RU2203898C2 - Порошковый осветлитель и композиция на основе полиолефиновой смолы - Google Patents

Порошковый осветлитель и композиция на основе полиолефиновой смолы Download PDF

Info

Publication number
RU2203898C2
RU2203898C2 RU98119891/04A RU98119891A RU2203898C2 RU 2203898 C2 RU2203898 C2 RU 2203898C2 RU 98119891/04 A RU98119891/04 A RU 98119891/04A RU 98119891 A RU98119891 A RU 98119891A RU 2203898 C2 RU2203898 C2 RU 2203898C2
Authority
RU
Russia
Prior art keywords
clarifier
powder
composition according
resin
microns
Prior art date
Application number
RU98119891/04A
Other languages
English (en)
Other versions
RU98119891A (ru
Inventor
Майкл Джон МАННЬОН (US)
Майкл Джон Манньон
Original Assignee
Милликен Рисерч Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25369901&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2203898(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Милликен Рисерч Корпорейшн filed Critical Милликен Рисерч Корпорейшн
Publication of RU98119891A publication Critical patent/RU98119891A/ru
Application granted granted Critical
Publication of RU2203898C2 publication Critical patent/RU2203898C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Изобретение относится к порошковому осветлителю ряда сорбит-ксилит-ацетальных соединений для осветления полукристаллической полиолефиновой смолы и композиции на ее основе. Композицию получают путем смешения осветлителя указанного ряда с полиолефиновой смолой при нагревании смеси от температуры выше температуры плавления смолы и до, по крайней мере, 170oС и перемешивании смеси до полного растворения в смоле. Предложенный осветлитель позволяет исключить помутнение полиолефинов при их переработке. 3 с. и 17 з.п. ф-лы, 3 табл., 10 ил.

Description

Данное изобретение относится к области переработки полиолефинов и касается порошкового осветлителя, применяемого в этой области. Согласно изобретению в качестве осветлителя применяют порошковые ацетали ксилита или сорбита. Изобретение также касается композиции на основе полиолефиновой смолы, полученной с добавлением указанного осветлителя.
Использование осветляющих веществ для уменьшения помутнения частиц кристаллических полиолефинов хорошо известно. Представители ацеталей сорбита и ксилита, которые были использованы как осветляющие вещества, указаны в следующих патентах США:
- Hamada и др., патент США 406118
Дибензилиден-сорбиты
- Kawai и др., патент США 4314039
Диалкилбензилиден-сорбиты
- Mahaffy, J r., патент США 4371645
Диацетали сорбита, имеющие, по крайней мере, один хлор или бром - заместитель
- Kobayashi и др., патент США 4532280
Ди (метил- или этилзамещенные бензилиден)-сорбиты
- Williams и др., патент США 4845137
Производные дибензилиден-сорбита, имеющие, по крайней мере, одну замещенную группу, содержащую серу
Kobayashi и др., патент США 4954291
Смесь диацеталей сорбита и ксилита, полученная из смеси диметил- или триметилзамещенного бензальдегида и незамещенного бензальдегида
- Rekers., патент США 5.049.605
Бис-(3,4-диалкилбензилиден)-сорбиты, включающие заместители, образующие карбоциклическое кольцо.
Дополнительно основные структуры осветляющих веществ, используемых в полипропилене, описаны в публикации патентного описания Японии 85157213/26 (Mitsubishi Petroch К.К.) и 88130662/19 (Sumitomo Chem. Ind. К.К.).
Производство осветляющих веществ известно из вышеприведенных ссылок и из Murai, и др. патент США 3721682 и патентного описания GB 2115405 A New Japan Chemical Comp.
Полагают, что осветлитель должен расплавляться и рекристаллизоваться, образуя очень тонкую сетку внутри полиолефина. Эта кристаллическая сетка обеспечивает образование активных центров, которое уменьшает размер сферолит, образующихся в полимере при охлаждении. Маленькие сферолиты рассеивают видимый свет не так эффективно, как большие, поэтому полиолефин со структурообразователем имеет увеличенную прозрачность.
Прозрачный полипропилен получается при смешивании осветлителя с основными полиолефинами, во время которого вводят другие добавки, такие как антиокислители, акцепторы кислоты и смазки, а затем экструдируют смесь при температуре около точки плавления осветляющего вещества.
Более популярный метод получения прозрачного полиолефина включает предварительное смешивание всех или некоторых добавок с частью основного полимера с получением порошка маточной смеси. Маточную смесь дозируют в экструдер с добавкой основного полимера, что исключает необходимость в больших смесителях. При экструдировании обычно образуются маленькие гранулы.
Альтернативно сама маточная смесь может быть экструдирована и гранулирована. Эти концентраты гранул могут быть смешаны с полиолефином, который экструдируют без добавок для получения продукта, имеющего требуемую концентрацию осветляющего вещества, обычно от 0,01 до 2 или 3 мас.%.
Имеется ряд трудностей, связанных с использованием сорбит- или ксилит-ацетальных осветляющих веществ в полиолефинах. Одна из больших проблем - образование "белых пятен" или пузырьков в процессе производства смол. Маленькие пузырьки, образовавшиеся при инжектировании формуемых изделий, считаются большим дефектом. Поэтому разработано несколько методов его устранения.
Один подход, найденный путем эксперимента, - это введение небольших количеств полярных жирных добавок, таких как глицеролмоностеарат или жирные амиды, к содержимому сорбит ацеталь прозрачному полиолефину. Эти добавки уменьшают количество пузырьков, наблюдаемых в производимых партиях, но не устраняют проблему. Кроме того, полярные жирные добавки ведут к появлению налета на поверхности или медленно мигрируют по поверхности получаемых партий и образуют "восковые" наросты, которые не удаляются.
Второй подход, используемый для решения проблемы пузырьков в содержащих сорбит и ксилит ацеталь прозрачных полиофелинах, - это расплавление полимера при температурах на 3-10oС выше точки плавления осветляющего вещества. Хотя этот раствор работоспособен, он имеет несколько существенных отрицательных сторон. Сорбит-ацетальные осветлители имеют обычно точки плавления на 50-100oС выше, чем полиолефины, в которые они вводятся. Обработка полиолефина при температуре выше температуры плавления осветлителя может вызвать изменение цвета и образование запаха в пластике. Также трудно контролировать температуру в большом производственном экструдере, поэтому обычно в начале процесса получается некачественная продукция. Сорбит- и ксилит-ацетальные осветлители имеют тенденцию к кипению или сублимации при температуре около точки плавления. Обработки выше точки плавления осветлителя может вызвать ослабление потока экструзии, что нежелательно.
Третий подход, используемый для удаления пузырьков или "рыбьих глаз" в содержащих сорбит ацетали прозрачных полиолефинах, был описан в патенте США 4954291 Kobayashi и др. (особенно столбцы 1, 2, 3, 4). Этот метод включает использование смеси диацеталей сорбита, образованный из смеси бензальдегида и ди- или триметилзамещенного бензальдегида. Композиция имеет относительно низкую точку плавления, однако может быть обработана при температуре выше точки ее плавления, чтобы избежать пузырьков. Однако композиция имеет относительно плохую степень осветления по сравнению с диацеталями сорбита, полученными из алкилзамещенных бензальдегидов.
Изобретение в основном решает проблему "белых пятен" или пузырьков в прозрачных полиолефинах. Точный механизм образования пузырьков и роль полярных жирных добавок, которую они играют для удаления пузырьков, не до конца понятны.
В дополнение к диацеталям сорбита и ксилита с некоторым успехом в качестве веществ, образующих центры кристаллизации в полиолефинах, были использованы соли ароматических карбоксильных кислот, такие как бензоат натрия.
В отличие от ацеталей, которые вводятся в смеси при температурах выше их точки плавления и рекристаллизуются в полимере с образованием активных центров, бензоат натрия с точкой плавления выше 300oС не расплавляется во время обработки и будет разлагаться до плавления. Далее, было найдено, что бензоат натрия не растворим и не смешивается с полиолефинами. Следовательно, использование бензоата натрия как зародышеобразователя, зависит от его дисперсности в полимерном расплаве, которая должна быть как можно больше: в области от 1 до 10 микрон. "Plastic Additives Handbook", Gachter et al., editor Hanser Publishers, Munich, Germany, p.p.671-683 (1985) и Btnsbergen; "Heterogeneous Nucleation in the Crystallization of Polyolefins (1)" Polymer 11, p.p. 253-267 (1970).
Очевидно, кристаллизационный эффект диацеталей сорбита или ксилита проявляется, в основном, независимо от их физических характеристик до их обработки, необходимо, чтобы они были диспергированы и рекристаллизованы в полиолефин.
Настоящее изобретение относится к осветлителям сорбит-ксилит-ацетальных соединениям, которые могут быть введены в полиолефиновую смолу с получением продукта без "белых пятен" или пузырьков, без использования чрезмерной температурной обработки, которая может вызвать обесцвечивание и возникновение запаха.
Изобретение иллюстрируется чертежами:
Фиг. 1 - микрофотография агломерированного дибензилиденсорбитного осветляющего вещества.
Фиг. 2 - микрофотография агломерированного дибензилиденсорбитного осветляющего вещества.
Фиг. 3 - микрофотография агломерированного ди-(параметилбензилиден)-сорбитного осветляющего вещества.
Фиг. 4 - микрофотография агломерированного ди-(параэтилбензилиден)-сорбитного осветляющего вещества.
Фиг. 5 - микрофотография агломерированного осветляющего вещества смешанного альдегид-сорбита, полученного из бензальдегида и ди- или триметилпроизводных бензальдегида.
Фиг. 6 - микрофотография агломерированного бис-(3,4-ди-метилбензилиден)-сорбитного осветляющего вещества.
Фиг. 7 - микрофотография агломерированного бис-(5',6',7',8'-тетрагидро-2-нафтилиден)-сорбитного осветляющего вещества.
Фиг. 8 - микрофотография ультратонкого дибензилиденсорбитного осветляющего вещества, которое является продуктом распыления материала, показанного на фиг. 1.
Фиг. 9 - микрофотография ультратонкого бис-(3,4-диметилбензилиден)-сорбитного осветляющего вещества, которое является продуктом распыления материала, показанного на фиг. 6.
Фиг. 10 - микрофотография ультратонкого бис-(5',6',7',8'-тетрагидро-2-нафталидин)-сорбитного осветляющего вещества, которое является продуктом распыления материала, показанного на фиг. 7.
Все микрофотографии выполнены при увеличении в 1000 раз.
Осветлители по изобретению - диацетали сорбита и ксилита имеют общую формулу
Figure 00000002

где р=0 или 1;
m и n - независимо 0-3;
R - в каждом случае независимо выбирается из C1-8 -алкил, C1--алкокси, гидрокси, галоген, C1-6-алкилтио, C1-6-алкилсульфокси и 4- или 5-членной алкилгруппы, образующей карбоциклическое кольцо с соседними атомами углерода из ненасыщенного исходного кольца.
Особенно интересны осветляющие вещества, где р=1 и значение R выбрано из С1-4-алкил, хлор, бром, тиоэфир и 4-членной алкильной группы, образующей карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца. Примеры специфических осветлителей согласно изобретению включают:
дибензилиден-сорбит,
ди(пара-метилбензилиден)сорбит,
ди(орто-метилбензилиден)сорбит,
ди(пара-этилбензилиден)сорбит,
бис(3,4-диметилбензилиден)сорбит,
бис(5',6',7',8'-тетрагидро-2-нафталидин)сорбит,
бис(триметилбензилиден)ксилит и
бис(метилбензилиден)сорбит.
В объем настоящего изобретения также включены соединения, полученные при смешивании альдегидов, включающих замещенные и незамещенные бензальдегиды, такие как продукт конденсации сорбита и смеси п-метилбензальдегида и о-метилбензальдегида, и продукт конденсации сорбита и смеси бензальдегида и 2,4-диметилбензальдегида как проиллюстрировано в Kobayashi и др., патент США 4532280 и Kobayashi и др., патент США 4954291 соответственно.
Диацетали, используемые в настоящем изобретении, могут быть получены различными известными методами.
В основном эти процессы включают реакцию 1 моля D-сорбитола или D-ксилитола с 2 молями альдегида в присутствии кислотного катализатора. Температура проведения реакции будет очень сильно зависеть от характеристик, таких как точка плавления, альдегида или альдегидов, используемых для реакции.
Примерами подходящей реакционной среды служат циклогексан или комбинация циклогексана и метанола. Вода, выделяющаяся при конденсации, удаляется дисцилляцией. Обычно в смеси реакция протекает несколько часов, после чего реакционную смесь охлаждают, нейтрализуют, фильтруют, промывают, например, водой или спиртом, а затем сушат.
В указанных выше ссылках приведены дополнительные детали синтеза осветляющих веществ. Конечно, при желании, смесь бензальдегидов и/или замещенных бензальдегидов может быть введена в реакционную смесь.
Диацетали сорбита и ксилита, полученные по приведенным выше способам, могут содержать примеси побочных продуктов моноацеталя и триацеталя. Удалять эти примеси при введении диацеталя в полиолефиновую смолу не всегда необходимо, однако может оказаться желательным сделать это, так как очистка может увеличивать прозрачность смолы.
Очистка диацеталей может быть выполнена, например, удалением примесей триацеталей экстракцией с соответствующим неполярным растворителем перед фильтрацией. При удалении примесей продукт может быть очищен так, что количество диацеталя в композиции составит 90% и более.
При промышленном производстве продукт сушат с использованием нагрева или нагрева и вакуума. Продукт измельчают с использованием механического размалывающего оборудования с последующим помолом в пальцевой или стержневой мельнице. Размолотый продукт обычно рассеивают через ситовое оборудование, удаляя крупную фракцию. Размер сита обычно 40-80 меш для получения максимального размера частиц между 176 и 420 мкм. Такое определение размера частиц не очень точная операция. Поэтому для определения максимального размера частиц обычно используют тот размер, который имеют 97% частиц, от общего количества частиц или d97. Сита тоньше 80 меш не используются, так как они имеют склонность слипаться или закупориваться очень быстро. Соотношение номеров сит в мешах и размерах частиц следующее:
Стандарт США ASTME 11-61
сито 40 меш = 420 мкм
Стандарт США ASTME 11-61
сито 80 меш = 176 мкм
Достижения в решении вышеупомянутой проблемы "белого пятна" или пузырька показаны следующими экспериментами.
Пример 1
Небольшое количество промышленной партии Millad 3905/дибензилиден-сорбит/, полученной из Milliken Chemical, Spartanburg, South Carolina, USA, имеющей d97 250 мкм и средний размер частиц 84 мкм, диспергировали в минеральном масле и помещали на горячий предметный столик микроскопа. Образец нагревали от комнатной температуры со скоростью 10oС в минуту. Наблюдали образование пузырьков на отдельных частицах при 223oС до плавления частиц при 228oС.
Дибензилиден-сорбит примера 1 исследовали на сканирующем электронном микроскопе при увеличении в 1000 раз. На фиг. 1 микрофотография продукта показывает, что индивидуальные частицы агломерированы в очень маленькие волокна или "первичные частицы". Поверхность агломератов кажется спеченной или оплавленной. Полагают, что эти спеченные частицы захватывают газ или летучие жидкости, которые освобождаются, когда частица становится мягкой, перед плавлением. Если данный процесс происходит во время производственных операций, то образуются "белые пятна" или пузырьки. К тому же полагают, что захваченные газы внутри спеченных частиц вызывают их изоляцию и поэтому мешают эффективному тепловому переходу, который необходим при плавлении и растворении осветлителя в полимерном расплаве.
Удивительно, что анализ других промышленных осветлителей сорбит ацеталей, которые включали продукцию нескольких различных производств, показал, что все эти вещества агломерированы в очень маленькие волокна или "первичные частицы", поверхность которых кажется спеченной.
Табл. 1 показывает номер рисунка, осветляющее вещество, торговое наименование и производителя промышленной продукции.
Было предложено измельчить образец осветляющего вещества, описанный в примере 1 (дибензилиден-сорбит от Milliken Chemical, для определения поверхности спеченных частиц.
Пример 2
Дибензилиден-сорбит из примера 1, имеющий d97 250 мкм и средний размер частиц 84 мкм был помещен в псвдоожиженный слой, создаваемый противоточным струйным аппаратом - модель номер 100 AFG, изготовленным Micron Powder System. Аппарат был снабжен дефлекторным управлением типа классификатор. Образец был интенсивно распылен и рассеян для получения частиц, характеризующихся d97 менее чем 8 мкм, и средним диаметром частиц менее чем 4 микрона, измеренных лазерным световым рассеянием. Эти измерения были подтверждены анализом микроскопией. Фиг. 8 - это микрофотография измельченного продукта при увеличении в 1000 раз. В результате уменьшения размера объемная плотность упаковки порошкообразного образца также уменьшилась с 0,475 до 0,142 г/см3.
Пример 3
Небольшое количество ультратонкого дибензилиден-сорбита осветляющего вещества, являющегося продуктом примера 2, диспергировали в белом минеральном масле и нагревали со скоростью 10oС в 1 мин на горячем предметном столике микроскопа. Ультратонкие частицы дибензилиден-сорбита "растворились" при 170oС без образования пузырьков. В этом значительное отличие от агломерированного спеченного материала, который должен быть нагрет до 223-228oС, прежде чем он выделяет газ и затем расплавляется.
Термин "растворились" использован здесь для описания явления диффузии осветляющего вещества в расплавленный полимер при температурах даже ниже точки плавления осветляющего вещества. Учитывая вязкость расплава полимера, нет необходимости гомогенизировать распределение осветляющего вещества в смоле. Тем не менее наблюдалась рекристаллизация осветляющего вещества из полимерного расплава после его растворения.
В дополнение к уменьшению размеров частиц осветляющего вещества в примере 2 вещества, указанные в табл. 1, также были распылены и рассеяны.
По результатам анализа этих измельченных материалов могут быть сделаны следующие основные выводы.
Диацетали сорбита или ксилита могут быть охарактеризованы, как "нитевидные, кристаллические первичные частицы", имеющие длину 5-10 мкм и диаметр 0,3-0,7 мкм. Было обнаружено, что эти первичные частицы и небольшие агломераты этих частиц, состоящие из нескольких индивидуальных первичных частиц, не проявляют тенденции к захвату газов, который ведет к образованию пузырьков в прозрачном полимере и изоляции осветляющих веществ во время процесса.
Было найдено, что необходимым для применения по настоящему изобретению являются осветляющие вещества в виде порошка имеющего средний размер частиц менее чем 15 мкм. Предпочтительно, чтобы осветляющее вещество имело частицы, характеризующиеся d97 менее чем 20 мкм, и средним размером частиц менее чем 10 мкм, наиболее предпочтительно d97 менее 10 мкм и средний размер частиц менее чем 6 мкм.
Кроме уменьшения размера частиц противоточной струей в кипящем слое, существуют другие методы, которые могут быть использованы в производстве сорбит- ацетальных осветлителей с измельченными неспеченными частицами.
Распылительная сушка в кипящем слое - один из возможных методов. В обычном промышленном производстве используют пальцевое измельчение с последующей воздушной классификацией. Наиболее полный обзор технологии измельчения можно найти в следующих статьях: Kukla "Understand Your Size-Reduction Options", Chemical Engineering Process, pp. 23-35 (May, 1991); и Hixon, "Select An Effective Size-Reduction System", Chemical Engineering Process, pp. 36-44 (May, 1991).
После струйного распыления могут возникнуть механические образования или статическое слипание волокнообразных частиц, образующих "клубки" или другие неопределенные ассоциации. Однако эти ассоциации легко отличимы по анализу частиц от спеченных агломератов, образованных при производстве по ранее существующей технологии получения осветляющих веществ.
Распределение частиц осветляющих веществ, описанных здесь, по размерам измеряли, используя технику лазерного светового рассеяния.
Образец порошка вначале диспергировали в воде, используя поверхностно-активные вещества в качестве смачивателей. Мутная смесь постоянно перемешивалась и циркулировала через ячейку. Луч лазера проходит через ячейку, вызывая рассеяние света, связанное с распределением частиц по размерам. Рассеянный свет собирается в фотодиоде и переводится в гистограмму или распределение частиц по размерам. Волокна материала, которые механически слиплись, обычно разлипляются и легко диспергируются этим методом.
В общем результаты лазерного светового рассеяния хорошо согласуются с результатами, полученными микроскопическим анализом. Наличие неопределенных ассоциаций и геометрических эффектов может вызвать ошибку при микроскопическом анализе, поэтому полагают, что лазерные методы более точны. Полиолефиновые смолы могут включать алифатические полиолефины и сополимеры, полученные, по крайней мере, из одного алифатического олефина и одного или более этилен ненасыщенного сомономера. В основном сомономеры, если они присутствуют, находятся в малом количестве, т.е. около 10% или менее и даже около 5% и менее от веса полиолефина. Такие сомономеры могут служить для улучшения прозрачности полиолефина или обуславливать другие свойства полимера. Образцы включают акриловую кислоту, метакриловую кислоту, их сложные эфиры, винилацетат и т.д.
Образцы полиолефиновых смол, прозрачность которых может быть значительно улучшена настоящим изобретением, являются полимерами и сополимерами алифатических моноолефинов, содержащих от 2 до 6 атомов углерода, имеющих средний молекулярный вес от 10000 до 2000000, преимущественно от 30000 до 300000, таких как полиэтилен, линейный полиэтилен низкой плотности, полипропилены, полукристаллический этилен/пропиленовый сополимер (статистический или блочный), поли(1-бутен) и полиметилпентен.
Полиолефиновые смолы настоящего изобретения могут быть описаны, как полукристаллические, линейные, регулярные полимеры, которые могут выборочно содержать боковые цепи, что обнаружено в обычном полиэтилене низкой плотности. Другими полимерами, в которых можно использовать тонкодисперсные частицы осветляющих веществ по настоящему изобретению, являются полиэтилентерефталат, полиэтилентерефталат, модифицированный гликолем, полибутилентерефталат и полиамиды.
Другие добавки тоже могут быть использованы в композициях настоящего изобретения, если только они не будут ухудшать свойства. Их даже выгодно предварительно перемешивать с осветляющим веществом. Такие добавки хорошо известны для специалистов в этой области и включают пластификаторы, смазки, каталитические нейтрализаторы; антиокислители, легкие стабилизаторы, красители, другие вещества, образующие центры кристаллизации и т.д. Некоторые их этих добавок могут способствовать дальнейшему улучшению полезных свойств, включая улучшение эстетических свойств, облегчения производства и повышения его стабильности.
Количество осветляющих веществ, добавляемых к полиолефинам, может меняться в широких пределах в зависимости от того, будет или нет композиция использована как концентрат. Для использования в отливках берут 0,01-3 вес. части осветляющего вещества на 100 вес. частей смолы, предпочтительно 0,05-2 вес. части осветлителя на 100 вес. частей смолы. При количестве менее 0, 01 вес. части характеристики прозрачности смолы могут быть недостаточно хорошими, при количестве более 3 вес. частей наблюдается незначительное улучшение прозрачности смолы.
Возможно использовать концентраты 100 вес. частей осветляющего вещества на 100 вес. частей полиолефиновой смолы.
В промышленности обычно применяют концентраты, содержащие менее чем 33 вес. части осветляющего вещества, наиболее предпочтительно менее, чем 15 вес. частей осветляющего вещества на 100 вес. частей смолы.
Способ, по которому получены композиции на основе полиолефиновых смол по настоящему изобретению, практически приближен к промышленному получению смеси осветляющих веществ и полиолефинов. Термин "получение смеси" широко используется для описания процесса диспергирования осветлителя в смоле, когда смола находится в расплавленном состоянии, например, нагрета до точки плавления. Часто основная смола, которая выглядит как губка, смешивается с необходимыми добавками, включая осветляющие вещества, и экструдируется. Смолу обычно выдавливают вторично в конце процесса получения конечных частиц, например, путем инжекционной отливки, выдавлением отливки дутьем, инжекцией отливки дутья, вытягиванием отливки дутьем, отливки под давлением, ротационной отливки, профильной экструзии, выдавливанием листов, термическим формованием, пленочной экструзией и пленочной экструзией с ориентированием.
Независимо от того, сколько раз смесь смолы и осветлителя экструдировали или смешивали каким-либо другим способом в расплавленном состоянии, важно, чтобы осветлитель был распределен в расплаве смолы. Во многих случаях растворение будет сопровождаться расплавлением осветлителя, распределяющегося в расплаве смолы. Однако преимущество этого способа в том, что осветлитель может растворяться в расплаве смолы, даже не достигая точки плавления самого осветлителя.
В промышленности смешивание происходит в одношнековом или двухшнековом экструдере или в смесителе фаррела. Условия экструзии изменяются в зависимости от частиц полиолефина. Обычно линейный полиэтилен низкой плотности экструдируют между 130 и 170oС, полипропилен экструдируют между 210 и 240oС. Приведенные температуры относятся скорее к плавлению или температуре сырья, т.е. температуре самого полимера, чем к температуре ствола экструдера. Следует заметить, что при использовании заранее приготовленных осветляющих веществ, температуру процесса поднимают на 3-6oС выше температуры плавления осветляющего вещества.
В отличие от промышленных продуктов, которые не подвергались предварительному измельчению, осветляющие вещества по настоящему изобретению растворяются в полиолефиновой смоле при температурах ниже 170oС. Следовательно, осветлители в данном изобретении могут соединяться со смолой при температурах ниже точки плавления осветляющего вещества, что является значительным преимуществом по сравнению с более ранними способами.
Следующие сравнительные примеры иллюстрируют те неожиданные улучшения, которые возможны в заявленном изобретении.
Пример 4
Каждое из осветляющих веществ, описанных в табл. 1, смешивали с содобавками и полимером на основе полипропилена RCP с 4 MFR в лопастном смесителе в следующем соотношении:
2,5 г определенного осветляющего вещества
0,8 г Irganox 1010
0,8 г стеарата кальция
1000 г полипропилена RCP с 4 MFR
0,25 вес. частей осветлителя на 100 вес. частей полиолефиновой смолы.
Смесь экструдировали через однодюймовый одношнековый экструдер при отношении длина/диаметр 32: 1, снабженный смешивающим наконечником Maddux, при различных температурах для определения минимальной температуры, необходимой для того, чтобы избежать образования пузырьков.
Начальная температура была 200oС и ее увеличивали на 5oС в каждый последующий период времени взаимодействия частиц, если обнаруживали образование пузырьков.
Для анализа пузырьков образовавшиеся гранулы исследовали инжекционной отливкой из них пластинок 2"•3"•0,05" при 210oС в 40-тонной инжекционно-отливочной машине. Пластинки анализировали визуально на присутствие пузырьков. Эксперимент повторяли после струйного распыления каждого из вышеупомянутых осветляющих веществ в ультратонкий порошок перед смешиванием их с содобавками и смолой.
Результаты представлены в табл. 2.
Промышленные материалы имели размеры d97 от 180 до 420 мкм и средний размер частиц от 28 до 120 мкм. Во всех случаях точка плавления осветляющего вещества должна быть повышена на 3-7oС экструдера, для того чтобы избежать образования пузырьков при инжекционной отливке частиц.
Ультратонкие осветлители имели d97 от 4 до 20 мкм и средний размер частиц от 2 до 9 мкм. В каждом случае ультратонкое осветляющее вещество могло быть соединено с полипропиленом при минимальной температуре 200oС в одношнековом экструдере.
Микрофотографии ультратонких частиц дибензилиден-сорбита, бис-(3,4-диметилбензилиден)-сорбита и бис-(5',6',7',8'-тетра-гидро-2-нафтилиден)-сорбита (см. выше сноски 1,6 и 7) показаны на фиг. 8, 9 и 10 соответственно.
Только несколько первичных частиц ультратонкого осветляющего вещества с уменьшенным размером частиц агломерированы. Такое ультратонкое осветляющее вещество имеет способность к смешиванию при более низкой температуре, им необходимы меньший нагрев при загрузке, реакция идет с большей скоростью, что важно для экструзии.
Способ получения композиций на основе полиолефиновой смолы по настоящему изобретению имеет то преимущество, что не требует применения жирных кислот и позволяет избежать сопутствующих этому проблем, возникающих в прозрачных смолах.
Значительное преимущество от проведения процесса при более низкой температуре заключается в отсутствии обесцвечивания смол, сублимации и удалении покрытий и в отсутствии отклонений от установленного значения температуры экструзии, которые неблагоприятно влияли на консистенцию смолы и затрудняли гранулирование.
Настоящее изобретение наиболее благоприятно для диацеталей сорбита и ксилита, полученных с замещенными бензальдегидами, которые имеют относительно высокую температуру плавления, т.е. их точка плавления 250oС и выше, и, следовательно, их очень трудно ввести в полиолефины. Эти осветляющие вещества могут быть вмешаны при температурах выше 170oС, преимущественно 180-230oС.
Существует, конечно, много других добавок и модификаторов, которые охватываются объемом данного изобретения и указаны в формуле изобретения.
Заявителем была выполнена проверка на опытной установке для подтверждения теории о том, что коммерчески доступный дибензилиден-сорбит Миллад (MILLAD) 3905 от Милликен Кемикл при компаундировании ниже температуры плавления осветлителя может давать пузырьки в готовых изделиях; и что тот же самый дибензилиденсорбит, будучи размолот в струйной мельнице перед компаундированием ниже его температуры плавления, будет растворяться в смоле и не будет давать пузырьков в готовых изделиях.
Эксперимент
Добавки смешивали на стендовой установке с мешалкой с ленточной винтовой лопастью при номинале 12 MFR Amoco RCP. Каждую композицию компаундировали в расплаве на одношнековом экструдере 3,81 см с отношением длина/диаметр 24:1. В экструзионной головке использовали сеточное уплотнение 20 меш (850 мкм) для обеспечения минимальной фильтрации. Температуру плавления в экструдере поддерживали при 213-215oС.
Композиции оценивали на качество дисперсии, мутности и цвета до отправки в Шелби Пластикс (Огайо) для инжекционного формования.
Испытания по инжекционному формованию проводили 9 июля 1992 г. в Шелби Пластикс. В испытании использовали 450-тонный Ван Дорн.
Двухполостная форма давала 10 "Сервин Сейвер" контейнеров с колпачком. В испытании использовали температуру сырья 222oС.
В табл.3 приведен состав испытанных композиций.
Из эксперимента можно сделать следующие выводы.
1. Композиция, содержащая коммерческий Миллад (Millad) 3905 с d97=250 единиц, дает пузырьки в краях деталей, формованных литьем под давлением.
2. Композиции, содержащие первичные частицы Миллад 3905 с d97=12 единиц, не дают пузырьков в краях деталей, формованных литьем под давлением.
3. Моностеарат глицерина и олеоамид оказывают незначительный эффект, но данные заявителя по этой работе не являются окончательными.
4. Агломераты Миллад 3905 дают газовые пузырьки при плавлении. Эти газовые пузырьки попадают в детали, формованные литьем под давлением, поскольку машины для литья под давлением, предназначенные для полиолефинов, имеют одноступенчатые, невентилируемые шнеки экструдера.

Claims (20)

1. Порошковый осветлитель, представляющий собой соединение общей формулы
Figure 00000003

где р= 0 или 1;
m и n независимо равны 0-3;
значение R в каждом случае независимо выбрано из группы: C1-8 алкил; C1-4 алкокси, гидрокси, галоген; C1-6 алкилтио; C1-6 алкилсульфокси и 4- или 5-членная алкилгруппа, которая образует карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца,
причем средний размер частиц порошкового осветлителя менее 15 мкм.
2. Порошковый осветлитель по п. 1, отличающийся тем, что имеет средний размер частиц менее 10 мкм.
3. Порошковый осветлитель по п. 2, отличающийся тем, что р равно 1 и R выбрано из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода из ненасыщенного исходного кольца.
4. Порошковый осветлитель по п. 1, отличающийся тем, что он имеет средний размер частиц менее 6 мкм.
5. Порошковый осветлитель по п. 4, отличающийся тем, что р равно 1 или R выбрано из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца.
6. Порошковый осветлитель по п. 3, отличающийся тем, что он имеет точку плавления 250oС или выше.
7. Порошковый осветлитель по п. 1, отличающийся тем, что он имеет точку плавления 250oС или выше.
8. Композиция на основе полиолефиновой смолы, полученная смешением 100 вес. ч. полиолефиновой смолы, выбранной из полукристаллических сополимеров С2-6 алифатических моноолефинов, с 0,01-100 вес. ч. осветлителя, выбранного из соединений общей формулы
Figure 00000004

где р это 0 или 1;
m и n независимо 0-3;
значение R в каждом случае независимо выбрано из группы: C1-8 алкил; C1-4 алкокси, гидрокси, галоген; C1-6 алкилтио; C1-6 алкилсульфокси и 4- или 5-членная алкилгруппа, которая образует карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца,
причем осветлитель находится в виде порошка, характеризующегося средним размером частиц менее 15 мкм, нагреванием смеси от температуры выше температуры плавления смолы и до, по крайней мере, 170oС; и перемешиванием смеси, когда смола находится в расплавленном состоянии, до полного растворения осветлителя в смоле.
9. Композиция по п. 8, отличающаяся тем, что смесь включает 0,01-15 вес. ч. осветлителя на 100 вес. ч. полиолефиновой смолы.
10. Композиция по п. 9, отличающаяся тем, что осветлитель имеет средний размер частиц менее 10 мкм.
11. Композиция по п. 10, отличающаяся тем, что р= 1 и R выбрано из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца.
12. Композиция по п. 9, отличающаяся тем, что осветлитель имеет средний размер частиц менее 6 мкм.
13. Композиция по п. 12, отличающаяся тем, что р= 1, а R выбран из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца.
14. Композиция по п. 13, отличающаяся тем, что смесь нагревают до температуры, по крайней мере, 180oС.
15. Композиция по п. 8, отличающаяся тем, что смесь включает 0,1-3 вес. ч. осветлителя на 100 вес. ч. полиолефиновой смолы.
16. Композиция по п. 15, отличающаяся тем, что осветлитель имеет средний размер частиц менее 10 мкм.
17. Композиция по п. 16, отличающаяся тем, что р= 1 и R выбрано из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца.
18. Композиция на основе полиолефиновой смолы, полученная смешением 100 вес. ч. полиолефиновой смолы, выбранной из полукристаллических сополимеров С2-6 алифатических моноолефинов, с 0,01-100 вес. ч. осветлителя, выбранного из соединений формулы
Figure 00000005

где р равно 0 или 1;
m и n независимо 0-3;
R в каждом случае независимо выбран из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода ненасыщенного исходного кольца,
причем осветлитель находится в виде порошка, характеризующегося средним размером частиц менее 10 мкм, нагреванием смеси от температуры выше температуры плавления смолы до, по крайней мере, 170oС и ниже точки плавления осветлителя, перемешиванием смеси, когда она находится в расплавленном состоянии, до полного растворения осветлителя в смоле.
19. Композиция по п. 18, отличающаяся тем, что р= 1 и R выбрано из группы: C1-4 алкил, хлор, бром, C1-6 алкилтио и 4-членная алкилгруппа, образующая карбоциклическое кольцо с соседними атомами углерода, ненасыщенного исходного кольца.
20. Композиция по п. 19, отличающаяся тем, что она получена нагреванием смеси до температуры 180-230oС.
RU98119891/04A 1992-05-01 1993-04-30 Порошковый осветлитель и композиция на основе полиолефиновой смолы RU2203898C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/877,405 US5198484A (en) 1992-05-01 1992-05-01 Polyolefin composition containing ultrafine sorbitol and xylitol acetals
US07/877,405 1992-05-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU93005145A Division RU2128198C1 (ru) 1992-05-01 1993-04-30 Способ введения осветлителя и порошкообразный осветлитель в виде частиц

Publications (2)

Publication Number Publication Date
RU98119891A RU98119891A (ru) 2000-10-20
RU2203898C2 true RU2203898C2 (ru) 2003-05-10

Family

ID=25369901

Family Applications (2)

Application Number Title Priority Date Filing Date
RU93005145A RU2128198C1 (ru) 1992-05-01 1993-04-30 Способ введения осветлителя и порошкообразный осветлитель в виде частиц
RU98119891/04A RU2203898C2 (ru) 1992-05-01 1993-04-30 Порошковый осветлитель и композиция на основе полиолефиновой смолы

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU93005145A RU2128198C1 (ru) 1992-05-01 1993-04-30 Способ введения осветлителя и порошкообразный осветлитель в виде частиц

Country Status (13)

Country Link
US (2) US5198484A (ru)
EP (1) EP0569198B1 (ru)
JP (1) JP2610772B2 (ru)
KR (2) KR0183059B1 (ru)
CN (1) CN1044127C (ru)
AU (1) AU658995B2 (ru)
BR (1) BR9301707A (ru)
CA (1) CA2094697C (ru)
DE (1) DE69322542T2 (ru)
FI (1) FI115917B (ru)
MX (1) MX9302529A (ru)
MY (1) MY108763A (ru)
RU (2) RU2128198C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485146C2 (ru) * 2007-12-31 2013-06-20 Бриджстоун Корпорейшн Способ получения полимерной композиции и полимерная композиция
RU2744973C2 (ru) * 2016-12-20 2021-03-17 ДжиСиЭйч ТЕКНОЛОДЖИ КО., ЛТД. Нуклеатор в виде частиц и способ его производства

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458873B1 (en) 1995-05-03 2002-10-01 Phillips Petroleum Company Polyolefin compositions
US5961914A (en) * 1996-05-03 1999-10-05 Milliken & Company Method of thermoforming polyolefin resin
ES2232930T3 (es) * 1997-01-17 2005-06-01 New Japan Chemical Co., Ltd. Procedimiento para recristalizar diacetal en resina de poliolefina.
CA2199556C (en) * 1997-03-10 2006-10-03 James Arthur Auger Polyolefin pipe
CA2199551C (en) * 1997-03-10 2006-10-03 Henry F. Hay Polyolefin drums
MY120763A (en) * 1997-09-19 2005-11-30 Hitachi Chemical Co Ltd Photosensitive film, process for laminating photosensitive resin layer, photosensitive resin layer-laminated substrate and process for curing photosensitive resin layer
US6238615B1 (en) * 1997-11-06 2001-05-29 New Japan Chemical Co., Ltd. Orientated gel molding method of polyolefin based resin composition
US5973043A (en) * 1997-11-26 1999-10-26 Milliken & Company Carbamoyl substituted acetals and compositions containing the same
FR2772767B1 (fr) * 1997-12-23 2000-02-25 Roquette Freres Composition amelioree d'acetal d'alditol et son utilisation dans les matieres plastiques et gelifiees
CN100591716C (zh) * 2000-12-06 2010-02-24 西巴特殊化学品控股有限公司 聚丙烯树脂组合物
US6586007B2 (en) * 2001-02-16 2003-07-01 Milliken & Company Polyolefin additive composition comprising 3,4-dimethyl dibenzylidene sorbitol and rho-methyl dibenzylidene
US7351478B2 (en) 2001-03-16 2008-04-01 Fina Technology, Inc. Heat-seal films and method of manufacture
US6913829B2 (en) * 2002-12-20 2005-07-05 Nyacol Nano Technologies, Inc. Polymer nucleating agents
JP2006521225A (ja) * 2003-02-26 2006-09-21 オムリドン・テクノロジーズ・エルエルシー 高分子ゲル・プロセッシング法及び高モジュラス製品
US7135234B2 (en) * 2003-06-12 2006-11-14 Nova Chemicals (International) S.A. Multilayer coextrusions
JP5060290B2 (ja) * 2004-07-09 2012-10-31 チバ ホールディング インコーポレーテッド 粉末状アルジトールアセタール組成物を製造する方法
JP4322757B2 (ja) * 2004-09-06 2009-09-02 富士フイルム株式会社 パターン形成材料及びパターン形成方法
US20070202285A1 (en) 2004-12-15 2007-08-30 Fina Technology, Inc. Articles having improved clarity, prepared from propylene-ethylene copolymers
KR20080049067A (ko) * 2005-09-28 2008-06-03 시바 홀딩 인코포레이티드 중합체 용융물의 유동성을 개선하는 방법
FR2891455A1 (fr) * 2005-09-30 2007-04-06 Fabre Pierre Dermo Cosmetique Particules diffusantes a base de fibres de xerogel d'organogelifiants, leur procede de preparation et leur utilisation dans des formulations cosmetiques.
US7572849B2 (en) * 2005-11-18 2009-08-11 Chemtura Corporation Urea phenyl derivatives and their use as polypropylene nucleating agents
US7585909B2 (en) * 2005-11-22 2009-09-08 Chemtura Corporation β-crystalline polypropylenes
US7662978B2 (en) * 2006-04-24 2010-02-16 Milliken & Company Dibenzylidene sorbitol (DBS)-based compounds, compositions and methods for using such compounds
US7569630B2 (en) * 2006-06-14 2009-08-04 Chemtura Corporation β-Crystalline polypropylenes
WO2008024154A1 (en) * 2006-08-22 2008-02-28 Exxonmobil Chemical Patents Inc. High clarity polymer compositions, methods and articles made therefrom
US7897663B2 (en) * 2007-10-25 2011-03-01 Kuo Ching Chemical Co., Ltd. Clarifying agent composition and manufacturing method thereof
CN101896546B (zh) * 2007-12-18 2014-08-27 巴塞尔聚烯烃意大利有限责任公司 透明聚烯烃组合物
CN101903424A (zh) 2007-12-18 2010-12-01 巴塞尔聚烯烃意大利有限责任公司 丙烯与己烯-1的共聚物和从其得到的吹塑膜
KR100955823B1 (ko) * 2009-12-23 2010-05-06 이동언 유동성과 이동성을 개선 시킨 침상구조 파우더 화학물질 조성물
US20120296018A1 (en) 2010-03-29 2012-11-22 Adeka Corporation Transparentization agent composition containing sorbitol compound and method for producing polypropylene resin composition using this sorbitol compound
JP5628539B2 (ja) * 2010-03-29 2014-11-19 株式会社Adeka ジベンジリデンソルビトール系透明化剤の効果を向上させた透明化剤組成物
EP2719725B1 (en) 2012-10-11 2018-12-05 Abu Dhabi Polymers Company Limited (Borouge) Nucleated polypropylene composition for containers
JP5992364B2 (ja) 2013-05-31 2016-09-14 株式会社Adeka 透明化剤組成物の製造方法及びそれを含有してなるポリオレフィン系樹脂組成物の製造方法
TWI522405B (zh) * 2014-04-30 2016-02-21 Preparation of diacetal clear agent
GB2531301B (en) * 2014-10-15 2016-08-31 Njc Europe Ltd Additive composition, method of blending same and a low haze polyolefin material and preparation thereof
EP3037466A1 (en) 2014-12-23 2016-06-29 Dow Global Technologies LLC Polyethylene compositions with improved optical properties
JP6394376B2 (ja) * 2014-12-25 2018-09-26 新日本理化株式会社 ジアセタール含有組成物
US11193011B2 (en) * 2016-06-07 2021-12-07 Sumitomo Chemical Company, Limited Propylene-based resin composition and injection-molded object thereof
US11634427B2 (en) 2016-07-29 2023-04-25 New Japan Chemical Co., Ltd. Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin
US10894874B2 (en) 2016-08-25 2021-01-19 New Japan Chemical Co., Ltd. Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
CN109661424B (zh) 2016-08-25 2022-04-19 新日本理化株式会社 聚烯烃系树脂用结晶成核剂、聚烯烃系树脂用结晶成核剂的制造方法以及聚烯烃系树脂用结晶成核剂的流动性的改良方法
WO2018052010A1 (ja) 2016-09-16 2018-03-22 新日本理化株式会社 ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
CN110072932B (zh) * 2016-12-21 2022-01-25 美利肯公司 添加剂组合物及其使用方法
JP2022505553A (ja) * 2018-10-26 2022-01-14 ダブリュー・アール・グレース・アンド・カンパニー-コーン 冷水パイプ及び温水パイプ用途のポリプロピレンランダムコポリマー組成物
CN116670228A (zh) 2020-12-15 2023-08-29 巴塞尔聚烯烃意大利有限公司 具有高透明度的聚烯烃组合物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122740A (ru) * 1974-08-16 1976-02-23 Kenzo Hamada
JPS5630449A (en) * 1979-08-21 1981-03-27 Mitsui Toatsu Chem Inc Polypropylene composition
US4371645A (en) * 1980-04-24 1983-02-01 Milliken Research Corporation Polyolefin plastic compositions comprising meta- or papa-derivatives (choro- or bromo-) of di-benzyuidene sorbitol
US4410649A (en) * 1982-03-31 1983-10-18 Union Carbide Corporation Ethylene polymer compositions having improved transparency
JPS59129239A (ja) * 1983-01-14 1984-07-25 New Japan Chem Co Ltd 結晶性ポリオレフイン系樹脂組成物
US4532280A (en) * 1984-06-11 1985-07-30 New Japan Chemical Co., Ltd. Crystalline polyolefin-type resin compositions
DE3704207A1 (de) * 1987-02-11 1988-08-25 Hoechst Ag Polypropylen-formmasse
US4845137A (en) * 1987-11-05 1989-07-04 Becton, Dickinson And Company Polyolefin compositions of high clarity and resistance to oxidation
JPH089679B2 (ja) * 1988-09-16 1996-01-31 新日本理化株式会社 樹脂改質用ジアセタール組成物及び結晶性樹脂組成物
US5049605A (en) * 1989-09-20 1991-09-17 Milliken Research Corporation Bis(3,4-dialkylbenzylidene) sorbitol acetals and compositions containing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ФОЙГТ И. Стабилизация синтетических полимеров против действия света и тепла. -Л.: Химия, 1972, с.186-192. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485146C2 (ru) * 2007-12-31 2013-06-20 Бриджстоун Корпорейшн Способ получения полимерной композиции и полимерная композиция
RU2744973C2 (ru) * 2016-12-20 2021-03-17 ДжиСиЭйч ТЕКНОЛОДЖИ КО., ЛТД. Нуклеатор в виде частиц и способ его производства

Also Published As

Publication number Publication date
KR930021700A (ko) 1993-11-22
US5198484A (en) 1993-03-30
CN1079974A (zh) 1993-12-29
EP0569198A1 (en) 1993-11-10
DE69322542T2 (de) 1999-05-06
KR0183364B1 (en) 1999-05-15
AU3709393A (en) 1993-11-04
FI931977A0 (fi) 1993-04-30
RU2128198C1 (ru) 1999-03-27
FI931977A (fi) 1993-11-02
JPH06145431A (ja) 1994-05-24
DE69322542D1 (de) 1999-01-28
JP2610772B2 (ja) 1997-05-14
KR0183059B1 (ko) 1999-05-15
FI115917B (fi) 2005-08-15
MX9302529A (es) 1993-11-01
CN1044127C (zh) 1999-07-14
BR9301707A (pt) 1993-11-03
CA2094697A1 (en) 1993-11-02
CA2094697C (en) 2002-08-27
EP0569198B1 (en) 1998-12-16
MY108763A (en) 1996-11-30
US5310950A (en) 1994-05-10
AU658995B2 (en) 1995-05-04

Similar Documents

Publication Publication Date Title
RU2203898C2 (ru) Порошковый осветлитель и композиция на основе полиолефиновой смолы
CN1240757C (zh) 高度成核的热塑性塑料制品
JP3458190B2 (ja) ジアセタール組成物、その製法、該組成物を含むポリオレフィン用核剤、ポリオレフィン樹脂組成物及び成形体
KR100586115B1 (ko) 결정 열가소성 물질의 핵형성화 첨가제로서의헥사하이드로프탈산의 금속 염
TWI626264B (zh) 透明化劑組成物及含有其所成的聚烯烴系樹脂組成物
TWI538957B (zh) Preparation of Masterbatch
JP2004531613A (ja) 新規な高多用性の熱可塑性樹脂用核剤
KR100842164B1 (ko) 디아세탈 조성물, 상기 조성물을 포함하는 폴리올레핀용핵제, 상기 디아세탈 조성물을 포함하는 폴리올레핀 수지조성물, 상기 수지 조성물의 제조법 및 성형체
JPS63245450A (ja) ポリオレフイン成形用材料
JPH01289847A (ja) 重合体用添加剤組成物
CN1238409C (zh) 显示非常高成核效率的热塑性塑料用澄清剂配制剂
JP2012233149A (ja) ジアセタール組成物、該組成物を含むポリオレフィン系樹脂用核剤、該核剤を含有するポリオレフィン系樹脂組成物及びその成形体
KR100269677B1 (ko) 디아세탈의육방형결정,이육방형결정을함유한핵제,이육방형결정을함유한폴리올레핀계수지조성물및성형물,및이조성물의성형방법
US5973043A (en) Carbamoyl substituted acetals and compositions containing the same
US7129323B2 (en) Bimolecular nucleation methods for thermoplastics
US20020028864A1 (en) Diacetal composition, process for preparing the same, polyolefin nucleating agent containing said composition, polyolefin resing compositions and molded articles
JP6639894B2 (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂成形体及びポリ乳酸樹脂成形体の製造方法
JP2005290260A (ja) 1,3:2,4−ビス−O−(p−メチルベンジリデン)−D−ソルビトールを含有するポリオレフィン樹脂組成物又は成形体中のp−トルアルデヒド低減方法
JP2019011277A5 (ru)