KR20190108994A - method for manufacturing ceramics nano fused compositee heat-release film - Google Patents

method for manufacturing ceramics nano fused compositee heat-release film Download PDF

Info

Publication number
KR20190108994A
KR20190108994A KR1020180030762A KR20180030762A KR20190108994A KR 20190108994 A KR20190108994 A KR 20190108994A KR 1020180030762 A KR1020180030762 A KR 1020180030762A KR 20180030762 A KR20180030762 A KR 20180030762A KR 20190108994 A KR20190108994 A KR 20190108994A
Authority
KR
South Korea
Prior art keywords
ceramic
nano
manufacturing
powder
heat dissipation
Prior art date
Application number
KR1020180030762A
Other languages
Korean (ko)
Other versions
KR102049600B1 (en
Inventor
김순호
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020180030762A priority Critical patent/KR102049600B1/en
Publication of KR20190108994A publication Critical patent/KR20190108994A/en
Application granted granted Critical
Publication of KR102049600B1 publication Critical patent/KR102049600B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/045Agglomeration, granulation, pelleting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

The present invention provides a method for manufacturing a ceramic nano-fusion composite heat dissipation film, characterized by sequentially performing: a filler preparation step of preparing a ceramic filler consisting of micrometer size powder; a powder manufacturing step of manufacturing the ceramic filler into nanopowder having a nanometer size; a powder spheroidization step of spheroidizing the manufactured nanopowder; a mixture preparation step of manufacturing a mixture by mixing the spheroidized nanopowder in a thermosetting adhesive resin; and a film manufacturing step of manufacturing the manufactured mixture into a thin film form to complete a heat dissipation film. Through the method, the ceramic filler can be made into nano size and spheroidized, and the most condense filling is possible to achieve enhancement in heat dissipation efficiency.

Description

세라믹 나노융복합 방열필름 제조방법{method for manufacturing ceramics nano fused compositee heat-release film}Method for manufacturing ceramics nano fused compositee heat-release film

본 발명은 세라믹 방열필름에 관한 것으로써, 더욱 상세하게는 세라믹 필러의 나노화 및 구형화를 통해 최밀 충전을 이룰 수 있도록 하여 방열 효율의 향상을 이룰 수 있도록 한 새로운 형태에 따른 세라믹 나노융복합 방열필름의 제조방법에 관한 것이다.The present invention relates to a ceramic heat dissipation film, and more particularly, to a ceramic nano-fusion composite heat dissipation film according to a new form, which can achieve the closest filling through the nano- and sphericalization of the ceramic filler, thereby improving heat dissipation efficiency. It relates to a manufacturing method of.

일반적으로 LED 및 IC 칩, PCB 등 각종 전자제품의 열 발생 부품에는 방열 효율을 향상시키기 위한 계면 재료가 적용되고 있으며, 이러한 계면 재료는 패드/시트, 박막 필름 및 테이프, 액상의 그리스, 접착제 등 다양한 형태 및 용도로 제공되면서 각각의 용도에 따라 채용된다.In general, interfacial materials are applied to heat generating parts of various electronic products such as LEDs, IC chips, and PCBs, and these interfacial materials include pads / sheets, thin films and tapes, liquid grease, and adhesives. It is provided in form and use, and is employed according to each use.

특히, LED 등 소형부품과 진동 등이 심한 자동차 적용 부품의 경우 박막의 접착필름의 채용이 증가하고 있으며, 이에 따라 최근에는 상기 접착필름의 방열 효과를 더욱 높일 수 있도록 하기 위한 기술이 다양하게 연구되고 있다.In particular, in the case of small parts such as LEDs and automotive application parts with high vibration, the adoption of a thin film adhesive film is increasing. Accordingly, in recent years, various techniques for increasing the heat radiation effect of the adhesive film have been studied. have.

이때, 상기 방열 성능을 가지는 접착필름(방열필름)은 통상 열전도성 물질을 미세한 입자의 분말로 분쇄한 후 이렇게 분쇄된 분말을 수지에 혼합시켜 필름 형태로 형성하며, 이러한 필름의 양측 표면에 접착층을 각각 형성함으로써 만들어진다.At this time, the adhesive film having a heat dissipation performance (heat-dissipating film) is usually formed by pulverizing the thermally conductive material into fine particles of powder and then mixed with the pulverized powder in a resin form, the adhesive layer is formed on both surfaces of the film It is made by forming each.

이에 관련하여는 등록특허 제10-1274975호, 등록특허 제10-1734324호, 한국공개특허 제10-2017-0127186호 등에 제시되고 있는 바와 같다.In this regard, it is as described in Patent No. 10-1274975, Patent No. 10-1734324, and Korean Patent Publication No. 10-2017-0127186.

그러나, 전술된 종래의 기술들은 열전도성 물질의 분말화를 위한 분쇄 작업이 단순히 볼밀 작업으로만 이루어짐에 따라 입자의 형태가 고르지 못하고 길이가 길거나 울퉁불퉁한 형태 등을 이루는 경향이 많이 있었으며, 이로써, 최밀 충전을 이루지 못함으로써 방열성능을 향상시키는데 한계가 있었다.However, the above-described conventional techniques have tended to form uneven, long or rugged shapes of the particles as the grinding operation for the powdering of the thermally conductive material is merely a ball mill operation, and thus, the closest. There was a limit to improving the heat dissipation performance by not charging.

또한, 상기 접착층이 각각 별도로 제공되는 필름의 경우 접착층 부위에서 열저항이 발생하여 방열 특성을 저하시키는 요소로 작용한다는 문제점이 있었다.In addition, in the case of the film provided with the adhesive layer separately, there is a problem that heat resistance is generated in the adhesive layer to act as an element to lower the heat dissipation characteristics.

등록특허 제10-1274975호Patent Registration No. 10-1274975 등록특허 제10-1734324호Patent Registration No. 10-1734324 한국공개특허 제10-2017-0127186호Korean Patent Publication No. 10-2017-0127186

본 발명은 전술된 종래 기술에 따른 각종 문제점을 해결하기 위해 안출된 것으로써, 본 발명의 목적은 세라믹 필러의 나노화 및 구형화를 통해 최밀 충전을 이룰 수 있도록 하여 방열 효율의 향상을 이룰 수 있도록 한 새로운 형태에 따른 세라믹 나노융복합 방열필름의 제조방법을 제공하는데 있다.The present invention has been made to solve the various problems according to the prior art described above, the object of the present invention is to achieve the closest filling through the nano- and spheronization of the ceramic filler to achieve an improvement in heat dissipation efficiency The present invention provides a method for manufacturing a ceramic nano-fusion thermal radiation film according to a new form.

상기한 목적을 달성하기 위한 본 발명의 세라믹 나노융복합 방열필름 제조방법에 따르면 출발원료 입도로 50㎛ 이상의 산화물 및 질화물 세라믹 입자를 수직형 어트리션밀을 사용하여 1차 분쇄한 후 고성능 볼밀과 초미립 분쇄매체를 적용하여 2차 분쇄함으로써 100nm 이하의 세라믹 나노 분체로 제조하는 분체 제조단계; 상기 제조된 나노 분체를 2500℃ 이상의 수직 방향 화염을 제공하는 구상화로에 분사 방식으로 상기 화염의 중앙을 향해 투입하여 구형함으로써 세라믹 필러로 완성하는 분체 구형화단계; 상기 구형화된 나노 분체의 세라믹 필러를 우레탄-아크릴레이트 및 우레탄-에폭시 기반의 열경화성 접착수지에 혼합하여 혼합물을 제조하는 혼합물 제조단계; 상기 제조된 혼합물을 박막의 필름 형태로 제조하여 방열필름을 완성하는 필름 제조단계;가 순차적으로 진행되며, 상기 혼합물 제조단계에서 상기 세라믹 필러는 서로 입도가 다른 2종 이상으로 구분하여 제공함과 더불어 서로의 배합비를 선정한 후 세라믹 필러 기준 15Wt% 이하의 실란계 커플링제를 사용하여 150℃ 온도에서 3시간 동안 처리한 후, 48시간 동결 건조하여 제조됨을 특징으로 한다.According to the method of manufacturing a ceramic nano fusion heat dissipation film of the present invention for achieving the above object, after the first grinding of oxide and nitride ceramic particles with a starting material particle size of 50 μm or more using a vertical attrition mill, Powder manufacturing step of producing a ceramic nano-powder of 100nm or less by secondary grinding by applying a fine grinding medium; A powder spheronization step of completing the ceramic filler by injecting the prepared nanopowder into a spherical furnace which provides a flame in a vertical direction of 2500 ° C. or more toward the center of the flame; Mixing step of preparing a mixture by mixing the ceramic filler of the spherical nano-powder to the urethane-acrylate and urethane-epoxy-based thermosetting adhesive resin; A film manufacturing step of completing the heat dissipation film by manufacturing the prepared mixture in the form of a film of a thin film; proceeds sequentially, the ceramic filler in the mixture manufacturing step is provided with two or more types of different particle size and each other After selecting a compounding ratio of 15Wt% of the ceramic filler based on the silane coupling agent using a treatment for 3 hours at a temperature of 150 ℃, characterized in that it is prepared by freeze drying for 48 hours.

여기서, 상기 구형화단계는 상기 나노 분체를 방사시킴과 동시에 해당 나노 분체에 열을 가하여 표면 일부가 용융되도록 하며, 상기 용융시 로내에 비산된 상태로 표면장력에 의한 구형 형상으로 변경되도록 한 다음 급속 냉각시킴으로써 치밀질의 세라믹 필러로 이루어질 수 있도록 함을 특징으로 한다.Here, the spheroidizing step radiates the nanopowder and simultaneously heats the nanopowder so that a part of the surface is melted, and is changed into a spherical shape by surface tension in the state scattered in the furnace during the melting. It characterized in that it can be made of a dense ceramic filler by cooling.

또한, 상기 나노 분체는 질화 분위기에서 내부 기체의 고압 순환을 통해 와류를 유도시키면서 방사되도록 함을 특징으로 한다.In addition, the nano-powder is characterized in that the spinning while inducing vortex through the high-pressure circulation of the internal gas in the nitriding atmosphere.

또한, 상기 세라믹 필러는 산화물계 세라믹 분말 혹은, 질화물계 세라믹 분말로 이루어짐을 특징으로 한다.In addition, the ceramic filler is characterized in that the oxide-based ceramic powder or nitride-based ceramic powder.

또한, 상기 제조된 방열필름은 롤 형태로 권취하여 보관하거나 혹은, 시트형으로 일정 길이만큼 절단하여 적층 보관함을 특징으로 한다.In addition, the produced heat-dissipating film is wound and stored in a roll form, or cut by a predetermined length in a sheet form characterized in that the stacked storage.

이상에서와 같이, 본 발명의 세라믹 나노융복합 방열필름 제조방법은 세라믹 필러의 입자가 나노 입자를 이루면서도 구형을 이룸에 따라 최밀 충전을 이룰 수 있게 되며, 이러한 세라믹 필러가 혼합되어 제조되는 방열필름의 방열 성능을 더욱 향상시킬 수 있게 된 효과를 가진다.As described above, the ceramic nano fusion heat dissipation film manufacturing method of the present invention can achieve the closest filling as the particles of the ceramic filler to form a spherical nanoparticles, the heat dissipation film is produced by mixing the ceramic filler Has the effect of further improving the heat dissipation performance.

또한, 본 발명의 세라믹 나노융복합 방열필름 제조방법은 세라믹 필러를 구형화하는 방법이 고온의 열을 이용한 표면 용융 및 분사 과정에서 서로 충돌하면서 마찰되도록 하여 수행됨에 따라 최대한 구형에 가까운 형상을 얻을 수 있게 되며, 이로써 최밀 충전이 가능하게 된 효과를 가진다.In addition, the method of manufacturing a ceramic nano fusion heat dissipating film of the present invention can obtain a shape as close to a sphere as possible by performing a method of spherical ceramic filler to be rubbed while colliding with each other during the surface melting and spraying process using high temperature heat. This has the effect that the closest filling is possible.

또한, 본 발명의 세라믹 나노융복합 방열필름 제조방법은 별도의 접착체층이 따로 제공되는 구조가 아니라 접착수지에 구형화된 나노 분체를 혼합한 후 이를 이용하여 방열필름을 얻는 방식으로 제조하기 때문에 30㎛이하의 두께로 제조할 수 있으면서도 충분한 열전도도를 제공할 수 있게 된 효과를 가진다.In addition, the manufacturing method of the ceramic nano fusion heat dissipation film of the present invention is not a structure in which a separate adhesive layer is provided separately, but the spherical nanopowders are mixed with the adhesive resin and then manufactured using the same to obtain a heat dissipation film. While having a thickness of less than or equal to μm, it is possible to provide sufficient thermal conductivity.

도 1은 본 발명의 실시예에 따른 세라믹 나노융복합 방열필름 제조과정을 설명하기 위해 나타낸 개략적인 순서도
도 2는 세라믹 필러의 제공량 대비 열전도율을 설명하기 위해 나타낸 그래프
도 3은 본 발명의 실시예에 따른 세라믹 나노융복합 방열필름 제조과정에 대한 설명 중 분체로 성형되기 전의 세라믹 필러를 나타낸 상태도
Figure 1 is a schematic flow chart shown to explain the manufacturing process of the ceramic nano-fusion thermal radiation film according to an embodiment of the present invention
2 is a graph showing the thermal conductivity versus the amount of ceramic filler provided
Figure 3 is a state diagram showing the ceramic filler before molding into a powder during the description of the ceramic nano-composite heat dissipation film manufacturing process according to an embodiment of the present invention

이하, 본 발명의 세라믹 나노융복합 방열필름 제조방법에 대한 바람직한 실시예를 설명하도록 한다.Hereinafter, a description will be given of a preferred embodiment of the method for manufacturing a ceramic nano-fusion thermal radiation film of the present invention.

첨부된 도 1은 본 발명의 실시예에 따른 세라믹 나노융복합 방열필름 제조과정을 설명하기 위해 나타낸 개략적인 순서도이다.1 is a schematic flowchart illustrating a process of manufacturing a ceramic nano-fusion thermal radiation film according to an embodiment of the present invention.

이를 토대로 알 수 있듯이, 본 발명의 실시예에 따른 세라믹 나노융복합 방열필름 제조방법은 크게 필러 준비단계(S100)와, 나노분체 제조단계(S200)와, 분체 구형화단계(S300)와, 혼합물 제조단계(S400) 및 필름 제조단계(S500)가 순차적으로 진행되어 이루어지며, 특히 상기 분체 구형화단계(S300)를 통해 나노 크기의 세라믹 필러가 구형화를 이룰 수 있도록 하여 최밀 충전을 이룰 수 있도록 하고, 이를 통해 방열 성능이 향상된 방열필름을 얻을 수 있도록 한 것이다.As can be seen based on this, the ceramic nano-composite heat dissipation film manufacturing method according to an embodiment of the present invention is a filler preparation step (S100), nano-powder manufacturing step (S200), powder spheroidization step (S300), and a mixture The manufacturing step (S400) and the film manufacturing step (S500) is carried out sequentially, in particular through the powder spheronization step (S300) to enable the nano-sized ceramic filler to be sphericalized to achieve the closest filling And through this, it is possible to obtain a heat radiation film with improved heat dissipation performance.

이러한 각 단계에 대한 설명을 세라믹 나노융복합 방열필름에 대한 제조 과정을 토대로 더욱 상세히 설명하면 다음과 같다.The description of each of these steps will be described in more detail based on the manufacturing process for the ceramic nano-fusion heat dissipation film as follows.

먼저, 상기 필러 준비단계(S100)를 통해 마이크로미터(㎛) 사이즈(예컨대, 평균입도 50~60㎛ 정도)의 분말 상태로 제공되는 세라믹 필러를 준비한다.First, through the filler preparation step (S100) to prepare a ceramic filler that is provided in a powder state of a micrometer (㎛) size (for example, the average particle size of about 50 ~ 60㎛).

이때, 상기 세라믹 필러는 산화물계의 세라믹 혹은, 질화물계 세라믹이 될 수 있다.In this case, the ceramic filler may be an oxide ceramic or a nitride ceramic.

여기서, 상기 산화물계 세라믹은 Al2O3, SiO2, MgO 등이 있으나, SiO2의 경우 열전도율이 낮고, MgO의 경우 열전도율은 높으나 수화반응이 있기 때문에 저렴하면서도 열전도율이 높은 Al2O3를 이용함이 바람직하다. 특히, 상기 세라믹 필러는 상기 Al2O3에 일부의 MgO를 첨가하여 만들어질 수도 있으며, 이를 통해 얻을 수 있는 전기 전도도에 관련하여는 첨부된 도 2의 그래프에 나타낸 바와 같다.Here, the oxide-based ceramics include Al 2 O 3 , SiO 2 , MgO, etc., but SiO 2 has a low thermal conductivity, MgO has a high thermal conductivity, but because of the hydration reaction, Al 2 O 3 is cheap and has high thermal conductivity. This is preferred. In particular, the ceramic filler may be made by adding a portion of MgO to the Al 2 O 3 , with respect to the electrical conductivity can be obtained as shown in the graph of Figure 2 attached.

또한, 상기 질화물계 세라믹은 BN, SiC, AlN, Si3N4 등이 있으나, 전기저항, 전기적 특성, 열전도도 등을 감안한다면 BN과 AlN을 이용함이 바람직하다.In addition, the nitride-based ceramics are BN, SiC, AlN, Si 3 N 4 and the like, but considering the electrical resistance, electrical characteristics, thermal conductivity, etc. It is preferable to use BN and AlN.

한편, 상기 단계에서 준비되는 세라믹 필러는 첨부된 도 3에 도시된 바와 같이 크기가 일정하지 않고 일부는 서로 뭉쳐진 형태의 비구형 구조로 제공된다.On the other hand, the ceramic filler prepared in the above step is provided in a non-spherical structure of the size is not uniform as shown in Figure 3 attached to one another.

그리고, 상기한 바와 같은 세라믹 필러의 준비가 완료되면 이 세라믹 필러를 나노미터(㎚) 사이즈의 나노 분체로 제조하는 나노 분체 제조단계(S200)를 수행한다.Then, when the preparation of the ceramic filler as described above is completed, the nano-powder manufacturing step (S200) of manufacturing the ceramic filler into nanometers of nanometer (nm) size is performed.

이와 같은 분체 제조단계는 볼밀(ball-mill)을 이용하여 수행하며, 이를 통해 마이크로미터 사이즈의 세라믹 필러는 나노미터 사이즈의 나노 분체로 형성된다.This powder manufacturing step is performed using a ball mill (ball-mill), through which the micrometer-sized ceramic filler is formed into nanometer-sized nano powder.

이러한 분체 제조는 출발원료 입도로 50㎛ 이상의 비교적 큰 산화물 및 질화물 세라믹 입자를 분쇄하기 위하여 수직형 어트리션밀을 사용하여 1차 분쇄한 후, 고성능 볼밀과 초미립 분쇄매체를 적용한 2차 분쇄를 시행함으로써 100nm 이하의 세라믹 나노 분체를 탑-다운(top-down) 방식으로 제조한다.In order to pulverize relatively large oxide and nitride ceramic particles with a starting material particle size, such powder is first pulverized using a vertical attrition mill and then subjected to a second pulverization using a high performance ball mill and an ultrafine pulverizing medium. By doing so, the ceramic nanopowder of 100 nm or less is manufactured by the top-down method.

다음으로, 상기 제조된 나노미터 사이즈의 나노 분체를 구형화하는 분체 구형화단계(S300)가 수행된다.Next, the powder spheronization step (S300) of sphering the nanometer size of the prepared nanoparticles is carried out.

이와 같은 분체 구형화단계(S300)는 상기 나노 분체를 고압으로 방사시킴과 동시에 이렇게 방사되는 나노 분체에 고온의 열을 가하여 표면 일부가 용융되도록 함으로써 수행된다.This powder spheroidization step (S300) is performed by spinning the nano powder at high pressure and at the same time by applying a high temperature heat to the nano-powder to be so melted surface.

특히, 상기 나노 분체는 질화 분위기에서 내부 기체의 고압 순환을 통해 와류를 유도시키면서 방사되도록 한다.In particular, the nano-powder is to be emitted while inducing vortex through the high-pressure circulation of the internal gas in the nitriding atmosphere.

즉, 나노 분체의 고압 방사에 의해 각 나노 입자들은 서로 흩어지면서 분사되며, 이러한 과정에서 고온의 열기로 인해 표면 중 각 모서리 부위가 용융됨과 더불어 와류식의 분사로 인한 각 입자 서로 간의 충돌로 인해 해당 입자들은 최대한 구형에 가까운 구형화를 이룰 수 있게 되는 것이다.That is, the nanoparticles are sprayed while being scattered with each other by the high-pressure spinning of the nanopowders. In this process, each corner part of the surface is melted due to the high temperature heat and the particles are collided with each other due to the vortex injection. The particles will be able to achieve sphericalization as close to spherical as possible.

또한, 상기와 같이 표면 일부의 용융 및 각 입자 간의 마찰(충돌)에 의해 구형화된 나노 분체는 낙하하는 도중 주변 공기에 의해 냉각되면서 과도한 용융에 의한 서로 간의 붙음 현상은 방지되며, 이를 통해 구형화된 나노 분체를 얻을 수 있게 된다.In addition, as described above, the nanoparticles spherical due to the melting of a part of the surface and friction (collision) between the particles are cooled by the ambient air while falling, and thus the adhesion between each other due to excessive melting is prevented. Nano powders can be obtained.

더욱 구체적으로는, 상기 나노 분체의 구형화 과정은 화염용융법에 의한 구상화로에 세라믹 원재료를 분사 방식으로 투입하여 구형의 세라믹 입자로 제조된다.More specifically, the spheronization process of the nano-powder is made of spherical ceramic particles by injecting a ceramic raw material into the spherical furnace by the flame melting method by spraying.

즉, 상기 구상화로에서는 2500℃ 이상의 수직 방향 화염을 만들고, 그 화염의 중앙으로 초미립 분말상의 세라믹 원재료를 분사하며, 이때 분사된 세라믹 원재료는 화염 내 체류하는 짧은 순간에 용융된 후 로 내로 비산된 상태에서 표면장력에 의하여 구형으로 형상이 변경되고, 그 상태로 급속 냉각시킴으로써 치밀질의 초미세 구형 세라믹 소재(세라믹 필러)가 만들어지게 된다.That is, in the spherical furnace, a vertical flame of 2500 ° C. or more is formed, and the ultrafine powdery ceramic raw material is injected into the center of the flame, and the injected ceramic raw material is melted in a short moment of staying in the flame and then scattered into the furnace. The shape is changed to spherical shape by the surface tension in the state, and by rapid cooling in that state, a dense ultrafine spherical ceramic material (ceramic filler) is made.

이때, 상기 나노세라믹의 구형화를 위해 투입되는 세라믹 원재료와 상기 구형화된 상태의 세라믹 재료의 입도는 사실상 동일한 수준에서 형상만 구형으로 변형된다.At this time, the particle size of the ceramic raw material and the ceramic material in the spherical state to be spherical to the nanoceramic is deformed into a spherical shape at substantially the same level.

다음으로, 상기 구형화된 나노 분체는 혼합물 제조단계(S400)를 통해 혼합물로 제조된다.Next, the spherical nano-powder is prepared as a mixture through the mixture preparation step (S400).

즉, 상기 구형화된 나노 분체를 미리 준비된 열경화성 접착수지에 혼합함으로써 혼합물이 제조되는 것이다.That is, the mixture is prepared by mixing the spherical nanopowders into a thermosetting adhesive resin prepared in advance.

상기 열경화성 접착수지는 우레탄과 아크릴레이트 및 에폭시를 하이브리드 분자설계를 통해 만들어진 열경화성 접착수지임을 그 예로 한다. 이때 상기 우레탄과 아크릴레이트 및 에폭시의 열경화성 접착수지는 그의 분자구조에 패킹(crystallization)이 가능한 하드 세그먼트를 도입하고 상기 하드 세그먼트의 결정성을 조정함에 따라 접착력 및 유리전이온도 특성을 유지하면서 수지의 방열성을 높일 수 있게 된다.The thermosetting adhesive resin is an example of a thermosetting adhesive resin made of a hybrid molecular design of urethane, acrylate and epoxy. At this time, the thermosetting adhesive resin of the urethane, acrylate, and epoxy introduces a hard segment capable of packing into its molecular structure and adjusts the crystallinity of the hard segment, thereby maintaining the adhesive force and glass transition temperature characteristics while maintaining the heat dissipation property of the resin. To increase.

더욱 구체적으로는, 우레탄, 아크릴레이트, 에폭시의 하이브리드 분자 설계 및 기능성 첨가제 투입을 통하여 접착력과 내열성이 우수한 속경화형 열경화성 접착수지 조성물이 제조된다. 즉, 우레탄-아크렐리에트 및 우레탄-에폭시 기반의 사슬 구조에 내열성 보강을 위하여 단량체 및 기능성 관능기의 종류와 가교밀도 조절을 실시함으로써 방열필름용 수지가 제조되는 것이다.More specifically, a fast curing thermosetting adhesive resin composition having excellent adhesion and heat resistance is prepared through hybrid molecular design of urethane, acrylate, and epoxy, and functional additives. That is, the resin for the heat-dissipating film is prepared by controlling the type and crosslinking density of the monomer and the functional group for the heat resistance reinforcement in the urethane-acrylicate and urethane-epoxy based chain structures.

다음으로, 상기 제조된 혼합물을 이용하여 방열필름을 제조하는 필름 제조단계(S500)가 수행된다.Next, a film manufacturing step (S500) of manufacturing a heat radiation film using the prepared mixture is performed.

이와 같은 필름 제조단계(S500)에서는 박막의 필름 형태로 제조하여 방열필름을 완성하게 된다.In the film manufacturing step (S500) as described above is produced in the form of a thin film to complete the heat dissipation film.

특히, 상기와 같이 제조되는 방열필름은 열전도층을 사이에 두고 양측 외면에 접착제층을 형성하는 종래 방식과는 달리 접착제층과 열전도층이 단일체로 이루어지는 구조(접착 기능을 제공하면서도 열전도 기능을 제공하는 구조)이기 때문에 30㎛이하의 두께로 성형함이 가능하며, 이러한 두께로 형성하더라도 열전도도는 1.5~3.0(W/mK)를 이룰 수 있게 된다.In particular, the heat dissipation film manufactured as described above has a structure in which the adhesive layer and the heat conductive layer are formed in a unitary structure unlike the conventional method of forming an adhesive layer on both outer surfaces with a heat conductive layer interposed therebetween. Structure) can be molded to a thickness of less than 30㎛, even if formed in such a thickness, the thermal conductivity can achieve 1.5 ~ 3.0 (W / mK).

더욱 구체적으로는, 초미분의 구형화된 세라믹 필러를 수지와의 컴파운딩시 혼화성과 분산성을 증가시키기 위하여 실란계의 커필링제를 사용하여 친수성의 세라믹 필러 표면을 소수성으로 처리한다. 즉, 입도가 다른 2종 이상의 구형화된 세라믹 필러를 최적 배합비로 선정한 후 세라믹 기준 15wt% 이하의 커플링제를 사용하여 150℃ 이하 온도에서 3시간 동안 처리한 후 48시간 동안 동결 건조하여 전처리한다. 입자가 다른 세라믹 필러의 최적 배합비는 혼합시 세라믹 필러간 공극율을 최소화하는 기준으로 선정됨과 더불어 수지와의 배합시 점도 등을 고려하여 도출된다.More specifically, the hydrophilic ceramic filler surface is hydrophobicly treated with a silane based filler to increase the miscibility and dispersibility in compounding the ultrafine spherical ceramic filler with the resin. That is, two or more spherical ceramic fillers having different particle sizes are selected as an optimum blending ratio, and then treated with a coupling agent of 15 wt% or less based on ceramics for 3 hours at a temperature of 150 ° C. or lower, followed by freeze drying for 48 hours. The optimum mixing ratio of the ceramic fillers with different particles is selected as a standard for minimizing the porosity between the ceramic fillers during mixing, and is derived in consideration of the viscosity when mixing with the resin.

그리고, 우레탄-아크릴레이트 및 우레탄-에폭시 기반의 개발된 수지와 상기 전처리된 세라믹 필러를 고속 교반기에서 50℃, 40rpm 기준으로 2시간 이내 혼합하여 컴파운딩한 후 롤 공정을 1~2회 거쳐 두께를 조정한 다음 고진공에서 30분동안 탈포하여 최종 방열필름을 제조한다.In addition, the developed resin and the urethane-epoxy-based resin and the pre-treated ceramic filler is mixed in a high speed stirrer at 50 ° C. and 40 rpm within 2 hours, and then compounded and rolled through the roll process once or twice. After adjusting, defoaming for 30 minutes in a high vacuum to produce a final heat radiation film.

상기와 같이 제조된 방열필름은 롤(Roll) 형태로 권취하여 보관하거나 혹은, 시트형으로 일정 길이만큼 절단하여 적층 보관한다.The heat-dissipating film prepared as described above may be wound and stored in a roll shape, or may be cut and stacked to a predetermined length in a sheet shape for lamination.

또한, 이렇게 제조된 방열필름은 LED나 IC, PCB 등 각종 전자부품의 열 발생 부위와 열 해소 구조 사이에 위치하는 계면재료로써 사용된다.In addition, the heat-dissipating film thus prepared is used as an interfacial material located between the heat generating region and the heat dissipation structure of various electronic components such as LED, IC, PCB.

이상에서와 같이, 본 발명의 세라믹 나노융복합 방열필름 제조방법은 세라믹 필러의 입자가 나노 입자를 이루면서도 구형을 이룸에 따라 최밀 충전을 이룰 수 있게 되며, 이러한 세라믹 필러가 혼합되어 제조되는 방열필름의 방열 성능을 더욱 향상시킬 수 있게 된다.As described above, the ceramic nano fusion heat dissipation film manufacturing method of the present invention can achieve the closest filling as the particles of the ceramic filler to form a spherical nanoparticles, the heat dissipation film is produced by mixing the ceramic filler It is possible to further improve the heat dissipation performance.

또한, 본 발명의 세라믹 나노융복합 방열필름 제조방법은 세라믹 필러를 구형화하는 방법이 고온의 열을 이용한 표면 용융 및 분사 과정에서 서로 충돌하면서 마찰되도록 하여 수행됨에 따라 최대한 구형에 가까운 형상을 얻을 수 있게 되며, 이로써 최밀 충전이 가능하게 된다.In addition, the method of manufacturing a ceramic nano fusion heat dissipating film of the present invention can obtain a shape as close to a sphere as possible by performing a method of spherical ceramic filler to be rubbed while colliding with each other during the surface melting and spraying process using high temperature heat. This allows for closest filling.

또한, 본 발명의 세라믹 나노융복합 방열필름 제조방법은 별도의 접착체층이 따로 제공되는 구조가 아니라 접착수지에 구형화된 나노 분체를 혼합한 후 이를 이용하여 방열필름을 얻는 방식으로 제조하기 때문에 30㎛이하의 두께로 제조할 수 있으면서도 충분한 열전도도를 제공할 수 있게 된다.In addition, the manufacturing method of the ceramic nano fusion heat dissipation film of the present invention is not a structure in which a separate adhesive layer is provided separately, but the spherical nanopowders are mixed with the adhesive resin and then manufactured using the same to obtain a heat dissipation film. It is possible to provide a sufficient thermal conductivity while being able to produce a thickness of less than or equal to 탆.

그리고, 본 발명의 세라믹 나노융복합 방열필름 제조방법에 의해 제조된 세라믹 나노융복합 방열필름은 LED 조명장치를 비롯한 LED 관련 다양한 제품에 적용되며, 특히 전자제품의 전체 두께 및 방열 구조의 설치 공간에 관련한 제약이 있는 경우 유용하게 사용될 수 있다.In addition, the ceramic nano fusion heat dissipation film manufactured by the ceramic nano fusion heat dissipation film manufacturing method of the present invention is applied to various LED-related products, including LED lighting devices, and particularly to the installation space of the entire thickness and heat dissipation structure of electronic products. This can be useful when there are related constraints.

Claims (5)

출발원료 입도로 50㎛ 이상의 산화물 및 질화물 세라믹 입자를 수직형 어트리션밀을 사용하여 1차 분쇄한 후 고성능 볼밀과 초미립 분쇄매체를 적용하여 2차 분쇄함으로써 100nm 이하의 세라믹 나노 분체로 제조하는 분체 제조단계;
상기 제조된 나노 분체를 2500℃ 이상의 수직 방향 화염을 제공하는 구상화로에 분사 방식으로 상기 화염의 중앙을 향해 투입하여 구형함으로써 세라믹 필러로 완성하는 분체 구형화단계;
상기 구형화된 나노 분체의 세라믹 필러를 우레탄-아크릴레이트 및 우레탄-에폭시 기반의 열경화성 접착수지에 혼합하여 혼합물을 제조하는 혼합물 제조단계;
상기 제조된 혼합물을 박막의 필름 형태로 제조하여 방열필름을 완성하는 필름 제조단계;가 순차적으로 진행되며,
상기 혼합물 제조단계에서 상기 세라믹 필러는 서로 입도가 다른 2종 이상으로 구분하여 제공함과 더불어 서로의 배합비를 선정한 후 세라믹 필러 기준 15Wt% 이하의 실란계 커플링제를 사용하여 150℃ 온도에서 3시간 동안 처리한 후, 48시간 동결 건조하여 제조됨을 특징으로 하는 세라믹 나노융복합 방열필름 제조방법.
Oxide and nitride ceramic particles with a starting material particle size of 50 µm or more are first pulverized using a vertical attrition mill and then secondly pulverized using a high-performance ball mill and ultra fine grinding media to prepare ceramic nanopowders of 100 nm or less. Manufacturing step;
A powder spheronization step of completing the ceramic filler by injecting the prepared nanopowder into a spherical furnace which provides a flame in a vertical direction of 2500 ° C. or more toward the center of the flame;
Mixing step of preparing a mixture by mixing the ceramic filler of the spherical nano-powder to the urethane-acrylate and urethane-epoxy-based thermosetting adhesive resin;
The film manufacturing step of completing the heat dissipation film by manufacturing the prepared mixture in the form of a thin film; proceeds sequentially
In the step of preparing the mixture, the ceramic filler is divided into two or more kinds having different particle sizes, and the mixing ratios of the ceramic fillers are selected and then treated at 150 ° C. for 3 hours using a silane coupling agent of 15 Wt% or less based on the ceramic filler. After that, the ceramic nano-composite heat dissipation film production method characterized in that it is prepared by freeze drying for 48 hours.
제 1 항에 있어서,
상기 구형화단계는
상기 나노 분체를 방사시킴과 동시에 해당 나노 분체에 열을 가하여 표면 일부가 용융되도록 하며,
상기 용융시 로내에 비산된 상태로 표면장력에 의한 구형 형상으로 변경되도록 한 다음 급속 냉각시킴으로써 치밀질의 세라믹 필러로 이루어질 수 있도록 함을 특징으로 하는 세라믹 나노융복합 방열필름 제조방법.
The method of claim 1,
The spheronization step is
At the same time spinning the nano-powder to heat the nano-powder to melt a portion of the surface,
The method of manufacturing a ceramic nano-fusion composite heat dissipation film, characterized in that to be made of a dense ceramic filler by changing the spherical shape by the surface tension in the state scattered in the furnace during rapid melting.
제 2 항에 있어서,
상기 나노 분체는 질화 분위기에서 내부 기체의 고압 순환을 통해 와류를 유도시키면서 방사되도록 함을 특징으로 하는 세라믹 나노융복합 방열필름 제조방법.
The method of claim 2,
The nano-powder is a ceramic nano-composite heat dissipation film manufacturing method characterized in that to be emitted while inducing vortex through the high-pressure circulation of the internal gas in the nitriding atmosphere.
제 1 항에 있어서,
상기 세라믹 필러는 산화물계 세라믹 분말 혹은, 질화물계 세라믹 분말로 이루어짐을 특징으로 하는 세라믹 나노융복합 방열필름 제조방법.
The method of claim 1,
The ceramic filler is a ceramic nano-composite heat dissipation film production method characterized in that the oxide-based ceramic powder, or nitride-based ceramic powder.
제 1 항에 있어서,
상기 제조된 방열필름은 롤 형태로 권취하여 보관하거나 혹은, 시트형으로 일정 길이만큼 절단하여 적층 보관함을 특징으로 하는 세라믹 나노융복합 방열필름 제조방법.
The method of claim 1,
The manufactured heat dissipating film is wound and stored in a roll form, or a ceramic nano fusion heat dissipation film manufacturing method characterized in that the cut by a predetermined length in a sheet-like storage stacked.
KR1020180030762A 2018-03-16 2018-03-16 method for manufacturing ceramics nano fused compositee heat-release film KR102049600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180030762A KR102049600B1 (en) 2018-03-16 2018-03-16 method for manufacturing ceramics nano fused compositee heat-release film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180030762A KR102049600B1 (en) 2018-03-16 2018-03-16 method for manufacturing ceramics nano fused compositee heat-release film

Publications (2)

Publication Number Publication Date
KR20190108994A true KR20190108994A (en) 2019-09-25
KR102049600B1 KR102049600B1 (en) 2019-11-27

Family

ID=68068597

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180030762A KR102049600B1 (en) 2018-03-16 2018-03-16 method for manufacturing ceramics nano fused compositee heat-release film

Country Status (1)

Country Link
KR (1) KR102049600B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526776B1 (en) * 2022-10-18 2023-05-04 주식회사 엔비유 A thermal heat pad for electronic equipment with wireless charging

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157451A (en) * 1997-08-25 1999-03-02 Denki Kagaku Kogyo Kk Method and apparatus for producing inorganic spherical particle
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof
KR101274975B1 (en) 2011-10-17 2013-06-17 한국과학기술연구원 Thermally conductive materials based on thermally conductive hollow particles and fabrication method thereof
KR101336702B1 (en) * 2012-03-27 2013-12-04 한양대학교 에리카산학협력단 Metal nanopowder agglomerate with excellent compactability and the manufacturing method the same
KR101469093B1 (en) * 2014-04-28 2014-12-04 주식회사 동국알앤에스 Manufacturing apparatus for spheroidized ceramics
JP2016017014A (en) * 2014-07-09 2016-02-01 株式会社ジーエル・マテリアルズホールディングス Powder having high thermal conductivity, high electrical insulation and low thermal expansion, heat radiation structure manufactured from the same, and method of manufacturing the powder
KR101734324B1 (en) 2015-08-03 2017-05-25 한국원자력연구원 Method for preparing boron nitride nanotubes by thermal annealing of ball milled boron powder
KR20170127186A (en) 2016-05-11 2017-11-21 한국세라믹기술원 Manufacturing method of boron nitride nano sheet powder and manufacturing method of boron nitride nano sheet/polymer nano composite film using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157451A (en) * 1997-08-25 1999-03-02 Denki Kagaku Kogyo Kk Method and apparatus for producing inorganic spherical particle
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof
KR101274975B1 (en) 2011-10-17 2013-06-17 한국과학기술연구원 Thermally conductive materials based on thermally conductive hollow particles and fabrication method thereof
KR101336702B1 (en) * 2012-03-27 2013-12-04 한양대학교 에리카산학협력단 Metal nanopowder agglomerate with excellent compactability and the manufacturing method the same
KR101469093B1 (en) * 2014-04-28 2014-12-04 주식회사 동국알앤에스 Manufacturing apparatus for spheroidized ceramics
JP2016017014A (en) * 2014-07-09 2016-02-01 株式会社ジーエル・マテリアルズホールディングス Powder having high thermal conductivity, high electrical insulation and low thermal expansion, heat radiation structure manufactured from the same, and method of manufacturing the powder
KR101734324B1 (en) 2015-08-03 2017-05-25 한국원자력연구원 Method for preparing boron nitride nanotubes by thermal annealing of ball milled boron powder
KR20170127186A (en) 2016-05-11 2017-11-21 한국세라믹기술원 Manufacturing method of boron nitride nano sheet powder and manufacturing method of boron nitride nano sheet/polymer nano composite film using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526776B1 (en) * 2022-10-18 2023-05-04 주식회사 엔비유 A thermal heat pad for electronic equipment with wireless charging

Also Published As

Publication number Publication date
KR102049600B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
KR102400206B1 (en) Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP7096921B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP5689985B2 (en) BN Sintered Particles with Recesses, Method for Producing the Same, and Polymer Material
JP2018104260A (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
JP6063589B2 (en) Thermally conductive ceramic-polymer composite and method for producing the same
JP6364883B2 (en) Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device
EP3915934A1 (en) High-purity low-aluminium spherical beta silicon nitride powder, manufacturing method therefor and use thereof
JP2017036415A (en) Heat release resin sheet and device containing heat release resin sheet
JP2015193504A (en) Boron nitride particle, resin composition and heat-conductive sheet
CN116239087A (en) Ultra-pure low-radioactivity spheroid beta silicon nitride powder, and manufacturing method and application thereof
JP6394115B2 (en) Resin composition, heat dissipation sheet made of resin composition, and power device device including heat dissipation sheet
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
JP2015195287A (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
KR20220088418A (en) Boron nitride powder and manufacturing method thereof, boron carbonitride powder, and composite material and heat dissipation member
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
JP7470051B2 (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using the same, and method for producing the same
KR102049600B1 (en) method for manufacturing ceramics nano fused compositee heat-release film
JP7467980B2 (en) Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device
CN116235296A (en) Magnesium oxide powder, filler composition, resin composition, and heat-dissipating member
CN110475751B (en) Powder mixture
TW201927922A (en) Glass-coated aluminum nitride particles, method for producing same, and heat dissipating resin composition containing same
CN106380853B (en) Preparation method of spherical aluminum nitride-silicon rubber composite material
JP2022041651A (en) Inorganic filler, boron nitride composition, method of producing inorganic filler, and method of producing boron nitride composition
WO2024048663A1 (en) Aluminum nitride powder and resin composition
JP2015167181A (en) Method of manufacturing heat dissipation sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant