KR20230172657A - method for planar heating film with flexibility - Google Patents

method for planar heating film with flexibility Download PDF

Info

Publication number
KR20230172657A
KR20230172657A KR1020220072744A KR20220072744A KR20230172657A KR 20230172657 A KR20230172657 A KR 20230172657A KR 1020220072744 A KR1020220072744 A KR 1020220072744A KR 20220072744 A KR20220072744 A KR 20220072744A KR 20230172657 A KR20230172657 A KR 20230172657A
Authority
KR
South Korea
Prior art keywords
planar heating
weight
parts
formula
heating film
Prior art date
Application number
KR1020220072744A
Other languages
Korean (ko)
Inventor
이재권
Original Assignee
호원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호원대학교산학협력단 filed Critical 호원대학교산학협력단
Priority to KR1020220072744A priority Critical patent/KR20230172657A/en
Publication of KR20230172657A publication Critical patent/KR20230172657A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
    • H05B3/38Powder conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Abstract

본 발명은 유연성을 가지는 면상발열필름의 제조방법에 관한 것으로서, 곡면 형태로의 구현이 가능한 유연성을 가질 뿐만 아니라, 발열성, 열 내구성 및 기계적 물성이 우수한 유연성을 가지는 면상발열필름의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a flexible planar heating film, which not only has flexibility capable of being implemented in a curved form, but also has excellent heat generation, thermal durability, and mechanical properties. will be.

Description

유연성을 가지는 면상발열필름의 제조방법{method for planar heating film with flexibility}Method for manufacturing planar heating film with flexibility {method for planar heating film with flexibility}

본 발명은 유연성을 가지는 면상발열필름의 제조방법에 관한 것으로서, 곡면 형태로의 구현이 가능한 유연성을 가질 뿐만 아니라, 발열성, 열 내구성 및 기계적 물성이 우수한 유연성을 가지는 면상발열필름의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a flexible planar heating film, which not only has flexibility capable of being implemented in a curved form, but also has excellent heat generation, thermal durability, and mechanical properties. will be.

일반적으로 면상 발열체는 통상의 구리선, 니크롬선을 이용한 선상 발열체가 아닌, 면에서 발열하는 면상 발열체로서, 기존 선상 발열체와는 달리 면상 전체에서 고른 발열이 발생하므로 발열효과가 높고 안전한 발열체이다.In general, a planar heating element is a planar heating element that generates heat from the surface, rather than a conventional wire heating element using copper wire or nichrome wire. Unlike existing linear heating elements, heat is generated evenly over the entire surface, so it is a highly effective and safe heating element.

이와 같은 면상 발열체는 열전도가 높은 구리, 은, 알루미늄, 철, 니켈, 흑연분말 등을 필름형태의 수지 (resin) 등에 균일하게 분사 또는 인쇄 형성하거나, 또는 도전성이 있는 탄소, 흑연, 카본블랙 및 활성 탄소/섬유 등을 고분자 수지에 코팅시켜 사용하는 것이 일반적이다.This type of planar heating element is formed by uniformly spraying or printing highly thermally conductive copper, silver, aluminum, iron, nickel, graphite powder, etc. onto film-type resin, or by using conductive carbon, graphite, carbon black, and activated carbon. It is common to use carbon/fiber, etc. coated with polymer resin.

특히 탄소는 열과 내구성이 강하며 열전도가 좋고 열팽창계수가 낮은 가벼운 특징이 있고, 흑연은 금속 발열체를 에칭하는 것보다 제작이 쉽고 가격이 저렴하여 많이 이용되고 있다.In particular, carbon is strong in heat and durability, has good heat conduction, and is lightweight with a low coefficient of thermal expansion. Graphite is widely used because it is easier to manufacture and cheaper than etching a metal heating element.

최근에는 카본블랙 분말을 분산시킨 고분자 발열시트가 면상 발열체의 주종을 이루고 있으나, 카본블랙 분말을 분산시킨 고분자 발열시트가 우수한 발열특성을 나타내기 위해서는 고분자 발열시트 내에서 카본블랙 분말들 간의 연속적인 접촉이 이루어져 높은 전기전도성이 확보되어야 한다. 그러나 카본의 분산 시, 입자 형상의 카본블랙 분말 간에 접촉이 어렵기 때문에 많은 양의 카본블랙을 분산시켜야 하고, 카본블랙 분말의 함량을 변화시킬 수 있는 범위가 제한받게 된다. 즉 카본블랙은 30 중량% 이상 과량의 탄소입자를 첨가하여야만 12V 이상의 전원장치에서 저항과 발열효과를 얻을 수 있다. 그러나 12V 이하의 저전압에서는 높은 저항으로 인하여 원하는 전류를 인가시켜주지 못하기 때문에 발열 성능을 구현하지 못하는 문제점이 있는가 하면, 기판과의 물리적 충격 완화 및 보강제가 없으므로 접착성 특성에서 취약한 문제점이 있다.Recently, polymer heating sheets with dispersed carbon black powder have become the main type of planar heating element. However, in order for polymer heating sheets with dispersed carbon black powder to exhibit excellent heating characteristics, continuous contact between carbon black powders within the polymer heating sheet is required. This must ensure high electrical conductivity. However, when dispersing carbon, it is difficult to contact the particle-shaped carbon black powder, so a large amount of carbon black must be dispersed, and the range in which the content of the carbon black powder can be changed is limited. In other words, carbon black can achieve resistance and heat generation effects in power supplies of 12V or higher only by adding an excess amount of carbon particles of 30% by weight or more. However, at low voltages of 12V or less, there is a problem in that heat generation performance cannot be realized because the desired current cannot be applied due to high resistance, and there is a problem in adhesive properties due to the absence of a reinforcing agent and physical impact relief with the substrate.

또한, 흑연 분말을 분산시킨 고분자 발열시트는 굽힘 및 유연성에서 매우 취약하여 크랙으로 인해 저항이 증가하는 현상이 발생하고 평균 5 ㎛ 이상의 직경으로 미세 패턴 구조를 형성하기가 어려운 단점을 가진다.In addition, the polymer heating sheet in which graphite powder is dispersed is very weak in bending and flexibility, so resistance increases due to cracks, and it is difficult to form a fine pattern structure with an average diameter of 5 ㎛ or more.

한국 등록특허번호 제1436594호(공고일 : 2014.09.01)Korean Patent No. 1436594 (Announcement Date: 2014.09.01)

본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 곡면 형태로의 구현이 가능한 유연성을 가질 뿐만 아니라, 발열성, 열 내구성 및 기계적 물성이 우수한 유연성을 가지는 면상발열필름의 제조방법을 제공하는데 목적이 있다.The present invention was conceived in consideration of the above points, and its purpose is to provide a method of manufacturing a planar heating film that not only has the flexibility to be implemented in a curved form, but also has excellent heat generation, thermal durability, and mechanical properties. There is.

상술한 과제를 해결하기 위하여, 본 발명의 유연성을 가지는 면상발열필름의 제조방법은 용융시킨 폴리에틸렌 수지에 알루미늄 파우더, 그래핀 파우더 및 탄소나노튜브 파우더를 투입 및 혼합하여 혼합물을 제조하는 제1단계, 상기 혼합물을 가열 및 소결시켜 필름 형태의 면상발열층을 제조하는 제2단계 및 상기 면상발열층 일면 또는 양면에 코팅용액을 도포하고, 열처리하여 면상발열층 일면에 코팅층을 형성하는 제3단계를 포함할 수 있다.In order to solve the above-mentioned problems, the method of manufacturing a flexible planar heating film of the present invention includes the first step of preparing a mixture by adding and mixing aluminum powder, graphene powder, and carbon nanotube powder into molten polyethylene resin; A second step of heating and sintering the mixture to produce a film-shaped planar heating layer, and a third step of applying a coating solution to one or both sides of the planar heating layer and heat treating it to form a coating layer on one side of the planar heating layer. can do.

본 발명의 바람직한 일 실시예에 따르면, 폴리에틸렌 수지는 전체 중량%에 대하여 저밀도 폴리에틸렌(LDPE) 수지 90 ~ 99 중량% 및 선형 저밀도 폴리에틸렌 수지(LLDPE) 1 ~ 10 중량%로 혼합한 것일 수 있다.According to a preferred embodiment of the present invention, the polyethylene resin may be a mixture of 90 to 99% by weight of low density polyethylene (LDPE) resin and 1 to 10% by weight of linear low density polyethylene resin (LLDPE) based on the total weight%.

본 발명의 바람직한 일 실시예에 따르면, 제2단계의 가열은 500 ~ 700℃의 온도로 수행할 수 있다.According to a preferred embodiment of the present invention, the second stage heating may be performed at a temperature of 500 to 700°C.

본 발명의 바람직한 일 실시예에 따르면, 혼합물은 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 5 ~ 15 중량부, 그래핀 파우더 15 ~ 25 중량부 및 탄소나노튜브 파우더 15 ~ 25 중량부를 혼합한 것일 수 있다.According to a preferred embodiment of the present invention, the mixture may be a mixture of 5 to 15 parts by weight of aluminum powder, 15 to 25 parts by weight of graphene powder, and 15 to 25 parts by weight of carbon nanotube powder, based on 100 parts by weight of polyethylene resin. there is.

본 발명의 바람직한 일 실시예에 따르면, 알루미늄 파우더는 평균 입도가 0.3 ~ 1.0㎛일 수 있다.According to a preferred embodiment of the present invention, the aluminum powder may have an average particle size of 0.3 to 1.0 μm.

본 발명의 바람직한 일 실시예에 따르면, 그래핀 파우더는 평균두께가 0.5 ~ 1.5nm, 평균직경이 1.0 ~ 2.0㎛일 수 있다.According to a preferred embodiment of the present invention, the graphene powder may have an average thickness of 0.5 to 1.5 nm and an average diameter of 1.0 to 2.0 μm.

본 발명의 바람직한 일 실시예에 따르면, 탄소나노튜브 파우더는 평균직경이 30 ~ 50nm, 평균길이가 5 ~ 12㎛일 수 있다.According to a preferred embodiment of the present invention, carbon nanotube powder may have an average diameter of 30 to 50 nm and an average length of 5 to 12 μm.

본 발명의 바람직한 일 실시예에 따르면, 투명층은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 화합물의 이미드화 반응물을 포함할 수 있다.According to a preferred embodiment of the present invention, the transparent layer may include an imidization reaction product of a compound represented by Formula 1 below, a compound represented by Formula 2 below, and a compound represented by Formula 3 below.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3][Formula 3]

상기 화학식 3에 있어서, B1 및 B2는 각각 독립적으로, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2CH2- 또는 -CH2CH2CH2CH2CH2-이고, R1, R2, R3, R4, R5 및 R6은 각각 독립적으로 C1 ~ C12의 직쇄형 알킬기 또는 C3 ~ C12의 분쇄형 알킬기이며, n은 수평균분자량 500 ~ 50,000을 만족하는 유리수이다.In Formula 3, B 1 and B 2 are each independently -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 CH 2 -, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a C1 to C12 linear alkyl group or a C3 to C12 branched alkyl group, n is a rational number satisfying the number average molecular weight of 500 to 50,000.

본 발명의 바람직한 일 실시예에 따르면, 면상발열층 및 투명층은 1 : 0.05 ~ 0.15의 두께비를 가질 수 있다.According to a preferred embodiment of the present invention, the planar heating layer and the transparent layer may have a thickness ratio of 1:0.05 to 0.15.

본 발명의 유연성을 가지는 면상발열필름의 제조방법은 곡면 형태로의 구현이 가능한 유연성을 가지는 면상발열필름을 제조할 수 있다.The method for manufacturing a flexible planar heating film of the present invention can produce a planar heating film with flexibility that can be implemented in a curved form.

또한, 본 발명의 유연성을 가지는 면상발열필름의 제조방법은 우수한 발열성 및 열 내구성을 가질 뿐만 아니라, 기계적 물성 또한 우수한 면상발열필름을 제조할 수 있다.In addition, the method of manufacturing a flexible planar heating film of the present invention can produce a planar heating film that not only has excellent heat generation and thermal durability, but also has excellent mechanical properties.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. The present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts not related to the description are omitted, and identical or similar components are given the same reference numerals throughout the specification.

본 발명의 면상발열필름은 면상발열층 및 면상발열층 일면 또는 양면, 바람직하게는 면상발열층 일면에 형성된 코팅층을 포함할 수 있다. 이 때, 면상발열층은 필름 형태를 가질 수 있다.The planar heating film of the present invention may include a planar heating layer and a coating layer formed on one or both sides of the planar heating layer, preferably on one side of the planar heating layer. At this time, the planar heating layer may have a film form.

먼저, 본 발명의 면상발열층은 폴리에틸렌(PE) 수지 및 알루미늄 파우더(Aluminium powder)를 포함할 수 있다.First, the planar heating layer of the present invention may include polyethylene (PE) resin and aluminum powder.

구체적으로, 폴리에틸렌 수지는 전체 중량%에 대하여 저밀도 폴리에틸렌(LDPE) 수지 90 ~ 99 중량%, 바람직하게는 93 ~ 97 중량% 및 선형 저밀도 폴리에틸렌 수지(LLDPE) 1 ~ 10 중량%, 바람직하게는 3 ~ 7 중량%로 포함할 수 있으며, 만일 이와 같은 중량% 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.Specifically, the polyethylene resin is 90 to 99% by weight of low density polyethylene (LDPE) resin, preferably 93 to 97% by weight, and linear low density polyethylene resin (LLDPE) 1 to 10% by weight, preferably 3 to 3% by weight, based on the total weight%. It can be included at 7% by weight, and if it is outside this weight% range, there may be a problem of not satisfying the desired flexibility, heat generation, heat durability and mechanical properties.

또한, 알루미늄 파우더는 평균 입도가 0.3 ~ 1.0㎛, 바람직하게는 0.4 ~ 0.7㎛일 수 있으며, 이와 같은 평균 입도의 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.In addition, the aluminum powder may have an average particle size of 0.3 to 1.0 ㎛, preferably 0.4 to 0.7 ㎛, and if the average particle size is outside this range, the desired flexibility, heat generation, heat durability and mechanical properties will not be satisfied. There may be problems that you cannot do.

한편, 본 발명의 면상발열층은 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 5 ~ 15 중량부, 바람직하게는 8 ~ 12 중량부를 포함할 수 있으며, 만일 이와 같은 중량부 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.On the other hand, the planar heating layer of the present invention may contain 5 to 15 parts by weight of aluminum powder, preferably 8 to 12 parts by weight, based on 100 parts by weight of polyethylene resin. If it exceeds this weight range, the desired There may be problems where flexibility, heat generation, thermal durability, and mechanical properties are not all satisfied.

나아가, 본 발명의 본 발명의 면상발열층은 그래핀 파우더(Graphene powder)를 더 포함할 수 있다.Furthermore, the planar heating layer of the present invention may further include graphene powder.

이 때, 그래핀 파우더는 평균두께가 0.5 ~ 1.5nm, 바람직하게는 0.8 ~ 1.2nm이고, 평균직경이 1.0 ~ 2.0㎛, 바람직하게는 1.3 ~ 1.7㎛일 수 있으며, 만일 이와 같은 평균두께 범위 및/또는 평균직경 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.At this time, the graphene powder may have an average thickness of 0.5 to 1.5 nm, preferably 0.8 to 1.2 nm, and an average diameter of 1.0 to 2.0 ㎛, preferably 1.3 to 1.7 ㎛, and if this average thickness range and /Or, if it falls outside the average diameter range, there may be a problem of not satisfying all of the desired flexibility, heat generation, thermal durability, and mechanical properties.

한편, 본 발명의 면상발열층은 폴리에틸렌 수지 100 중량부에 대하여, 그래핀 파우더 15 ~ 25 중량부, 바람직하게는 18 ~ 22 중량부를 포함할 수 있으며, 만일 이와 같은 중량부 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.On the other hand, the planar heating layer of the present invention may contain 15 to 25 parts by weight of graphene powder, preferably 18 to 22 parts by weight, based on 100 parts by weight of polyethylene resin. If the weight part exceeds this range, the purpose There may be problems with not satisfying all of the flexibility, exothermic properties, thermal durability, and mechanical properties.

또한, 본 발명의 면상발열층은 탄소나노튜브 파우더(carbon nanotube powder)를 더 포함할 수 있다.Additionally, the planar heating layer of the present invention may further include carbon nanotube powder.

이 때, 탄소나노튜브 파우더는 평균직경이 30 ~ 50nm, 바람직하게는 35 ~ 45nm이고, 평균길이가 5 ~ 12㎛, 바람직하게는 6 ~ 10㎛일 수 있으며, 만일 이와 같은 평균직경 범위 및/또는 평균길이 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.At this time, the carbon nanotube powder may have an average diameter of 30 to 50 nm, preferably 35 to 45 nm, and an average length of 5 to 12 ㎛, preferably 6 to 10 ㎛, and if this average diameter range and/ Alternatively, if the average length is outside the range, there may be a problem of not satisfying the desired flexibility, heat generation, thermal durability, and mechanical properties.

한편, 본 발명의 면상발열층은 폴리에틸렌 수지 100 중량부에 대하여, 탄소나노튜브 파우더 15 ~ 25 중량부, 바람직하게는 18 ~ 22 중량부를 포함할 수 있으며, 만일 이와 같은 중량부 범위를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.On the other hand, the planar heating layer of the present invention may contain 15 to 25 parts by weight of carbon nanotube powder, preferably 18 to 22 parts by weight, based on 100 parts by weight of polyethylene resin. If it exceeds this weight range, There may be problems in which the desired flexibility, heat generation, thermal durability, and mechanical properties are not all satisfied.

다음으로, 본 발명의 코팅층은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 화합물의 이미드화 반응물을 포함할 수 있다.Next, the coating layer of the present invention may include an imidization reaction product of a compound represented by Formula 1 below, a compound represented by Formula 2 below, and a compound represented by Formula 3 below.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3][Formula 3]

상기 화학식 3에 있어서, B1 및 B2는 각각 독립적으로, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2CH2- 또는 -CH2CH2CH2CH2CH2-이고, 바람직하게는 -CH2CH2-, -CH2CH2CH2- 또는 -CH2CH2CH2CH2-이다.In Formula 3, B 1 and B 2 are each independently -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 CH 2 -, preferably -CH 2 CH 2 -, -CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 -.

또한, 상기 화학식 3에 있어서, R1, R2, R3, R4, R5 및 R6은 각각 독립적으로 C1 ~ C12의 직쇄형 알킬기 또는 C3 ~ C12의 분쇄형 알킬기이고, 바람직하게는 C1 ~ C12의 직쇄형 알킬기이며, 더욱 바람직하게는 C1 ~ C3의 직쇄형 알킬기이다.In addition, in Formula 3, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a C1 to C12 linear alkyl group or a C3 to C12 branched alkyl group, preferably C1 It is a straight-chain alkyl group of ~ C12, and more preferably a linear alkyl group of C1-C3.

또한, 상기 화학식 3에 있어서, n은 수평균분자량 500 ~ 50,000, 바람직하게는 3,000 ~ 7,000을 만족하는 유리수이다.Additionally, in Formula 3, n is a rational number satisfying a number average molecular weight of 500 to 50,000, preferably 3,000 to 7,000.

구체적으로, 본 발명의 코팅층은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 화합물이 1 : 0.17 ~ 0.27 : 2.25 ~ 3.38 중량비, 바람직하게는 1 : 0.2 ~ 0.25 : 2.53 ~ 3.1 중량비로 반응한 이미드화 반응물을 포함할 수 있다.Specifically, the coating layer of the present invention is composed of a compound represented by the following formula (1), a compound represented by the following formula (2), and a compound represented by the following formula (3) at a weight ratio of 1:0.17 to 0.27:2.25 to 3.38, preferably 1:0.2 to 1. It may contain imidization reactants reacted at a weight ratio of 0.25:2.53 to 3.1.

나아가, 본 발명의 면상발열필름은 면상발열층 및 투명층이 1 : 0.05 ~ 0.15의 두께비, 바람직하게는 1 : 0.08 ~ 0.12 두께비를 가질 수 있으며, 만일 이와 같은 두께비를 벗어나게 된다면, 목적하는 유연성, 발열성, 열 내구성 및 기계적 물성을 모두 만족하지 못하는 문제가 있을 수 있다.Furthermore, the planar heating film of the present invention may have a thickness ratio of the planar heating layer and the transparent layer of 1:0.05 to 0.15, preferably 1:0.08 to 0.12, and if it deviates from this thickness ratio, the desired flexibility and heat generation may be lost. There may be problems with not satisfying all of the properties, thermal durability, and mechanical properties.

한편, 본 발명의 유연성을 가지는 면상발열필름의 제조방법은 제1단계 내지 제3단계를 포함한다.Meanwhile, the method for manufacturing a flexible planar heating film of the present invention includes first to third steps.

먼저, 본 발명의 유연성을 가지는 면상발열필름의 제조방법의 제1단계는 용융시킨 폴리에틸렌 수지에 알루미늄 파우더, 그래핀 파우더 및 탄소나노튜브 파우더를 투입 및 혼합하여 혼합물을 제조할 수 있다. 이 때, 폴리에틸렌 수지는 전체 중량%에 대하여 저밀도 폴리에틸렌(LDPE) 수지 90 ~ 99 중량%, 바람직하게는 93 ~ 97 중량% 및 선형 저밀도 폴리에틸렌 수지(LLDPE) 1 ~ 10 중량%, 바람직하게는 3 ~ 7 중량%로 혼합된 것일 수 있다.First, in the first step of the method of manufacturing a flexible planar heating film of the present invention, a mixture can be prepared by adding and mixing aluminum powder, graphene powder, and carbon nanotube powder to molten polyethylene resin. At this time, the polyethylene resin is 90 to 99% by weight of low-density polyethylene (LDPE) resin, preferably 93 to 97% by weight, and linear low-density polyethylene resin (LLDPE) 1 to 10% by weight, preferably 3 to 3% by weight, based on the total weight%. It may be mixed at 7% by weight.

또한, 혼합물은 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 5 ~ 15 중량부, 바람직하게는 8 ~ 12 중량부, 그래핀 파우더 15 ~ 25 중량부, 바람직하게는 18 ~ 22 중량부 및 탄소나노튜브 파우더 15 ~ 25 중량부, 바람직하게는 18 ~ 22 중량부가 혼합된 것일 수 있다.In addition, the mixture contains 5 to 15 parts by weight of aluminum powder, preferably 8 to 12 parts by weight, graphene powder, 15 to 25 parts by weight, preferably 18 to 22 parts by weight, and carbon nanotubes, based on 100 parts by weight of polyethylene resin. 15 to 25 parts by weight of powder may be mixed, preferably 18 to 22 parts by weight.

다음으로, 본 발명의 유연성을 가지는 면상발열필름의 제조방법의 제2단계는 제1단계에서 제조한 혼합물을 가열 및 소결시켜 필름 형태의 면상발열층을 제조할 수 있다. 이 때, 가열은 500 ~ 700℃의 온도, 바람직하게는 550 ~ 650℃의 온도로 수행할 수 있으며, 이와 같은 온도 범위를 만족해야 목적하는 면상발열층이 제조될 수 있다.Next, in the second step of the method for manufacturing a flexible planar heating film of the present invention, a planar heating layer in the form of a film can be manufactured by heating and sintering the mixture prepared in the first step. At this time, heating can be performed at a temperature of 500 to 700°C, preferably 550 to 650°C, and the desired planar heating layer can be manufactured only when this temperature range is satisfied.

마지막으로, 본 발명의 유연성을 가지는 면상발열필름의 제조방법의 제3단계는 제2단계에서 제조한 면상발열층 일면 또는 양면, 바람직하게는 면상발열층 일면에 코팅용액을 도포하고, 열처리하여 면상발열층 일면에 코팅층을 형성할 수 있다.Finally, the third step of the manufacturing method of the flexible planar heating film of the present invention is to apply a coating solution to one or both sides of the planar heating layer prepared in the second step, preferably to one side of the planar heating layer, and heat treat it to form a planar heating layer. A coating layer can be formed on one side of the heating layer.

이 때, 면상발열층 및 투명층은 1 : 0.05 ~ 0.15의 두께비, 바람직하게는 1 : 0.08 ~ 0.12 두께비를 가질 수 있다.At this time, the planar heating layer and the transparent layer may have a thickness ratio of 1:0.05 to 0.15, preferably 1:0.08 to 0.12.

또한, 코팅용액은 용매에 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 화합물을 투입하고, 15 ~ 35℃, 바람직하게는 20 ~ 30℃에서 12 ~ 34시간동안 혼합 및 반응시켜 제조된 것일 수 있다.In addition, the coating solution is prepared by adding a compound represented by the following Chemical Formula 1, a compound represented by the following Chemical Formula 2, and a compound represented by the following Chemical Formula 3 to a solvent, and heating at 15 to 35°C, preferably 20 to 30°C, for 12 to 34°C. It may be manufactured by mixing and reacting for a period of time.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3][Formula 3]

상기 화학식 3에 있어서, B1 및 B2는 각각 독립적으로, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2CH2- 또는 -CH2CH2CH2CH2CH2-이고, 바람직하게는 -CH2CH2-, -CH2CH2CH2- 또는 -CH2CH2CH2CH2-이다.In Formula 3, B 1 and B 2 are each independently -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 CH 2 -, preferably -CH 2 CH 2 -, -CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 -.

또한, 상기 화학식 3에 있어서, R1, R2, R3, R4, R5 및 R6은 각각 독립적으로 C1 ~ C12의 직쇄형 알킬기 또는 C3 ~ C12의 분쇄형 알킬기이고, 바람직하게는 C1 ~ C12의 직쇄형 알킬기이며, 더욱 바람직하게는 C1 ~ C3의 직쇄형 알킬기이다.In addition, in Formula 3, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a C1 to C12 linear alkyl group or a C3 to C12 branched alkyl group, preferably C1 It is a straight-chain alkyl group of ~ C12, and more preferably a linear alkyl group of C1-C3.

또한, 상기 화학식 3에 있어서, n은 수평균분자량 500 ~ 50,000, 바람직하게는 3,000 ~ 7,000을 만족하는 유리수이다.Additionally, in Formula 3, n is a rational number satisfying a number average molecular weight of 500 to 50,000, preferably 3,000 to 7,000.

또한, 열처리는 코팅용액을 이미드화 반응 시킬 뿐만 아니라, 건조시키기 위해 수행하는 것으로서, 40 ~ 60℃에서 0.5 ~ 1.5시간 동안 1차 열처리한 후에, 6 ~ 10℃/min의 승온 속도로 90 ~ 110℃까지 승온한 상태에서 0.5 ~ 1.5시간 동안 2차 열처리할 수 있다.In addition, heat treatment is performed not only to imidize the coating solution, but also to dry it. After primary heat treatment at 40 to 60℃ for 0.5 to 1.5 hours, the temperature is increased to 90 to 110℃ at a temperature increase rate of 6 to 10℃/min. Secondary heat treatment can be performed for 0.5 to 1.5 hours with the temperature raised to ℃.

이상에서 본 발명에 대하여 구현예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명의 구현예를 한정하는 것이 아니며, 본 발명의 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 구현예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although the present invention has been described above with a focus on embodiments, this is only an example and does not limit the embodiments of the present invention, and those skilled in the art will be able to understand the essential characteristics of the present invention. It can be seen that various modifications and applications not exemplified above are possible without departing from the scope. For example, each component specifically shown in the embodiments of the present invention can be modified and implemented. And these variations and differences in application should be construed as being included in the scope of the present invention as defined in the appended claims.

준비예 1 : 코팅용액의 제조Preparation Example 1: Preparation of coating solution

THF(Tetrahydrofuran) 14.3mL에 하기 화학식 1로 표시되는 화합물 0.888g, 하기 화학식 2로 표시되는 화합물 0.198g 및 하기 화학식 3-1로 표시되는 화합물 2.5g을 투입하고, 25℃에서 18시간동안 혼합 및 반응시켜 코팅용액을 제조하였다.Add 0.888 g of the compound represented by the following Chemical Formula 1, 0.198 g of the compound represented by the following Chemical Formula 2, and 2.5 g of the compound represented by the following Chemical Formula 3-1 to 14.3 mL of THF (Tetrahydrofuran), and mix at 25°C for 18 hours. The reaction was performed to prepare a coating solution.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3-1][Formula 3-1]

상기 화학식 3-1에 있어서, B1 및 B2는 -CH2CH2CH2-이고, R1, R2, R3, R4, R5 및 R6은 메틸기이며, n은 수평균분자량 5,000을 만족하는 유리수이다.In Formula 3-1, B 1 and B 2 are -CH 2 CH 2 CH 2 -, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are methyl groups, and n is the number average molecular weight. It is a rational number that satisfies 5,000.

실시예 1 : 면상발열필름의 제조Example 1: Preparation of planar heating film

(1) 용융시킨 폴리에틸렌(PE) 수지 100 중량부에 대하여, 알루미늄 파우더(평균 입도 : 0.5㎛) 10 중량부, 그래핀 파우더(평균두께 : 1.0nm, 평균직경 : 1.5㎛) 20 중량부 및 탄소나노튜브 파우더(평균직경 : 40nm, 평균길이 : 8㎛) 20 중량부를 투입 및 혼합하여 혼합물을 제조하였다. 이 때, 폴리에틸렌 수지는 전체 중량%에 대하여 저밀도 폴리에틸렌(LDPE) 수지 95 중량% 및 선형 저밀도 폴리에틸렌 수지(LLDPE) 5 중량%로 혼합되어 있는 것을 사용하였다.(1) Based on 100 parts by weight of melted polyethylene (PE) resin, 10 parts by weight of aluminum powder (average particle size: 0.5㎛), 20 parts by weight of graphene powder (average thickness: 1.0nm, average diameter: 1.5㎛), and carbon. A mixture was prepared by adding and mixing 20 parts by weight of nanotube powder (average diameter: 40 nm, average length: 8 μm). At this time, the polyethylene resin was used in a mixture of 95% by weight of low density polyethylene (LDPE) resin and 5% by weight of linear low density polyethylene resin (LLDPE) based on the total weight%.

(2) 상기 혼합물을 600℃의 온도로 가열 및 소결시켜 평균 두께 100㎛의 필름 형태의 면상발열층을 제조하였다.(2) The mixture was heated and sintered at a temperature of 600°C to prepare a planar heating layer in the form of a film with an average thickness of 100㎛.

(3) 제조한 면상발열층 일면에 준비예 1에서 제조한 코팅용액을 도포하고, 오븐에 투입하여 50℃에서 1시간 동안 1차 열처리한 후에, 8℃/min의 승온 속도로 100℃까지 승온한 상태에서 1시간 동안 2차 열처리하여 상기 코팅용액을 이미드화 반응 및 건조하여 면상발열층 일면에 코팅층을 10㎛의 평균 두께로 형성함으로서, 면상발열필름을 제조하였다.(3) The coating solution prepared in Preparation Example 1 was applied to one side of the prepared planar heating layer, placed in an oven, and subjected to primary heat treatment at 50°C for 1 hour, followed by raising the temperature to 100°C at a temperature increase rate of 8°C/min. A planar heating film was prepared by performing a secondary heat treatment for 1 hour in one state to imidize and dry the coating solution to form a coating layer with an average thickness of 10㎛ on one side of the planar heating layer.

실시예 2 : 면상발열필름의 제조Example 2: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 평균직경이 10nm이고, 평균길이가 8㎛인 탄소나노튜브 파우더를 사용하여, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, a planar heating film was finally manufactured using carbon nanotube powder with an average diameter of 10 nm and an average length of 8 μm.

실시예 3 : 면상발열필름의 제조Example 3: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 평균직경이 70nm이고, 평균길이가 8㎛인 탄소나노튜브 파우더를 사용하여, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, a planar heating film was finally manufactured using carbon nanotube powder with an average diameter of 70 nm and an average length of 8 μm.

실시예 4 : 면상발열필름의 제조Example 4: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 2 중량부, 그래핀 파우더 20 중량부 및 탄소나노튜브 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 2 parts by weight of aluminum powder, 20 parts by weight of graphene powder, and 20 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film. was manufactured.

실시예 5 : 면상발열필름의 제조Example 5: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 18 중량부, 그래핀 파우더 20 중량부 및 탄소나노튜브 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 18 parts by weight of aluminum powder, 20 parts by weight of graphene powder, and 20 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film. was manufactured.

실시예 6 : 면상발열필름의 제조Example 6: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 10 중량부, 그래핀 파우더 10 중량부 및 탄소나노튜브 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 10 parts by weight of aluminum powder, 10 parts by weight of graphene powder, and 20 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film. was manufactured.

실시예 7 : 면상발열필름의 제조Example 7: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 10 중량부, 그래핀 파우더 30 중량부 및 탄소나노튜브 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 10 parts by weight of aluminum powder, 30 parts by weight of graphene powder, and 20 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film was obtained. was manufactured.

실시예 8 : 면상발열필름의 제조Example 8: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 10 중량부, 그래핀 파우더 20 중량부 및 탄소나노튜브 파우더 10 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 10 parts by weight of aluminum powder, 20 parts by weight of graphene powder, and 10 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film. was manufactured.

실시예 9 : 면상발열필름의 제조Example 9: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 10 중량부, 그래핀 파우더 20 중량부 및 탄소나노튜브 파우더 30 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 10 parts by weight of aluminum powder, 20 parts by weight of graphene powder, and 30 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film. was manufactured.

실시예 10 : 면상발열필름의 제조Example 10: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 면상발열층 일면에 코팅층을 3㎛의 평균 두께로 형성함으로서, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, a coating layer was formed on one side of the planar heating layer with an average thickness of 3㎛, thereby finally producing a planar heating film.

실시예 11 : 면상발열필름의 제조Example 11: Preparation of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 면상발열층 일면에 코팅층을 20㎛의 평균 두께로 형성함으로서, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, a coating layer was formed on one side of the planar heating layer with an average thickness of 20㎛, thereby finally producing a planar heating film.

비교예 1 : 면상발열필름의 제조Comparative Example 1: Manufacturing of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 그래핀 파우더 20 중량부 및 탄소나노튜브 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 20 parts by weight of graphene powder and 20 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film was produced.

비교예 2 : 면상발열필름의 제조Comparative Example 2: Manufacturing of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 10 중량부 및 탄소나노튜브 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 10 parts by weight of aluminum powder and 20 parts by weight of carbon nanotube powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film was produced.

비교예 3 : 면상발열필름의 제조Comparative Example 3: Manufacturing of planar heating film

실시예 1과 동일한 방법으로 면상발열필름을 제조하였다. 다만 실시예 1과 달리 혼합물은 용융시킨 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 10 중량부 및 그래핀 파우더 20 중량부를 투입 및 혼합하여 제조하였으며, 최종적으로 면상발열필름을 제조하였다.A planar heating film was manufactured in the same manner as in Example 1. However, unlike Example 1, the mixture was prepared by adding and mixing 10 parts by weight of aluminum powder and 20 parts by weight of graphene powder with respect to 100 parts by weight of melted polyethylene resin, and finally, a planar heating film was manufactured.

실험예 1 : 유연성 측정Experimental Example 1: Flexibility measurement

실시예 1 ~ 11 및 비교예 1 ~ 3에서 제조된 면상발열필름 각각을 50mm×100mm(가로×세로)로 제단하여 샘플을 제조하였다. 제조한 샘플을 벤딩 평가 장비를 이용하여 곡률 반경 1.5mm으로 200,000회까지 벤딩 평가를 진행하였다.Samples were prepared by cutting each of the planar heating films prepared in Examples 1 to 11 and Comparative Examples 1 to 3 into 50 mm × 100 mm (width × height). The manufactured sample was subjected to bending evaluation up to 200,000 times with a bending radius of 1.5 mm using bending evaluation equipment.

10,000회 주기로 벤딩 평가 진행 후, 파괴 및 비파괴 검사하고, 제조한 샘플의 크랙(Crack) 발생 여부 및 합지면 벌어짐 여부를 확인하였다. 변화가 없는 경우의 경우 OK, 박리, 크랙, 두께 변화 등 변형이 발생한 경우에는 NG로 평가하여 하기 표 1에 나타내었다.After the bending evaluation was performed at 10,000 cycles, destructive and non-destructive tests were conducted, and it was confirmed whether cracks occurred in the manufactured samples and whether the laminated surface was opened. If there was no change, it was evaluated as OK; if deformation such as peeling, cracking, or thickness change occurred, it was evaluated as NG and is shown in Table 1 below.

실험예 2 : 발열 특성 평가Experimental Example 2: Evaluation of heat generation characteristics

전원공급장치(Power supply)를 이용하여 실시예 1 ~ 11 및 비교예 1 ~ 3에서 제조된 면상발열필름 각각에 13.5V의 정격전압을 인가한 후, 30분 뒤 열화상 카메라를 이용하여 면상발열필름의 발열 온도를 측정하여 하기 표 1에 나타내었다.After applying a rated voltage of 13.5V to each of the planar heating films manufactured in Examples 1 to 11 and Comparative Examples 1 to 3 using a power supply, planar heating was performed using a thermal imaging camera 30 minutes later. The heating temperature of the film was measured and shown in Table 1 below.

실험예 3 : 열 내구성 평가Experimental Example 3: Thermal durability evaluation

전원공급장치(Power supply)를 이용하여 실시예 1 ~ 11 및 비교예 1 ~ 3에서 제조된 면상발열필름 각각에 250V의 정격전압을 인가한 후, 12시간동안 연속으로 통전 후, 면상발열필름의 이상 여부를 확인하였다. 이상이 없으면 OK, 변형 등의 이상이 발생한 경우 NG로 평가하여 하기 표 1에 나타내었다.After applying a rated voltage of 250V to each of the planar heating films manufactured in Examples 1 to 11 and Comparative Examples 1 to 3 using a power supply, and then continuously energizing the planar heating film for 12 hours, Check for abnormalities. If there were no abnormalities, it was evaluated as OK; if abnormalities such as deformation occurred, it was evaluated as NG and is shown in Table 1 below.

실험예 4 : 인장강도 평가Experimental Example 4: Tensile strength evaluation

ASTM D882 시험규격에 의거하여, 실시예 1 ~ 11 및 비교예 1 ~ 3에서 제조된 면상발열필름 각각의 인장강도를 측정하여 하기 표 1에 나타내었다.Based on the ASTM D882 test standard, the tensile strength of each of the planar heating films manufactured in Examples 1 to 11 and Comparative Examples 1 to 3 was measured and shown in Table 1 below.

표 1에서 확인할 수 있듯이, 실시예 1에서 제조된 면상발열필름이 우수한 유연성을 가질 뿐만 아니라, 발열성, 열 내구성 및 기계적 물성 또한 우수함을 확인할 수 있었다.As can be seen in Table 1, it was confirmed that the planar heating film prepared in Example 1 not only had excellent flexibility, but also had excellent heat generation, thermal durability, and mechanical properties.

본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes to the present invention can be easily implemented by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (5)

용융시킨 폴리에틸렌 수지에 알루미늄 파우더, 그래핀 파우더 및 탄소나노튜브 파우더를 투입 및 혼합하여 혼합물을 제조하는 제1단계;
상기 혼합물을 가열 및 소결시켜 필름 형태의 면상발열층을 제조하는 제2단계; 및
상기 면상발열층 일면 또는 양면에 코팅용액을 도포하고, 열처리하여 면상발열층 일면에 코팅층을 형성하는 제3단계; 를 포함하고,
상기 폴리에틸렌 수지는 전체 중량%에 대하여 저밀도 폴리에틸렌(LDPE) 수지 90 ~ 99 중량% 및 선형 저밀도 폴리에틸렌 수지(LLDPE) 1 ~ 10 중량%로 혼합한 것을 특징으로 하는 유연성을 가지는 면상발열필름의 제조방법.
A first step of preparing a mixture by adding and mixing aluminum powder, graphene powder, and carbon nanotube powder into molten polyethylene resin;
A second step of manufacturing a planar heating layer in the form of a film by heating and sintering the mixture; and
A third step of applying a coating solution to one or both sides of the planar heating layer and heat treating it to form a coating layer on one side of the planar heating layer; Including,
The polyethylene resin is a mixture of 90 to 99% by weight of low density polyethylene (LDPE) resin and 1 to 10% by weight of linear low density polyethylene resin (LLDPE) based on the total weight%. A method of producing a flexible planar heating film.
제1항에 있어서,
상기 제2단계의 가열은 500 ~ 700℃의 온도로 수행하는 것을 특징으로 하는 유연성을 가지는 면상발열필름의 제조방법.
According to paragraph 1,
A method of manufacturing a flexible planar heating film, characterized in that the heating in the second step is performed at a temperature of 500 to 700 ° C.
제1항에 있어서,
상기 혼합물은 폴리에틸렌 수지 100 중량부에 대하여, 알루미늄 파우더 5 ~ 15 중량부, 그래핀 파우더 15 ~ 25 중량부 및 탄소나노튜브 파우더 15 ~ 25 중량부를 혼합한 것을 특징으로 하는 유연성을 가지는 면상발열필름의 제조방법.
According to paragraph 1,
The mixture is a flexible planar heating film characterized in that 5 to 15 parts by weight of aluminum powder, 15 to 25 parts by weight of graphene powder, and 15 to 25 parts by weight of carbon nanotube powder are mixed with 100 parts by weight of polyethylene resin. Manufacturing method.
제3항에 있어서,
상기 알루미늄 파우더는 평균 입도가 0.3 ~ 1.0㎛이고,
상기 그래핀 파우더는 평균두께가 0.5 ~ 1.5nm, 평균직경이 1.0 ~ 2.0㎛이며,
상기 탄소나노튜브 파우더는 평균직경이 30 ~ 50nm, 평균길이가 5 ~ 12㎛인 것을 특징으로 하는 유연성을 가지는 면상발열필름의 제조방법.
According to paragraph 3,
The aluminum powder has an average particle size of 0.3 to 1.0 μm,
The graphene powder has an average thickness of 0.5 to 1.5 nm and an average diameter of 1.0 to 2.0 μm,
A method of manufacturing a planar heating film having flexibility, characterized in that the carbon nanotube powder has an average diameter of 30 to 50 nm and an average length of 5 to 12 ㎛.
제1항에 있어서,
상기 투명층은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 화합물의 이미드화 반응물을 포함하고,
상기 면상발열층 및 투명층은 1 : 0.05 ~ 0.15의 두께비를 가지는 것을 특징으로 하는 유연성을 가지는 면상발열필름의 제조방법.
[화학식 1]

[화학식 2]

[화학식 3]

상기 화학식 3에 있어서, B1 및 B2는 각각 독립적으로, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2CH2- 또는 -CH2CH2CH2CH2CH2-이고, R1, R2, R3, R4, R5 및 R6은 각각 독립적으로 C1 ~ C12의 직쇄형 알킬기 또는 C3 ~ C12의 분쇄형 알킬기이며, n은 수평균분자량 500 ~ 50,000을 만족하는 유리수이다.
According to paragraph 1,
The transparent layer includes an imidization reaction product of a compound represented by Formula 1, a compound represented by Formula 2, and a compound represented by Formula 3,
A method of manufacturing a flexible planar heating film, characterized in that the planar heating layer and the transparent layer have a thickness ratio of 1:0.05 to 0.15.
[Formula 1]

[Formula 2]

[Formula 3]

In Formula 3, B 1 and B 2 are each independently -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 CH 2 -, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a C1 to C12 linear alkyl group or a C3 to C12 branched alkyl group, n is a rational number satisfying the number average molecular weight of 500 to 50,000.
KR1020220072744A 2022-06-15 2022-06-15 method for planar heating film with flexibility KR20230172657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220072744A KR20230172657A (en) 2022-06-15 2022-06-15 method for planar heating film with flexibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220072744A KR20230172657A (en) 2022-06-15 2022-06-15 method for planar heating film with flexibility

Publications (1)

Publication Number Publication Date
KR20230172657A true KR20230172657A (en) 2023-12-26

Family

ID=89320542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220072744A KR20230172657A (en) 2022-06-15 2022-06-15 method for planar heating film with flexibility

Country Status (1)

Country Link
KR (1) KR20230172657A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436594B1 (en) 2013-08-06 2014-09-01 주식회사 대유신소재 Film heater and manufacturing method of thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436594B1 (en) 2013-08-06 2014-09-01 주식회사 대유신소재 Film heater and manufacturing method of thereof

Similar Documents

Publication Publication Date Title
KR101294596B1 (en) Composition and method of carbon nanotube paste for flat heating element device
Nguyen et al. Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications
Kim et al. Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composite
WO2011077784A1 (en) Carbon nanotube composite structure and adhesive member
CN102898680B (en) Surface-modified graphene
TW200307000A (en) Thermally conductive formed article and method of manufacturing the same
WO2011077785A1 (en) Carbon nanotube composite structure and adhesive member
US20140170412A1 (en) Insulating composition, substrate including insulating layer using the same, and method for manufacturing the substrate
KR101321099B1 (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
TW201119852A (en) Heat-conductive silicone rubber composite sheet
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP6465368B2 (en) Heat dissipation material using mixed graphite and method for producing the same
JP2022000522A (en) Epoxy paste composition including silver-coated copper nanowire having core-shell structure, and conductive film including the same
Wu et al. Layer‐by‐Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties
CN105086659B (en) The preparation method of high heat conducting nano carbon copper foil
Li et al. Isotropic porous graphite foam/epoxy composites with outstanding heat dissipation and excellent electromagnetic interference shielding performances
KR20230172657A (en) method for planar heating film with flexibility
Dash et al. Structural characterization of fillers of inorganic materials in bismaleimide resins
KR20230172656A (en) method for planar heating film with transparency
KR20230117270A (en) planar heating film with flexibility
JP2003192893A (en) Polyimide resin composition, polyimide film, polyimide tube and tube for electrophotography
Zhao et al. Amine‐modified graphene enhanced mechanical properties and catalytic effect on imidization of polyimide composite films
JP6592766B2 (en) Graphene-coated aluminum nitride filler, production method thereof, electronic material, resin composite, and hydrophobic treatment method
KR102077766B1 (en) GRAPHITE FILM, preparing method thereof, and heat emission structure including the same
KR20230117269A (en) planar heating film with transparency