KR101321099B1 - Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same - Google Patents

Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same Download PDF

Info

Publication number
KR101321099B1
KR101321099B1 KR1020110135598A KR20110135598A KR101321099B1 KR 101321099 B1 KR101321099 B1 KR 101321099B1 KR 1020110135598 A KR1020110135598 A KR 1020110135598A KR 20110135598 A KR20110135598 A KR 20110135598A KR 101321099 B1 KR101321099 B1 KR 101321099B1
Authority
KR
South Korea
Prior art keywords
group
graphene
epoxy resin
carbon nanoparticles
composite film
Prior art date
Application number
KR1020110135598A
Other languages
Korean (ko)
Other versions
KR20130068436A (en
Inventor
정영규
안지은
이종근
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020110135598A priority Critical patent/KR101321099B1/en
Publication of KR20130068436A publication Critical patent/KR20130068436A/en
Application granted granted Critical
Publication of KR101321099B1 publication Critical patent/KR101321099B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers

Abstract

본 발명은 고기능성 탄소나노입자를 에폭시화합물 및 경화제와 혼합한 후, 필름성형 및 경화공정을 통해 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름의 제조방법에 관한 것이다.
상세하게는 탄소나노튜브와 그래핀(graphene)으로 이루어진 군에서 선택된 1종 이상의 탄소나노입자를 에폭시화합물과 혼합하여 분산시키는 탄소나노입자 혼합공정; 탄소나노입자와 에폭시화합물의 혼합물에 경화제를 첨가하여 혼합 및 분산하는 경화제 첨가공정; 탄소나노입자, 에폭시 화합물 및 경화제 혼합물을 지지체 기질 상에 필름으로 성형 및 경화시키는 복합필름 성형공정;을 포함하는 것을 특징으로 하는 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름의 제조방법을 제공한다.
The present invention relates to a method for producing an epoxy resin-based electrothermally composite film in which carbon nanoparticles are introduced through a film forming and curing process after mixing high functional carbon nanoparticles with an epoxy compound and a curing agent.
Specifically, carbon nanoparticle mixing step of dispersing by mixing one or more carbon nanoparticles selected from the group consisting of carbon nanotubes and graphene (graphene) with an epoxy compound; A curing agent addition step of mixing and dispersing by adding a curing agent to a mixture of carbon nanoparticles and an epoxy compound; It provides a method for producing an epoxy resin-based electro-heating composite film containing carbon nanoparticles, comprising: a composite film molding process for molding and curing the carbon nanoparticles, epoxy compound and curing agent mixture into a film on a support substrate. do.

Description

탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름 및 그 제조방법{Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same}Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same}

본 발명은 고기능성 탄소나노입자를 에폭시화합물 및 경화제와 혼합한 후, 필름성형 및 경화공정을 통해 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름 및 그의 제조방법에 관한 것이다.The present invention relates to an epoxy resin-based electro-heating composite film having carbon nanoparticles introduced through a film forming and curing process after mixing high functional carbon nanoparticles with an epoxy compound and a curing agent, and a method of manufacturing the same.

에폭시수지는 강한 접착성, 높은 인장강도 및 인성, 높은 화학적/열적 안정성, 형태안정성, 우수한 크리프 특성, 용매저항성 등의 탁월한 물성으로 인해 매우 중요한 가교고분자 소재 중 하나이다. 이러한 탁월한 물성과 더불어, 우수한 공정특성 및 경제적인 가격으로 인해 다양한 전기전자제품/부품, 우주항공분야, 자동차분야, 군수분야, 스포츠용품/생활용품 분야, 토목/건축분야, 기계분야에서 접착제, 코팅제, 도료, 적층품, 주형품, 성형품 등으로 다양하게 응용되고 있다.Epoxy resin is one of the most important crosslinked polymer materials because of its excellent physical properties such as strong adhesiveness, high tensile strength and toughness, high chemical / thermal stability, shape stability, excellent creep properties and solvent resistance. In addition to these excellent properties, excellent process characteristics and economical prices make it possible to use adhesives and coatings in various electrical and electronic products / parts, aerospace, automotive, military, sporting goods / household goods, civil engineering / building and machinery It is applied to a variety of applications such as paints, laminated products, castings, and molded products.

에폭시수지는 대표적인 가교고분자로써 일반적으로 분자구조 말단에 에폭시드 그룹을 갖는 에폭시화합물을 촉매 또는 경화제의 존재 하에서 열 또는 빛에 의한 가교반응을 통해 3차원 망상 구조를 형성한다. 대표적인 에폭시화합물은 비스페놀 A 디글리시딜 에테르(diglycidyl ether of bisphenol A ; DGEBA)로써 그 구조는 화학식 1과 같이 표시된다. 화학식 1의 비스페놀 A 디글리시딜 에테르는 중합도 n이 증가함에 따라, 즉 분자량이 커짐에 따라 액상에서 고상으로 성상이 바뀐다. 따라서 분자량이 큰 고상의 에폭시화합물은 오일류 또는 알코올류 용매와 함께 사용되기도 한다. Epoxy resins are typical crosslinking polymers. In general, an epoxy compound having an epoxide group at the end of a molecular structure forms a three-dimensional network structure through a crosslinking reaction by heat or light in the presence of a catalyst or a curing agent. A representative epoxy compound is bisphenol A diglycidyl ether (diglycidyl ether of bisphenol A; DGEBA), the structure of which is represented by the formula (1). Bisphenol A diglycidyl ether of the formula (1) is changed from the liquid phase to the solid phase as the degree of polymerization n increases, that is, the molecular weight increases. Therefore, a solid epoxy compound having a large molecular weight may be used together with an oil or alcohol solvent.

Figure 112011099885229-pat00001
Figure 112011099885229-pat00001

에폭시수지는 그 분자 구조에 따라 매우 단단한 형태 또는 매우 유연한 필름으로 얻을 수 있기 때문에, 사용자가 원하는 다양한 물성이나 형태로 쉽게 얻을 수 있다는 장점이 있다. 이러한 에폭시수지를 얻기 위해서는 경화제가 사용되는데 이들은 분자구조 말단에 아민기(-NH2), 무수화물, 카르복실(-COO-) 그룹을 갖는 저분자 또는 고분자 화합물이다. 에폭시화합물과의 반응성은 아민기를 갖는 경화제가 우수하며, 아민기의 수에 따라 결정된다. 따라서 경화반응 속도 및 조건은 사용자가 원하는 조건으로 쉽게 조절이 가능하다는 장점을 가지고 있다. 또한 경화 반응을 일으키기 위한 열을 이용한 열경화, 빛을 이용하는 광경화가 있다. Epoxy resin can be obtained in a very rigid form or a very flexible film according to its molecular structure, there is an advantage that it can be easily obtained in a variety of physical properties or forms desired by the user. In order to obtain such an epoxy resin, a curing agent is used. These are low molecular or high molecular compounds having an amine group (-NH 2 ), an anhydride, and a carboxyl (-COO-) group at the terminal of the molecular structure. The reactivity with the epoxy compound is excellent in the curing agent having an amine group, and is determined according to the number of amine groups. Therefore, the curing reaction rate and conditions have the advantage that the user can easily adjust to the desired conditions. In addition, there are thermosetting using heat to cause a curing reaction, and photocuring using light.

그래핀(graphene)은 꿈의 신소재라 불리는 탄소나노입자의 일종으로, 높은 전기 전도도, 열전도율, 높은 강도 등의 우수한 성질을 가지고 있다. 그래핀은 탄소 원자 6개가 모여서 육각형을 이룬 벌집 모양의 형태가 판상으로 연결되어 있는 구조이다. 그래핀은 단일 층으로 이루어져 있는데, 이러한 그래핀이 적층되어 이루어진 형태가 주위에서 흔히 볼 수 있는 그래파이트(graphite)이다. 흑연이라고도 불리는 그래파이트는 가격이 저렴하기 때문에 대량의 그래핀을 얻기 위한 좋은 출발 물질이다. 그래핀은 그래파이트로부터 제조되는데 가장 간단한 방법으로는 스카치 테이프로 떼어내는 방법이 있으며, 범용적으로 사용되는 방법은 화학적으로 개질 시킨 그래파이트를 열처리하여 얻는 방법이 있다. 이렇게 얻어진 그래핀은 전자재료 소재 및 복합재료 보강재로 널리 사용되고 있다. Graphene (graphene) is a kind of carbon nanoparticles called dream new material, and has excellent properties such as high electrical conductivity, thermal conductivity and high strength. Graphene is a structure in which hexagonal honeycomb forms of six carbon atoms are connected in a plate shape. Graphene is composed of a single layer, which is a graphite layer of graphite (graphite) is commonly seen around. Graphite, also called graphite, is a good starting material for obtaining large amounts of graphene because of its low cost. Graphene is manufactured from graphite. The simplest method is peeling off with scotch tape, and a widely used method is a method obtained by heat treating chemically modified graphite. Graphene thus obtained is widely used as an electronic material material and a composite material reinforcement material.

탄소나노튜브(carbon nanotube, CNT)는 결함이 없고 거의 완벽에 가까운 탄소나노입자의 일종으로 그래핀과는 동소체의 관계에 있다. 탄소나노튜브는 구리와 비슷한 전기전도도를 가지고 있으며, 가장 뛰어난 열전도율을 가지는 다이아몬드와 같은 열전도율을 가지고 있다. 탄소나노튜브의 강도는 철강과 비교하여 약 100배 정도 뛰어나다. 외부의 힘에 의한 변형은 탄소섬유 보다 더 높은 변형력에서도 견딜 수 있는 매우 안정적인 물질이다. 탄소나노튜브는 형태는 판상의 그래핀 시트가 둥글게 말린 상태이며, 직경은 나노미터의 수준이다. 또한, 단일 그래핀 시트가 말린 경우, 단일벽 탄소나노튜브(single-walled carbon nanotube : SWCNT)로 구분되며 다수의 그래핀 시트가 말려진 경우, 다중벽 탄소나노튜브(multi-walled carbon nanotube : MWCNT)로 구분한다. 이러한 높은 장점을 가지는 탄소나노튜브는 반 데르 발스 힘에 의해서 서로 뭉치려는 성질을 단점으로 가지고 있다. 이를 해결하기 위해서 화학적 표면 개질을 통해서 다른 고분자 매트릭스에서 잘 분산시키기 위한 연구들이 많이 이루어지고 있다.Carbon nanotubes (CNTs) are defect-free and nearly perfect carbon nanoparticles that are allotropic with graphene. Carbon nanotubes have electrical conductivity similar to that of copper, and diamond-like thermal conductivity with the highest thermal conductivity. Carbon nanotubes are about 100 times stronger than steel. Deformation by external forces is a very stable material that can withstand higher strains than carbon fiber. Carbon nanotubes are in the form of rounded sheets of graphene, with diameters of nanometers. In addition, when a single graphene sheet is dried, it is divided into single-walled carbon nanotubes (SWCNT), and when a plurality of graphene sheets are curled, multi-walled carbon nanotubes (MWCNT) ). Carbon nanotubes, which have such high advantages, have the disadvantage of being bound together by van der Waals forces. In order to solve this problem, many studies have been conducted to disperse well in other polymer matrices through chemical surface modification.

본 발명은 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT), 그래핀(graphene) 및 이들 탄소나노입자에 다양한 기능기(알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 우레아기 등)로 표면 개질된 유도체로 이루어진 군에서 적어도 1종의 탄소나노입자를 기능성 보강재로 사용하여, 에폭시화합물 및 경화제와 혼합한 후 경화공정을 통해 만들어진 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름 및 그 제조방법을 제공하는 것을 목적으로 한다. The present invention is a single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), graphene (graphene) and various functional groups (alkyl group, allyl group, carboxyl group, hydroxyl group, amine group, epoxy group, Epoxy containing carbon nanoparticles made through curing process after mixing with epoxy compound and curing agent using at least one carbon nanoparticle as functional reinforcing material in the group consisting of derivatives modified with urethane group, urea group, etc.) An object of the present invention is to provide a resin-based electrothermal composite film and a method of manufacturing the same.

상기한 과제를 달성하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 탄소나노튜브와 그래핀(graphene)으로 이루어진 군에서 선택된 1종 이상의 탄소나노입자를 에폭시화합물과 혼합하여 분산시키는 탄소나노입자 혼합공정, 탄소나노입자와 에폭시화합물의 혼합물에 경화제를 첨가하여 혼합 및 분산하는 경화제 첨가공정, 탄소나노입자, 에폭시 화합물 및 경화제 혼합물을 지지체 기질 상에 필름으로 성형 및 경화시키는 복합필름 성형공정을 포함하는 것을 특징으로 하는 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름의 제조방법을 제공한다.In order to achieve the above object, according to a preferred embodiment of the present invention, a carbon nanoparticle mixing process of dispersing by mixing one or more carbon nanoparticles selected from the group consisting of carbon nanotubes and graphene with an epoxy compound And a curing agent addition step of mixing and dispersing by adding a curing agent to a mixture of carbon nanoparticles and an epoxy compound, and a composite film forming step of forming and curing the carbon nanoparticles, epoxy compound and curing agent mixture into a film on a support substrate. It provides a method for producing an epoxy resin-based electro-heating composite film introduced carbon nanoparticles.

본 발명의 다른 적절한 실시 형태에 따르면, 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 및 이들의 표면 개질된 유도체로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름의 제조방법을 제공한다.According to another suitable embodiment of the present invention, the carbon nanotubes include at least one selected from the group consisting of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and their surface-modified derivatives. It provides a method for producing an epoxy resin-based electro-heating composite film introduced carbon nanoparticles.

본 발명의 또 다른 적절한 실시 형태에 따르면, 복합필름에서 탄소나노입자의 함량은 에폭시화합물의 총 중량대비 0.01~50.0 중량%인 것을 특징으로 한다.According to another suitable embodiment of the present invention, the content of carbon nanoparticles in the composite film is characterized in that 0.01 to 50.0% by weight relative to the total weight of the epoxy compound.

본 발명의 또 다른 적절한 실시 형태에 따르면, 탄소나노입자 혼합공정은 아세톤, 톨루엔 및 자일렌으로 이루어진 용매 군에서 선택된 1종의 용매에 탄소나노입자를 먼저 분산시킨 후 이를 에폭시화합물과 혼합하는 것을 특징으로 한다.According to another suitable embodiment of the present invention, the carbon nanoparticle mixing process is characterized by first dispersing the carbon nanoparticles in one solvent selected from a solvent group consisting of acetone, toluene and xylene and then mixing them with an epoxy compound. It is done.

본 발명의 또 다른 적절한 실시 형태에 따르면, 지지체 기질은 고분자 필름, 금속판, 유리판, 직물, 편물, 부직포 중 어느 하나인 것을 특징으로 한다.According to another suitable embodiment of the present invention, the support substrate is any one of a polymer film, a metal plate, a glass plate, a woven fabric, a knitted fabric, a nonwoven fabric.

본 발명의 또 다른 적절한 실시 형태에 따르면, 고분자 필름, 금속판, 유리판, 직물, 편물, 부직포 중 어느 하나 지지체 기질, 상기 지지체 기질 상에 적층되어 필름상으로 이루어지는 탄소나노튜브와 그래핀(grahpene)으로 이루어진 군에서 선택된 1종 이상의 탄소나노입자가 혼합된 경화된 에폭시수지를 포함하는 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합 필름을 제공한다.According to another suitable embodiment of the present invention, any one of a polymer film, a metal plate, a glass plate, a woven fabric, a knitted fabric, a non-woven support substrate, a carbon nanotube and graphene (grahpene) laminated on the support substrate to form a film It provides an epoxy resin-based electro-heating composite film introduced with carbon nanoparticles including a cured epoxy resin mixed with one or more carbon nanoparticles selected from the group consisting of.

본 발명의 또 다른 적절한 실시 형태에 따르면, 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 및 이들의 표면 개질된 유도체로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름을 제공한다.According to another suitable embodiment of the present invention, the carbon nanotubes include at least one selected from the group consisting of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and surface modified derivatives thereof. It provides an epoxy resin-based electro-heating composite film in which carbon nanoparticles are introduced.

본 발명에서 제조된 탄소나노입자가 도입된 에폭시수지기반 복합필름은 매우 우수한 유연성을 가지고 있으며, 에폭시수지 단독의 필름보다 낮은 전기저항 및 우수한 전기 발열 특성을 갖는다. 또한 본 발명에서의 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름은 고분자 필름, 금속판, 유리판, 섬유(직물, 편물, 부직포), 플라스틱 기질 위에 부가하여 제조할 수 있다.Epoxy resin-based composite film incorporating the carbon nanoparticles prepared in the present invention has a very excellent flexibility, and has a lower electrical resistance and excellent heat generation characteristics than the film of the epoxy resin alone. In addition, the epoxy resin-based electro-heating composite film in which carbon nanoparticles are introduced in the present invention may be prepared by adding a polymer film, a metal plate, a glass plate, a fiber (fabric, knitted fabric, nonwoven fabric), or a plastic substrate.

도 1은 본 발명의 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름의 제조공정 모식도를 나타낸 것이다.
도 2는 상업용 폴리이미드 고분자 필름 기질 위에 제조된 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름의 뛰어난 유연성을 나타낸 것이다.
도 3은 실시예 1 내지 실시예 8 및 비교예의 전기전도성을 나타낸 것이다.
도 4는 실시예 9 내지 실시예 13의 전기전도성을 나타낸 것이다.
도 5는 실시예 1 내지 실시예 8 및 비교예의 인가전압에 따른 전기 발열 특성을 나타낸 것이다.
도 6은 실시예 9 내지 실시예 13의 인가전압에 따른 전기 발열 특성을 나타낸 것이다.
Figure 1 shows a schematic diagram of the manufacturing process of the epoxy resin-based electro-heating composite film introduced carbon nanoparticles of the present invention.
Figure 2 shows the excellent flexibility of the epoxy resin-based electro-heating composite film introduced with carbon nanoparticles prepared on a commercial polyimide polymer film substrate.
Figure 3 shows the electrical conductivity of Examples 1 to 8 and Comparative Examples.
4 shows the electrical conductivity of Examples 9 to 13.
Figure 5 shows the electrical heating characteristics according to the applied voltage of Examples 1 to 8 and Comparative Examples.
6 shows the electrical heating characteristics according to the applied voltage of Examples 9 to 13.

본 발명에 따르면, 고기능성 탄소나노입자를 에폭시화합물 및 경화제와 혼합한 후, 필름성형 및 경화공정을 통해 탄소나노입자가 도입된 에폭시수지기반 전기 발열 복합필름을 제조할 수 있다.According to the present invention, after mixing high functional carbon nanoparticles with an epoxy compound and a curing agent, it is possible to produce an epoxy resin-based electro-heating composite film in which carbon nanoparticles are introduced through a film forming and curing process.

본 발명에서 사용된 에폭시화합물은 분자사슬 말단에 에폭시드 그룹을 2개 이상 가지고 있는 화합물을 말한다.The epoxy compound used in the present invention refers to a compound having two or more epoxide groups at the end of the molecular chain.

또한, 본 발명에서 사용된 경화제는 아민기, 무수화물기, 카르복실기 등의 반응성 그룹을 가지고 있는 화합물로써 에폭시화합물과의 가교반응을 통해 3차원 망상 구조를 갖는 에폭시수지를 형성한다.In addition, the curing agent used in the present invention is a compound having a reactive group such as amine group, anhydride group, carboxyl group and the like to form an epoxy resin having a three-dimensional network structure through the crosslinking reaction with the epoxy compound.

본 발명의 탄소나노입자는 그래핀(graphene), 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 및 다양한 화학종(알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 우레아기 등을 포함하는 화합물)으로 표면 개질된 그래핀, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 유도체를 말한다. The carbon nanoparticles of the present invention include graphene, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and various chemical species (alkyl, allyl, carboxyl, hydroxyl, amine, epoxy, urethane). Group, surface-modified graphene, single-walled carbon nanotubes, multi-walled carbon nanotube derivatives.

본 발명에서의 그래핀은 탄소 원자 6개가 모여서 육각형을 이룬 벌집 모양의 형태가 판상으로 연결되어 있는 구조의 물질로서 전기전도성, 내열성, 기계적 물성이 매우 우수하다.Graphene in the present invention is a material having a structure in which six carbon atoms are collected in a hexagonal honeycomb form connected in a plate shape, and have excellent electrical conductivity, heat resistance, and mechanical properties.

다음으로 탄소나노입자가 도입된 에폭시수지기반 복합필름을 제조하는 방법을 설명한다.Next, a method of manufacturing an epoxy resin-based composite film having carbon nanoparticles introduced therein will be described.

탄소나노입자가 도입된 에폭시수지기반 복합필름에서, 탄소나노입자와 에폭시수지는 0.001~99.999 : 99.999~0.001의 중량% 범위에서 다양하게 조합할 수 있지만, 탄소나노입자 함량은 에폭시화합물 총 중량대비 0.01~50.0 중량%인 것이 바람직하다. In the epoxy resin-based composite film in which carbon nanoparticles are introduced, the carbon nanoparticles and the epoxy resin can be variously combined in the range of 0.001 to 99.999: 99.999 to 0.001% by weight, but the carbon nanoparticles content is 0.01% of the total weight of the epoxy compound. It is preferable that it is -50.0 weight%.

탄소나노입자 함량이 0.01 중량% 미만인 경우는 복합필름의 전기적 물성 향상을 기대할 수 없으며, 탄소나노입자 함량이 50.0 중량% 초과인 경우에는 상업적으로 중요한 제조공정인 에폭시화합물과 경화제와의 혼합이 어려워 복합필름 제조가 불가능하다.If the content of carbon nanoparticles is less than 0.01% by weight, the electrical properties of the composite film cannot be expected to increase. If the content of carbon nanoparticles is more than 50.0% by weight, it is difficult to mix the epoxy compound and the curing agent, which are commercially important manufacturing processes. Film production is not possible.

탄소나노입자와 에폭시화합물의 용액혼합방법은 탄소나노입자의 분산 효율성 및 필름성형의 편리성을 높일 수 있다. 상기 용액혼합에서 아세톤, 톨루엔 및 자일렌과 같은 용매를 이용하여 실시하는 것이 바람직하다. 특히 용액혼합 시 탄소나노입자의 분산성을 극대화하기 위하여 초음파 처리를 병행하여 실시하는 것이 바람직하다. 혼합을 위한 초음파 처리는 0~150℃의 온도범위에서 1 Hz~500 kHz에서 실시하는 것이 바람직하다.The solution mixing method of carbon nanoparticles and an epoxy compound can increase the dispersion efficiency of carbon nanoparticles and the convenience of film forming. In the solution mixing, it is preferable to use a solvent such as acetone, toluene and xylene. In particular, in order to maximize the dispersibility of the carbon nanoparticles when mixing the solution, it is preferable to perform the ultrasonic treatment in parallel. Ultrasonic treatment for mixing is preferably carried out at 1 Hz to 500 kHz in the temperature range of 0 ~ 150 ℃.

이하에서 실시예를 들어 본 발명을 상세하게 설명하지만, 실시예에 의하여 본 발명의 권리범위가 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by Examples.

실시예 1~13 및 비교예 1Examples 1-13 and Comparative Example 1

본 발명의 실시예를 위해 에폭시수지 합성을 위한 에폭시화합물와 경화제는 국도화학(주)에서 제공하는 비스페놀 A 디글리시딜 에테르(DGEBA)계 에폭시화합물(모델명: YD-128)과 아민계 경화제(모델명: G-0331)를 사용하였다. 탄소나노입자의 하나로써 그래핀은 시그마알드리치(주)에서 제공하는 천연그라파이트를 이용하여 산처리 및 열팽창(1050℃, 30초) 공정을 통해 직접 제조하였다. 탄소나노입자의 또 다른 하나로써 다중벽 탄소나노튜브(MWCNT)는 한화나노텍의 CM-250을 사용하였다.Epoxy compound and curing agent for the synthesis of epoxy resin for the embodiment of the present invention Bisphenol A diglycidyl ether (DGEBA) -based epoxy compound (model name: YD-128) and amine curing agent (model name) provided by Kukdo Chemical Co., Ltd. : G-0331) was used. As one of the carbon nanoparticles, graphene was directly prepared through acid treatment and thermal expansion (1050 ° C., 30 seconds) using natural graphite provided by Sigma Aldrich Co., Ltd. As another one of the carbon nanoparticles, the multi-walled carbon nanotube (MWCNT) used Hanwha Nanotech's CM-250.

탄소나노입자와 에폭시화합물 및 경화제와의 용액 혼합시 용매는 톨루엔을 사용하였다.Toluene was used as a solvent when the carbon nanoparticles were mixed with the epoxy compound and the curing agent.

탄소나노입자로써 그래핀이 도입된 에폭시수지기반 복합필름에서 그래핀의 함량은 표 1에서와 같이 다양한 중량%로 혼합하였다(실시예 1~8 및 비교예1). 매트릭스인 에폭시수지의 효율적인 경화를 위해서 에폭시화합물(YD-128)과 경화제(G-0331)는 70:30의 중량비로 고정하였다.In the epoxy resin-based composite film in which graphene was introduced as carbon nanoparticles, the graphene content was mixed in various weight percents as shown in Table 1 (Examples 1 to 8 and Comparative Example 1). Epoxy compound (YD-128) and the curing agent (G-0331) were fixed at a weight ratio of 70:30 for efficient curing of the epoxy resin as a matrix.

그래핀과 다중벽 탄소나노튜브의 혼합 탄소나노입자가 도입된 에폭시수지기반 복합필름에서 탄소나노입자의 함량은 5.0 중량%로 고정하였다. 한편 5.0 중량%의 혼합 탄소나노입자에서 그래핀과 다중벽 탄소나노튜브의 상대적인 중량비는 표 2에서와 같이 다양하게 조절하였다(실시예 9~13). 매트릭스인 에폭시수지의 효율적인 경화를 위해서 에폭시화합물과 경화제는 70:30의 중량비로 고정하였다. In the epoxy resin-based composite film in which mixed carbon nanoparticles of graphene and multi-walled carbon nanotubes were introduced, the content of carbon nanoparticles was fixed at 5.0 wt%. On the other hand, the relative weight ratio of graphene and multi-walled carbon nanotubes in 5.0 wt% of mixed carbon nanoparticles was variously adjusted as shown in Table 2 (Examples 9 to 13). Epoxy compounds and curing agents were fixed in a weight ratio of 70:30 to efficiently cure the matrix epoxy resin.

에폭시화합물+경화제 (중량%)Epoxy Compound + Hardener (wt%) 그래핀 (중량%)Graphene (wt%) 비교예 1Comparative Example 1 100.0100.0 0.00.0 실시예 1Example 1 99.799.7 0.30.3 실시예 2Example 2 99.399.3 0.70.7 실시예 3Example 3 99.099.0 1.01.0 실시예 4Example 4 98.098.0 2.02.0 실시예 5Example 5 97.097.0 3.03.0 실시예 6Example 6 95.095.0 5.05.0 실시예 7Example 7 93.093.0 7.07.0 실시예 8Example 8 90.090.0 10.010.0

에폭시화합물+경화제 (중량%)Epoxy Compound + Hardener (wt%) 그래핀+MWCNT (중량%)Graphene + MWCNT (wt%) 그래핀:MWCNT
(중량 비율)
Graphene: MWCNT
(Weight ratio)
실시예 9Example 9 95.095.0 5.05.0 100 : 0100: 0 실시예 10Example 10 95.095.0 5.05.0 90 : 1090: 10 실시예 11Example 11 95.095.0 5.05.0 70 : 3070: 30 실시예 12Example 12 95.095.0 5.05.0 50 : 5050: 50 실시예 13Example 13 95.095.0 5.05.0 30 : 7030: 70

먼저 에폭시화합물과 그래핀 단독의 탄소나노입자 또는 그래핀과 다중벽 탄소나노튜브의 혼합 탄소나노입자를 톨루엔 용매를 먼저 용액혼합한 후, bath-형 초음파 처리기(50~60 Hz)를 통해 약 1시간동안 균일하게 분산시키고 Probe-형 초음파 처리기(20 kHz)를 통해 약 5분간 분산시킨다. 분산용액에 경화제를 혼합한 후, Bath-형의 초음파 처리기를 통해 추가적으로 균일하게 분산 및 혼합한다. 적절한 양의 혼합용액을 ~50 ㎛ 두께의 폴리이미드 고분자필름 기질위에 부가한 후 60~120℃의 온도에서 건조를 통해 용매를 제거함과 동시에 경화반응을 완료시킴으로써 그래핀 단독의 탄소나노입자 또는 그래핀과 다중벽 탄소나노튜브의 혼합 탄소나노입자가 도입된 에폭시수지기반 복합필름을 제조하였다. 도 1은 탄소나노입자가 도입된 에폭시수지기반 복합필름의 제조공정을 나타낸 모식도이며, 도 2는 제조된 최종 에폭시수지기반 복합필름의 유연성을 보인 것이다.
First, carbon nanoparticles of epoxy compound and graphene alone or mixed carbon nanoparticles of graphene and multi-walled carbon nanotubes are first mixed with a toluene solvent, and then subjected to about 1 through a bath-type sonicator (50 to 60 Hz). Disperse uniformly over time and disperse for about 5 minutes through a Probe-type sonicator (20 kHz). After the curing agent is mixed into the dispersion solution, it is further uniformly dispersed and mixed through a bath-type sonicator. Carbon nanoparticles or graphene of graphene alone are added by adding an appropriate amount of mixed solution on a polyimide polymer film substrate having a thickness of ˜50 μm, and then drying the solvent at a temperature of 60 to 120 ° C. to complete the curing reaction. An epoxy resin-based composite film was prepared in which mixed carbon nanoparticles of multi-walled carbon nanotubes were introduced. Figure 1 is a schematic diagram showing the manufacturing process of the epoxy resin-based composite film introduced carbon nanoparticles, Figure 2 shows the flexibility of the final epoxy resin-based composite film produced.

실험예 1-전기전도성 측정 Experimental Example 1 Measurement of Electrical Conductivity

그래핀 단독의 탄소나노입자 또는 그래핀과 다중벽 탄소나노튜브의 혼합 탄소나노입자가 도입된 에폭시수지기반 복합필름의 전기저항을 측정하기 위하여 전기저항측정기(Keithley 6517A, 8009 resistivity test fixture)를 이용하였다. 도 3에 나타난 바와 같이, 에폭시수지 단독필름의 전기저항은 ~1012 Ω를 나타낸다. 그래핀 2.0 중량%가 도입된 에폭시수지기반 복합필름의 전기저항 값은 ~105 Ω으로 급격하게 낮아지며, 그래핀의 함량이 5.0 중량% 이상에서는 ~104 Ω의 전기저항 값을 나타낸다. 이러한 결과로부터 그래핀 탄소나노입자가 도입된 에폭시수지기반 복합필름은 전기부도체인 에폭시수지기반 단독필름과는 달리 2.0 중량% 정도의 낮은 그래핀 함량으로도 매우 낮은 전기저항을 가질 수 있음을 발견하였다. To measure the electrical resistance of graphene-only carbon nanoparticles or epoxy resin-based composite films in which graphene and mixed-walled carbon nanotubes were mixed, a resistance tester (Keithley 6517A, 8009 resistivity test fixture) was used. It was. As shown in Figure 3, the electrical resistance of the epoxy resin alone film is ~ 10 12 Ω. The electrical resistance value of the epoxy resin-based composite film introduced with graphene 2.0 wt% is drastically lowered to ˜10 5 kPa, and when the graphene content is 5.0 wt% or more, the electrical resistance value is ˜10 4 kPa. From these results, it was found that the epoxy resin-based composite film in which graphene carbon nanoparticles were introduced can have very low electrical resistance even with a low graphene content of about 2.0 wt%, unlike the epoxy resin-based single film, which is an electrical insulator. .

도 4는 다양한 중량비율의 그래핀과 다중벽 탄소나노튜브가 혼합된 탄소나노입자 5.0 중량%가 도입된 에폭시수지기반 복합필름의 전기저항을 나타낸 것이다. 혼합 탄소나노입자에서 다중벽 탄소나노튜브의 중량비율 변화에 따라 복합필름이 전기저항 값이 달라지는 결과로부터, 에폭시수지기반 복합필름의 전기전도성은 혼합된 탄소나노입자의 조성비 변화를 통해 쉽게 제어할 수 있음을 발견하였다. 또한 도 3과 도 4의 결과비교를 통해 그래핀과 다중벽 탄소나노튜브의 혼합 탄소나노입자로 도입된 에폭시수지기반 복합필름은 그래핀 단독의 탄소나노입자가 도입된 복합필름과 비교하여 상대적으로 낮은 전기저항을 가지고 있음을 발견하였다.
Figure 4 shows the electrical resistance of the epoxy resin-based composite film introduced 5.0 wt% carbon nanoparticles mixed with graphene and multi-walled carbon nanotubes of various weight ratios. The electrical conductivity of the epoxy resin-based composite film can be easily controlled by changing the composition ratio of the mixed carbon nanoparticles, from the result that the electrical resistance value of the composite film changes according to the weight ratio of the multi-walled carbon nanotubes in the mixed carbon nanoparticles. It was found. In addition, the epoxy resin-based composite film introduced as mixed carbon nanoparticles of graphene and multi-walled carbon nanotubes through the comparison of the results of FIGS. 3 and 4 is relatively compared with the composite film having carbon nanoparticles of graphene alone. It was found to have low electrical resistance.

실험예 2-전기발열특성 측정Experimental Example 2-Measurement of electric heat generation characteristics

탄소나노입자가 도입된 에폭시수지기반 복합필름의 전기 발열 특성을 전압인가장치와 적외선 열화상카메라를 사용하여 측정하였다. The electric heating characteristics of the epoxy resin-based composite film in which carbon nanoparticles were introduced were measured using a voltage applying device and an infrared thermal imaging camera.

도 5는 0.0~7.0 중량%의 그래핀 단독의 탄소나노입자로 도입된 에폭시수지기반 복합필름에 대해서 1~60V의 다양한 인가전압에서의 시간에 따른 온도상승을 나타낸 것이다. 그래핀이 도입되지 않은 에폭시수지 단독의 필름의 경우 60V의 높은 인가전압에서도 온도상승은 일어나지 않았다. 한편 5.0 중량% 이상의 그래핀이 도입된 에폭시수지기반 복합필름의 경우에서 효과적으로 인가전압에 의한 온도상승, 즉 전기 발열이 일어나게 되는 것을 발견하였다. 한편 7.0 중량%의 그래핀이 도입된 복합필름의 경우 60V의 인가전압에서 약 60oC 이상의 온도상승이 발생하는 것을 발견하였다.Figure 5 shows the temperature rise with time at various applied voltage of 1 ~ 60V for the epoxy resin-based composite film introduced with carbon nanoparticles of 0.0 ~ 7.0 wt% graphene alone. In the case of the film of epoxy resin alone without the introduction of graphene, no temperature increase occurred even at a high applied voltage of 60V. On the other hand, in the case of the epoxy resin-based composite film containing 5.0 wt% or more of graphene, it was found that the temperature rise due to the applied voltage, that is, the electric heating occurs effectively. On the other hand, in the case of the 7.0 wt% graphene-incorporated composite film, a temperature increase of about 60 ° C. or more occurred at an applied voltage of 60V.

도 6은 다양한 중량비율의 그래핀과 다중벽 탄소나노튜브가 혼합된 탄소나노입자 5.0 중량%가 도입된 에폭시수지기반 복합필름에 대해서 1~60V의 다양한 인가전압에서의 시간에 따른 온도상승을 나타낸 것이다. 결과에서와 같이 그래핀과 다중벽 탄소나노튜브의 혼합 탄소나노입자 5.0 중량%가 도입된 에폭시수지기반 복합필름(실시예 10~13)은 그래핀 단독의 탄소나노입자 5.0 중량%가 도입된 에폭시기반 복합필름(실시예 9)과 비교하여 우수한 전기 발열 특성을 나타냄을 발견하였다. 예를 들어, 그래핀이 단독으로 도입된 에폭시수지기반 복합필름의 경우에는 약 10℃ 정도의 온도상승을 보이지만, 그래핀과 다중벽 탄소나노튜브가 혼합된 탄소나노입자가 도입된 복합필름의 경우 최대 약 90℃ 정도의 우수한 온도상승을 보여 준다.Figure 6 shows the temperature rise with time at various applied voltage of 1 ~ 60V for the epoxy resin-based composite film introduced 5.0 wt% carbon nanoparticles mixed with graphene and multi-walled carbon nanotubes of various weight ratios will be. As shown in the results, the epoxy resin-based composite film (Examples 10 to 13) in which 5.0 wt% of mixed carbon nanoparticles of graphene and multi-walled carbon nanotubes were introduced (Examples 10 to 13) was added to 5.0 wt% of carbon nanoparticles of graphene alone. It was found to exhibit excellent electrothermal properties compared to the base composite film (Example 9). For example, an epoxy resin-based composite film in which graphene is introduced alone shows a temperature rise of about 10 ° C., but a composite film in which carbon nanoparticles in which graphene and multi-walled carbon nanotubes are mixed is introduced. It shows an excellent temperature rise of up to about 90 ℃.

본 발명에서 따라 제조된 탄소나노입자가 도입된 에폭시수지기반 복합필름 상기 실험예의 결과로 입증되듯이 에폭시수지 단독의 고분자보다 낮은 전기저항 및 우수한 전기 발열 특성을 가진다. 따라서 탄소나노입자가 도입된 에폭시수지기반 복합필름은 고분자 필름, 유리판, 금속판, 섬유(직물, 편물, 부직포), 플라스틱 등의 다양한 기질위에 제조되어 전기발열소재로써 유용하게 적용될 수 있으며, 본 발명은 이들 구체적인 예에 한정되는 것은 아니다. Epoxy Resin-Based Composite Film Incorporated with Carbon Nanoparticles Prepared According to the Present Invention As demonstrated by the results of the above experimental example, the polymer has lower electric resistance and excellent electric heating properties than the polymer of the epoxy resin alone. Therefore, the epoxy resin-based composite film in which carbon nanoparticles are introduced is prepared on various substrates such as polymer film, glass plate, metal plate, fiber (woven fabric, knitted fabric, nonwoven fabric), plastic, and the like, and can be usefully applied as an electric heating material. It is not limited to these specific examples.

Claims (7)

그래핀(Graphene),
탄소나노튜브와 그래핀의 혼합물, 또는
알킬기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 우레아기로 표면 개질된 그래핀 중 어느 하나의 탄소나노물질을 에폭시 화합물과 혼합하고 아세톤으로 이루어진 용매를 첨가하여 분산시키는 탄소나노물질 에폭시 혼합물 제조공정;
탄소나노물질 에폭시 혼합물에 아민기, 무수화물기, 카르복실기의 반응성 그룹을 가지고 있는 경화제를 첨가하여 0 내지 150℃와 1Hz 내지 500kHz로 초음파처리하여 혼합 및 분산시키는 경화제 첨가공정; 및
탄소나노물질 에폭시 혼합물과, 및 경화제의 혼합물을 지지체 기질 상에 필름으로 성형 및 경화시키는 복합필름 성형공정;
을 포함하는 것을 특징으로 하는 탄소나노물질이 도입된 에폭시수지기반 전기 발열 복합필름의 제조방법.
Graphene,
A mixture of carbon nanotubes and graphene, or
Process for preparing carbon nanomaterial epoxy mixture in which carbon nanomaterial of graphene surface-modified with alkyl group, carboxyl group, hydroxyl group, amine group, epoxy group, urethane group and urea group is mixed with epoxy compound and added by dispersing a solvent consisting of acetone ;
Adding a curing agent having a reactive group of an amine group, an anhydride group, and a carboxyl group to the carbon nanomaterial epoxy mixture, and mixing and dispersing the curing agent by sonicating at 0 to 150 ° C. and 1 Hz to 500 kHz; And
A composite film molding process of molding and curing a carbon nano material epoxy mixture and a mixture of a curing agent into a film on a support substrate;
Method of producing an epoxy resin-based electro-heating composite film introduced carbon nanomaterial comprising a.
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 지지체 기질은 금속판, 직물, 편물, 부직포 중 어느 하나인 것을 특징으로 하는 탄소나노물질이 도입된 에폭시수지기반 전기 발열 복합필름의 제조방법.
The method of claim 1,
The support substrate is a metal plate, woven fabric, knitted fabric, non-woven fabric, carbon nano material introduced epoxy resin-based electro-heating composite film manufacturing method characterized in that any one.
금속판, 직물, 편물, 부직포 중 어느 하나의 지지체 기질; 및
상기 지지체 기질 상에 적층되어 필름상으로 이루어지는 그래핀(Graphene),
탄소나노튜브와 그래핀의 혼합물, 또는
알킬기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 우레아기로 표면 개질된 그래핀 중 어느 하나인 탄소나노물질이 혼합되어 경화된 에폭시수지;
를 포함하는 탄소나노물질이 도입된 에폭시수지기반 전기 발열 복합필름.
Support substrate of any one of a metal plate, a woven fabric, a knitted fabric, and a nonwoven fabric; And
Graphene is laminated on the support substrate to form a film (Graphene),
A mixture of carbon nanotubes and graphene, or
An epoxy resin cured by mixing a carbon nano material which is any one of graphene surface-modified with an alkyl group, a carboxyl group, a hydroxyl group, an amine group, an epoxy group, a urethane group, and a urea group;
Epoxy resin-based electric heating composite film introduced carbon nanomaterial comprising a.
삭제delete
KR1020110135598A 2011-12-15 2011-12-15 Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same KR101321099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110135598A KR101321099B1 (en) 2011-12-15 2011-12-15 Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110135598A KR101321099B1 (en) 2011-12-15 2011-12-15 Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same

Publications (2)

Publication Number Publication Date
KR20130068436A KR20130068436A (en) 2013-06-26
KR101321099B1 true KR101321099B1 (en) 2013-10-23

Family

ID=48864057

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110135598A KR101321099B1 (en) 2011-12-15 2011-12-15 Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same

Country Status (1)

Country Link
KR (1) KR101321099B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001366A (en) 2014-06-27 2016-01-06 주식회사 한국화이어텍 Ceramic Coating Material Using Carbon Nano Tube
CN105648772A (en) * 2016-02-26 2016-06-08 苏州尚德安耐新材料科技有限公司 Preparation methods and applications of water-based electric heating nano-coating solution and electric heating material of water-based electric heating nano-coating solution
CN111093970A (en) * 2017-09-15 2020-05-01 株式会社Lg化学 Composite material
CN111093969A (en) * 2017-09-15 2020-05-01 株式会社Lg化学 Composite material
CN111107987A (en) * 2017-09-22 2020-05-05 株式会社Lg化学 Composite material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726022B1 (en) * 2013-10-29 2017-04-12 (주)엘지하우시스 Planer heating sheet inculding modified carbon nano tube and method for preparing the same
KR101869799B1 (en) * 2016-11-30 2018-07-20 금오공과대학교 산학협력단 manufacturing method of forward osmosis filter using carbon nano-material
CN110330769B (en) * 2019-07-23 2022-04-05 南京林业大学 Preparation method of nano carbon material/nano cellulose/epoxy resin antistatic film
CN110996412B (en) * 2019-12-18 2022-02-01 华中科技大学鄂州工业技术研究院 Carbon crystal electric heating film and preparation method and application thereof
KR102451432B1 (en) * 2020-05-27 2022-10-07 (주) 대호아이앤티 Method for manufacturing silicon-carbon ceramic fiber rope-type heating element and silicon-carbon ceramic fiber rope-type heating element
KR102492915B1 (en) * 2021-03-17 2023-01-31 한국생산기술연구원 Manufacturing method for film type carbon material with continuous skeleton structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058228A (en) * 1998-08-12 2000-02-25 Suzuki Sogyo Co Ltd Thin film resistance heating element and toner heating/ fixing member using it
KR20100067560A (en) * 2008-12-11 2010-06-21 제일모직주식회사 Fast curable anisotropic conductive film composition, fast curable anisotropic conductive film using the composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058228A (en) * 1998-08-12 2000-02-25 Suzuki Sogyo Co Ltd Thin film resistance heating element and toner heating/ fixing member using it
KR20100067560A (en) * 2008-12-11 2010-06-21 제일모직주식회사 Fast curable anisotropic conductive film composition, fast curable anisotropic conductive film using the composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001366A (en) 2014-06-27 2016-01-06 주식회사 한국화이어텍 Ceramic Coating Material Using Carbon Nano Tube
CN105648772A (en) * 2016-02-26 2016-06-08 苏州尚德安耐新材料科技有限公司 Preparation methods and applications of water-based electric heating nano-coating solution and electric heating material of water-based electric heating nano-coating solution
CN111093970A (en) * 2017-09-15 2020-05-01 株式会社Lg化学 Composite material
CN111093969A (en) * 2017-09-15 2020-05-01 株式会社Lg化学 Composite material
CN111093969B (en) * 2017-09-15 2022-08-23 株式会社Lg化学 Composite material
US11685851B2 (en) 2017-09-15 2023-06-27 Lg Chem, Ltd. Composite material
CN111107987A (en) * 2017-09-22 2020-05-05 株式会社Lg化学 Composite material
CN111107987B (en) * 2017-09-22 2022-03-25 株式会社Lg化学 Composite material
US11603481B2 (en) 2017-09-22 2023-03-14 Lg Chem, Ltd. Composite material

Also Published As

Publication number Publication date
KR20130068436A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
KR101321099B1 (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
Rafique et al. Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: A review
Feng et al. Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity
CN104262588B (en) A kind of epoxide resin conductive adhesive comprising graphite oxide thiazolinyl firming agent
JP4412052B2 (en) Composite material and method for producing the same
JP4945888B2 (en) Composite and production method thereof
Miller et al. Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites
JP5279053B2 (en) Resin materials and composites with improved conductivity
Liu et al. Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface
Wang et al. Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: Functionalization, preparation and characterization
Choi et al. Flexible and high thermal conductivity thin films based on polymer: aminated multi-walled carbon nanotubes/micro-aluminum nitride hybrid composites
KR101436594B1 (en) Film heater and manufacturing method of thereof
CN106167602A (en) Conductive preparation with and preparation method thereof
CN110256808B (en) Carbon nano tube-polyimide composite material and preparation method and application thereof
KR20110110955A (en) Polyimide nanocomposites and method for making the same
Wang et al. Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites
CN102171307A (en) Heat-resistant and highly heat-conductive adhesive agent
Liu et al. Synthesis and properties of sandwiched films of epoxy resin and graphene/cellulose nanowhiskers paper
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
KR20130091381A (en) Carbon nano material-polymer composite and method for producing the same
JP4951478B2 (en) Method for producing carbon nanotube-containing matrix resin
Kim et al. Electrospun poly (vinyl alcohol) nanofibers incorporating PEGylated multi-wall carbon nanotube
KR102198383B1 (en) Method for preparation of carbon-benzoxazine complex and its carbon-polymer composite material
Bîru et al. Developing polybenzoxazine composites based on various carbon structures
KR20130081448A (en) Composite material and method of producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170810

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191224

Year of fee payment: 7