Отверстие выходной камеры 6 реактора служит для прохождения реакционных газов из реактора 1 в теплообменник 7 и через трубы 8 упомянутого теплообменника. Реакционные газы охлаждают путем непрямого теплообмена с теплообменной жидкостью, подаваемой в теплообменник 7. Изобретение обеспечивает быстрое охлаждение, снижает образование альдегидов, ограничивает время образования побочных продуктов, требует меньших материальных и эксплуатационных затрат. 2 н. и 18 з.п. ф-лы, 1 ил.

Description

Предпосылки создания изобретения
Область, к которой относится изобретение
Настоящее изобретение относится к блоку реактора с холодильником, пригодному для проведения экзотермических реакций, например реакции молекулярного кислорода и этилена для получения оксида этилена.
Описание уровня техники
Окисление этилена для получения оксида этилена обычно выполняют в кожухотрубном реакторе. В удлиненные трубы помещают соответствующий твердый катализатор, содержащий серебро, и пропускают через них при условиях, обеспечивающих протекание реакции, реакционные газы, которые контактируют с катализатором. Обеспечивают циркуляцию жидкости через кожух для отведения тепла, выделяющегося вследствие экзотермической реакции.
Важное значение имеет быстрое охлаждение смеси реакционных газов после завершения желательной реакции с целью сведения к минимуму возможности полного окисления, а также нежелательных побочных реакций, например образования формальдегида и/или ацетальдегида; образование таких продуктов связано с осложнениями при очистке, поскольку их трудно отделить от оксида этилена, являющегося целевым продуктом.
Эта проблема известна в технике, и к числу предложенных средств ее решения относится применение последней (по ходу газа) секции труб реактора для охлаждения реакционных газов. В патенте США №4061659 предложено создание зоны охлаждения, примыкающей к реакционной зоне, причем эта зона охлаждения заполнена инертным термостойким гранулированным материалом, имеющим удельную площадь поверхности 0,1 м2/г или менее.
В патенте Великобритании №1449091 предложен трубчатый реактор, разделенный на три различных зоны. Реакционные газы проходят через трубы, которые в первой секции заполнены инертным материалом для создания зоны предварительного нагрева, во второй секции трубы заполнены катализатором для создания зоны реакции, а в третьей секции те же трубы заполнены инертным материалом или вообще не содержат наполнителя и образуют зону охлаждения.
В патенте США №4921681 предложен трубчатый реактор, в котором образованы зоны предварительного нагрева, реакции и охлаждения.
В более позднем патенте США №5292904 также описан трубчатый реактор, в котором трубы подразделены на зону предварительного нагрева, зону реакции и конечную зону охлаждения, снабженную насадкой.
Краткое описание изобретения
В соответствии с настоящим изобретением, предложен усовершенствованный блок реактора с холодильником, требующий меньших средств на изготовление и меньших эксплуатационных затрат и обеспечивающий быстрое охлаждение реакционных газов. Предложен трубчатый реактор известного типа в соединении с теплообменником, который составляет единое целое с выходной камерой упомянутого трубчатого реактора и приспособлен для охлаждения реакционных газов.
Краткое описание чертежа
На прилагаемом чертеже схематически представлен блок реактора с холодильником в соответствии с настоящим изобретением.
Подробное описание изобретения
Как видно из чертежа, реактор 1 представляет собой кожухотрубный реактор типа обычно применяемого в производстве оксида этилена. В реакторе имеется множество удлиненных труб 2, входные концы которых закреплены в трубной решетке 3, а выходные концы - в трубной решетке 4. Реактор имеет входную камеру 5 и выходную камеру 6.
К выходной камере 6 реактора прикреплен и составляет с ней единое целое кожухотрубный теплообменник 7. Выходная камера 6 снабжена отверстием для сообщения с теплообменником 7; обычно теплообменник 7 приварен к выходной камере 6 по периферии упомянутого отверстия и составляет, таким образом, одно целое с реактором. Теплообменник 7 снабжен трубами 8, закрепленными в трубных решетках 9 и 10, как показано на чертеже. В конструкции предусмотрена выходная камера 11 теплообменника 7.
При осуществлении процесса реакционные газы, например этилен, кислород и балластный газ, поступают в реактор 1 по линии 12 и проходят при условиях проведения реакции через трубы 2 реактора, заполненные соответствующим серебряным катализатором. Тепло реакции отводят с помощью циркулирующей теплообменной жидкости, например воды, которую подают в межтрубное пространство реактора 1 по линии 13 и отводят по линии 14.
Реакционные газы проходят через трубы 2, где происходит образование оксида этилена, и после выхода из труб 2 эти газы поступают в выходную камеру 6, а затем в трубы 8 теплообменника 7 и сразу же охлаждаются для предотвращения дальнейшего окисления и изомеризации. Охлаждающую жидкость подают в межтрубное пространство холодильника 7 по линии 15 и отводят по линии 16. Пригодной и предпочтительной охлаждающей жидкостью является вода. Охлажденные реакционные газы выводят из холодильника 7 по линии 17 и обрабатывают известным способом для извлечения продукта и возврата в цикл различных компонентов.
Одним из преимуществ узла реактора и холодильника в соответствии с настоящим изобретением является то, что теплообменник 7 может быть специально рассчитан на обеспечение максимальной эффективности охлаждения реакционных газов без ограничений, накладываемых известными решениями, в которых для охлаждения используются трубы реактора. Скорости потоков, температуры и другие параметры для теплообменника 7 регулируются независимо от процесса теплоотвода из реактора 1.
Трубы 8 теплообменника могут быть заполнены инертным твердым материалом, однако предпочтительно они не содержат твердого наполнителя.
Непосредственное присоединение теплообменника к камере реактора позволяет обеспечить эффективную конструкцию холодильника и высокую степень интегральности конструкции и обеспечивает немедленное охлаждение реакционных газов ввиду близкого к реактору расположения теплообменника.
Охлаждение в трубах 8 не зависит от рабочих условий в реакторе 1, поскольку параметры охлаждающей жидкости в теплообменнике 7 не ограничены условиями работы реактора 1, как это имеет место в случае, если зона охлаждения образована путем удлинения труб 2 реактора 1. Поэтому в теплообменнике 7 можно поддерживать оптимальные условия на протяжении всего жизненного цикла катализатора, в течение которого условия в реакторе 1 изменяются.
Кроме того, вследствие выполнения теплообменника 7 как неотъемлемой части реактора 1 время пребывания реакционных газов в выходной камере 6 реактора сводится к минимуму; таким образом, время образования побочных продуктов ограничено, в противоположность известным техническим решениям, предусматривающим наличие коммуникации для подачи реакционных газов в отдельный внешний теплообменник.
Усовершенствованный блок реактора с охлаждающим теплообменником в соответствии с настоящим изобретением, как правило, пригоден для проведения экзотермических реакций, например реакций окисления, которые проводят в трубчатых реакторах, где реагенты контактируют с катализатором, находящимся в трубах кожухотрубного реактора. Окисление этилена в оксид этилена является примером, имеющим большое практическое значение.
Реакторы, составляющие часть блока в соответствии с настоящим изобретением, относятся к типу, обычно применяемому в технологических процессах с использованием экзотермических реакций, например в производстве оксида этилена. Такие реакторы обычно содержат верхнюю входную камеру для ввода реакционных газов и выходную камеру для выхода продукта реакции. Реакторы снабжены трубными решетками для крепления множества труб, заполненных соответствующим катализатором, через которые проходят реакционные газы и в которых протекает желательная реакция. В случае производства оксида этилена обычно применяют реакторы диаметром 15-20 футов (4,5-6 м), содержащие несколько тысяч труб, например 20 тысяч или более, закрепленных в трубных решетках реактора. Длина труб достигает 40 футов (12 м), например лежит в пределах 20-40 футов (6-12 м); наружный диаметр труб может составлять 1-2 дюйма (25-50 мм). Для отвода тепла экзотермической реакции применяют теплообменную жидкость. Для этой цели можно применять различные жидкости, например воду, "даутерм" (органический теплоноситель) и т.п.
Существенное значение для блока в соответствии с настоящим изобретением имеет выполнение теплообменника как неотъемлемой части выходной камеры трубчатого реактора с отверстием в выходной камере 6, по периферии которого закреплен, например, с помощью сварки упомянутый теплообменник. На чертеже такой интегрально соединенный теплообменник показан как теплообменник 7. Как правило, упомянутый теплообменник может иметь диаметр приблизительно 4-8 футов (1,2-2,4 м) и содержит трубы, закрепленные в верхней и нижней трубных решетках; количество труб лежит в пределах от 800 до приблизительно 3000, а их наружный диаметр составляет от приблизительно 1 дюйма до приблизительно 1,75 дюйма (25-45 мм). Предусматривается применение теплообменной жидкости с целью быстрого понижения температуры реакционной смеси до значения, ниже которого не происходит дальнейшее окисление и/или образование побочных продуктов. Предпочтительной теплообменной жидкостью является вода.
В трубы реактора загружен известный серебряный катализатор на носителе. Пригодные для использования катализаторы и рабочие условия описаны, например, в патентах США №5504052, №5646087, №5691269, №5854167 и других, информация из которых включена в настоящее описание приведенными ссылками.
Реакторный узел блока выполнен из материалов, хорошо известных в данной конкретной отрасли. Узел теплообменника предпочтительно выполнен из углеродистой стали или из стали, выплавленной дуплекс-процессом, а содержащиеся в нем трубы предпочтительно являются открытыми и не содержат наполнителя, хотя при желании может быть применен инертный наполнитель, например оксидно-алюминиевый или аналогичный.
Трубчатые реакторы для применения, например, в производстве оксида этилена хорошо известны, и такие реакторы могут содержать реакторный узел описываемого блока.
Конкретный пример блока в соответствии с настоящим изобретением, приспособленный для окисления этилена с получением оксида этилена, представлен на прилагаемом чертеже. Конструкционным материалом реактора 1 и холодильника 7 является углеродистая сталь. Реактор имеет диаметр 16,6 футов (5 м) и содержит трубы, поддерживаемые трубными решетками 3 и 4; 8809 труб реактора имеют длину приблизительно 27 футов (8,2 м), наружный диаметр каждой трубы составляет 1,5 дюйма (38 мм).
К нижней выходной камере 6 реактора 1 прикреплен сваркой теплообменник 7. Теплообменник имеет диаметр приблизительно 6 футов (1,8 м) и длину приблизительно 10 футов (3 м) и приварен по периметру отверстия диаметром 5,7 фута (1,74 м) в камере 6. В теплообменнике 7 с помощью трубных решеток 9 и 10 закреплены 1468 труб, которые открыты и не содержат твердой насадки. Трубы имеют наружный диаметр 1,25 дюйма (32 мм).
Охлаждающей жидкостью, поступающей в теплообменник по линии 15 и отводимой по линии 16, является вода.
Вообще говоря, реакционные газы, выходящие из реактора 1 через камеру 6, имеют температуру в пределах от 420°F до 540°F (215-280°C). В соответствии с применением блока, соответствующего настоящему изобретению, эти газы почти мгновенно охлаждаются в теплообменнике 7 до температуры ниже значения, при котором еще проходит дальнейшая реакция, т.е. до 420°F (215°C) или ниже. Реакционные газы поступают в теплообменник 7 из реактора 1 с температурой, практически равной температуре на выходе реактора, и выходят из теплообменника 7 через выходную камеру 11 по линии 17. Согласно практике осуществления настоящего изобретения, смесь реакционных газов, отводимую по линии 17, обрабатывают в соответствии с известными способами с целью разделения и извлечения продукта и возвращения в цикл компонентов указанной смеси, например непрореагировавшего этилена, кислорода и балластного газа.

Claims (20)

1. Блок реактора с холодильником, содержащий трубчатый реактор, имеющий входную камеру и выходную камеру, заполненные катализатором трубы реактора, помещенные внутрь упомянутого реактора и поддерживаемые входной трубной решеткой и выходной трубной решеткой, трубчатый теплообменник, имеющий верхний край и нижний край и содержащий верхнюю и нижнюю трубные решетки, удерживающие трубы в упомянутом теплообменнике, причем верхний край упомянутого теплообменника интегрально прикреплен по периферии отверстия выходной камеры реактора, таким образом формируя цельную с реактором конструкцию, в которой упомянутое отверстие выходной камеры реактора служит для прохождения реакционных газов из реактора в теплообменник и через трубы упомянутого теплообменника, вследствие чего упомянутые реакционные газы охлаждаются путем непрямого теплообмена с теплообменной жидкостью, подаваемой в упомянутый теплообменник.
2. Блок по п.1, снабженный средствами для охлаждения труб как реактора, так и теплообменника водой.
3. Блок по п.1, отличающийся тем, что реактор заполнен серебряным катализатором на носителе.
4. Блок по п.1, отличающийся тем, что теплообменник содержит линию подачи жидкости.
5. Блок по п.1, отличающийся тем, что теплообменник содержит линию отведения жидкости.
6. Блок по п.1, содержащий по меньшей мере 20000 труб реактора, имеющих длину до 40 футов (до 12 м) и наружный диаметр от 1 до 2 дюймов (от 25 до 50 мм).
7. Блок по п.1, отличающийся тем, что теплообменник приварен по периферии отверстия выходной камеры реактора.
8. Блок по п.1, отличающийся тем, что теплообменник имеет диаметр от приблизительно 4 до 8 футов (от 1,2 до 2,4 м) и содержит в себе трубы в количестве от 800 до 3000 с наружным диаметром от приблизительно 1 до приблизительно 1,75 дюймов (от 25 до 45 мм).
9. Способ окисления этилена для получения оксида этилена, который включает
а) подготовку блока реактора с холодильником, содержащего трубчатый реактор, имеющий входную камеру и выходную камеру, заполненные катализатором трубы реактора, помещенные внутрь упомянутого реактора, которые простираются от входной камеры реактора до выходной камеры реактора и удерживаются входной трубной решеткой и выходной трубной решеткой, трубчатый теплообменник, имеющий верхний край и нижний край и содержащий верхнюю и нижнюю трубные решетки, удерживающие трубы в упомянутом теплообменнике, причем верхний край упомянутого теплообменника интегрально прикреплен по периферии отверстия выходной камеры реактора, таким образом формируя цельную с реактором конструкцию, в которой упомянутое отверстие выходной камеры реактора служит для прохождения реакционных газов из реактора в теплообменник и через трубы упомянутого теплообменника, вследствие чего упомянутые реакционные газы охлаждаются в теплообменнике путем непрямого теплообмена с теплообменной жидкостью, подаваемой в упомянутый теплообменник;
b) введение этилена и кислорода в трубы реактора и осуществление реакции между этиленом и кислородом внутри труб реактора для образования реакционного газа, содержащего оксид этилена; и
c) охлаждение упомянутого реакционного газа.
10. Способ по п.9, отличающийся тем, что в трубы реактора дополнительно вводят балластный газ.
11. Способ по п.9, отличающийся тем, что катализатор содержит серебро на носителе.
12. Способ по п.9, отличающийся тем, что трубы реактора охлаждают.
13. Способ по п.9, отличающийся тем, что трубы реактора охлаждают водой.
14. Способ по п.9, отличающийся тем, что теплообменная жидкость содержит воду.
15. Способ по п.9, отличающийся тем, что реакционные газы, выходящие из реактора в теплообменник, имеют температуру от 420 до 540°F (от 215 до 280°С).
16. Способ по п.9, отличающийся тем, что реакционные газы охлаждают в теплообменнике до температуры 420°F (215°C) или ниже.
17. Способ по п.9, отличающийся тем, что охлаждение реакционных газов осуществляют с использованием теплообменной жидкости, которую подают в упомянутый теплообменник через линию подачи жидкости и впоследствии отводят из него через линию отведения жидкости.
18. Способ по п.17, отличающийся тем, что теплообменная жидкость содержит воду.
19. Способ по п.9, отличающийся тем, что используются по меньшей мере 20000 труб реактора, имеющих длину до 40 футов (до 12 м) и наружный диаметр от 1 до 2 дюймов (от 25 до 50 мм), а теплообменник имеет диаметр от приблизительно 4 до 8 футов (от 1,2 до 2,4 м) и содержит в себе трубы в количестве от 800 до 3000 с наружным диаметром от приблизительно 1 до приблизительно 1,75 дюймов (от 25 до 45 мм).
20. Способ по п.9, отличающийся тем, что теплообменник приварен к реактору.
RU2003124506/15A 2001-02-08 2002-01-24 Система для проведения экзотермических реакций RU2292946C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/779,030 2001-02-08
US09/779,030 US7294317B2 (en) 2001-02-08 2001-02-08 Exothermic reaction system

Publications (2)

Publication Number Publication Date
RU2003124506A RU2003124506A (ru) 2005-02-27
RU2292946C2 true RU2292946C2 (ru) 2007-02-10

Family

ID=34435896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003124506/15A RU2292946C2 (ru) 2001-02-08 2002-01-24 Система для проведения экзотермических реакций

Country Status (10)

Country Link
US (1) US7700791B2 (ru)
AT (1) ATE374073T1 (ru)
AU (1) AU2002241969B2 (ru)
DE (1) DE60222630T3 (ru)
DK (1) DK1358441T4 (ru)
ES (1) ES2294111T5 (ru)
MX (1) MX246250B (ru)
PT (1) PT1358441E (ru)
RU (1) RU2292946C2 (ru)
SA (1) SA02220721B1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496618B (zh) * 2010-03-17 2015-08-21 Dow Technology Investments Llc 藉由使用具有廣泛選擇性的催化劑將乙烯部分氧化來製造環氧乙烷之高效率固定床平台
SE535331C2 (sv) * 2010-06-01 2012-07-03 Skellefteaa Kraftaktiebolag Värmeväxlingssystem och metod för värmning av ett kollektormedium samt tork och bioenergikombinat innefattande värmeväxlingssystemet
CN107401674A (zh) * 2017-08-17 2017-11-28 武健 列管式汽化装置
TW202237260A (zh) * 2021-01-19 2022-10-01 美商科學設計有限公司 用於製造管間距減小的立式沸騰反應器的管與管板焊接

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB898374A (en) 1959-12-22 1962-06-06 Universal Oil Prod Co Method and apparatus for effecting reactions of flowing reactants
BE629243A (ru) * 1962-03-08
US3147084A (en) * 1962-03-08 1964-09-01 Shell Oil Co Tubular catalytic reactor with cooler
GB1103441A (en) 1964-10-20 1968-02-14 Richard James Brooks Continuous sulfonation process
IT986732B (it) 1973-04-30 1975-01-30 Snam Progetti Procedimento per condurre reazioni di ossidazione parzialecon ossi geno di composti organici in fase vapore ed apparecchiatura atta a realizzare detto procedimento
US4061659A (en) * 1976-06-28 1977-12-06 Shell Oil Company Process for the production of ethylene oxide
US4101287A (en) * 1977-01-21 1978-07-18 Exxon Research & Engineering Co. Combined heat exchanger reactor
EP0082609B1 (en) * 1981-12-14 1987-01-14 Imperial Chemical Industries Plc Chemical reactor and process
US5114685A (en) * 1983-07-15 1992-05-19 Catalyst Technology, Inc. Catalyst recovery trough for unloading multi-tube reactors with maximum dust containment
JPH0629198B2 (ja) * 1984-10-19 1994-04-20 武田薬品工業株式会社 化学的脱水反応方法
US4973777A (en) * 1985-11-08 1990-11-27 Institut Francais Du Petrole Process for thermally converting methane into hydrocarbons with higher molecular weights, reactor for implementing the process and process for realizing the reactor
EP0257937B1 (en) * 1986-08-29 1991-03-06 Imperial Chemical Industries Plc Process for the production of ethylene oxide
US4921681A (en) * 1987-07-17 1990-05-01 Scientific Design Company, Inc. Ethylene oxide reactor
JP2778878B2 (ja) * 1991-09-12 1998-07-23 株式会社日本触媒 エチレンオキシドの製造方法
US5525740A (en) * 1993-03-01 1996-06-11 Scientific Design Company, Inc. Process for preparing silver catalyst and process of using same to produce ethylene oxide
US5504052A (en) * 1994-12-02 1996-04-02 Scientific Design Company, Inc. Silver catalyst preparation
US5854167A (en) * 1997-09-02 1998-12-29 Scientific Design Company, Inc. Ethylene oxide catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КАСАТКИН А.Г., Основные процессы и аппараты химической технологии, Москва, Химия, 1973, с.327. *

Also Published As

Publication number Publication date
RU2003124506A (ru) 2005-02-27
DE60222630T2 (de) 2008-07-17
MX246250B (es) 2007-06-07
PT1358441E (pt) 2008-01-02
DE60222630T3 (de) 2015-02-19
ATE374073T1 (de) 2007-10-15
MXPA03007109A (es) 2003-12-04
SA02220721B1 (ar) 2008-05-21
ES2294111T3 (es) 2008-04-01
AU2002241969B2 (en) 2006-06-15
ES2294111T5 (es) 2014-12-09
DE60222630D1 (de) 2007-11-08
US20080071100A1 (en) 2008-03-20
DK1358441T3 (da) 2008-02-04
DK1358441T4 (da) 2014-11-03
US7700791B2 (en) 2010-04-20

Similar Documents

Publication Publication Date Title
JP5068415B2 (ja) 発熱反応システム
RU2234975C2 (ru) Проточный реактор с радиальным потоком и способ обработки жидкого потока реагентов
JP4323950B2 (ja) 不均質触媒を有する化学変換用フローリアクター
EP0987057B1 (en) Catalytic vapor-phase oxidation method and shell-and-tube reactor
US7033553B2 (en) Chemical reactor
AU2002322502A1 (en) Flow reactors for chemical conversions with heterogeneous catalysts
JP4195445B2 (ja) 改善された熱交換システムを有する触媒酸化式反応器
JP2008518782A5 (ru)
RU2331628C2 (ru) Способ каталитического окисления в паровой фазе, осуществляемый в многотрубном реакторе
RU2623733C2 (ru) Способ синтеза мочевины и соответствующая компоновка реакционной секции установки для получения мочевины
JP4762899B2 (ja) 固定層触媒部分酸化反応器における改善された熱制御システムによる不飽和アルデヒド及び不飽和酸の製造方法
JP2002522214A5 (ru)
RU2292946C2 (ru) Система для проведения экзотермических реакций
JPS6068048A (ja) 高発熱および吸熱接触反応用反応器
JP4881540B2 (ja) 偽恒温状態での化学反応の実行方法及び熱交換機
RU2001128725A (ru) Устройство и способ теплообмена с псевдоожиженными слоями
RU2340391C2 (ru) Псевдоизотермический радиальный реактор
RU2321456C2 (ru) Способ проведения высокоэкзотермических окислительных реакций в псевдоизотермических условиях
EP0130807B1 (en) Process for production of ethylene oxide and reactor suitable therefor
NO874935D0 (no) Anordning ved nh3-reaktor.
AU2002241969A1 (en) Exothermic reaction system
RU2588617C1 (ru) Способ проведения экзотермических и эндотермических каталитических процессов частичного превращения углеводородов и реакторная группа для его осуществления
SU1000094A1 (ru) Газожидкостной реактор