KR20200083678A - 리튬 이온 2차 전지 - Google Patents

리튬 이온 2차 전지 Download PDF

Info

Publication number
KR20200083678A
KR20200083678A KR1020207019061A KR20207019061A KR20200083678A KR 20200083678 A KR20200083678 A KR 20200083678A KR 1020207019061 A KR1020207019061 A KR 1020207019061A KR 20207019061 A KR20207019061 A KR 20207019061A KR 20200083678 A KR20200083678 A KR 20200083678A
Authority
KR
South Korea
Prior art keywords
lithium
active material
positive electrode
graphene
current collector
Prior art date
Application number
KR1020207019061A
Other languages
English (en)
Other versions
KR102250080B1 (ko
Inventor
순페이 야마자키
토모야 후타무라
타마에 모리와카
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20200083678A publication Critical patent/KR20200083678A/ko
Application granted granted Critical
Publication of KR102250080B1 publication Critical patent/KR102250080B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은, 높은 방전 용량과 높은 에너지 밀도를 갖는 리튬 이온 2차 전지 및 그 제작 방법을 제공하는 것이다. 리튬 이온 2차 전지는 양극, 음극, 및 양극과 음극 사이에 제공되는 전해질을 포함한다. 양극은 양극 집전체 및 양극 집전체 위에 제공되는 양극 활물질층을 포함한다. 양극 활물질층에 있어서, 그래핀 및 리튬 함유 복합 산화물은 교대로 제공된다. 리튬 함유 복합 산화물은, b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립이다. 또한, 리튬 함유 복합 산화물은, 단결정립의 b축이 양극 집전체 표면과 교차되도록 양극 집전체 위에 제공된다.

Description

리튬 이온 2차 전지{LITHIUM-ION SECONDARY BATTERY}
본 발명은 리튬 이온 2차 전지 및 그 제작 방법에 관한 것이다.
근년, 리튬 이온 2차 전지가 개발되고 있다. 리튬 이온 2차 전지의 열 안정성은 높기 때문에, 리튬 이온 2차 전지의 양극 활물질(positive electrode active material)로서 올리빈 구조(olivine structure)를 가지는 LiFePO4, LiMnPO4, LiCoPO4, 및 LiNiPO4 등의 리튬 함유 복합 산화물이 기대되고 있다.
리튬 이온 2차 전지의 방전 용량 및 에너지 밀도를 높이기 위하여, 캐리어로서 기능하는 이온의 삽입 및 이탈에 관여하는 활물질층에 포함되는 활물질의 입경을 축소하고, 입자 크기의 차이를 저감시키는 시도가 진행되고 있다(특허문헌 1 참조).
국제 공개 공보 제 08/077447호
그러나, 리튬 이온 2차 전지에 포함되는 리튬 함유 복합 산화물은 높은 저항을 갖기 때문에, 방전 용량 및 에너지 밀도의 향상에 한계가 있었다.
상술한 문제를 고려하여, 본 발명의 일 형태의 목적은, 높은 방전 용량과 높은 에너지 밀도를 갖는 리튬 이온 2차 전지, 및 이러한 리튬 이온 2차 전지의 제작 방법을 제공하는 것이다.
본 발명의 일 형태는 양극, 음극(negative electrode), 및 양극 및 음극 사이에 제공된 전해질을 포함하는 리튬 이온 2차 전지이다. 양극은 양극 집전체와, 양극 집전체 위의 양극 활물질층을 포함한다. 이 양극 활물질층은 그래핀과 리튬 함유 복합 산화물을 포함한다. 구체적으로는, 이 양극 활물질층에 있어서, 상이한 그래핀들 사이에 복수의 리튬 함유 복합 산화물이 제공된다. 리튬 함유 복합 산화물은 일반식 LiMPO4(M은 Fe(II), Mn(II), Co(II), Ni(II) 중 하나 이상)로 나타내어진다. 리튬 함유 복합 산화물은 b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립이다. b축 방향에서의 길이는 대표적으로 5nm 이상 50nm 이하이다. 또한, 리튬 함유 복합 산화물은, 단결정립의 b축이 양극 집전체 표면과 교차되도록 양극 집전체 위에 제공된다. 대표적으로는, 단결정립의 b축은 60°로부터 90°까지의 어느 각도로 양극 집전체 표면과 교차된다.
리튬 함유 복합 산화물 각각은 올리빈 구조를 갖는다. 리튬 함유 복합 산화물 각각은 사방정 구조(orthorhombic crystal structure)를 가지며, 공간군(space group) Pnma(62)에 속한다. 리튬 함유 복합 산화물의 각 단결정립에 있어서, a축 방향 및 c축 방향에서의 길이는 각각 b축 방향에서의 길이보다 길다. 리튬 함유 복합 산화물은 상이한 그래핀들 사이에 적층되어도 좋다.
그래핀이란, 공유 결합된 탄소 원자가 반복의 단위인 6원환을 구성하는, 1원자층 내지 10원자층의 탄소 분자의 시트를 말한다.
본 발명의 일 형태에 따른 리튬 이온 2차 전지의 양극에 있어서, 양극 활물질층은 b축 방향에서의 길이가 a축 방향 및 c축 방향의 각 길이보다 짧은 편평 단결정립인 올리빈형 리튬 함유 복합 산화물을 포함한다. 또한, b축은 양극 집전체 표면과 교차된다. 따라서, 리튬 이온이 집전체와 전해질 사이에 용이하게 확산된다. 도전조제로서의 그래핀의 사용은 양극 활물질층의 양극 활물질의 비율을 높이고 양극 활물질층의 저항을 저감시킨다. 양극이 이러한 구조를 갖는 양극 활물질층을 포함할 때, 리튬 이온 2차 전지는 저감된 내부 저항 및 높은 출력을 가져, 고속으로 충전 및 방전할 수 있다. 또한, 리튬 이온 2차 전지는 이론적 방전 용량과 같은 높이의 방전 용량을 가질 수 있다.
본 발명의 일 형태에 따르면, 리튬 이온 2차 전지의 방전 용량을 높일 수 있으며, 리튬 이온 2차 전지는 보다 높은 출력을 가져 고속으로 충전 및 방전할 수 있다. 또한, 높은 방전 용량과 높은 출력을 가져, 고속으로 충전 및 방전할 수 있는 리튬 이온 2차 전지를 제작할 수 있다.
도면에 있어서,
도 1의 (A) 내지 (C)는 리튬 이온 2차 전지의 양극을 도시한 것이고,
도 2는 올리빈형 LiFePO4의 결정 구조를 도시한 것이고,
도 3의 (A) 내지 (E)는 리튬 이온 2차 전지의 양극의 형성 방법을 도시한 것이고,
도 4는 리튬 이온 2차 전지의 양극 및 전해질을 도시한 것이고,
도 5의 (A) 내지 (E)는 리튬 이온 2차 전지의 제작 방법을 도시한 것이고,
도 6은 리튬 이온 2차 전지를 도시한 것이고,
도 7의 (A) 및 (B)는 리튬 이온 2차 전지의 응용을 도시한 것이고,
도 8은 무선 급전 시스템의 구성예를 도시한 것이고,
도 9는 무선 급전 시스템의 구성예를 도시한 것이다.
본 발명의 실시형태 및 실시예에 대하여 도면을 참조하여 설명한다. 또한, 본 발명은 이하의 설명에 한정되지 않고, 본 발명의 취지 및 범위에서 벗어남이 없이 다양하게 변경할 수 있다는 것은 당업자라면 용이하게 이해할 수 있다. 따라서, 본 발명은 그 실시형태 및 그 실시예의 이하의 설명에 한정하여 해석되는 것이 아니다. 도면을 참조한 설명에 있어서, 다른 도면간에서 동일 부분을 나타내기 위하여 동일 부호를 사용하는 경우가 있다. 또한, 유사한 부분에 같은 해치 패턴을 사용하는 경우가 있고, 유사한 부분에 반드시 부호가 부여될 필요는 없다.
(실시형태 1)
본 실시형태에서는, 본 발명의 일 형태에 따른 리튬 이온 2차 전지의 양극, 및 그 제작 방법에 대하여 도 1의 (A) 내지 (C), 도 2, 및 도 3의 (A) 내지 (E)를 참조하여 설명한다.
도 1의 (A) 및 (B)는 각각 리튬 이온 2차 전지의 양극의 단면도이다.
도 1의 (A)에 도시된 바와 같이, 양극 집전체(101) 위에 도전조제로서 기능하는 그래핀(103)이 제공된다. 그래핀(103) 위에 양극 활물질인 리튬 함유 복합 산화물(105)이 제공된다. 리튬 함유 복합 산화물(105) 위에 도전조제로서 기능하는 그래핀(113)이 제공된다. 그래핀(113) 위에 양극 활물질인 리튬 함유 복합 산화물(115)이 제공된다. 즉, 그래핀과 리튬 함유 복합 산화물이 교대로 적층된다. 그래핀들(103) 사이, 그래핀들(113) 사이, 리튬 함유 복합 산화물들(105) 사이, 및 리튬 함유 복합 산화물(115) 사이의 틈은 바인더(127)로 충전된다. 또한, 바인더(127)는 다공질 및 섬유질이고 틈을 포함하기 때문에, 리튬 이온 2차 전지에서 전해질이 액체 전해질인 경우, 그래핀들(103) 사이 및 양극 활물질인 리튬 함유 복합 산화물들(105) 사이의 틈이 전해질로 충전된다.
또한, 본 명세서에서 전해질이란, 리튬 이온이 안정적으로 존재하는 재료를 포함하고, 캐리어 이온으로 기능하는 리튬 이온을 이송 가능한 것을 말한다. 전해질로서는, 예를 들어 리튬 이온이 안정적으로 존재하는 재료(용질)를 용매에 용해하여 얻어진 전해액, 및 리튬 이온이 안정적으로 존재하는 재료(용질)를 포함하는 고체 전해질을 들 수 있다.
또한, 양극 활물질이란, 캐리어로서 기능하는 이온의 삽입 및 이탈에 관여하는 재료를 말한다. 따라서, 리튬 함유 복합 산화물은 양극 활물질이지만, 그래핀, 바인더, 및 용매 등은 양극 활물질이 아니다.
양극 집전체(101)로서는 백금, 알루미늄, 구리, 티타늄, 또는 스테인리스 스틸 등 높은 도전성을 갖는 재료를 사용할 수 있다. 또한, 양극 집전체(101)는 박상(foil shape), 판상(plate shape), 또는 망상(net shape) 등을 적절히 가질 수 있다.
그래핀(103)이란, 공유 결합된 탄소 원자가 반복의 단위인 6원환을 구성하는, 1원자층 내지 10원자층 정도의 탄소 분자의 시트를 말한다. 따라서, 그래핀(103)은 하니컴(honeycomb) 구조를 갖는 의사 2차원 시트이다. 그래핀(103)에서, 탄소 원자는 sp2 결합을 갖는다.
그래핀(103)은 실온에 있어서 매우 높은 캐리어 이동도를 갖기 때문에, 양극 활물질층에서 도전조제로서 사용할 수 있다. 여기서, 그래핀(103)은 1원자층 내지 10원자층 정도의 탄소 분자의 시트이기 때문에, 그 체적이 매우 낮아, 양극 활물질층(121)에 포함되는 도전조제의 비율을 저감할 수 있고, 결과적으로는 양극 활물질층에서의 활물질의 비율을 높일 수 있다.
양극 활물질층(121)의 원하는 두께는 20μm 내지 100μm의 범위로 결정된다. 크랙 및 박리가 생기지 않도록 양극 활물질층(121)의 두께를 적절히 조정하는 것이 바람직하다.
양극 활물질층(121)에 포함되는 리튬 함유 복합 산화물(105)은 올리빈 구조를 갖는 단결정립이다. 올리빈형 리튬 함유 복합 산화물(그 일반식은 LiMPO4(M은 Fe(II), Mn(II), Co(II), 및 Ni(II) 중 하나 이상))의 대표적인 예는, LiFePO4, LiNiPO4, LiCoPO4, LiMnPO4, LiFeaNibPO4, LiFeaCobPO4, LiFeaMnbPO4, LiNiaCobPO4, LiNiaMnbPO4(a+b≤1, 0<a<1, 및 0<b<1), LiFecNidCoePO4, LiFecNidMnePO4, LiNicCodMnePO4(c+d+e≤1, 0<c<1, 0<d<1, 및 0<e<1), 및 LiFefNigCohMniPO4(f+g+h+i≤1, 0<f<1, 0<g<1, 0<h<1, 및 0<i<1)이다.
여기서, 본 실시형태에서 사용되는 리튬 함유 복합 산화물의 형상에 대하여 도 1의 (C)를 참조하여 설명한다.
리튬 함유 복합 산화물(105)은 사방정 구조를 가지며, 공간군 Pnma(62)에 속한다. 리튬 함유 복합 산화물(105)은, b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 결정립이다. 올리빈 구조에 있어서 리튬 이온은 b축 방향으로 확산되기 때문에, b축 방향에서의 길이를 5nm 이상 50nm 이하, 바람직하게는 5nm 이상 20nm 이하로 설정함으로써 리튬 이온이 용이하게 확산될 수 있어 바람직하다. 또한, 양극 집전체(101) 위에 리튬 함유 복합 산화물(105)을 조밀하게 배치할 수 있기 때문에, a축 방향 및 c축 방향에서의 길이의 비율을 0.5 이상 1.5 이하, 바람직하게는 0.8 이상 1.2 이하로 설정, 즉 정방형 또는 거의 정방형을 갖는 b면이면 바람직하다.
리튬 함유 복합 산화물에 관해서는, a축 방향에서의 변, c축 방향에서의 변, a축 방향에서의 변 및 c축 방향에서의 변을 포함하는 면 즉 b면 중 하나 이상이 그래핀(103)에 접하고, 단결정립의 b축이 양극 집전체(101) 표면과 교차된다. 리튬 함유 복합 산화물의 b축은 대표적으로는 60°로부터 90°까지의 어느 각도로 양극 집전체(101) 표면과 교차된다. 올리빈 구조에 있어서, 리튬 이온은 b축 방향으로 확산되기 때문에, b축이 양극 집전체(101) 표면과 60°로부터 90°까지의 어느 각도로 교차되면 더 많은 리튬 이온이 확산되기 때문에 바람직하다. 또한, "b축이 양극 집전체(101) 표면과 교차된다"라는 용어는 b축과 양극 집전체(101) 표면이 교점을 갖는 것을 의미한다. 한편, "b축이 양극 집전체(101)의 표면과 교차되지 않는다"라는 용어는, b축이 양극 집전체(101) 표면에 평행한 것을 의미한다.
또한, 리튬 함유 복합 산화물(105)이 b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 결정인 것은 주사형 전자 현미경(SEM), 주사 투과형 전자 현미경(STEM), 투과형 전자 현미경(TEM) 및 X선 회절(XRD) 중 하나 이상을 사용하여 판단할 수 있다. 예를 들어, 리튬 함유 복합 산화물(105)의 단결정립의 b축이 양극 집전체(101) 표면과 교차되는 것은 X선 회절(XRD)의 측정에 의하여 판단할 수 있다. 또한, 투과형 전자 현미경(TEM)으로 관찰된 암시야상의 콘트라스트가 균일하여 암시야상에 있어서 입계가 보이지 않기 때문에 리튬 함유 복합 산화물(105)이 단결정립이라고 판단할 수 있다.
여기서, 올리빈 구조에 대하여 설명한다. 도 2는 올리빈형 리튬 함유 복합 산화물의 일례인 인산 철 리튬(LiFePO4)의 단위 격자(301)를 도시한 것이다. 올리빈형 인산 철 리튬은 사방정 구조를 가지며, 단위 격자 중에 인산 철 리튬(LiFePO4)의 화학식 단위(formula unit) 4개를 포함한다. 올리빈 구조의 기본 골격은 산화물 이온의 육방 최밀 충전 구조이며, 최밀 충전 구조의 틈에 리튬, 철, 및 인이 위치된다.
또한, 올리빈형 인산 철 리튬(LiFePO4)은 사면체 사이트 및 2종류의 팔면체 사이트를 갖는다. 사면체 사이트는 정점에 4개의 산소 원자를 갖는다. 팔면체 사이트는 정점에 6개의 산소 원자를 갖는다. 사면체 사이트의 중심에는 인(307)이 위치되고, 팔면체 사이트의 중심에는 리튬(303) 또는 철(305)이 위치된다. 중심에 리튬(303)이 위치되는 팔면체 사이트를 M1 사이트라고 하고, 중심에 철(305)이 위치되는 팔면체 사이트를 M2 사이트라고 한다. M1 사이트는 b축 방향으로 1차원적으로 배치된다. 즉, 리튬(303)이 <010> 방향으로 1차원적으로 배치된다. 또한, 편의상 리튬(303)과 다른 이온 또는 원자의 결합을 선으로 나타내지 않았다.
인접하는 M2 사이트의 철(305)은 산소(309)를 사이에 개재(介在)하여 지그재그상으로 결합한다. 인접하는 M2 사이트의 철(305) 사이에서 결합하는 산소(309)는 사면체 사이트의 인(307)과도 결합한다. 따라서, 철-산소-인의 결합이 연속된다.
또한, 올리빈형 인산 철 리튬은 변형되어도 좋다. 또한, 인산 철 리튬에 관해서, 리튬, 철, 인 및 산소의 조성비는 1:1:1:4로 한정되지 않는다. 또한, 인산 전이 금속 리튬(LiMPO4)의 전이 금속(M)으로서는, 망간, 코발트 또는 니켈 등, 리튬 이온보다 이온 반경이 큰 전이 금속을 사용하여도 좋다.
도 2의 올리빈형 인산 철 리튬으로부터 리튬이 이탈되어 인산 철이 남은 경우에도 이 인산 철은 안정적인 구조를 갖는다. 따라서, 모든 리튬 이온의 삽입 및 이탈이 가능하다. 또한, 올리빈형 인산 철 리튬은 열 안정성을 갖는다. 올리빈형 인산 철 리튬에서 리튬 이온이 b축 방향으로 1차원적으로 배열되고 b축 방향으로 확산된다. 이 때문에, 단결정립의 b축 방향에서의 변의 길이가 짧을 때, 리튬 이온은 용이하게 확산될 수 있다.
본 실시형태에 따른 양극에서, 양극 활물질층은 b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립인 올리빈형 리튬 함유 복합 산화물을 포함한다. 또한, a축 방향에서의 변, c축 방향에서의 변, a축 방향에서의 변 및 c축 방향에서의 변을 포함하는 면 즉 b면 중 하나 이상이, 높은 도전성을 갖는 그래핀에 접하고, 올리빈 구조에서 리튬 이온이 확산되는 방향인 b축이 양극 집전체 표면과 교차된다. 따라서, 집전체와 전해질 사이에서 많은 리튬 이온이 확산될 수 있다.
도전조제로의 그래핀의 사용은 양극 활물질층에서의 도전조제의 비율을 줄이고 양극 활물질층의 저항을 저감시킨다. 또한, 도전조제인 막상의 그래핀과 리튬 함유 복합 산화물은 교대로 적층되고, 리튬 함유 복합 산화물 각각은 편평 형상을 갖기 때문에, 양극 활물질층에서 리튬 함유 복합 산화물의 충전율을 높일 수 있다. 즉, 양극 활물질층에서의 양극 활물질의 비율을 높일 수 있고, 양극 활물질층의 저항을 저감시킬 수 있다. 따라서, 본 실시형태에서 설명한 양극 활물질층을 양극에 사용하면, 리튬 이온 2차 전지는 저감된 내부 저항 및 높은 파워를 가져, 고속으로 충전 및 방전할 수 있다. 또한, 리튬 이온 2차 전지는 이론적 방전 용량과 같은 높이의 방전 용량을 가질 수 있다.
도 1의 (B)에 도시된 바와 같이, 양극 물질층(141)에서 복수의 리튬 함유 복합 산화물이 적층되어도 좋다. 구체적으로는, 양극 집전체(101) 위에 그래핀(123)이 제공되고, 그래핀(123) 위에 복수의 리튬 함유 복합 산화물(125)이 적층된다. 또한, 리튬 함유 복합 산화물(125) 위에 그래핀(133)이 제공되고, 그래핀(133) 위에 복수의 리튬 함유 복합 산화물(135)이 적층된다. 도 1의 (B)의 양극을 사용함으로써, 도 1의 (A)의 양극을 사용한 경우와 비교하여 리튬 이온 2차 전지의 방전 용량을 더 높게 할 수 있다.
또한, 도 1의 (A) 및 (B)에 있어서, 리튬 함유 복합 산화물(115, 135) 표면에 그래핀이 제공되어도 좋다. 양극 집전체(101) 위에 반드시 그래핀(103, 123)이 제공될 필요는 없고, 리튬 함유 복합 산화물(105, 125)이 양극 집전체(101)에 접하여도 좋다.
다음에, 도 1의 (A)에 도시된 리튬 이온 2차 전지의 양극의 제작 방법에 대하여 도 3의 (A) 내지 (E)를 참조하여 설명한다.
도 3의 (A)에 도시된 바와 같이, 양극 집전체(101) 위에 도전조제로서 그래핀(103)을 제공한다. 전이 금속의 박(foil) 또는 막 위에서의 에피택셜 성장, 코팅법, 또는 화학적 박리법 등에 의하여 그래핀(103)을 형성할 수 있다.
전이 금속의 박 또는 막 위에서의 에피택셜 성장의 과정에서, 니켈 또는 철 등 촉매로서 기능하는 전이 금속의 박을 기판 위에 형성하고, 이 기판을 체임버 내에 넣고 600℃ 내지 1100℃로 가열하고, 메탄 또는 에탄 등 탄화수소를 함유한 가스를 체임버에 도입하여, 기판 위에 그래핀을 형성한다. 그리고, 전이 금속의 박을 산성 용액 등으로 에칭하여 그래핀을 얻는다. 또한, 전이 금속의 박이 제공된 기판 대신에, 전이 금속의 막이 사용되어도 좋다.
코팅법은 이하와 같이 수행한다. 단결정 그래파이트 분말에 과망간산 칼륨의 황산 용액, 과산화 수소수 등을 혼입하여 산화 반응시킴으로써 산화 그래핀 수용액을 형성한다. 그리고, 이 산화 그래핀 수용액을 박리층이 제공된 적절한 기판 위에 도포하여 건조시킨다. 박리층으로서는, 두께가 1nm 내지 100nm이고 산성 용액에 가용인 금속막을 사용할 수 있다. 그리고, 진공에서 고온 가열하거나, 하이드라진(hydrazine) 등의 환원제를 첨가함으로써 산화 그래핀을 환원시켜 그래핀을 형성한다. 그 후에 박리층을 산성 용액 등으로 에칭함으로써 그래핀을 얻는다.
제작 방법에 있어서 환원제를 사용하는 경우에는, 환원 반응은 표면으로부터 진행되기 때문에, 반응 시간을 제어함으로써 적절한 깊이에서 환원 반응을 정지할 수 있다. 이 상태에서는, 환원된 그래핀이 표면에서는 얻어지는데, 반응되지 않은 부분에서는 산화 그래핀이 잔존한다. 산화 그래핀은 물에 용해될 수 있기 때문에, 기판을 물에 담그면, 물에 용해되지 않는 그래핀을 얻을 수 있다. 물에 용해된 산화 그래핀은 회수(回收)하고, 다른 기판에 도포할 수 있다.
화학적 박리법은 그래파이트(graphite)로부터 그래핀을 화학적으로 박리시키는 방법이다. 대표적으로는, 클로로폼이나, N,N-다이메틸폼아마이드(DMF)나 N-메틸피롤리돈(NMP) 등의 극성 용매 중에 그래파이트를 놓고, 초음파 진동에 의하여 그래파이트의 층간 결합을 파괴함으로써 그래핀을 얻을 수 있다.
다음에, 도 3의 (B)에 도시된 바와 같이, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)를 양극 집전체(101) 및 그래핀(103)에 도포한다. 그리고, 스퀴지(squeegee), 블레이드(blade) 등을 사용하여, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)의 두께를 균일하게 또는 대략 균일하게 하는 것이 바람직하다. 또한, 슬러리(109)의 점도를 상승하기 위하여 슬러리(109)의 용매를 건조시켜도 좋다. 이 공정에서는, 도 3의 (B)에 도시된 바와 같이, 리튬 함유 복합 산화물(105)은 양극 집전체(101) 또는 그래핀(103)에 랜덤으로 도포되어, 리튬 함유 복합 산화물(105)의 a축, b축, 및 c축이 양극 집전체(101) 표면과 교차된다. 리튬 함유 복합 산화물(105)은 b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립이다. 따라서, 리튬 함유 복합 산화물(105)의 a축 또는 c축이 양극 집전체(101) 또는 그래핀(103)의 표면과 교차되도록, 즉 리튬 함유 복합 산화물(105)의 a면 또는 c면이 양극 집전체(101) 또는 그래핀(103)에 접하도록 리튬 함유 복합 산화물(105)은 양극 집전체(101) 위에 분산되고, 리튬 함유 복합 산화물(105a)에 의하여 나타낸 바와 같은 높이로 리튬 함유 복합 산화물이 존재한다.
리튬 함유 복합 산화물을 포함하는 슬러리(109)는 바인더 및 용매 등을 더 포함한다.
리튬 함유 복합 산화물을 형성하기 위해서는 고상법, 수열법, 또는 분무 열 분해법 등을 적절히 사용할 수 있다. 또한, 입경이 작으며 입자 크기의 차이가 적고, b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립을 제작하기 위해서는 수열법을 사용하는 것이 바람직하다.
바인더로서는 전분(starch), 카복시메틸셀룰로스, 하이드록시프로필셀룰로스, 재생 셀룰로스, 다이아세틸셀룰로스 등의 다당류나, 폴리비닐클로라이드, 폴리에틸렌, 폴리프로필렌, 폴리비닐알코올, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, EPDM(ethylene-propylene-diene-monomer) 고무, 설폰화 EPDM 고무, 스타이렌뷰타다이엔 고무, 뷰타다이엔 고무, 불소 고무 등의 비닐 폴리머나, 폴리에틸렌 옥사이드 등의 폴리에테르 등을 들 수 있다.
또한, 리튬 함유 복합 산화물 및 바인더를 슬러리에 분산 또는 용해시키기 위해서 용매를 적절히 사용하여도 좋다.
입경이 작은 리튬 함유 복합 산화물은 응집되기 쉽고, 슬러리에 균일하게 분산되기 어렵다. 이 때문에, 리튬 함유 복합 산화물을 슬러리에 균일하게 분산시키기 위해서 분산제 및 분산매를 적절히 사용하는 것이 바람직하다.
분산제로서는 고분자 분산제, 계면활성제 분산제(저분자 분산제), 및 무기 분산제 등을 들 수 있다. 분산매로서는 알코올 및 물 등을 들 수 있다. 또한, 분산제 및 분산매는 리튬 함유 복합 산화물에 따라 적절히 선택할 수 있다.
다음에, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)에 물리적인 압력을 가한다. 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)에 물리적인 압력을 가하는 방법으로는, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109) 위에서 롤러, 스퀴지, 또는 블레이드 등을 이동시키는 방법을 들 수 있다. 또는, 슬러리에 물리적인 압력을 가하는 방법 대신에, 리튬 함유 복합 산화물을 포함하는 슬러리에 초음파 진동을 부여하여도 좋다. 이 결과, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)에 있어서 a축 또는 c축이 양극 집전체(101) 표면과 교차되는 리튬 함유 복합 산화물(105), 즉, a면 또는 c면이 그래핀(103)에 접하는 리튬 함유 복합 산화물(105a)이 넘어져, 리튬 함유 복합 산화물(105)을 b축이 양극 집전체(101) 표면과 교차되는 상태로 할 수 있다. 또한, 리튬 함유 복합 산화물(105)의 a축 방향에서의 변, c축 방향에서의 변, 및 b면 중 하나 이상이 그래핀(103)에 접할 수 있다. 바꿔 말하면, 그래핀(103) 중 리튬 함유 복합 산화물(105)에 접하는 영역의 면적을 증가시킬 수 있다.
그리고, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)를 가열하여 용매를 제거하고 리튬 함유 복합 산화물(105)을 바인더(107)로 고착시킨다(도 3의 (C) 참조). 바인더는 가열에 의하여 다공질 및 섬유질이 되고 틈(108)을 포함하기 때문에, 이 틈에서 리튬 함유 복합 산화물은 노출된다.
또는, 그래핀(103)이 위에 형성된 양극 집전체(101)를 리튬 함유 복합 산화물(105)을 포함하는 슬러리(109)에 담그고 나서 서서히 들어 올린다. 그 후, 슬러리(109)를 가열하여 용매를 제거하고 리튬 함유 복합 산화물(105)을 바인더(107)로 고착시킨다. 이 결과, 도 3의 (C)에 도시된 바와 같이, 리튬 함유 복합 산화물(105)을, b축이 양극 집전체(101) 표면과 교차되는 상태로 할 수 있다. 이 경우, 슬러리(109)의 메니스커스(meniscus)가 오목부가 되도록, 슬러리(109)와 양극 집전체(101) 또는 그래핀(103) 사이의 표면 장력을 제어한 후에 양극 집전체(101)를 서서히 들어 올린다. 이 메니스커스의 단부에 있어서, 모세관 활동에 의하여, 도 3의 (C)에 도시된 바와 같이 리튬 함유 복합 산화물(105)의 b축이 양극 집전체(101) 표면과 교차되는 상태로 할 수 있다.
다음에, 도 3의 (D)에 도시된 바와 같이, 도 3의 (A)와 마찬가지로 리튬 함유 복합 산화물(105) 위에 그래핀(113)을 형성한다.
그리고, 도 3의 (B) 및 (C)의 공정을 수행함으로써, 도 3의 (E)에 도시된 바와 같이 그래핀(113) 위에 리튬 함유 복합 산화물(115) 및 바인더(117)를 형성한다.
상술한 공정을 거쳐, 리튬 함유 복합 산화물(105, 115) 및 그래핀(103, 113)이 교대로 적층된 양극 활물질층(121)을 양극 집전체(101) 위에 제공한 리튬 이온 2차 전지의 양극을 제작할 수 있다. 또한, 양극 활물질층(121)에 있어서, 바인더(107, 117)를 통합적으로 바인더(127)라고 한다.
도 3의 (A) 내지 (E)에는, 도 1의 (A)의 그래핀(103, 113) 사이에 1층의 리튬 함유 복합 산화물을 제공한 리튬 이온 2차 전지의 양극의 제작 방법을 도시하였지만, 그래핀 사이에 복수의 층의 리튬 함유 복합 산화물을 제공함으로써, 도 1의 (B)에 도시된 바와 같이 그래핀(123, 133) 사이에 리튬 함유 복합 산화물(125)이 적층된 양극 활물질층(141)을 제작할 수 있다.
본 실시형태에 따른 양극에서, 양극 활물질층은 b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립인 올리빈형 리튬 함유 복합 산화물을 포함한다. 또한, a축 방향에서의 변, c축 방향에서의 변, 및 a축에서의 변과 c축에서의 변을 포함하는 면 즉 b면 중 하나 이상이 그래핀에 접하고, 리튬 이온이 확산되는 방향인 b축이 양극 집전체 표면과 교차된다. 따라서, 집전체와 전해질 사이에서 많은 리튬 이온이 확산될 수 있다. 또한, 도전조제로의 그래핀의 사용은 양극 활물질층에서의 도전조제의 비율을 줄이고 양극 활물질층의 저항을 저감시킨다. 즉, 양극 활물질층에서의 양극 활물질의 비율을 높일 수 있고, 양극 활물질층의 저항을 저감시킬 수 있다. 따라서, 본 실시형태에서 설명한 양극을 리튬 이온 2차 전지에 사용하면, 리튬 이온 2차 전지는 저감된 내부 저항 및 높은 출력을 가져, 고속으로 충전 및 방전할 수 있다. 또한, 상기 리튬 이온 2차 전지는 이론적 방전 용량과 같은 높이의 방전 용량을 가질 수 있다.
(실시형태 2)
본 실시형태에서는, 틈이 고체 전해질로 충전된 양극 활물질층을 포함하는 양극을 양극 집전체 위에 형성하는 방법에 대하여 설명한다.
본 실시형태에서는 실시형태 1에서 설명한 양극 활물질층에 있어서, 바인더가 리튬 이온 2차 전지의 전해질의 용질을 포함한다.
도 4는 본 실시형태에 따른 양극을 도시한 것이다.
도 4에 도시된 바와 같이, 그래핀(103)과 리튬 함유 복합 산화물(105)은 이 순서대로 양극 집전체(101) 위에 적층된다. 또한, 그래핀(113)은 리튬 함유 복합 산화물(105) 위에 제공되고, 리튬 함유 복합 산화물(115)은 그래핀(113) 위에 적층된다. 또한, 그래핀(103) 사이, 그래핀(113) 사이, 리튬 함유 복합 산화물(105) 사이, 및 리튬 함유 복합 산화물(115) 사이의 틈에, 전해질의 용질을 포함하며 리튬 이온 2차 전지의 고체 전해질로서 기능하는 바인더(187)가 제공된다. 그래핀(103, 113) 및 리튬 함유 복합 산화물(105, 115)이 적층되는 영역은 양극 활물질층(161)으로서 기능한다.
전해질의 용질로서는, 캐리어 이온인 리튬 이온이 이동할 수 있고 안정적으로 존재하는 재료를 사용한다. 전해질의 용질의 대표적인 예로서는, LiClO4, LiAsF6, LiBF4, LiPF6, Li(C2F5SO2)2N 등의 리튬 염을 들 수 있다.
또한, 전해질의 용질을 슬러리에 분산 또는 용해시키기 위하여 용매를 적절히 사용하여도 좋다.
다음에, 도 4에 도시된 양극 및 전해질을 형성하는 방법에 대하여 도 5의 (A) 내지 (E)를 참조하여 설명한다.
실시형태 1의 방법과 마찬가지로, 양극 집전체(101) 위에 형성된 그래핀(103)에, 리튬 함유 복합 산화물(105) 및 바인더에 더하여, 전해질의 용질을 포함하는 슬러리(149)를 도포한다. 그리고, 슬러리(149)의 두께를 균일하게 하고 슬러리(149)의 용매를 건조시킨다.
그리고, 실시형태 1의 방법과 마찬가지로, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(149)에 물리적인 압력을 가한다. 또는, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(149)에 초음파 진동을 부여하여도 좋다. 또는, 그래핀(103)이 형성된 양극 집전체(101)를 리튬 함유 복합 산화물(105)을 포함하는 슬러리(149)에 담그고, 양극 집전체(101)를 서서히 들어 올려도 좋다. 이 결과, 도 5의 (A)에 도시된 바와 같이, 리튬 함유 복합 산화물(105)을, b축이 양극 집전체(101) 표면과 교차되는 상태로 할 수 있다. 또한, 리튬 함유 복합 산화물(105)의 a축 방향에서의 변, c축 방향에서의 변, 및 b면 중 하나 이상이 그래핀(103)에 접할 수 있다.
그리고, 실시형태 1의 방법과 마찬가지로, 리튬 함유 복합 산화물(105)을 포함하는 슬러리(149)를 가열하여 용매를 제거하고 리튬 함유 복합 산화물(105)을 전해질을 포함하는 바인더(147)로 고착시킨다(도 5의 (B) 참조).
다음에, 도 5의 (C)에 도시된 바와 같이, 실시형태 1의 방법과 마찬가지로 리튬 함유 복합 산화물(105) 위에 그래핀(113)을 형성한다.
그리고, 도 5의 (A) 및 (B)의 공정을 수행함으로써, 도 5의 (D)에 도시된 바와 같이 그래핀(113) 위에 리튬 함유 복합 산화물(115) 및 바인더(157)를 형성한다. 가열 처리에 의하여, 바인더(157)에 틈(118)을 형성하여, 틈(118)에서 리튬 함유 복합 산화물(115)이 노출된다.
상술한 공정을 거쳐, 리튬 함유 복합 산화물(105, 115) 및 그래핀(103, 113)이 교대로 적층된 양극 활물질층(161)을 양극 집전체(101) 위에 제공할 수 있다.
도 5의 (A) 내지 (E)에는 그래핀(103, 113) 사이에 1층의 리튬 함유 복합 산화물이 제공된 양극의 제작 방법을 도시하였지만, 그래핀(103, 113) 사이에 복수의 층의 리튬 함유 복합 산화물이 적절히 제공되어도 좋다. 그래핀(103)을 양극 집전체(101) 위에 반드시 제공할 필요는 없고, 리튬 함유 복합 산화물(105)은 양극 집전체(101)에 접하여도 좋다.
그 후, 리튬 이온 2차 전지의 전해질의 용질을 포함하는 바인더(167)를 양극 활물질층(161) 위에 제공하여도 좋다(도 5의 (E) 참조). 상술한 공정을 거쳐, 고체 전해질로 틈이 충전된 양극 활물질층(161)을 형성할 수 있다. 또한, 도 5의 (E)에서, 리튬 이온 2차 전지의 전해질의 용질을 각각 포함하는 바인더(147, 157, 167)는 통합적으로, 리튬 이온 2차 전지의 전해질의 용질을 포함하는 바인더(187)라고 한다.
본 실시형태에 따르면, 고체 전해질로 충전된 양극 활물질층이 양극 집전체 위에 제공된 양극을 제작할 수 있기 때문에, 전극 및 전해질 사이의 계면에서의 저항을 저감할 수 있다. 따라서, 본 실시형태에서 설명한 양극을 사용함으로써, 리튬 이온 2차 전지의 내부 저항이 더 저감되고, 리튬 이온 2차 전지는 높은 출력을 가져 고속으로 충전 및 방전할 수 있어, 이론적 방전 용량과 같은 높이의 방전 용량을 가질 수 있다.
(실시형태 3)
본 실시형태에서는, 리튬 이온 2차 전지 및 그 제작 방법에 대하여 설명한다.
본 실시형태에 따른 리튬 이온 2차 전지에 대하여 도 6을 참조하여 설명한다. 여기서는, 리튬 이온 2차 전지의 단면 구조에 대하여 이하에서 설명한다.
도 6은 리튬 이온 2차 전지의 단면도이다.
리튬 이온 2차 전지(400)는 음극 집전체(407) 및 음극 활물질층(409)을 포함하는 음극(411), 양극 집전체(401) 및 양극 활물질층(403)을 포함하는 양극(405), 음극(411) 및 양극(405) 사이에 제공된 세퍼레이터(413)를 포함한다. 또한, 세퍼레이터(413)에는 전해질이 포함된다. 음극 집전체(407)는 외부 단자(419)에 접속되고, 양극 집전체(401)는 외부 단자(417)에 접속된다. 외부 단자(419)의 단부는 개스킷(421)에 매몰된다. 즉, 외부 단자(417, 419)는 개스킷(421)에 의하여 서로 절연된다.
음극 집전체(407)에는 구리, 스테인리스 스틸, 철, 또는 니켈 등 높은 도전성을 갖는 재료를 사용할 수 있다. 음극 집전체(407)는 박상, 판상, 또는 망상 등을 적절히 가질 수 있다.
음극 활물질층(409)은 리튬 이온의 흡장 및 방출이 가능한 재료를 사용하여 형성한다. 대표적으로는 리튬, 알루미늄, 그래파이트, 실리콘, 주석, 또는 게르마늄 등이 사용된다. 또한, 음극 집전체(407)를 사용하지 않고 음극 활물질층(409)을 단체로 음극으로서 사용하여도 좋다. 그래파이트보다, 게르마늄, 실리콘, 리튬, 및 알루미늄에 있어서 이론적 리튬 흡장(吸藏) 용량이 크다. 흡장 용량이 크면 작은 면적에서도 충분히 충방전이 가능하고, 음극으로서 기능하기 때문에, 비용 및 리튬 이온 2차 전지의 크기를 저감시킬 수 있다. 다만, 실리콘 등의 경우, 리튬 흡장에 의하여 체적이 4배 정도로 되기 때문에, 재료 자체가 취약해질 가능성을 충분히 생각할 필요가 있다.
또한, 음극 활물질층(409)에 리튬을 프리도핑하여도 좋다. 리튬의 프리도핑은 스퍼터링법에 의하여 음극 활물질층(409) 표면에 리튬층을 형성하는 방법으로 수행하여도 좋다. 또는, 음극 활물질층(409) 표면에 리튬박을 제공함으로써, 음극 활물질층(409)에 리튬을 프리도핑할 수 있다.
음극 활물질층(409)의 원하는 두께는 20μm 내지 100μm 범위로 결정된다.
또한, 음극 활물질층(409)은 바인더 및 도전조제를 포함하여도 좋다. 바인더 및 도전조제로서는, 실시형태 1에서 설명한 양극 활물질층에 포함된 바인더 및 도전조제를 적절히 사용할 수 있다.
양극 집전체(401) 및 양극 활물질층(403)으로서는, 실시형태 1에서 설명한 양극 집전체(101) 및 양극 활물질층(121 또는 141)을 적절히 사용할 수 있다.
세퍼레이터(413)로서는 절연성 다공질 물질을 사용한다. 세퍼레이터(413)의 대표적인 예로서는 셀룰로스(종이), 폴리에틸렌, 및 폴리프로필렌 등을 들 수 있다.
전해질의 용질로서는, 실시형태 2에서 설명한, 캐리어 이온인 리튬 이온이 이동할 수 있고 안정적으로 존재하는 재료를 적절히 사용한다.
전해질의 용질로서는, 캐리어 이온인 리튬 이온이 이동할 수 있고 안정적으로 존재하는 재료를 사용한다. 전해질의 용매로서는 리튬 이온이 이동할 수 있는 재료를 사용한다. 전해질의 용매로서는 비프로톤성 유기 용매를 사용하는 것이 바람직하다. 비프로톤성 유기 용매의 대표적인 예로서는, 에틸렌카보네이트, 프로필렌카보네이트, 다이메틸카보네이트, 다이에틸카보네이트, γ-부티로락톤, 아세토나이트릴, 다이메톡시에탄, 테트라하이드로퓨란 등을 들 수 있고, 이들 재료 중 하나 또는 복수를 사용할 수 있다. 전해질의 용매로서 겔화되는 고분자 재료를 사용하면, 누액 등에 대한 안전성이 향상된다. 또한, 리튬 이온 2차 전지(400)의 박형화 및 경량화가 가능하다. 겔화되는 고분자 재료의 대표적인 예로서는, 실리콘겔, 아크릴겔, 아크릴로나이트릴겔, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 불소계 폴리머 등을 들 수 있다.
전해질로서 Li3PO4 등의 고체 전해질을 사용할 수 있다. 또한, 전해질로서 이러한 고체 전해질을 사용하는 경우에 세퍼레이터(413)는 불필요하다.
양극 및 전해질 대신에, 실시형태 2에서 설명한 바와 같이 양극 집전체 위에 형성되는 양극 활물질을 포함하는 고체 전해질을 사용하여도 좋다.
외부 단자(417, 419)에는 스테인리스 스틸판 또는 알루미늄판 등의 금속 부재를 적절히 사용할 수 있다.
또한, 본 실시형태에서는 리튬 이온 2차 전지(400)로서 코인형 리튬 이온 2차 전지를 들었지만, 밀봉형 리튬 이온 2차 전지, 원통형 리튬 이온 2차 전지, 및 각형 리튬 이온 2차 전지 등 여러 가지 형상의 리튬 이온 2차 전지 중 어느 것이나 사용할 수 있다. 또한, 복수의 양극, 복수의 음극, 복수의 세퍼레이터가 적층되거나 권회(捲回)된 구조를 사용하여도 좋다.
리튬 이온 2차 전지는 높은 에너지 밀도, 큰 용량, 및 높은 출력 전압을 가져, 소형화 및 경량화가 가능하다. 또한, 리튬 이온 2차 전지는 반복적인 충전 및 방전으로 쉽게 열화되지 않고 장기간 동안 사용할 수 있어, 비용을 삭감할 수 있다. 양극 활물질층에서, b축 방향에서의 길이가 a축 방향 및 c축 방향에서의 각 길이보다 짧은 편평 단결정립인 올리빈형 리튬 함유 복합 산화물과, 높은 도전성을 갖는 그래핀이 교대로 적층될 때, 리튬 이온 2차 전지는 높은 방전 용량 및 높은 출력을 가져, 고속으로 충전 및 방전할 수 있다.
다음에, 본 실시형태에 따른 리튬 이온 2차 전지(400)의 제작 방법에 대하여 설명한다.
우선, 음극(411)을 형성하는 방법에 대하여 설명한다.
음극 집전체(407) 위에 코팅법, 스퍼터링법, 또는 증착법 등에 의하여 음극 활물질층(409)을 형성함으로써, 음극(411)을 형성할 수 있다. 또는, 음극(411)으로서 리튬, 알루미늄, 그래파이트 또는 실리콘의 박, 판, 또는 망을 사용할 수 있다. 여기서는 그래파이트에 리튬을 프리도핑하여 음극을 형성한다.
다음에, 실시형태 1에서 설명한 양극의 형성 방법을 적절히 사용하여 양극(405)을 형성한다.
그 후, 음극(411), 세퍼레이터(413) 및 양극(405)에 전해질을 포함시킨다. 그리고, 외부 단자(417) 위에 양극(405), 세퍼레이터(413), 개스킷(421), 음극(411) 및 외부 단자(419)를 이 순서대로 적층하고, "코인 셀 크림퍼(coin cell crimper)"로 외부 단자(417) 및 외부 단자(419)를 서로 크림프한다. 이로써, 코인형 리튬 이온 2차 전지를 제작할 수 있다.
또한, 외부 단자(417)와 양극(405) 사이, 또는 외부 단자(419)와 음극(411) 사이의 접속을 향상시키기 위하여, 외부 단자(417)와 양극(405) 사이 또는 외부 단자(419)와 음극(411) 사이에 스페이서 및 워셔를 제공하여도 좋다.
(실시형태 4)
본 실시형태에서는, 실시형태 3에서 설명한 리튬 이온 2차 전지의 응용에 대하여 도 7의 (A) 및 (B)를 참조하여 설명한다.
실시형태 3에서 설명한 리튬 이온 2차 전지는 디지털 카메라나 비디오 카메라 등의 카메라, 디지털 포토 프레임, 휴대 전화기(휴대 전화 또는 휴대 전화 장치라고도 함), 휴대형 게임기, 휴대 정보 단말, 및 음향 재생 장치 등의 전자 기기에 제공할 수 있다. 또한, 이 리튬 이온 2차 전지는 전기 자동차, 하이브리드 자동차(hybrid vehicle), 철도용 전기 차량, 작업차(service vehicle), 카트(cart), 및 전동 휠체어(electric wheelchair) 등의 전기 추진 차량에 제공할 수 있다. 여기서는, 전기 추진 차량의 예에 대하여 설명한다.
도 7의 (A)는 전기 추진 차량의 예로서 사륜 자동차(500)의 구성을 도시한 것이다. 자동차(500)는 전기 자동차 또는 하이브리드 자동차이다. 일례로서, 그 바닥 부분에 리튬 이온 2차 전지(502)가 제공된 자동차(500)를 도시하였다. 자동차(500)에 있어서의 리튬 이온 2차 전지(502)의 위치를 명확하게 나타내기 위해서, 도 7의 (B)에는 자동차(500)의 윤곽, 및 자동차(500)의 바닥 부분에 제공된 리튬 이온 2차 전지(502)를 도시하였다. 실시형태 3에서 설명한 리튬 이온 2차 전지를 리튬 이온 2차 전지(502)로서 사용할 수 있다. 리튬 이온 2차 전지(502)는 플러그 인 기술이나 무선 급전 시스템에 의하여 외부로부터 전력이 공급됨으로써 충전할 수 있다.
(실시형태 5)
본 실시형태에서는 본 발명의 일 형태에 따른 리튬 이온 2차 전지를 무선 급전 시스템(이하, RF 급전 시스템이라고 함)에 사용한 예에 대하여 도 8 및 도 9의 블록도를 참조하여 설명한다. 각 블록도에서 블록은, 수전(power receiving) 장치 및 급전(power feeding) 장치 내에서 그 기능마다 요소를 분류하고 독립적으로 나타내었다. 하지만, 요소는 그 기능에 따라 완전히 분류하는 것이 실제적으로 어렵고, 경우에 따라서는 하나의 요소가 복수의 기능에 관련될 수 있다.
우선, RF 급전 시스템에 대하여 도 8을 참조하여 설명한다.
수전 장치(600)는, 급전 장치(700)로부터 공급된 전력으로 구동되는 전자 기기 또는 전기 추진 차량이지만, 전력으로 구동되는 다른 장치에 적절히 적용할 수 있다. 전자 기기의 대표적인 예로서는 디지털 카메라나 비디오 카메라 등의 카메라, 디지털 포토 프레임, 휴대 전화기, 휴대형 게임기, 휴대 정보 단말, 음향 재생 장치, 표시 장치, 및 컴퓨터 등을 들 수 있다. 전기 추진 차량의 대표적인 예로서는, 전기 자동차, 하이브리드 자동차, 철도용 전기 차량, 작업차, 카트, 및 전동 휠체어 등을 들 수 있다. 또한, 급전 장치(700)는, 수전 장치(600)에 전력을 공급하는 기능을 갖는다.
도 8에서 수전 장치(600)는 수전 장치부(601) 및 전원 부하부(610)를 포함한다. 수전 장치부(601)는 적어도 수전 장치용 안테나 회로(602), 신호 처리 회로(603), 및 리튬 이온 2차 전지(604)를 포함한다. 급전 장치(700)는 적어도 급전 장치용 안테나 회로(701) 및 신호 처리 회로(702)를 포함한다.
수전 장치용 안테나 회로(602)는, 급전 장치용 안테나 회로(701)에 의하여 송신되는 신호를 받는 기능 및 급전 장치용 안테나 회로(701)에 신호를 송신하는 기능을 갖는다. 신호 처리 회로(603)는 수전 장치용 안테나 회로(602)에 의하여 수신되는 신호를 처리하고, 리튬 이온 2차 전지(604)의 충전, 및 리튬 이온 2차 전지(604)로부터 전원 부하부(610)로의 전력 공급을 제어한다. 또한, 신호 처리 회로(603)는 수전 장치용 안테나 회로(602)의 동작을 제어한다. 즉, 신호 처리 회로(603)는 수전 장치용 안테나 회로(602)로부터 송신되는 신호의 강도, 주파수 등을 제어할 수 있다. 전원 부하부(610)는 리튬 이온 2차 전지(604)로부터 전력을 받아서, 수전 장치(600)를 구동하는 구동부이다. 전원 부하부(610)의 대표적인 예로서는 모터 및 구동 회로 등을 들 수 있다. 전력을 받아 수전 장치를 구동하는 다른 장치를 전원 부하부(610)로서 적절히 사용할 수 있다. 급전 장치용 안테나 회로(701)는 수전 장치용 안테나 회로(602)에 신호를 송신하는 기능 및 수전 장치용 안테나 회로(602)로부터 신호를 받는 기능을 갖는다. 신호 처리 회로(702)는 급전 장치용 안테나 회로(701)에 의하여 수신되는 신호를 처리한다. 또한, 신호 처리 회로(702)는 급전 장치용 안테나 회로(701)의 동작을 제어한다. 즉, 신호 처리 회로(702)는 급전 장치용 안테나 회로(701)로부터 송신되는 신호의 강도, 주파수 등을 제어할 수 있다.
본 발명의 일 형태에 따른 리튬 이온 2차 전지는 도 8에 도시된 RF 급전 시스템에 있어서 수전 장치(600)에 포함되는 리튬 이온 2차 전지(604)로서 사용된다.
RF 급전 시스템에 본 발명의 일 형태에 따른 리튬 이온 2차 전지를 사용함으로써, 종래의 리튬 이온 2차 전지를 사용한 경우에 비하여 방전 용량 또는 충전 용량(축전량이라고도 함)을 늘릴 수 있다. 따라서, 무선 급전과 다음의 무선 급전 사이의 시간 간격을 더 길게 할 수 있다(급전의 빈도를 줄일 수 있다).
또한, RF 급전 시스템에 본 발명의 일 형태에 따른 리튬 이온 2차 전지를 사용함으로써, 전원 부하부(610)를 구동할 수 있는 방전 용량 또는 충전 용량이 종래의 2차 전지와 같은 경우에, 수전 장치(600)의 소형화 및 경량화가 가능하다. 따라서, 합계 비용을 저감시킬 수 있다.
다음에, RF 급전 시스템의 다른 예에 대하여 도 9를 참조하여 설명한다.
도 9에서, 수전 장치(600)는 수전 장치부(601) 및 전원 부하부(610)를 포함한다. 수전 장치부(601)는 적어도 수전 장치용 안테나 회로(602), 신호 처리 회로(603), 리튬 이온 2차 전지(604), 정류 회로(605), 변조 회로(606), 및 전원 공급 회로(607)를 포함한다. 또한, 급전 장치(700)는 적어도 급전 장치용 안테나 회로(701), 신호 처리 회로(702), 정류 회로(703), 변조 회로(704), 복조 회로(705), 및 발진 회로(706)를 포함한다.
수전 장치용 안테나 회로(602)는, 급전 장치용 안테나 회로(701)에 의하여 송신되는 신호를 받는 기능 및 급전 장치용 안테나 회로(701)에 신호를 송신하는 기능을 갖는다. 수전 장치용 안테나 회로(602)가 급전 장치용 안테나 회로(701)에 의하여 송신되는 신호를 받는 경우에는, 정류 회로(605)는 수전 장치용 안테나 회로(602)에 의하여 수신되는 신호로부터 DC 전압을 생성한다. 신호 처리 회로(603)는 수전 장치용 안테나 회로(602)에 의하여 수신되는 신호를 처리하는 기능 및 리튬 이온 2차 전지(604)의 충전, 및 리튬 이온 2차 전지(604)로부터 전원 공급 회로(607)로의 전력 공급을 제어하는 기능을 갖는다. 전원 공급 회로(607)는 리튬 이온 2차 전지(604)에 저장된 전압을 전원 부하부(610)에 필요한 전압으로 변환하는 기능을 갖는다. 변조 회로(606)는 수전 장치(600)로부터 급전 장치(700)로 어떠한 응답을 송신하는 경우에 사용된다.
전원 공급 회로(607)에 의하여, 전원 부하부(610)에 공급되는 전력을 제어할 수 있다. 따라서, 전원 부하부(610)에 대한 과전압의 인가를 억제할 수 있고, 수전 장치(600)의 열화나 파괴의 억제에 기여한다.
또한, 변조 회로(606)의 제공에 의하여, 수전 장치(600)로부터 급전 장치(700)에 신호를 송신할 수 있다. 따라서, 수전 장치(600)의 충전량으로부터 일정량의 전력이 저장된 것을 판단하여 수전 장치(600)로부터 급전 장치(700)에 신호를 송신함으로써, 급전 장치(700)로부터 수전 장치(600)로의 급전을 정지할 수 있다. 이 결과, 리튬 이온 2차 전지(604)가 완전히 충전되지 않아, 리튬 이온 2차 전지(604)의 충전 사이클수를 증가시킬 수 있다.
급전 장치용 안테나 회로(701)는 수전 장치용 안테나 회로(602)에 신호를 송신하는 기능, 및 수전 장치용 안테나 회로(602)로부터의 신호를 받는 기능을 갖는다. 수전 장치용 안테나 회로(602)에 신호가 송신되는 경우, 신호 처리 회로(702)는 수전 장치에 송신되는 신호를 생성한다. 발진 회로(706)는 일정한 주파수의 신호를 생성하는 회로이다. 변조 회로(704)는 신호 처리 회로(702)에 의하여 생성된 신호와 발진 회로(706)에 의하여 생성된 일정한 주파수의 신호에 따라, 급전 장치용 안테나 회로(701)에 전압을 인가하는 기능을 갖는다. 이로써, 급전 장치용 안테나 회로(701)로부터 신호가 출력된다. 한편, 수전 장치용 안테나 회로(602)로부터 신호가 수신되는 경우에는, 정류 회로(703)가 수신된 신호를 정류한다. 복조 회로(705)는, 정류 회로(703)에 의하여 정류된 신호로부터 수전 장치(600)로부터 급전 장치(700)에 송신된 신호를 추출한다. 신호 처리 회로(702)는 복조 회로(705)에 의하여 추출된 신호를 해석하는 기능을 갖는다.
또한, RF 급전을 실시할 수 있는 한, 회로 간에 어떤 회로를 제공하여도 좋다. 예를 들어, 수전 장치(600)가 신호를 수신하고 정류 회로(605)가 DC 전압을 생성하고 나서, 후단에 제공된 DC-DC 컨버터나 레귤레이터 등의 회로가 정전압(constant voltage)을 생성하여도 좋다. 이로써, 수전 장치(600) 내부에 대한 과전압의 인가를 억제할 수 있다.
본 발명의 일 형태에 따른 리튬 이온 2차 전지는 도 9에서 설명한 RF 급전 시스템에 있어서의 수전 장치(600)에 포함되는 리튬 이온 2차 전지(604)로서 사용된다.
RF 급전 시스템에 본 발명의 일 형태에 따른 리튬 이온 2차 전지를 사용함으로써, 종래의 2차 전지를 사용한 경우에 비하여 방전 용량 또는 충전 용량을 높일 수 있기 때문에, 무선 급전과 다음의 무선 급전 사이의 시간 간격을 더 길게 할 수 있다(급전의 빈도를 줄일 수 있다).
또한, RF 급전 시스템에 본 발명의 일 형태에 따른 리튬 이온 2차 전지를 사용함으로써, 전원 부하부(610)를 구동할 수 있는 방전 용량 또는 충전 용량이 종래의 2차 전지와 같은 경우에, 수전 장치(600)의 소형화 및 경량화가 가능하다. 따라서, 합계 비용을 저감시킬 수 있다.
또한, RF 급전 시스템에 본 발명의 일 형태에 따른 리튬 이온 2차 전지를 사용하고, 수전 장치용 안테나 회로(602)와 리튬 이온 2차 전지(604)를 중첩시키는 경우는, 리튬 이온 2차 전지(604)의 충전 및 방전으로 인한 리튬 이온 2차 전지(604)의 변형과 이 변형으로 인한 안테나의 변형에 기인하여 수전 장치용 안테나 회로(602)의 임피던스가 변화하지 않는 것이 바람직하다. 안테나의 임피던스가 변화하면, 전력이 충분히 공급되지 않을 경우가 있다. 예를 들어, 리튬 이온 2차 전지(604)는 금속 또는 세라믹스로 형성된 전지 팩으로 싸여도 좋다. 또한, 그 경우에는 수전 장치용 안테나 회로(602)와 전지 팩은 수십μm 이상 떨어져 있는 것이 바람직하다.
본 실시형태에서 충전용의 신호는 그 주파수에 한정은 없고, 전력을 전송할 수 있는 주파수 중 어느 대역이어도 좋다. 충전용의 신호는, 예를 들면, 135kHz의 LF 대역(장파), 13.56MHz의 HF 대역(단파), 900MHz 내지 1GHz의 UHF 대역(극초단파), 및 2.45GHz의 마이크로파 대역 중 어느 것이어도 좋다.
신호의 송신 방식으로서는 전자 결합 방식, 전자 유도 방식, 공명 방식, 및 마이크로파 방식 등 여러 가지 방식으로부터 적절히 선택할 수 있다. 비 및 진흙 등 수분을 포함한 이물(foreign substance)로 인한 에너지의 손실을 억제하기 위해서는, 낮은 주파수의 대역, 구체적으로는 3MHz 내지 30MHz의 단파 주파수, 300kHz 내지 3MHz의 중파 주파수, 30kHz 내지 300kHz의 장파 주파수, 및 3kHz 내지 30kHz의 초장파 주파수를 사용한 전자 유도 방식 또는 공명 방식을 사용하는 것이 바람직하다.
본 실시형태는 상술한 실시형태 중 어느 것과 조합하여 실시할 수 있다.
101: 양극 집전체, 103: 그래핀, 105: 리튬 함유 복합 산화물, 105a: 리튬 함유 복합 산화물, 107: 바인더, 108: 틈, 109: 슬러리, 113: 그래핀, 115: 리튬 함유 복합 산화물, 117: 바인더, 118: 틈, 121: 양극 활물질층, 123: 그래핀, 125: 리튬 함유 복합 산화물, 127: 바인더, 133: 그래핀, 135: 리튬 함유 복합 산화물, 141: 양극 활물질층, 147: 바인더, 149: 슬러리, 157: 바인더, 161: 양극 활물질층, 167: 바인더, 187: 바인더, 301: 단위 격자, 303: 리튬, 305: 철, 309: 산소, 400: 리튬 이온 2차 전지, 401: 양극 집전체, 403: 양극 활물질층, 405: 양극, 407: 음극 집전체, 409: 음극 활물질층, 411: 음극, 413: 세퍼레이터, 417: 외부 단자, 419: 외부 단자, 421: 개스킷, 500: 자동차, 502: 리튬 이온 2차 전지, 600: 수전 장치, 601: 수전 장치부, 602: 수전 장치용 안테나 회로, 603: 신호 처리 회로, 604: 리튬 이온 2차 전지, 605: 정류 회로, 606: 변조 회로, 607: 전원 공급 회로, 610: 전원 부하부, 700: 급전 장치, 701: 급전 장치용 안테나 회로, 702: 신호 처리 회로, 703: 정류 회로, 704: 변조 회로, 705: 복조 회로, 706: 발진 회로
본 출원은 2011년 3월 25일에 일본 특허청에 출원된 일련 번호가 2011-068599인 일본 특허 출원에 기초하고, 본 명세서에 그 전문이 참조로 통합된다.

Claims (16)

  1. 전극의 제작 방법으로서,
    집전체 위에 위치하며 접하는 제 1 그래핀층을 형성하고,
    복수의 활물질 입자, 바인더, 및 용매를 가지는 슬러리를 상기 제 1 그래핀층 위에 형성하고,
    상기 용매를 휘발시켜, 활물질층을 형성하고,
    상기 제 1 그래핀층은 산화 그래핀을 가지는 산화 그래핀 수용액을 이용하여 형성되는, 전극의 제작 방법.
  2. 제 1 항에 있어서,
    상기 산화 그래핀은 가열에 의해 환원되는, 전극의 제작 방법.
  3. 제 1 항에 있어서,
    상기 산화 그래핀은 환원제에 의해 환원되는, 전극의 제작 방법.
  4. 제 3 항에 있어서,
    상기 환원제는 하이드라진(hydrazine)인, 전극의 제작 방법.
  5. 제 1 항에 있어서,
    상기 제 1 그래핀층을 형성한 후에, 상기 집전체의 일부가 노출되는, 전극의 제작 방법.
  6. 제 1 항에 있어서,
    상기 복수의 활물질 입자는 제 1 입자와 제 2 입자를 가지고,
    상기 활물질층을 형성한 후에, 상기 집전체는 상기 제 1 입자와 직접 접하고,
    상기 활물질층을 형성한 후에, 상기 제 1 그래핀층이 가지는 그래핀편은 상기 활물질층과 접하는, 전극의 제작 방법.
  7. 제 1 항에 있어서,
    상기 활물질층 위에 제 2 그래핀층을 형성하는, 전극의 제작 방법.
  8. 제 1 항에 있어서,
    상기 집전체는 백금, 알루미늄, 구리, 티타늄, 스테인리스 스틸 중 하나 이상으로부터 선택되는 재료를 가지고,
    상기 집전체는 박상(foil shape), 판상(plate shape), 및 망상(net shape) 중 하나 이상의 형상을 가지는, 전극의 제작 방법.
  9. 전극의 제작 방법으로서,
    집전체 위에 위치하며 접하는 제 1 그래핀층을 형성하고,
    복수의 활물질 입자, 바인더, 및 용매를 가지는 슬러리를 상기 제 1 그래핀층 위에 형성하고,
    상기 용매를 휘발시켜, 활물질층을 형성하고,
    상기 제 1 그래핀층은 그래핀을 이용하여 형성되고,
    상기 그래핀은 극성 용매 중에서 그래파이트로부터 그래핀을 박리함으로써 형성되는, 전극의 제작 방법.
  10. 제 9 항에 있어서,
    상기 제 1 그래핀층을 형성한 후에, 상기 집전체의 일부가 노출되는, 전극의 제작 방법.
  11. 제 9 항에 있어서,
    상기 복수의 활물질 입자는 제 1 입자와 제 2 입자를 가지고,
    상기 활물질층을 형성한 후에, 상기 집전체는 상기 제 1 입자와 직접 접하고,
    상기 활물질층을 형성한 후에, 상기 제 1 그래핀층이 가지는 그래핀편은 상기 활물질층과 접하는, 전극의 제작 방법.
  12. 제 9 항에 있어서,
    상기 활물질층 위에 제 2 그래핀층을 형성하는, 전극의 제작 방법.
  13. 제 9 항에 있어서,
    상기 집전체는 백금, 알루미늄, 구리, 티타늄, 스테인리스 스틸 중 하나 이상으로부터 선택되는 재료를 가지고,
    상기 집전체는 박상, 판상, 및 망상 중 하나 이상의 형상을 가지는, 전극의 제작 방법.
  14. 전극으로서,
    집전체;
    상기 집전체 위에 위치하며 접하는 그래핀층; 및
    상기 그래핀층 위의 활물질층을 가지고,
    상기 그래핀층은 복수의 그래핀편을 가지고,
    상기 활물질층은 복수의 활물질 입자를 가지고,
    상기 활물질층은 상기 그래핀층에 접하는 제 1 부분 및 상기 집전체에 접하는 제 2 부분을 가지는, 전극.
  15. 제 14 항에 있어서,
    상기 복수의 활물질 입자 중 하나가 상기 제 1 부분 및 상기 제 2 부분을 가지는, 전극.
  16. 제 14 항에 있어서,
    상기 복수의 활물질 입자의 각각은 올리빈형 리튬 함유 복합 산화물을 가지고,
    상기 리튬 함유 복합 산화물은 일반식 LiMPO4로 나타내어지고, M은 Fe(II), Mn(II), Co(II), 및 Ni(II) 중 어느 하나 이상인, 전극.
KR1020207019061A 2011-03-25 2012-03-19 리튬 이온 2차 전지 KR102250080B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011068599 2011-03-25
JPJP-P-2011-068599 2011-03-25
PCT/JP2012/001896 WO2012132307A1 (en) 2011-03-25 2012-03-19 Lithium-ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197005714A Division KR102131859B1 (ko) 2011-03-25 2012-03-19 리튬 이온 2차 전지

Publications (2)

Publication Number Publication Date
KR20200083678A true KR20200083678A (ko) 2020-07-08
KR102250080B1 KR102250080B1 (ko) 2021-05-07

Family

ID=46877596

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020197005714A KR102131859B1 (ko) 2011-03-25 2012-03-19 리튬 이온 2차 전지
KR1020137027584A KR101954780B1 (ko) 2011-03-25 2012-03-19 리튬 이온 2차 전지
KR1020207019061A KR102250080B1 (ko) 2011-03-25 2012-03-19 리튬 이온 2차 전지

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020197005714A KR102131859B1 (ko) 2011-03-25 2012-03-19 리튬 이온 2차 전지
KR1020137027584A KR101954780B1 (ko) 2011-03-25 2012-03-19 리튬 이온 2차 전지

Country Status (6)

Country Link
US (3) US9059478B2 (ko)
JP (3) JP5848645B2 (ko)
KR (3) KR102131859B1 (ko)
CN (2) CN105742570B (ko)
DE (1) DE112012002563B4 (ko)
WO (1) WO2012132307A1 (ko)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945498B2 (en) * 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP6025284B2 (ja) 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 蓄電装置用の電極及び蓄電装置
JP6069821B2 (ja) * 2011-09-28 2017-02-01 ソニー株式会社 リチウムイオン二次電池
CN103187576B (zh) 2011-12-28 2015-07-29 清华大学 集流体、电化学电池电极及电化学电池
DE102012005426A1 (de) * 2012-03-16 2013-09-19 Li-Tec Battery Gmbh Graphen in Lithiumionen-Batterien
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN103545554B (zh) * 2012-07-13 2016-06-08 清华大学 锂离子电池的制备方法
CN103545556B (zh) * 2012-07-13 2016-01-20 清华大学 薄膜锂离子电池的制备方法
CN103545555B (zh) * 2012-07-13 2016-01-20 清华大学 锂离子电池的制备方法
CN103545485B (zh) * 2012-07-13 2017-04-05 清华大学 锂离子电池电极的制备方法
US20140023920A1 (en) 2012-07-20 2014-01-23 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
JP6153802B2 (ja) * 2012-11-30 2017-06-28 日本碍子株式会社 蓄電素子
KR20150107777A (ko) * 2013-01-11 2015-09-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 디바이스 충전 방법
US9787126B2 (en) 2013-02-08 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Driving method of electrochemical device
KR101736975B1 (ko) * 2013-07-08 2017-05-18 삼성전자주식회사 다층 그래핀막, 다층 그래핀막을 전극으로 사용하는 에너지 저장 장치 및 다층 그래핀막과 에너지 저장 장치의 제조방법
US20150016022A1 (en) 2013-07-08 2015-01-15 Samsung Corning Precision Materials Co., Ltd. Multi-layered graphene films, energy storage devices using multi-layered graphene films as electrodes, and methods of manufacturing multi-layered graphene films and energy storage devices
KR102172024B1 (ko) * 2013-07-16 2020-10-30 삼성에스디아이 주식회사 집전체 구조 및 이를 채용한 전극과 리튬 전지
SI3072180T1 (sl) 2013-11-19 2019-05-31 Aqua Metals Inc. Naprave in postopki za recikliranje svinčevo-kislinskih akumulatorjev brez taljenja
US9496582B1 (en) * 2014-03-24 2016-11-15 Amazon Technologies, Inc. Flexible battery
WO2015170216A1 (en) * 2014-05-09 2015-11-12 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery and electronic device
WO2016178117A1 (en) 2015-05-06 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US10793957B2 (en) 2015-05-13 2020-10-06 Aqua Metals Inc. Closed loop systems and methods for recycling lead acid batteries
PL3294916T3 (pl) 2015-05-13 2021-05-17 Aqua Metals Inc. Układy i sposoby odzyskiwania ołowiu z akumulatorów kwasowo-ołowiowych
EP3294931A4 (en) 2015-05-13 2018-12-26 Aqua Metals Inc. Electrodeposited lead composition, methods of production, and uses
US10686207B2 (en) * 2015-07-03 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and electronic device
CN105098193A (zh) * 2015-09-24 2015-11-25 宁德时代新能源科技有限公司 正极片以及包括该正极片的锂离子电池
US10749170B2 (en) * 2015-10-14 2020-08-18 Northwestern University Graphene-coated metal oxide spinel cathodes
JP6917161B2 (ja) * 2016-03-03 2021-08-11 株式会社半導体エネルギー研究所 リチウムイオン二次電池用の正極活物質、二次電池、電池制御ユニットおよび電子機器
WO2017195331A1 (ja) * 2016-05-12 2017-11-16 エリーパワー株式会社 非水電解質二次電池用正極及び非水電解質二次電池
US10680242B2 (en) 2016-05-18 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
CN109075322A (zh) * 2016-05-26 2018-12-21 株式会社村田制作所 锂离子二次电池
CN116053451A (zh) 2016-07-05 2023-05-02 株式会社半导体能源研究所 锂离子二次电池
DE202017007622U1 (de) 2016-10-12 2023-09-13 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
JP6686966B2 (ja) 2017-05-17 2020-04-22 株式会社デンソー 回転式アクチュエータ
CN108075164A (zh) * 2016-11-09 2018-05-25 林逸樵 二次电池及其制作方法
JP7097690B2 (ja) * 2016-12-02 2022-07-08 株式会社半導体エネルギー研究所 電極および蓄電池
EP3565038A4 (en) 2016-12-30 2020-07-15 Beijing Tunghsu Carbon Advanced Materials Technology Co., Ltd. PROCESS FOR THE PREPARATION OF A GRAPHENE COMPOSITE / TERNARY MATERIAL FOR USE IN LITHIUM-ION BATTERIES AND ITS PRODUCT
CN111682188A (zh) 2017-05-12 2020-09-18 株式会社半导体能源研究所 正极活性物质粒子
CN111900358A (zh) 2017-05-19 2020-11-06 株式会社半导体能源研究所 正极活性物质以及二次电池
CN110337744A (zh) 2017-06-26 2019-10-15 株式会社半导体能源研究所 正极活性物质的制造方法及二次电池
CN110148740A (zh) * 2019-06-19 2019-08-20 湖南大学 一种提高锂离子电池正极材料循环稳定性的方法
KR20210007149A (ko) * 2019-07-10 2021-01-20 현대자동차주식회사 전고체 전지용 복합 음극

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004739A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp リチウム二次電池と該電池に備えられる正極及びその製造方法
KR20060124978A (ko) * 2005-06-01 2006-12-06 강원대학교산학협력단 박막 전지 및 그 제조 방법
JP2007035358A (ja) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びにリチウムイオン二次電池
WO2008077447A1 (en) 2006-12-22 2008-07-03 Umicore SYNTHESIS OF ELECTROACTIVE CRYSTALLINE NANOMETRIC LiMnPO4 POWDER
KR20110016287A (ko) * 2009-08-11 2011-02-17 고양미 그래핀 산화물의 코팅방법

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
JPH1125983A (ja) 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd リチウム電池用活物質
JP4482987B2 (ja) * 1999-12-07 2010-06-16 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
US6913855B2 (en) 2002-07-22 2005-07-05 Valence Technology, Inc. Method of synthesizing electrochemically active materials from a slurry of precursors
JP4058680B2 (ja) 2002-08-13 2008-03-12 ソニー株式会社 正極活物質の製造方法及び非水電解質二次電池の製造方法
JP3632686B2 (ja) 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
JP4201619B2 (ja) * 2003-02-26 2008-12-24 三洋電機株式会社 非水電解質二次電池、及びそれに使用する電極の製造方法
FR2873854A1 (fr) * 2004-07-30 2006-02-03 Commissariat Energie Atomique Procede de fabrication d'une electrode lithiee, electrode lithiee susceptible d'etre obtenue par ce procede et ses utilisations
JP4923397B2 (ja) 2004-09-06 2012-04-25 日産自動車株式会社 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
CN102593466A (zh) 2004-12-09 2012-07-18 奈米***股份有限公司 用于燃料电池的基于纳米线的膜电极组件
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
JP4273422B2 (ja) 2005-03-09 2009-06-03 ソニー株式会社 正極材料および電池
JP2006252945A (ja) 2005-03-10 2006-09-21 Sony Corp 非水電解質二次電池用の電極及びその製造方法、並びに非水電解質二次電池
JP3850427B2 (ja) 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 炭素繊維結合体およびこれを用いた複合材料
DE102005015613A1 (de) 2005-04-05 2006-10-12 Süd-Chemie AG Kristallines Ionenleitendes Nanomaterial und Verfahren zu seiner Herstellung
JP5159048B2 (ja) 2005-09-08 2013-03-06 三洋電機株式会社 非水電解質二次電池
EP2378597A1 (en) 2005-11-21 2011-10-19 Nanosys, Inc. Nanowire structures comprising carbon
EP1989747B1 (en) 2006-02-14 2017-04-12 Dow Global Technologies LLC Lithium manganese phosphate positive material for lithium secondary battery
JP5405126B2 (ja) 2006-02-17 2014-02-05 エルジー・ケム・リミテッド リチウム−金属複合酸化物の製造方法
JP4767798B2 (ja) 2006-09-05 2011-09-07 住友大阪セメント株式会社 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
CN101610977B (zh) 2006-12-22 2012-12-19 尤米科尔公司 合成电活性晶态纳米LiMnPO4粉末
EP2111659A2 (en) 2007-01-25 2009-10-28 Massachusetts Institute of Technology Oxide coatings on lithium oxide particles
JP4289406B2 (ja) 2007-02-19 2009-07-01 トヨタ自動車株式会社 電極活物質およびその製造方法
WO2008121972A2 (en) 2007-03-30 2008-10-09 The Regents Of The University Of Michigan Deposited microarchitectured battery and manufacturing method
JP4317571B2 (ja) 2007-04-27 2009-08-19 Tdk株式会社 活物質、電極、電池、及び活物質の製造方法
US7745047B2 (en) 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
JP5470700B2 (ja) 2007-12-10 2014-04-16 住友大阪セメント株式会社 電極材料およびその製造方法、並びに、電極および電池
JP5377946B2 (ja) 2007-12-25 2013-12-25 花王株式会社 リチウム電池正極用複合材料
EP2228856A4 (en) 2007-12-25 2012-01-25 Kao Corp COMPOSITE MATERIAL FOR POSITIVE LITHIUM BATTERY ELECTRODE
US8236446B2 (en) * 2008-03-26 2012-08-07 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
WO2009127901A1 (en) 2008-04-14 2009-10-22 High Power Lithium S.A. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
TW200951066A (en) 2008-04-17 2009-12-16 Basf Se Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
US20100035093A1 (en) * 2008-04-27 2010-02-11 Ruoff Rodney S Ultracapacitors and methods of making and using
US8257867B2 (en) * 2008-07-28 2012-09-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
EP2685536A1 (en) * 2008-08-15 2014-01-15 Massachusetts Institute of Technology Layer-by-layer assemblies of carbon-based nanostructures and their applications in energy storage and generation devices
JP5098954B2 (ja) 2008-10-28 2012-12-12 日本ゼオン株式会社 電気化学素子用電極の製造方法および電気化学素子
JP5381024B2 (ja) 2008-11-06 2014-01-08 株式会社Gsユアサ リチウム二次電池用正極及びリチウム二次電池
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US20130045424A1 (en) 2008-12-24 2013-02-21 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
EP2369663A1 (en) 2008-12-24 2011-09-28 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
EP2369660A4 (en) 2008-12-24 2013-11-20 Ngk Insulators Ltd PLATE-LIKE PARTICLES FOR POSITIVE ELECTRODE ACTIVE MATERIAL OF LITHIUM SECONDARY BATTERIES, FILMS THEREOF, AND LITHIUM SECONDARY BATTERIES
CN102171863A (zh) 2008-12-24 2011-08-31 日本碍子株式会社 锂二次电池的正极活性物质用的板状粒子、锂二次电池的正极活性物质膜、及锂二次电池
EP2369664B1 (en) 2008-12-24 2015-02-25 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
US20100173204A1 (en) 2008-12-24 2010-07-08 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, method for manufacturing the same, method for manufacturing a cathode active material of a lithium secondary battery, and a lithium secondary battery
WO2010074302A1 (ja) 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
WO2010074299A1 (ja) 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池
US9093693B2 (en) 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
US8663847B2 (en) 2009-01-15 2014-03-04 Gs Yuasa International Ltd. Positive active material for lithium secondary battery, and lithium secondary battery
CN102292744B (zh) 2009-01-23 2015-11-25 皇家飞利浦电子股份有限公司 心脏图像处理和分析
TW201029918A (en) 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
EP2228854B1 (en) 2009-03-12 2014-03-05 Belenos Clean Power Holding AG Nitride and carbide anode materials
JP5381192B2 (ja) 2009-03-16 2014-01-08 Tdk株式会社 リチウムイオン二次電池用活物質の製造方法
JP2010232091A (ja) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
WO2010129417A1 (en) 2009-05-04 2010-11-11 Meecotech, Inc. Electrode active composite materials and methods of making thereof
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
EP3865454A3 (en) * 2009-05-26 2021-11-24 Belenos Clean Power Holding AG Stable dispersions of single and multiple graphene layers in solution
CN102449821B (zh) 2009-06-24 2014-12-24 株式会社杰士汤浅国际 锂二次电池用正极活性物质及锂二次电池
EP2287946A1 (en) 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
KR101748406B1 (ko) 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법
US8835046B2 (en) * 2009-08-10 2014-09-16 Battelle Memorial Institute Self assembled multi-layer nanocomposite of graphene and metal oxide materials
KR101740692B1 (ko) * 2009-09-30 2017-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치용 전극의 제작 방법 및 축전 장치의 제작 방법
JP2011076820A (ja) 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd リチウム二次電池及びリチウム二次電池用正極
US8778538B2 (en) 2009-11-06 2014-07-15 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
US9431649B2 (en) 2009-11-23 2016-08-30 Uchicago Argonne, Llc Coated electroactive materials
US8652687B2 (en) 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
JP5149920B2 (ja) 2010-02-05 2013-02-20 トヨタ自動車株式会社 リチウム二次電池用電極の製造方法
WO2012047316A1 (en) * 2010-05-21 2012-04-12 Ada Technologies, Inc. High performance carbon nano-tube composites for electrochemical energy storage devices
CN103053055B (zh) 2010-08-19 2016-10-12 株式会社半导体能源研究所 电气设备
EP2698854B1 (en) 2010-10-22 2017-02-22 Belenos Clean Power Holding AG Method of an electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
KR101924989B1 (ko) 2011-01-07 2018-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치의 제작 방법
US9236197B2 (en) * 2011-02-18 2016-01-12 The Board Of Trustees Of The Leland Stanford Junior University Graphene hybrid materials, apparatuses, systems and methods
CN102148371A (zh) * 2011-03-03 2011-08-10 上海大学 三明治结构的石墨烯/磷酸铁锂复合材料及其制备方法
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
US9577261B2 (en) 2011-03-18 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
CN102201604A (zh) * 2011-04-22 2011-09-28 华南师范大学 一种电容电池电芯及其制作方法
WO2012147766A1 (ja) 2011-04-28 2012-11-01 昭和電工株式会社 リチウム二次電池用正極材料及びその製造方法
CN102315450A (zh) 2011-08-31 2012-01-11 合肥国轩高科动力能源有限公司 一种离子掺杂高性能磷酸铁锂的水热合成制备法
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004739A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp リチウム二次電池と該電池に備えられる正極及びその製造方法
KR20060124978A (ko) * 2005-06-01 2006-12-06 강원대학교산학협력단 박막 전지 및 그 제조 방법
JP2007035358A (ja) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びにリチウムイオン二次電池
WO2008077447A1 (en) 2006-12-22 2008-07-03 Umicore SYNTHESIS OF ELECTROACTIVE CRYSTALLINE NANOMETRIC LiMnPO4 POWDER
KR20110016287A (ko) * 2009-08-11 2011-02-17 고양미 그래핀 산화물의 코팅방법

Also Published As

Publication number Publication date
JP6377786B2 (ja) 2018-08-22
CN105742570B (zh) 2021-05-07
US20190165370A1 (en) 2019-05-30
KR20190025046A (ko) 2019-03-08
CN103443971B (zh) 2016-06-08
US11101460B2 (en) 2021-08-24
WO2012132307A9 (en) 2013-04-25
US10205160B2 (en) 2019-02-12
US9059478B2 (en) 2015-06-16
JP2012216515A (ja) 2012-11-08
DE112012002563B4 (de) 2021-10-07
JP6092989B2 (ja) 2017-03-08
DE112012002563T5 (de) 2014-03-20
JP5848645B2 (ja) 2016-01-27
CN103443971A (zh) 2013-12-11
JP2016028404A (ja) 2016-02-25
US20150263343A1 (en) 2015-09-17
CN105742570A (zh) 2016-07-06
US20120244430A1 (en) 2012-09-27
KR102250080B1 (ko) 2021-05-07
KR101954780B1 (ko) 2019-03-06
KR20140027166A (ko) 2014-03-06
JP2017098270A (ja) 2017-06-01
WO2012132307A1 (en) 2012-10-04
KR102131859B1 (ko) 2020-07-08

Similar Documents

Publication Publication Date Title
KR102131859B1 (ko) 리튬 이온 2차 전지
US11335945B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP2016047798A (ja) リチウム含有複合酸化物

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant