KR20180069827A - 전환된 생성물의 생성 속도가 증가된 업그레이드된 에뷸레이티드 베드 반응기 - Google Patents

전환된 생성물의 생성 속도가 증가된 업그레이드된 에뷸레이티드 베드 반응기 Download PDF

Info

Publication number
KR20180069827A
KR20180069827A KR1020187011374A KR20187011374A KR20180069827A KR 20180069827 A KR20180069827 A KR 20180069827A KR 1020187011374 A KR1020187011374 A KR 1020187011374A KR 20187011374 A KR20187011374 A KR 20187011374A KR 20180069827 A KR20180069827 A KR 20180069827A
Authority
KR
South Korea
Prior art keywords
catalyst
operating
bed reactor
heavy oil
rate
Prior art date
Application number
KR1020187011374A
Other languages
English (en)
Other versions
KR102623880B1 (ko
Inventor
데이비드 엠. 마운틴랜드
브렛 엠. 실버맨
미카엘 에이. 루터
리 스미스
Original Assignee
하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨 filed Critical 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨
Publication of KR20180069827A publication Critical patent/KR20180069827A/ko
Application granted granted Critical
Publication of KR102623880B1 publication Critical patent/KR102623880B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/10Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles
    • C10G49/12Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/26Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

에뷸레이티드 베드 수소첨가처리 시스템은 전환된 생성물의 생성 속도를 증가시키기 위해, 불균일 촉매 및 분산된 금속 설파이드 입자를 포함하는 이원 촉매 시스템을 사용하여 업그레이드된다. 작동 온도 및 처리량 또는 전환율 중 적어도 하나를 증가시키는 것을 포함하여, 반응기 심각도를 증가시킴으로써 생성 속도가 달성된다. 이원 촉매 시스템은 증가된 반응기 심각도를 허용하고, 장비 오염 및/또는 침전물 생성을 상당히 증가시키지 않으면서 전환된 생성물의 증가된 생성을 제공한다. 경우에 따라, 장비 오염 및/또는 침전물 생성을 감소시키면서, 전환 생성물의 생성 속도가 달성될 수 있다

Description

전환된 생성물의 생성 속도가 증가된 업그레이드된 에뷸레이티드 베드 반응기
본 발명은 이원 촉매 시스템을 사용하고, 증가된 반응기 심각도(severity)로 작동하는, 에뷸레이티드 베드 수소첨가처리(ebullated bed hydroprocessing) 방법 및 시스템과 같은, 중유 수소첨가처리 방법 및 시스템에 관한 것이다.
저품질 중유 공급원료를 보다 효율적으로 사용하고 그로부터 연료 값을 추출하는 요구가 계속 증가하고 있다. 저품질 공급원료는 표면상 524℃(975℉) 이상에서 비등하는 탄화수소를 비교적 다량으로 포함하는 특성이 있다. 이들은 또한 비교적 높은 농도의 황, 질소 및/또는 금속을 함유한다. 이러한 저품질 공급원료로부터 유도된 고비등점 분획물은 전형적으로 고 분자량(종종 더 높은 밀도 및 점도로 표시됨) 및/또는 아스팔텐 및 잔류 탄소를 포함하는 고농도의 바람직하지 않은 성분의 존재와 관련된 낮은 수소/탄소 비율을 갖는다. 아스팔텐과 잔류 탄소는 가공하기가 어려우며, 코크스의 형성에 기여하기 때문에 일반적으로 통상적인 촉매 및 수소첨가처리 장비의 오염을 야기한다. 또한, 잔류 탄소는 코킹 공정을 위한 공급물로 사용될 때와 같이, 고비등점 분획물의 하류 처리에 한계가 있다.
고농도의 아스팔텐, 잔류 탄소, 황, 질소 및 금속을 함유하는 저품질 중유 공급원료는 중질 원유, 오일 샌드 역청, 및 통상적인 제련 공정으로부터 남겨진 잔사유(residuum)를 포함한다. 잔사유(또는 "레시드(resid)")는 상압 탑 앙금(tower bottom)과 진공 탑 앙금을 의미할 수 있다. 상압 탑 앙금은 비등점이 적어도 343℃(650℉)일 수 있지만, 절단점(cut point)은 정제소마다 다를 수 있으며, 380℃(716℉) 정도 될 수 있다. 진공 탑 앙금("잔류 피치" 또는 "진공 잔사"라고도 함)은 비등점이 524℃(975℉) 이상일 수 있지만, 절단점은 정제소마다 다를 수 있으며, 538℃(1000℉) 또는 심지어 565℃(1050℉)라고 이해된다.
비교에 의하면, Alberta 경질 원유는 약 9 부피%의 진공 잔사를 함유하고, Lloydminster 중질 원유는 약 41 부피%의 진공 잔사를 함유하고, Cold Lake 역청은 약 50 부피%의 진공 잔사를 함유하고, Athabasca 역청은 약 51 부피%의 진공 잔사를 함유한다. 추가 비교에 따라, 북해 지역의 Dansk Blend와 같은 비교적 가벼운 오일은 약 15%의 진공 잔사만 함유하고 있는 반면, Ural과 같은 저품질 유럽 오일은 30% 이상의 진공 잔사를 함유하고, Arab Medium과 같은 오일은 심지어 약 40%의 진공 잔사로 더 많이 함유한다. 이러한 예는 저품질 원유를 사용할 때 진공 잔사를 전환할 수 있는 중요성을 강조한다.
중유를 유용한 최종 생성물로 전환시키는 것은 중유의 비등점을 감소시키고, 수소 대 탄소 비율을 증가시키고, 금속, 황, 질소 및 코크스 전구체와 같은 불순물을 제거하는 것과 같은 광범위한 공정을 포함한다. 상압 탑 앙금을 업그레이드하기 위해 종래의 불균일 촉매를 사용하는 수소첨가분해 공정의 예는 고정층 수소첨가처리, 에뷸레이티드 베드 수소첨가처리 및 이동층(moving-bed) 수소첨가처리를 포함한다. 진공 탑 앙금을 업그레이드하기 위한 비촉매성 업그레이드 공정에는 지연 코킹, 플렉시코킹(flexicoking), 비스브레이킹(visbreaking) 및 용제 추출과 같은 열분해가 포함된다.
본 명세서에는 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법이 개시되어 있다. 또한 본원에 개시된 방법에 의해 형성된 업그레이드된 에뷸레이티드 베드 수소첨가처리 시스템이 개시되어 있다. 개시된 방법 및 시스템은 고체지지된 촉매 및 잘-분산된(예를 들어, 균질한) 촉매 입자로 구성된 이원 촉매 시스템의 사용을 포함한다. 이원 촉매 시스템은 고형 지지 촉매만을 사용하는 동일한 반응기에 비해 에뷸레이티드 베드 반응기가 더 높은 심각도로 작동하도록 한다.
일부 구현예에서, 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법은: (1)(i) 초기 반응기 심각도 및 (ii) 전환된 생성물의 초기 생성 속도를 포함하는 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계; (2) 그 후, 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동하도록 상기 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및 (3) 에뷸레이티드 베드 반응기를 초기에 작동시킬 때보다 (iii) 더 높은 반응기 심각도 및 (iv) 전환된 생성물의 증가된 생성 속도로 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계를 포함한다.
일부 구현예에서, 더 높은 심각도로 작동시키는 단계는: 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 전환율을 유지하거나 증가시키면서, 중유의 처리량 및 에뷸레이티드 베드 반응기의 작동 온도를 증가시키는 단계를 포함한다. 다른 구현예에서, 더 높은 심각도로 작동시키는 단계는 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 처리량을 유지하거나 증가시키면서, 중유의 전환율 및 에뷸레이티드 베드 반응기의 작동 온도를 증가시키는 단계를 포함한다. 또다른 구현예에서, 더 높은 심각도로 작동시키는 단계는 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 전환율, 처리량 및 에뷸레이티드 베드 반응기의 작동 온도를 증가시키는 단계를 포함한다.
일부 구현예에서, 중유의 증가된 처리량은 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬 때보다 적어도 2.5%, 5%, 10% 또는 20% 높다. 일부 구현예에서, 중유의 증가된 전환율은 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬 때보다 적어도 2.5%, 5%, 7.5%, 10% 또는 15% 높다. 일부 구현예에서, 증가된 온도는 초기 조건에서 작동시킬 때보다 적어도 2.5℃, 5℃, 7.5℃, 또는 10℃ 높다. 그러나, 특정 경우에, 전환된 생성물의 생성 속도의 바람직한 증가를 달성하기 위해 요구되는 정확한 온도 증가는 처리되는 공급원료의 유형에 의존할 수 있으며, 상기 열거된 온도 수준과 다소 다를 수 있음을 이해할 것이다. 이것은 여러 유형의 공급원료의 고유 반응성의 차이 때문이다.
일부 구현예에서, 분산된 금속 설파이드 촉매 입자는 크기가 1 ㎛ 미만, 또는 크기가 약 500 nm 미만, 또는 크기가 약 250 nm 미만, 또는 크기가 약 100 nm 미만, 또는 크기가 약 50 nm 미만, 또는 크기가 약 25 nm 미만, 또는 크기가 약 10 nm 미만, 또는 크기가 약 5 nm 미만이다.
일부 구현예에서, 분산된 금속 설파이드 촉매 입자는 촉매 전구체로부터의 중유 내에서 인시츄 형성된다. 예를 들어 비제한적으로, 분산된 금속 설파이드 촉매 입자는 촉매 전구체의 열분해 및 활성 금속 설파이드 촉매 입자의 형성 전에 촉매 전구체를 중유 전체에 블렌딩함으로써 형성될 수 있다. 추가 예로서, 방법은 촉매 전구체를 희석제 탄화수소와 혼합하여 희석된 전구체 혼합물을 형성하는 단계, 희석된 전구체 혼합물을 중유와 블렌딩하여 컨디셔닝된 중유를 형성하는 단계 및 컨디셔닝된 중유를 가열하여 촉매 전구체를 분해하고, 분산된 금속 설파이드 촉매 입자를 인시츄 형성하는 단계를 포함할 수 있다.
일부 구현예에서, 중유로부터의 전환된 생성물의 생성 속도를 증가시키기 위해 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법은: (1)(i)초기 처리량, (ii) 작동 온도, (iv) 전환된 생성물의 초기 생성 속도, 및 (iv) 초기 오염 속도 및/또는 침전물 생성 속도를 포함하는 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계; (2) 그 후, 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동하도록 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및 (3) 초기 조건에서 작동시킬때보다 더 높은 처리량, 더 높은 작동 온도, 전환된 생성물의 증가된 생성 속도 및 동일하거나 낮은 오염 속도 및/또는 침전물 생성 속도에서, 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계를 포함한다.
일부 구현예에서, 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법은: (1)(i)초기 전환율, (ii) 초기 작동 온도, (iii) 전환된 생성물의 초기 생성 속도, 및 (iv) 초기 오염 속도 및/또는 침전물 생성 속도를 포함하는 초기 조건에서, 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계; (2) 그 후, 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동하도록 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및 (3) 초기 조건에서 작동시킬때보다 더 높은 전환율, 더 높은 작동 온도, 전환된 생성물의 증가된 생성 속도 및 동일하거나 낮은 오염 속도 및/또는 침전물 생성 속도에서, 중유를 수소첨가처리하기 위해 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계를 포함한다.
본 발명의 상기 및 다른 잇점들 및 특징들은 이하의 설명 및 첨부된 청구범위로부터 보다 완전히 명백해질 것이며, 또는 후술되는 본 발명의 실시에 의해 알 수 있을 것이다.
본 발명의 상기 및 다른 잇점들 및 특징들을 더 명확히 하기 위해, 첨부된 도면들에 도시된 특정 구현예들을 참조하여 본 발명의 보다 구체적인 설명이 제공될 것이다. 이들 도면은 본 발명의 전형적인 구현예를 도시한 것일뿐, 따라서 본 발명의 범주를 제한하는 것으로 간주되어서는 안된다. 본 발명은 첨부된 도면의 사용을 통해 추가의 특이성 및 세부사항으로 기술되고 설명될 것이다:
도 1은 아스팔텐의 가설적인 분자 구조를 도시하며;
도 2a 및 2b는 예시적인 에뷸레이티드 베드 반응기를 개략적으로 도시하며;
도 2c는 다수의 에뷸레이티드 베드 반응기를 포함하는 예시적인 에뷸레이티드 베드 수소첨가처리 시스템을 개략적으로 도시하며;
도 2d는 다수의 에뷸레이티드 베드 반응기 및 2개의 반응기 사이의 스테이지간 분리기(interstage separator)를 포함하는 예시적인 에뷸레이티드 베드 수소첨가처리 시스템을 개략적으로 도시하며;
도 3a는 더 높은 심각도 및 전환된 생성물의 증가된 생성 속도에서 작동시키기 위해 에뷸레이티드 베드 반응기를 업그레이드하기 위한 예시적인 방법을 도시하는 흐름도이며;
도 3b는 더 높은 전환율 및 전환된 생성물의 증가된 생성 속도에서 작동시키기 위해 에뷸레이티드 베드 반응기를 업그레이드하는 예시적인 방법을 도시하는 흐름도이며;
도 3c는 더 높은 처리량, 더 높은 심각도 및 전환된 생성물의 증가된 생성 속도로 작동시키기 위해 에뷸레이티드 베드 반응기를 업그레이드하는 예시적인 방법을 도시하는 흐름도이며;
도 3d는 더 높은 전환율 및 처리량 및, 전환된 생성물의 증가된 생성 속도로 작동시키기 위해 에뷸레이티드 베드 반응기를 업그레이드하는 예시적인 방법을 도시하는 흐름도이며;
도 4는 이원 촉매 시스템을 사용하는 예시적인 에뷸레이티드 베드 수소첨가처리 시스템을 개략적으로 도시하며;
도 5는 불균일 촉매 단독 또는, 불균일 촉매 및 분산된 금속 설파이드 입자를 포함하는 이원 촉매 시스템 중 어느 하나를 사용하도록 구성된 파일롯 스케일 에뷸레이티드 베드 수소첨가처리 시스템을 개략적으로 도시하며;
도 6은 실시예 9 내지 13에 따라 상이한 분산된 금속 설파이드 농도를 사용하여 Ural 진공 잔사(VR)를 수소첨가처리할 때의 기준선 수준과 비교하여 잔류물 전환율의 함수로서 진공 탑 앙금(VTB)내 상대 IP-375 침전물을 그래픽으로 나타내는 산점도 및 선 그래프이며;
도 7은 실시예 14 내지 16에 따라 상이한 분산된 금속 설파이드 농도를 사용하여 Arab 중간 진공 잔사(VR)를 수소첨가처리할 때 반응기 온도의 함수로서 레시드 전환율을 그래픽으로 나타낸 산점도 및 선 그래프이며;
도 8은 실시예 14 내지 16에 따른 상이한 촉매를 사용하여 Arab 중간 진공 잔사(VR)를 수소첨가처리할 때 레시드 전환율의 함수로서 O-6 앙금내 IP-375 침전물을 그래픽으로 나타내는 산점도 및 선 그래프이며;
도 9는 실시예 14 내지 16에 따라 상이한 분산된 금속 설파이드 농도를 사용하여 Arab 중간 진공 잔사(VR)를 수소첨가처리할 때 레시드 전환율의 함수로서 아스팔텐 전환율을 그래픽으로 나타내는 산점도 및 선 그래프이며; 및
도 10은 실시예 14 내지 16에 따라 상이한 분산된 금속 설파이드 농도를 사용하여 Arab 중간 진공 잔사(VR)를 수소첨가처리할 때 레시드 전환율의 함수로서 마이크로카본 잔류물(MCR) 전환율을 그래픽으로 나타내는 산점도 및 선 그래프이다.
I. 도입 및 정의
본 발명은 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법 및 상기 개시된 방법에 의해 형성된 업그레이드된 에뷸레이티드 베드 수소첨가처리 시스템에 관한 것이다. 상기 방법 및 시스템은 (1) 이원 촉매 시스템을 사용하는 것 및 (2) 전환된 생성물의 생성 속도를 증가시키기 위해 보다 높은 반응기 심각도로 에뷸레이티드 베드 반응기를 작동시키는 것을 포함한다.
예를 들어, 중유로부터의 전환된 생성물의 생성 속도를 증가시키기 위해 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법은: (1)(i) 초기 반응기 심각도 및 (ii) 전환된 생성물의 초기 생성 속도를 포함하는 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계; (2) 그 후, 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동시키기 위해 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및 (3) 에뷸레이티드 베드 반응기를 초기에 작동시킬 때보다 (iii) 보다 높은 반응기 심각도 및 (iv) 전환된 생성물의 증가된 생성 속도로 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계를 포함한다.
용어 "중유 공급원료"는 중질원유, 오일 샌드 역청, 제련 공정의 잔사 및 배럴의 앙금(예를 들어, 비스브레이커 앙금들) 및 상당량의 고비등점 탄화수소 분획물을 함유하고/하거나, 불균일 촉매를 불활성화시킬 수 있고/있거나 코크스 전구체 및 침전물의 형성을 야기하거나 초래할 수 있는 상당한 양의 아스팔텐을 포함하는 임의의 다른 저급 재료를 지칭한다. 중유 공급원료의 예로는 Lloydminster 중유, Cold Lake 역청, Athabasca 역청, 상압 탑 앙금, 진공 탑 앙금, 잔사유(또는 "레시드"), 레시드 피치, 진공 잔사(예를 들어, Ural VR, Arab Medium VR, Athabasca VR, Cold Lake VR, Maya VR 및 Chichimene VR), 용제 탈아스팔텐화에 의해 수득된 탈아스팔텐화 액체, 탈아스팔텐화의 부산물로서 수득된 아스팔텐 액체 및, 원유, 타르 샌드로부터의 역청, 액화 석탄, 오일 셰일 또는 석탄 타르 공급원료를 증류, 고온 분리, 용매 추출 등에 적용한 후 남은 비휘발성 액체 분획물을 포함하지만, 이에 한정되지 않는다. 추가 예로서, 상압 탑 앙금(ATB)은 표면상 비등점이 적어도 343℃(650℉)일 수 있지만, 절단점이 정제소마다 다를 수 있으며, 380℃(716℉) 정도 될 수 있다는 것을 이해해야 한다. 진공 탑 앙금은 적어도 524℃(975℉)의 표면상 비등점을 가질 수 있지만, 절단점은 정제소마다 다를 수 있으며, 538℃(1000℉) 또는 심지어 565℃(1050℉) 정도 될 수 있다고 이해된다.
용어 "아스팔텐"은 전형적으로 프로판, 부탄, 펜탄, 헥산 및 헵탄과 같은 파라핀계 용매에 불용성인 중유 공급원료의 물질을 지칭한다. 아스팔텐은 황, 질소, 산소 및 금속과 같은 헤테로 원자에 의해 함께 결합된 응축된 고리 화합물의 시트를 포함할 수 있다. 아스팔텐은 넓게는 80 내지 1200개의 탄소 원자를 갖는 광범위한 착체 화합물을 포함하며, 용액 기술에 의해 결정된 바와 같이, 분자량이 1200 내지 16,900 범위에서 우세하다. 원유 중 금속의 약 80 내지 90%는 더 높은 농도의 비금속 헤테로 원자와 함께 아스팔텐 분자가 원유의 다른 탄화수소보다 더 친수성이고 덜 소수성이 되도록 하는 아스팔텐 분획에 포함되어있다. Chevron의 A.G. Bridge 및 공동 연구원이 개발한 가상의 아스팔텐 분자 구조가 도 1에 도시되어 있다. 일반적으로, 아스팔텐은 전형적으로 불용성 방법의 결과를 기초로 하여 정의되며, 아스팔텐의 정의는 1개 이상 사용될 수 있다. 구체적으로, 아스팔텐의 일반적으로 사용되는 정의는 헵탄 불용물에서 톨루엔 불용물을 뺀 것(즉, 아스팔텐은 톨루엔에 용해성이고; 톨루엔에 불용성인 침전물 및 잔사는 아스팔텐으로 간주되지 않음)이다. 이러한 방식으로 정의된 아스팔텐은 "C7 아스팔텐"으로 지칭될 수 있다. 그러나 펜탄 불용물에서 톨루엔 불용물을 뺀 것과 같이 측정된, 동일한 유효성으로 대체 정의가 사용될 수 있으며, 일반적으로 "C5 아스팔텐"이라고 지칭된다. 본 발명의 실시예에서는 C7 아스팔텐 정의가 사용되지만, C5 아스팔텐의 정의가 용이하게 치환될 수 있다.
중유의 "품질"은: (i) 비등점; (ii) 황 농도; (iii) 질소 농도; (iv) 금속의 농도; (v) 분자량; (vi) 수소 대 탄소 비율; (vii) 아스팔텐 함량; 및 (viii) 침전물 형성 경향으로부터 선택되는 적어도 하나의 특성으로 측정되지만, 이에 한정되지 않는다.
"저품질 중유" 및/또는 "저품질 공급원료 블렌드"는 (i) 고비등점; (ii) 높은 황 농도; (iii) 높은 질소 농도; (iv) 높은 금속 농도; (v) 높은 분자량(흔히 보다 높은 밀도 및 점도로 표시됨); (vi) 낮은 수소 대 탄소 비율; (vii) 높은 아스팔텐 함량; 및 (viii) 보다 큰 침전물 형성 경향으로부터 선택되는 초기 중유 공급원료와 비교하여 적어도 하나의 낮은 품질 특성을 가질 것이지만, 이에 한정되지 않는다.
용어 "기회 공급원료"는 초기 중유 공급원료와 비교하여 적어도 하나의 저품질 특성을 갖는 저품질 중유 및 저품질 중유 공급원료 블렌드를 지칭한다.
"수소첨가분해" 및 "수소화 전환"이라는 용어는 중유 공급원료의 비등 범위를 감소시키는 것이 주 목적이고, 공급원료의 실질적인 부분이 원래 공급원료보다 비등 범위가 낮은 생성물로 전환되는 공정을 의미한다. 수소첨가분해 또는 수소화 전환은 일반적으로 더 큰 탄화수소 분자를 보다 적은 수의 탄소 원자 및 보다 높은 수소 대 탄소 비를 갖는 보다 작은 분자 단편으로 단편화하는 것을 포함한다. 수소첨가분해가 일어나는 기작은 전형적으로 열 단편화동안 탄화수소 자유 라디칼의 형성후, 자유 라디칼 말단 또는 모이어티를 수소로 캡핑하는 것을 포함한다. 수소첨가분해동안 탄화수소 자유 라디칼과 반응하는 라디칼 또는 수소원자는 활성 촉매 부위에서 또는 활성 촉매 부위에 의해 생성될 수 있다.
용어 "수소첨가처리"는 공급원료로부터 황, 질소, 산소, 할로겐화물 및 미량 금속과 같은 불순물을 제거하고, 올레핀을 포화시키고, 및/또는 탄화수소 자유 라디칼을 그들 자신과 반응하도록 허용하기보다는 수소와 반응시킴으로써 안정화시키는 것을 주된 목적으로하는 작업을 의미한다. 상기 주된 목적은 공급원료의 비등 범위를 변경하지 않는 것이다. 수소첨가처리는 고정층 반응기를 사용하여 수행되는 것이 가장 일반적이지만, 다른 수소첨가처리 반응기도 수소첨가처리에 사용될 수도 있으며, 이의 예로는 에뷸레이티드 베드 수소처리기가 있다.
물론, "수소첨가분해" 또는 "수소화 전환"은 또한 올레핀 포화 및 "수소처리"와 통상적으로 연합된 다른 반응뿐만 아니라 공급원료로부터 황 및 질소를 제거하는 것을 포함할 수 있다. "수소처리" 및 "수소화 전환"이라는 용어는 넓게는 "수소첨가분해" 및 "수소첨가처리" 공정을 모두 지칭하며, 이는 스펙트럼의 반대쪽 끝을 정의하고, 스펙트럼을 따라 모든 것을 의미한다.
용어 "수소첨가분해 반응기"는 수소 및 수소첨가분해 촉매의 존재하에 공급원료의 수소첨가분해(즉, 비등 범위 감소)가 주 목적인 임의의 용기를 지칭한다. 수소첨가분해 반응기는 중유 공급원료 및 수소가 도입될 수 있는 유입구, 업그레이드된 공급원료 또는 물질이 배출될 수 있는 배출구 및, 큰 탄화수소 분자를 더 작은 분자로 단편화시키도록 탄화수소 자유 라디칼을 형성하기 위한 충분한 열 에너지를 갖는 것을 특징으로 한다. 수소첨가분해 반응기의 예는 슬러리 상 반응기(즉, 2상, 기체-액체 시스템), 에뷸레이티드 베드 반응기(즉, 3상, 기체-액체-고체 시스템), 고정층 반응기(즉, 일반적으로 수소를 중유에 병류로, 그러나 가능하게는 역류 유동시키는, 고형 불균일 촉매의 고정층을 통해 하향 유동 또는 상향 유동하는 액체 공급물을 포함하는 3상 시스템)를 포함하지만, 이에 한정되지는 않는다.
용어 "수소첨가분해 온도"는 중유 공급원료의 현저한 수소첨가분해를 일으키는데 필요한 최소 온도를 지칭한다. 일반적으로, 수소첨가분해 온도는 바람직하게는 약 399℃(750℉) 내지 약 460℃(860℉)의 범위, 더욱 바람직하게는 약 418℃(785℉) 내지 약 443℃(830℉)의 범위, 및 가장 바람직하게는 약 421℃(790℉) 내지 약 440℃(825℉)의 범위에 속할 것이다.
용어 "기체-액체 슬러리 상 수소첨가분해 반응기"는 연속 액상 및, 액상 내에 기상 기포의 "슬러리"를 형성하는 기체 분산 상을 포함하는 수소첨가처리 반응기를 지칭한다. 액상은 전형적으로 저농도의 분산된 금속 설파이드 촉매 입자를 함유할 수 있는 탄화수소 공급원료를 포함하고, 기상은 전형적으로 수소 가스, 황화수소 및 기화된 저비등점 탄화수소 생성물을 포함한다. 액상은 선택적으로 수소 공여체 용매를 포함할 수 있다. "기체-액체-고체, 3상 슬러리 수소첨가분해 반응기"라는 용어는 액체 및 기체와 함께 고체 촉매가 사용되는 경우에 사용된다. 기체는 수소, 황화수소 및 기화된 저비등점 탄화수소 생성물을 함유할 수 있다. "슬러리 상 반응기"라는 용어는 두 유형의 반응기(예를 들어, 분산된 금속 설파이드 촉매 입자를 갖는 입자, 미크론-크기 이상의 입자 촉매를 갖는 입자 및 이들 모두를 포함하는 입자) 모두를 광범위하게 의미한다.
용어 "고체 불균일 촉매", "불균일 촉매" 및 "지지된 촉매"는 주로 수소첨가분해, 수소화 전환, 수소첨가탈금속화(hydrodemetallization) 및/또는 수소처리를 위해 고안된 촉매를 비롯한 에뷸레이티드 베드 및 고정층 수소첨가처리 시스템에서 전형적으로 사용되는 촉매를 지칭한다. 불균일 촉매는 전형적으로: (i) 큰 표면적 및 상호연결된 채널 또는 공극을 갖는 촉매 지지체; 및 (ii) 채널 또는 공극 내에 분산된 코발트, 니켈, 텅스텐 및 몰리브덴의 설파이드와 같은 미세 활성 촉매 입자를 포함한다. 지지체의 공극은 전형적으로 불균일 촉매의 기계적 완전성을 유지하고, 반응기 내의 과도한 미립자의 파괴 및 형성을 방지하기 위해 제한된 크기를 갖는다. 불균일 촉매는 원통형 펠릿, 또는 구형 고체로 제조될 수 있다.
용어 "분산된 금속 설파이드 촉매 입자" 및 "분산된 촉매"는 1 ㎛ 미만인 입자 크기, 예를 들어, 직경이 약 500 nm 미만, 또는 직경이 약 250 nm 미만, 또는 직경이 약 100 nm 미만, 또는 직경이 약 50 nm 미만, 또는 직경이 약 25 nm 미만, 또는 직경이 약 10 nm 미만 또는 직경이 약 5 nm 미만인 입자 크기를 갖는 촉매 입자를 지칭한다. 용어 "분산된 금속 설파이드 촉매 입자"는 분자 또는 분자적으로 분산된 촉매 화합물을 포함할 수 있다.
용어 "분자적으로 분산된 촉매"는 탄화수소 공급원료 또는 적합한 희석제 내의 다른 촉매 화합물 또는 분자로부터 본질적으로 "용해"되거나 해리되는 촉매 화합물을 지칭한다. 그것은 함께 결합된 약간의 촉매 분자(예를 들어, 15 분자 이하)를 함유하는 매우 작은 촉매 입자를 포함할 수 있다.
용어 "잔류 촉매 입자"는 한 용기에서 다른 용기로(예를 들어, 수소첨가처리 반응기로부터 분리기 및/또는 다른 수소첨가처리 반응기로) 전달될 때 업그레이드된 물질로 남아있는 촉매 입자를 지칭한다.
용어 "컨디셔닝된 공급원료"는 촉매 전구체가 결합되어 충분히 혼합되어 촉매 전구체의 분해 및 활성 촉매의 형성시 촉매가 공급원료내 인시츄 형성된 분산된 금속 설파이드 촉매 입자를 포함할 수 있는 탄화수소 공급원료를 지칭한다.
용어 "업그레이드", "업그레이드하는" 및 "업그레이드했다"는 수소첨가처리되는 중이거나 수소첨가처리된 공급원료, 또는 얻은 물질 또는 생성물을 기술하기 위해 사용될때, 공급원료의 분자량 감소, 공급원료의 비등점 범위의 감소, 아스팔텐의 농도 감소, 탄화수소 자유 라디칼의 농도 감소, 및/또는 불순물, 예컨대 황, 질소, 산소, 할로겐화물 및 금속의 양의 감소 중 하나 이상을 지칭한다.
용어 "심각도"는 일반적으로 수소첨가처리동안 중유에 도입되는 에너지의 양을 지칭하며, 종종 상기 온도 노출 지속과 조합하여, 수소첨가처리 반응기의 작동 온도와 관련된다(즉, 고온은 더 높은 심각도와 관련되며; 저온은 더 낮은 심각도와 관련됨). 심각도 증가는 일반적으로 바람직한 생성물 및 바람직하지 않은 전환 생성물을 포함하여 수소첨가처리 반응기에 의해 생성된 전환 생성물의 양을 증가시킨다. 바람직한 전환 생성물은 나프타, 디젤, 제트 연료, 등유, 왁스, 연료유 등과 같은 최종 생성물을 포함할 수 있는, 감소된 분자량, 비등점 및 비중을 갖는 탄화수소를 포함한다. 다른 바람직한 전환 생성물은 통상적인 정제 및/또는 증류 공정을 사용하여 추가로 처리될 수 있는 고비점 탄화수소를 포함한다. 바람직하지 않은 전환 생성물에는 코크스, 침전물, 금속 및, 반응기, 분리기, 필터, 파이프, 탑, 및 불균일 촉매의 내부 성분들과 같이 수소첨가처리 장비에 부착되어 오염을 유발할 수 있는 기타 고체 물질이 포함된다. 바람직하지 않은 전환 생성물은 상압 탑 앙금("ATB") 또는 진공 탑 앙금("VTB")과 같이 증류 후 남은 전환되지 않은 레시드를 의미할 수도 있다. 바람직하지 않은 전환 생성물을 최소화하면, 장비 오염 및, 장비를 세척하는데 필요한 셧다운이 감소된다. 그럼에도 불구하고, 하류의 분리 장비가 적절히 기능하기 위해 및/또는 장비 상에 증착하고, 오염시키지만 남은 레시드에 의해 수송될 수 있는 코크스, 침전물, 금속 및 기타 고체 물질을 함유하기 위한 액체 수송 매질을 제공하기 위해 바람직한 양의 전환되지 않은 레시드가 존재할 수 있다.
온도 이외에, "심각도"는 "전환율" 및 "처리량" 중 하나 또는 둘 모두와 관련될 수 있다. 증가된 심각도가 증가된 전환율 및/또는 증가 또는 감소된 처리량을 포함하는지 여부는 중유 공급원료의 품질 및/또는 전체 수소첨가처리 시스템의 물질 밸런스(mass balance)에 의존할 수 있다. 예를 들어, 더 많은 양의 공급 재료를 전환시키고/시키거나 더 많은 양의 재료를 하류 장비에 제공하고자 하는 경우, 증가된 심각도는 분획물 전환을 반드시 증가시키지 않으면서 주로 처리량 증가를 포함할 수 있다. 이것은 레시드 분획물(ATB 및/또는 VTB)이 연료유로서 판매되고 증가된 처리량없이 전환율이 증가하면 이 제품의 양이 감소할 수 있는 경우를 포함할 수 있다. 업그레이드된 물질 대 레시드 분획물의 비율을 증가시키고자 하는 경우, 처리량을 반드시 증가시키지 않으면서 주로 전환율을 증가시키는 것이 바람직할 수 있다. 수소첨가처리 반응기에 도입되는 중유의 품질이 변동하는 경우, 업그레이드된 물질 대 레시드 분획물의 원하는 비율 및/또는 생성된 최종 생성물(들)의 원하는 절대 정량(들)을 유지하기 위해 전환율 및 처리량 중 하나 또는 둘 다를 선택적으로 증가 또는 감소시키는 것이 바람직할 수 있다.
용어 "전환율" 및 "분획물 전환율"은 저비등점 및/또는 저분자량 물질로 유익하게 전환되는 중유의 비율(종종 백분율로 표시됨)을 의미한다. 전환율은 정의된 절단점보다 낮은 비등점을 갖는 생성물로 전환되는 초기 레시드 함유물(즉, 정의된 잔사 절단점보다 높은 비등점을 갖는 성분)의 백분율로 표현된다. 잔사 절단점의 정의는 다양할 수 있으며, 표면상 524℃(975℉), 538℃(1000℉), 565℃(1050℉) 등을 포함할 수 있다. 규정된 절단점보다 높은 비등점을 갖는 성분의 농도를 결정하기 위해 공급물 및 생성물 스트림의 증류 분석에 의해 측정할 수 있다. 분획물 전환율은(F-P)/F로 표현되며, 여기서 F는 조합된 공급물 스트림내 레시드의 양이고, P는 조합된 생성물 스트림의 양이며, 공급물 및 생성물 레시드 모두가 동일한 절단점 정의에 기반을 두고 있다. 레시드의 양은 정의된 절단점보다 높은 비등점을 갖는 성분의 질량을 기준으로 정의되지만, 체적 또는 몰의 정의도 사용할 수 있다.
용어 "처리량"은 시간의 함수로서 수소첨가처리 반응기에 도입되는 공급 재료의 양을 지칭한다. 이는 또한 수소첨가처리 반응기에서 제거된 전환 생성물의 총량과 관련되어 있으며, 바람직한 생성물과 바람직하지 않은 생성물의 조합된 양을 포함한다. 처리량은 1일당 배럴과 같은 용적 용어 또는 시간당 미터톤과 같은 질량 용어로 표시될 수 있다. 일반적으로 처리량은 오로지 중유 공급원료 그 자체(예를 들어, 진공 탑 앙금 등)의 질량 또는 용적 공급 속도로 정의된다. 이 정의에는 일반적으로 수소첨가전환 단위에 대한 전체 공급물에 때때로 포함될 수 있는 희석제 또는 다른 성분의 양이 포함되지 않지만, 다른 성분을 포함하는 정의도 사용될 수 있다.
"침전물"이란 용어는 침전될 수 있는 액체 스트림에 함유된 고형물을 의미한다. 침전물에는 전환 후 냉각시 침전되는 무기물, 코크스 또는 불용성 아스팔텐이 포함될 수 있다. 석유 제품의 침전물은 일반적으로 ISO 10307 및 ASTM D4870의 일부로 게시된 잔여 연료 오일의 총 침전물에 대한 IP-375 고온 여과 시험 절차를 사용하여 측정된다. 다른 테스트에는 IP-390 침전물 테스트와 쉘 고온 여과 테스트가 포함된다. 침전물은 가공 및 취급 동안 고형물을 형성하는 경향이 있는 오일 성분과 관련된다. 이러한 고체-형성 성분은 제품의 품질 저하 및 오염과 관련된 작동성 문제를 포함하여, 수소첨가전환 공정에서 다수의 바람직하지 못한 영향을 미친다. 침전물의 엄격한 정의는 침전물 시험에서 고형물의 측정에 근거하고 있지만, 용어 자체가 오일 자체의 고형물-형성 구성요소를 언급하는데 더 느슨하게 사용되는 것이 일반적임을 유념해야 한다.
용어 "오염(fouling)"은 가공을 방해하는 바람직하지 않은 상(오염 물질)의 형성을 의미한다. 오염 물질은 일반적으로 처리 장비 내에 퇴적되어 수집되는 탄소 함유 물질 또는 고체이다. 오염은 장비 셧다운으로 인한 생산 손실, 장비 성능의 저하, 열교환기 또는 히터에서의 오염 침전물질의 절연 효과로 인한 에너지 소비 증가, 장비 세척을 위한 유지보수 비용 증가, 분획기 효율 감소 및 불균일 촉매의 반응성 감소를 야기할 수 있다.
II. 에뷸레이티드 베드 수소첨가처리 반응기 및 시스템
도 2a 내지 도 2d는 본 발명에 따른 이원 촉매 시스템을 사용하기 위해 업그레이드될 수 있는, 중유와 같은 탄화수소 공급원료를 수소첨가처리하는데 사용되는 에뷸레이티드 베드 수소첨가처리 반응기 및 시스템의 비제한적인 예를 개략적으로 도시한다. 예시적인 에뷸레이티드 베드 수소첨가처리 반응기 및 시스템은 스테이지간 분리, 일체형 수소처리 및/또는 일체형 수소첨가분해를 포함할 수 있음을 이해할 것이다.
도 2a는 C-E Lummus에 의해 개발된 LC-정련 수소첨가분해 시스템에 사용되는 에뷸레이티드 베드 수소첨가처리 반응기(10)를 개략적으로 도시한다. 에뷸레이티드 베드 반응기(10)는 공급원료(14) 및 가압 수소 가스(16)가 도입되는 바닥 근처의 유입구(12)와, 수소첨가처리 물질(20)이 배출되는 상부의 배출구(18)를 포함한다.
15반응기(10)는 에뷸레이티드 베드 반응기(10)를 통해 액체 탄화수소 및 가스(기포(25)로 개략적으로 도시됨)의 상향 운동에 의해 중력에 대항하여 확장되거나 유동화된 상태로 유지되는 불균일 촉매(24)를 포함하는 확장된 촉매 구역(22)을 추가로 포함한다. 확장된 촉매 구역(22)의 하단부는 확장된 촉매 구역(22)을 에뷸레이티드 베드 반응기(10)의 바닥과 분배기 격자 플레이트(26) 사이에 위치한 하부의 불균일 촉매 자유 구역(28)으로부터 분리시키는, 분배기 격자 플레이트(26)에 의해 정의된다. 분배기 격자 플레이트(26)는 반응기를 가로질러 수소 가스 및 탄화수소를 균일하게 분포시키도록 구성되고, 불균일 촉매(24)가 중력의 힘에 의해 하부 불균일 촉매 자유 구역(28)으로 떨어지는 것을 방지한다. 불균일 촉매(24)가 주어진 수준의 확장 또는 분리에 도달함에 따라, 확장된 촉매 구역(22)의 상단은 중력의 하강력이, 에뷸레이티드 베드 반응기(10)를 통과하는, 윗쪽으로 이동하는 공급원료 및 가스의 상승력과 같거나 이를 초과하기 시작하는 높이에 있다. 상기 확장된 촉매 구역(22)은 상부 불균일 촉매 자유 구역(30)이다.
에뷸레이티드 베드 반응기(10) 내의 탄화수소 및 다른 물질은 상부 불균일 촉매 자유 구역(30)으로부터 에뷸레이티드 베드 반응기(10)의 바닥의 에뷸레이팅(ebullating) 펌프(34)에 연결된 에뷸레이티드 베드 반응기(10)의 중심에 위치된 재순환 채널(32)에 의해 하부 불균일 촉매 자유 구역(28)으로 연속적으로 재순환된다. 재순환 채널(32)의 상부에는 공급원료가 상부 불균일 촉매 자유 구역(30)으로부터 배출되는 깔때기 형상의 재순환 컵(36)이 있다. 재순환 채널(32)을 통해 아래쪽으로 유도된 재료는 하부 촉매 자유 구역(28)으로 들어간 후, 분배기 격자 플레이트(26)를 통해 윗쪽으로 통과하고, 확장된 촉매 구역(22)으로 통과하며, 여기에서 유입구(12)를 통해 에뷸레이티드 베드 반응기(10)에 들어가는 새로 첨가된 공급원료(14) 및 수소 가스(16)와 혼합된다. 혼합된 재료들을 에뷸레이티드 베드 반응기(10)를 통해 윗쪽으로 연속순환시키면, 확장된 촉매 구역(22) 내에서 불균일 촉매(24)를 확장되거나 유동화된 상태로 유지시키며, 채널링을 최소화하고, 반응 속도를 제어하고, 발열 수소화 반응에 의해 방출되는 열을 안전한 수준으로 유지시킨다.
새로운 불균일 촉매(24)는 촉매 입구 튜브(38)를 통해 확장된 촉매 구역(22)과 같은 에뷸레이티드 베드 반응기(10)로 도입되고, 에뷸레이티드 베드 반응기(10)의 상부를 통과하여 확장된 촉매 구역(22)으로 직접 도입된다. 사용된 불균일 촉매(24)는 확장된 촉매 구역(22)의 하단부로부터 분배기 격자 플레이트(26) 및 에뷸레이티드 베드 반응기(10)를 통과하는 촉매 회수 튜브(40)를 통해, 확장된 촉매 구역(22)으로부터 배출된다. 불균일 촉매(24)의 무작위 분포가 전형적으로 "소비된" 촉매로서 에뷸레이티드 베드 반응기(10)로부터 회수되도록, 촉매 회수 튜브(40)는 완전히 소비된 촉매, 부분적으로 소비되었지만 활성인 촉매, 및 새로 첨가된 촉매를 구별할 수 없을 것이다.
에뷸레이티드 베드 반응기(10)로부터 회수된 업그레이드된 재료(20)는 분리기(42)(예를 들어 고온 분리기, 스테이지간 차압 분리기 또는, 증류탑)로 도입될 수 있다. 분리기(42)는 하나 이상의 휘발성 분획물(46)을 비-휘발성 분획물(48)로부터 분리한다.
도 2b는 하이드로카본 리서치 인코포레이티드(Hydrocarbon Research Incorporated)에 의해 개발되고 현재 엑센(Axens)에 의해 인가된 H-오일 수소첨가분해 시스템에 사용되는 에뷸레이티드 베드 반응기(110)를 개략적으로 도시한다. 에뷸레이티드 베드 반응기(110)는 중유 공급원료(114) 및 가압 수소 가스(116)가 도입되는 유입구(112) 및 업그레이드된 재료(120)가 배출되는 배출구(118)를 포함한다. 불균일 촉매(124)를 포함하는 확장된 촉매 구역(122)은 반응기(110)의 바닥과 분배기 격자 플레이트(126) 사이의 하부 촉매 자유 구역(128)으로부터 확장된 촉매 구역(122)을 분리하는 분배기 격자 플레이트(126), 및 확장된 촉매 구역(122)과 상부 촉매 자유 구역(130) 사이의 대략적인 경계를 한정하는 상단(129)에 의해 경계된다. 점선으로 표시된 경계선(131)은 확장되거나 유동화되지 않은 상태에서의 불균일 촉매(124)의 대략적인 수준을 개략적으로 도시한다.
물질은 반응기(110)의 외부에 위치된 에뷸레이팅 펌프(134)에 연결된 순환 채널(132)에 의해 반응기(110) 내에서 연속적으로 재순환된다. 상부 촉매 자유 구역(130)으로부터 깔때기 형상의 재순환 컵(136)을 통해 재료들이 추출된다. 재순환 컵(136)은 나선형 모양이며, 이는 에뷸레이팅 펌프(134)의 캐비테이션(cavitation)을 방지하기 위해 수소 기포(125)를 재순환 재료(132)로부터 분리시키는 것을 돕는다. 재순환된 물질(132)은 새로운 공급원료(116) 및 수소 기체(118)와 블렌딩되는 하부 촉매 자유 구역(128)에 들어가고, 그 혼합물이 분배기 격자 플레이트(126)를 통해, 확장된 촉매 구역(122)으로 들어간다. 새로운 촉매(124)는 촉매 입구 튜브(136)를 통해 확장된 촉매 구역(122) 내로 도입되고, 소비된 촉매(124)는 촉매 배출 튜브(140)를 통해 확장된 촉매 구역(122)으로부터 배출된다.
H-오일 에뷸레이티드 베드 반응기(110)와 LC-정련 에뷸레이티드 베드 반응기(10) 사이의 주된 차이점은 에뷸레이팅 펌프의 위치이다. H-오일 반응기(110)에서의 에뷸레이팅 펌프(134)는 반응 챔버의 외부에 위치한다. 반응기(110)의 바닥의 재순환 포트(141)를 통해 재순환 공급원료가 도입된다. 재순환 포트(141)는 하부 촉매 자유 구역(128)을 통해 재료를 균일하게 분배하는 것을 돕는 분배기(143)를 포함한다. 업그레이드된 재료(120)는 분리기(142)로 보내지는 것으로 보여지며, 이는 하나 이상의 휘발성 분획물(146)을 비휘발성 분획물(148)로부터 분리시킨다.
도 2c는 다중 에뷸레이티드 베드 반응기를 포함하는 에뷸레이티드 베드 수소첨가처리 시스템(200)을 개략적으로 도시한다. LC-정련 수소첨가처리 유닛의 실례인 수소첨가처리 시스템(200)은 공급원료(214)를 업그레이드하기 위한 일련의 3개의 에뷸레이티드 베드 반응기(210)를 포함할 수 있다. 공급원료(214)는 수소 가스(216)와 함께 제1 에뷸레이티드 베드 반응기(210a)에 도입되고, 이들은 모두 반응기에 들어가기 전에 각 히터를 통과한다. 제1 에뷸레이티드 베드 반응기(210a)로부터의 업그레이드된 재료(220a)는 추가의 수소 가스(216)와 함께 제2 에뷸레이티드 베드 반응기(210b)로 도입된다. 제2의 에뷸레이티드 베드 반응기(210b)로부터의 업그레이드된 물질(220b)은 추가의 수소 가스(216)와 함께 제3 에뷸레이티드 베드 반응기(210c)로 도입된다.
액체 탄화수소 및 잔류 분산된 금속 설파이드 촉매 입자를 함유하는 비휘발성 분획물로부터 저 비등점 분획물 및 가스를 제거하기 위해, 제1 및 제2 반응기(210a, 210b) 및/또는 제2 및 제3 반응기(210b, 210c) 사이에 하나 이상의 스테이지간 분리기가 임의로 삽입될 수 있음을 이해해야한다. 가치있는 연료 생성물이지만, 아스팔텐에 대하여는 좋지 않은 용매인, 헥산 및 헵탄과 같은 저급 알칸을 제거하는 것이 바람직할 수 있다. 다수의 반응기 사이에서 휘발성 재료를 제거하는 것은 가치있는 생성물의 생성을 향상시키고, 다운스트림 반응기(들)에 공급되는 탄화수소 액체 분획물내 아스팔텐의 용해도를 증가시킨다. 둘 다 전체 수소첨가처리 시스템의 효율을 높인다.
제3 에뷸레이티드 베드 반응기(210c)로부터의 업그레이드된 재료(220c)는 고온 분리기(242a)로 보내져서, 휘발성 및 비휘발성 분획물을 분리한다. 휘발성 분획물(246a)은 열교환기(250)를 통과하며, 이는 제1 에뷸레이티드 베드 반응기(210a)로 도입되기 전에 수소 가스(216)를 예열한다. 다소 냉각된 휘발성 분획물(246a)은 중간 온도 분리기(242b)로 보내지고, 이는 열교환기(250)에 의한 냉각의 결과로서 형성되는 결과적으로 얻은 액체 분획물(248b)로부터 남은 휘발성 분획물(246b)을 분리한다. 남은 휘발성 분획물(246b)은 가스 분획물(252c) 및 탈기된 액체 분획물(248c)로 더 분리하기 위한 저온 분리기(246c)로 하류 보내진다.
고온 분리기(242a)로부터의 액체 분획물(248a)은 중간 온도 분리기(242b)로부터 생성된 액체 분획물(248b)과 함께 저압 분리기(242d)로 보내지며, 이는 탈기된 액체 분획물(248d)로부터 수소 풍부 가스(252d)를 분리하고, 저온 분리기(242c)로부터 탈기된 액체 분획물(248c)과 함께 혼합되어, 생성물로 분별된다. 저온 분리기(242c)로부터의 가스 분획물(252c)은 오프 가스, 퍼지 가스 및 수소 가스(216)로 정제된다. 수소 가스(216)는 압축되어 보충 수소 가스(216a)와 혼합되고, 열교환기(250)를 통과하여 공급원료(216)와 함께 제1 에뷸레이티드 베드 반응기(210a)로 도입되거나, 제2 및 제3 에뷸레이티드 베드 반응기(210b 및 210c)로 직접 도입된다.
도 2d는 도 2c에 도시된 시스템과 유사하지만, (스테이지간 분리기(221)가 제1 및 제2 반응기(210a, 210b) 사이에 개재될 수 있음에도 불구하고) 제2 및 제3 반응기(210b, 210c) 사이에 개재된 스테이지간 분리기(221)를 도시하는, 다수의 에뷸레이티드 베드 반응기를 포함하는 에뷸레이티드 베드 수소첨가처리 시스템(200)을 개략적으로 도시한다. 도시된 바와 같이, 제2-스테이지 반응기(210b)로부터의 유출물은 고압, 고온 분리기일 수 있는 스테이지간 분리기(221)로 유입된다. 분리기(221)로부터의 액체 분획물은 라인(216)으로부터의 재순환 수소의 일부와 조합된 다음 제3-스테이지 반응기(210c)로 유입된다. 스테이지간 분리기(221)로부터의 증기 분획물은 제3-스테이지 반응기(210c)를 우회하고, 제3-스테이지 반응기(210c)로부터의 유출물과 혼합한 다음, 고압, 고온 분리기(242a)로 통과한다.
이는 첫 두개의 반응기 스테이지에서 형성된 보다 가벼운, 보다 포화된 성분이 제3 스테이지 반응기(210c)를 우회하도록 한다. 이것의 이점은 (1) 나머지 무거운 성분을 전환시키기 위한 제3-스테이지 반응기의 부피 이용을 증가시키는, 제3-스테이지 반응기의 증기 부하 감소, 및 (2) 제3-스테이지 반응기(210c)에서 아스팔텐을 불안정화시킬 수 있는, "반-용매" 성분의 농도 감소(포화)이다.
바람직한 구현예에서, 수소첨가처리 시스템은 단순한 수소처리보다는 수소첨가분해 반응을 촉진시키도록 구성되고 작동되며, 덜 심각한 형태의 수소첨가처리이다. 수소첨가분해는 보다 큰 탄화수소 분자의 분자량 감소 및/또는 방향족 화합물의 개환과 같은, 탄소-탄소 분자 결합의 파괴를 수반한다. 한편, 수소처리는 주로 불포화 탄화수소의 수소화를 포함하며, 탄소-탄소 분자 결합의 파괴가 거의 없거나 전혀 없다. 단순한 수소처리 반응보다는 수소첨가분해를 촉진시키기 위해, 수소첨가처리 반응기(들)은 바람직하게는 약 750℉(399℃) 내지 약 860℉(460℃) 범위, 보다 바람직하게는 약 780℉(약 416℃) 내지 약 830℉(약 443℃)의 범위의 온도에서 작동하며, 바람직하게는 약 1000 psig(6.9 MPa) 내지 약 3000 psig(20.7 MPa)의 범위, 보다 바람직하게는 약 1500 psig(10.3 MPa) 내지 약 2500 psig(17.2 MPa)의 범위의 압력에서 작동하며, 바람직하게는 약 0.05 hr-1 내지 약 0.45 hr-1의 범위, 보다 바람직하게는 약 0.15 hr-1 내지 약 0.35 hr-1의 범위의 공간 속도(예를 들어, 시간 당 반응기 부피에 대한 공급물 부피의 비로서 정의되는, 액체 시간 공간 속도 또는 LHSV)에서 작동한다. 수소첨가분해와 수소처리의 차이는 또한 레시드 전환의 관점에서 표현될 수 있다(수소첨가분해는 보다 높은 비등점에서 낮은 비등점의 탄화수소로의 실질적인 전환에서 일어나지만, 수소처리는 일어나지 않음). 본원에 개시된 수소첨가처리 시스템은 약 40% 내지 약 90%의 범위, 바람직하게는 약 55% 내지 약 80%의 범위에서 레시드 전환을 초래할 수 있다. 바람직한 전환 범위는 일반적으로 상이한 공급원료 사이의 가공 난이도의 차이 때문에 공급원료의 유형에 의존한다. 전형적으로, 본원에 개시된 바와 같이 이원 촉매 시스템을 사용하기 위해 업그레이드하기 전에 에뷸레이티드 베드 반응기를 작동시키는 것과 비교하여, 전환율은 적어도 약 5%, 바람직하게는 적어도 약 10% 이상 높을 것이다.
III. 에뷸레이티드 베드 수소첨가처리 반응기 업그레이드
도 3a, 도 3b, 도 3c 및 도 3d는 이원 촉매 시스템을 사용하고, 증가된 반응기 심각도 및 전환된 생성물의 증가된 생성 속도로 작동시키기 위해, 에뷸레이티드 베드 반응기를 업그레이드하기 위한 예시적인 방법을 도시하는 흐름도이다.
도 3a는 특히, (1) 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 초기에 작동시키는 단계; (2) 이원 촉매 시스템을 갖는 업그레이드된 반응기를 형성하기 위해 상기 에뷸레이티드 베드 반응기에 분산된 금속 설파이드 촉매 입자를 첨가하는 단계; 및 (3) 초기 조건에서 작동시킬때보다 증가된 반응기 심각도 및 전환된 생성물의 증가된 생성 속도로, 상기 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계를 포함하는 방법을 보다 구체적으로 도시한다.
일부 구현예에 따라, 초기 조건에서 에뷸레이티드 베드 반응기를 초기에 작동시킬때 사용되는 불균일 촉매는 에뷸레이티드 베드 반응기에서 전형적으로 사용되는 상업적으로 입수가능한 촉매이다. 효율을 최대화하기 위해, 초기 반응기 조건은 유리하게는 침전물 형성 및 오염이 허용가능한 수준으로 유지되는 반응기 심각도를 가질 수 있다. 이원 촉매 시스템을 사용하기 위해 에뷸레이티드 반응기를 업그레이드하지 않으면서 반응기 심각도를 증가시키면, 그에 따라 침전물이 과도하게 형성되고, 바람직하지 않은 장비 오염이 야기되어, 수소첨가처리 반응기 및 관련 장비, 예컨대 파이프, 탑, 히터, 불균일 촉매 및/또는 분리 장비의 셧다운 및 세척을 보다 자주 필요할 수 있다.
장비 오염 및 보다 빈번한 셧다운 및 유지보수의 필요성 증가없이, 반응기 심각도를 증가시키고, 전환된 생성물의 생성을 증가시키기 위해, 에뷸레이티드 베드 반응기는 불균일 촉매 및 분산된 금속 설파이드 촉매 입자를 포함하는 이원 촉매 시스템을 사용하도록 업그레이드된다. 증가된 심각도로, 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계는 초기 조건에서 작동시킬 때보다 증가된 전환율 및/또는 증가된 처리량으로 작동시키는 단계를 포함할 수 있다. 둘 다 일반적으로 증가된 온도에서, 상기 업그레이드된 반응기를 작동시킨다.
일부 구현예에서, 증가된 반응기 심각도로 상기 업그레이드된 반응기를 작동시키는 단계는 업그레이드된 에뷸레이티드 베드 반응기의 작동 온도를 초기 조건에서 작동시킬때보다 명목상 적어도 약 2.5℃, 또는 적어도 약 5℃, 적어도 약 7.5℃, 또는 적어도 약 10℃, 또는 적어도 약 15℃ 높이는 단계를 포함한다.
도 3b는 전환된 생성물의 더 높은 전환율 및 증가된 생성 속도로 작동시키기 위해 에뷸레이티드 베드 반응기를 업그레이드하기 위한 예시적인 방법을 도시하는 흐름도이다. 이는 도 3a에 예시된 방법의 일 구현예이다. 도 3b는 보다 구체적으로, (1) 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 초기에 작동시키는 단계; (2) 상기 에뷸레이티드 베드 반응기에 분산된 금속 설파이드 촉매 입자를 첨가하여, 이원 촉매 시스템을 갖는 업그레이드된 반응기를 형성하는 단계; 및 (3) 초기 조건에서 작동시킬때보다 높은 전환율 및 전환된 생성물의 증가된 생성 속도로 상기 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계를 포함하는 방법을 도시한다.
일부 구현예에서, 증가된 전환율로 상기 업그레이드된 반응기를 작동시키는 단계는 업그레이드된 에뷸레이티드 베드 반응기의 전환율을 초기 조건에서 작동시킬때보다 적어도 약 2.5%, 또는 적어도 약 5%, 적어도 약 7.5%, 또는 적어도 약 10%, 또는 적어도 약 15% 증가시키는 단계를 포함한다.
도 3c는 전환된 생성물의 더 높은 처리량, 더 높은 심각도 및 증가된 생성 속도로 작동시키기 위해, 에뷸레이티드 베드 반응기를 업그레이드하는 예시적인 방법을 도시하는 흐름도이다. 이는 도 3a에 도시된 방법의 일 구현예이다. 도 3c는 보다 구체적으로, (1) 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 초기에 작동시키는 단계; (2) 분산된 금속 설파이드 촉매 입자를 에뷸레이티드 베드 반응기에 첨가하여, 이원 촉매 시스템을 갖는 업그레이드된 반응기를 형성하는 단계; 및 (3) 상기 업그레이드된 에뷸레이티드 베드 반응기를 초기 조건에서 작동시킬때보다 전환된 생성물의 더 높은 처리량, 더 높은 심각도 및 증가된 생성 속도로 이원 촉매 시스템을 사용하여 작동시키는 단계를 포함하는 방법을 도시한다.
일부 구현예에서, 증가된 처리량으로 상기 업그레이드된 반응기를 작동시키는 단계는 상기 업그레이드된 에뷸레이티드 베드 반응기의 처리량을 초기 조건에서 작동시킬때보다 적어도 약 2.5%, 또는 적어도 약 5%, 또는 적어도 약 10%, 또는 적어도 약 15%, 또는 적어도 약 20%(예를 들어, 24%) 증가시키는 단계를 포함한다.
도 3d는 더 높은 전환율, 더 높은 처리량, 및 전환된 생성물의 증가된 생성 속도로 작동시키기 위해, 에뷸레이티드 베드 반응기를 업그레이드하는 예시적인 방법을 도시하는 흐름도이다. 이는 도 3a에 도시된 방법의 일 구현예이다. 도 3d는 보다 구체적으로, (1) 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 초기에 작동시키는 단계; (2) 상기 에뷸레이티드 베드 반응기에 분산된 금속 설파이드 촉매 입자를 첨가하여, 이원 촉매 시스템을 갖는 업그레이드된 반응기를 형성하는 단계; 및 (3) 상기 업그레이드된 에뷸레이티드 베드 반응기를 초기 조건에서 작동시킬때보다 더 높은 전환율, 더 높은 처리량 및 전환된 생성물의 증가된 생성 속도로 이원 촉매 시스템을 사용하여 작동시키는 단계를 포함하는 방법을 도시한다.
일부 구현예에서, 증가된 전환율 및 처리량으로 상기 업그레이드된 반응기를 작동시키는 단계는 업그레이드된 에뷸레이티드 베드 반응기의 전환율을 초기 조건에서 작동시킬때보다 적어도 약 2.5%, 또는 적어도 약 5%, 적어도 약 7.5%, 또는 적어도 약 10%, 또는 적어도 약 15% 증가시키고, 또한, 처리량을 적어도 약 2.5%, 또는 적어도 약 5%, 적어도 약 10%, 또는 적어도 약 15%, 또는 적어도 약 20% 증가시키는 단계를 포함한다.
분산된 금속 설파이드 촉매 입자는 별도로 생성될 수 있고, 이원 촉매 시스템을 형성할 때 에뷸레이티드 베드 반응기에 첨가될 수 있다. 대안적으로 또는 부가적으로, 분산된 금속 설파이드 촉매 입자의 적어도 일부가 상기 에뷸레이티드 베드 반응기 내에서 인시츄 생성될 수 있다.
일부 구현예에서, 분산된 금속 설파이드 촉매 입자는 유리하게는 중유 공급원료 전체 내에 인시츄 형성된다. 이는 초기에 촉매 전구체를 전체 중유 공급원료와 혼합하여 컨디셔닝된 공급원료를 형성시키므로, 컨디셔닝된 공급원료를 가열하여 촉매 전구체를 분해하고, 촉매 금속을 중유내 황 및/또는 중유에 첨가된 황과 반응시켜, 분산된 금속 설파이드 촉매 입자를 형성시키거나 형성함으로써 달성될 수 있다.
촉매 전구체는 유용성일 수 있고, 약 100℃(212℉) 내지 약 350℃(662℉)의 범위, 또는 약 150℃(302℉) 내지 약 300℃(572℉)의 범위, 또는 약 175℃(347℉) 내지 약 250℃(482℉)의 범위에서의 분해 온도를 갖는다. 예시적인 촉매 전구체는 적당한 혼합 조건하에 중유 공급원료와 혼합될 때 실질적인 분해를 피하는데 충분히 높은 분해 온도 또는 범위를 갖는, 유기금속 착화합물 또는 화합물, 보다 구체적으로 유용성 화합물 또는 전이 금속과 유기산의 착화합물을 포함한다. 촉매 전구체를 탄화수소 오일 희석제와 혼합하는 경우, 촉매 전구체의 현저한 분해가 발생하는 온도 이하에서 희석제를 유지하는 것이 유리하다. 이하에서, 당업자는 본원에 따라 분산된 금속 설파이드 촉매 입자의 형성 전에 실질적인 분해없이 선택된 전구체 조성물의 친밀한 혼합을 초래하는 혼합 온도 프로파일을 선택할 수 있다.
촉매 전구체의 예로는 몰리브덴 2-에틸헥사노에이트, 몰리브덴 옥토에이트, 몰리브덴 나프타네이트, 바나듐 나프타네이트, 바나듐 옥토에이트, 몰리브덴 헥사카르보닐, 바나듐 헥사카르보닐 및 철 펜타카르보닐이 있다. 다른 촉매 전구체는 (a) 방향족, (b) 지환족 또는 (c) 분지된, 불포화된, 지방족 중 적어도 하나인 8개 이상의 탄소 원자의 복수의 양이온성 몰리브덴 원자 및 복수의 카르복실레이트 음이온을 포함하는 몰리브덴 염을 포함한다. 예로서, 각각의 카르복실레이트 음이온은 8 내지 17개의 탄소 원자 또는 11 내지 15개의 탄소 원자를 가질 수 있다. 상기 범주들 중 하나 이상에 부합하는 카르복실레이트 음이온의 예로는 3-시클로펜틸프로피온산, 시클로헥산부티르산, 비페닐-2-카르복실산, 4-헵틸벤조산, 5-페닐발레르산, 게라닌산(3,7-디메틸-2,6-옥타디엔산) 및 이들의 조합물로 구성된 그룹으로부터 선택된 카르복시산으로부터 유도된 카르복실레이트 음이온들을 포함한다.
다른 구현예에서, 유용성, 열적으로 안정한 몰리브덴 촉매 전구체 화합물을 제조하는데 사용하기 위한 카르복실레이트 음이온은 3-시클로펜틸프로피온산, 시클로헥산부티르산, 비페닐-2-카르복실산, 4-헵틸벤조산, 5-페닐발레르산, 게라닌산(3,7-디메틸-2,6-옥타디엔산), 10-운데센산, 도데칸산 및 이들의 조합물로 구성된 그룹으로부터 선택된 카르복실산으로부터 유도된다. 상기 카르복실산으로부터 유도된 카르복실레이트 음이온을 사용하여 제조된 몰리브덴 촉매 전구체는 향상된 열 안정성을 보유한다는 것이 밝혀졌다.
보다 높은 열 안정성을 갖는 촉매 전구체는 210℃보다 높고, 약 225℃보다 높으며, 약 230℃보다 높고, 약 240℃보다 높고, 약 275℃보다 높거나 또는 약 290℃보다 높은 제1 분해 온도를 가질 수 있다. 상기 촉매 전구체는 250℃보다 높거나, 약 260℃보다 높거나, 약 270℃보다 높거나, 약 280℃보다 높거나, 약 290℃보다 높거나, 약 330℃보다 높은 피크 분해 온도를 가질 수 있다.
당업자는 본원에 따라 분산된 금속 설파이드 촉매 입자를 형성하기 전에 실질적인 분해없이 선택된 전구체 조성물의 친밀한 혼합을 초래하는 혼합 온도 프로필을 선택할 수 있다.
촉매 전구체 조성물을 중유 공급원료와 직접 혼합하는 것이 본 발명의 범주 내에 있는 반면에, 이러한 경우 전구체 조성물의 실질적인 분해가 일어나기 전에 공급원료 내의 전구체 조성물을 완전히 혼합하기에 충분한 시간동안 성분을 혼합하는데 주의를 기울여야한다. 예를 들어, 개시내용이 이후에 참고로 포함되는, Cyr 등의 미국 특허 제5,578,197호는 몰리브덴 2-에틸 헥사노에이트를 역청 진공 탑 잔류물과 24시간동안 혼합한후, 생성된 혼합물을 반응 용기내에서 가열하여, 촉매 화합물을 형성하고 수소첨가분해를 일으키는 방법을 기술한다(컬럼 10, 4-43행 참조). 테스트 환경에서 24시간 혼합이 전체적으로 허용될 수 있는 반면, 혼합 시간이 길면 특정 산업 운영이 엄청나게 비싸게 될 수 있다. 활성 촉매를 형성하기 위해 가열하기 전에 중유 내에서 촉매 전구체의 철저한 혼합을 보장하기 위해, 컨디셔닝된 공급원료를 가열하기 전에 상이한 혼합 장치에 의해 일련의 혼합 단계가 수행된다. 이들은 하나 이상의 저 전단 인라인 혼합기를 포함할 수 있고, 하나 이상의 고 전단 혼합기, 이어서 서지 용기 및 펌프-어라운드 시스템, 이어서 공급물 스트림을 가압하는데 사용되는 하나 이상의 다단식 고압 펌프후, 이를 수소첨가처리 반응기에 도입하는 것을 포함할 수 있다.
일부 구현예에서, 중유 내에서 인시츄, 분산된 금속 설파이드 촉매 입자의 적어도 일부를 형성하기 위해, 컨디셔닝된 공급원료가 수소첨가처리 반응기에 들어가기 전에 가열 장치를 사용하여 예열된다. 다른 구현예에서, 중유 내에서 인시츄 분산된 금속 설파이드 촉매 입자의 적어도 일부를 형성하기 위해, 컨디셔닝된 공급원료가 수소첨가처리 반응기에서 가열되거나 추가로 가열된다.
일부 구현예에서, 분산된 금속 설파이드 촉매 입자는 다단계 공정으로 형성될 수 있다. 예를 들어, 유용성 촉매 전구체 조성물은 탄화수소 희석제와 미리 혼합되어 희석된 전구체 혼합물을 형성할 수 있다. 적합한 탄화수소 희석제의 예로는 진공 가스 오일(전형적으로 360 내지 524℃의 표면상 비등점 범위를 가짐)(680 내지975℉), 디캔트 오일 또는 사이클 오일(전형적으로 360℃ 내지 550℃의 표면상 비등범위를 가짐)(680 내지 1022℉) 및 가스 오일(일반적으로 200℃ 내지 360℃의 표면상 비등 범위를 가짐)(392 내지 680℉), 중유 공급원료의 일부 및 약 200℃보다 높은 온도에서 표면상 비등하는 기타 탄화수소가 포함되지만, 이에 한정되지는 않는다.
희석된 전구체 혼합물을 제조하는데 사용되는 촉매 전구체 대 탄화수소 오일 희석제의 비는 약 1:500 내지 약 1:1의 범위, 또는 약 1:150 내지 약 1:2의 범위, 또는 약 1:100 내지 약 1:5의 범위(예를 들어, 1:100, 1:50, 1:30 또는 1:10)내에 있을 수 있다.
희석된 전구체 혼합물내 촉매 금속(예를 들어, 몰리브덴)의 양은 희석된 전구체 혼합물의 중량 기준으로 바람직하게는 약 100 ppm 내지 약 7000 ppm, 희석된 전구체 혼합물의 중량 기준으로 더욱 바람직하게는 약 300 ppm 내지 약 4000 ppm의 범위내에 있다.
촉매 전구체는 유리하게는 촉매 전구체 조성물의 상당한 부분이 분해되는 온도 미만의 탄화수소 희석제와 혼합된다. 혼합은 약 25℃(77℉) 내지 약 250℃(482℉)의 범위, 또는 약 50℃(122℉) 내지 약 200℃(392℉)의 범위, 또는 약 75℃(167℉) 내지 약 150℃(302℉)의 범위의 온도에서 수행되어, 희석된 전구체 혼합물을 형성할 수 있다. 희석된 전구체 혼합물이 형성되는 온도는 사용되는 촉매 전구체의 분해 온도 및/또는 다른 특성, 및/또는 점도와 같은 탄화수소 희석제의 특성에 따라 달라질 수 있다.
촉매 전구체는 바람직하게는 탄화수소 오일 희석제와 약 0.1초 내지 약 5분의 범위, 또는 약 0.5초 내지 약 3분의 범위, 또는 약 1초 내지 약 1분의 범위의 시간동안 혼합된다. 실제 혼합 시간은 적어도 부분적으로 온도(즉, 유체의 점도에 영향을 미침) 및 혼합 강도에 의존적이다. 혼합 세기는 적어도 부분적으로 인-라인 정적 혼합기(in-line static mixer)와 같은 스테이지의 수에 의존한다.
촉매 전구체를 탄화수소 희석제와 예비-블렌딩하여 희석된 전구체 혼합물을 형성한 후, 중유 공급원료와 혼합하여, 특히 대규모 산업 운영에 필요한 비교적 짧은 시간동안 공급원료 내에서 촉매 전구체를 완전하고 밀접하게 블렌딩하는 것을 크게 돕는다. 희석된 전구체 혼합물을 형성하면, (1) 보다 극성인 촉매 전구체와 보다 소수성인 중유 공급원료 사이의 용해도 차이를 감소시키거나 없애고, (2) 촉매 전구체와 중유 공급원료 사이의 레올로지 차이를 감소시키거나 없애고/없애거나 (3) 촉매 전구체 분자를 분해하여 중유 공급원료 내에서 보다 용이하게 분산되는 탄화수소 희석제내 용질을 형성함에 의해 전체 혼합시간을 단축시킨다.
희석된 전구체 혼합물을 중유 공급원료와 조합하고, 활성 금속 설파이드 촉매 입자의 열분해 및 형성 전에, 촉매 전구체가 공급원료 전체에 분산되어, 중유 내에 촉매 전구체가 전체적으로 혼합되는 컨디셔닝된 공급원료를 형성하기에 충분한 시간 및 방식으로 혼합된다. 중유 공급원료 내에서 촉매 전구체의 충분한 혼합을 얻기 위해, 희석된 전구체 혼합물 및 중유 공급원료는 유리하게는 약 0.1초 내지 약 5분 범위, 또는 약 0.5초 내지 약 3분, 또는 약 1초 내지 약 3분의 범위의 시간 동안 혼합된다. 혼합 공정의 강력함(vigorousness) 및/또는 전단 에너지를 증가시키면, 일반적으로 철저한 혼합을 수행하는데 필요한 시간이 감소된다.
촉매 전구체 및/또는 희석된 전구체 혼합물을 중유와 완전히 혼합시키는데 사용될 수 있는 혼합 장치의 예로는 이에 한정되는 것은 아니지만, 고전단 혼합, 예컨대 프로펠러 또는 터빈 임펠러를 갖춘 용기에서 생성된 혼합; 여러개의 정적 인라인 혼합기; 인라인 고전단 혼합기와 조합된 다수의 정적 인라인 혼합기; 인라인 고전단 혼합기와 결합된 후 서지 용기와 결합된 다수의 정적 인라인 혼합기; 하나 이상의 다중-스테이지 원심 펌프가 뒤따르는 상기의 조합; 및 하나 이상의 다중-스테이지 원심 펌프를 포함한다. 일부 구현예에 따라, 회분식 혼합보다는 오히려 연속 혼합이 촉매 전구체 조성물 및 중유 공급원료가 펌핑 공정 자체의 일부로서 휘저어지고 혼합되는 다수의 챔버를 갖는 고 에너지 펌프를 사용하여 수행될 수 있다. 상기 혼합 장치는 또한 촉매 전구체가 탄화수소 희석제와 혼합되어 촉매 전구체 혼합물을 형성하는 상기 예비-혼합 공정에 사용될 수 있다.
실온에서 고형 또는 극 점성인 중유 공급원료의 경우, 이러한 공급원료는 유용성 촉매 전구체를 공급원료 조성물에 양호하게 혼합하도록, 이들을 연화하고, 충분히 낮은 점성도를 갖는 공급원료를 생성하기 위해, 유리하게 가열될 수 있다. 일반적으로, 중유 공급원료의 점도를 감소시키면, 공급원료 내에서 유용성 전구체 조성물의 완전하고 긴밀한 혼합을 수행하는데 필요한 시간이 감소될 것이다.
중유 공급원료 및 촉매 전구체 및/또는 희석된 전구체 혼합물은 유리하게는 약 25℃(77℉) 내지 약 350℃(662℉)의 범위, 또는 약 50℃(122℉) 내지 약 300℃(572℉)의 범위, 또는 약 75℃(167℉) 내지 약 250℃(482℉)의 범위의 온도에서 유리하게 혼합되어, 컨디셔닝된 공급원료가 생성된다.
가장 먼저 희석된 전구체 혼합물을 형성하지 않으면서 촉매 전구체가 중유 공급원료와 직접 혼합되는 경우, 촉매 전구체 및 중유 공급원료를 촉매 전구체 조성물의 상당 부분이 분해되는 온도 이하에서 혼합하는 것이 유리할 수 있다. 그러나, 촉매 전구체가 탄화수소 희석제와 미리 혼합되어, 희석된 전구체 혼합물을 형성하고, 이후 중유 공급원료와 혼합되는 경우, 중유 공급원료가 촉매 전구체의 분해 온도 이상이 되도록 허용될 수 있다. 이는 탄화수소 희석제가 개개의 촉매 전구체 분자를 차폐하고 이들이 응집되어 큰 입자를 형성하는 것을 방지하고, 혼합동안 중유로부터의 열로부터 촉매 전구체 분자를 일시적으로 단열시키고, 분해하기 전에 중유 공급원료에 전체적으로 충분히 신속하게 촉매 전구체 분자의 분산을 용이하게하여, 금속을 유리시키기 때문이다. 또한, 공급원료의 추가 가열은 중유 내의 황-함유 분자로부터 황화수소를 유리시켜 금속 설파이드 촉매 입자를 형성하는데 필요할 수 있다. 이러한 방식으로, 촉매 전구체의 점진적인 희석은 중유 공급원료 내에 높은 수준의 분산을 가능하게하여, 공급원료가 촉매 전구체의 분해 온도보다 높은 온도에 있는 경우에도 고도로 분산된 금속 설파이드 촉매 입자를 형성시킨다.
촉매 전구체가 중유에 전체적으로 잘 혼합되어 컨디셔닝된 공급원료를 얻은 후에, 이 조성물은 가열되어 촉매 전구체의 분해를 야기하여, 그로부터 촉매 금속을 유리시키고, 이를 그 안의 황과의 반응을 유발하거나 반응시키고/시키거나, 중유에 첨가하고, 활성 금속 설파이드 촉매 입자를 형성한다. 촉매 전구체로부터의 금속은 초기에 금속 산화물을 형성할 수 있으며, 이어서 금속 산화물은 중유에서 황과 반응하여 최종 활성 촉매를 형성하는 금속 설파이드 화합물을 생성한다. 중유 공급원료가 충분한 또는 과량의 황을 포함하는 경우, 최종 활성화 촉매는 중유 공급원료를 그로부터 황을 유리시키기에 충분한 온도로 가열함으로써 인시츄 형성될 수 있다. 일부 경우, 전구체 조성물이 분해되는 동일한 온도에서 황이 유리될 수 있다. 다른 경우에, 더 높은 온도로의 추가 가열이 필요할 수 있다.
촉매 전구체가 중유 전체에 완전히 혼합되면, 유리된 금속 이온의 적어도 상당 부분은 다른 금속 이온으로부터 충분히 보호되거나 차폐되어, 이들이 황과 반응할때 분자적으로-분산된 촉매를 형성하여, 금속 설파이드 화합물을 형성할 수 있다. 경우에 따라 작은 응집이 발생하여 콜로이드 크기의 촉매 입자가 생성될 수 있다. 그러나, 촉매 전구체의 열분해 전에 공급원료 전체에 촉매 전구체를 완전히 혼합하는 것에 주의를 기울이면 콜로이드 입자보다는 개별 촉매 분자가 생성될 수 있다고 믿어진다. 단순히 블렌딩하는 동안, 충분히 혼합되지는 않지만, 촉매 전구체는 공급원료와 함께 전형적으로 미크론-크기 이상의 큰 응집된 금속 설파이드 화합물을 형성시킨다.
분산된 금속 설파이드 촉매 입자를 형성하기 위해, 컨디셔닝된 공급원료는 약 275℃(527℉) 내지 약 450℃(842℉)의 범위, 또는 약 310℃(590℉) 내지 약 430℃(806℉)의 범위, 또는 약 330℃(626℉) 내지 약 410℃(770℉)의 범위의 온도로 가열된다.
분산된 금속 설파이드 촉매 입자에 의해 제공되는 촉매 금속의 초기 농도는 중유 공급원료의 중량을 기준으로, 약 1 ppm 내지 약 500 ppm의 범위, 또는 약 5 ppm 내지 약 300 ppm의 범위, 또는 약 10 ppm 내지 약 100 ppm의 범위내에 있을 수 있다. 휘발성 분획물이 레시드 분획물로부터 제거됨에 따라 촉매는 더욱 농축될 수 있다.
중유 공급원료가 상당량의 아스팔텐 분자를 포함하는 경우, 분산된 금속 설파이드 촉매 입자는 우선적으로 아스팔텐 분자와 결합하거나 또는 근접하여 남아있을 수 있다. 아스팔텐 분자는 일반적으로 중유에 함유된 다른 탄화수소보다 더 친수성이고, 덜 소수성이기 때문에, 아스팔텐 분자는 금속 설파이드 촉매 입자에 대해 더 큰 친화성을 가질 수 있다. 금속 설파이드 촉매 입자는 매우 친수성인 경향이 있기 때문에, 개별 입자 또는 분자는 중유 공급원료내 보다 친수성인 모이어티 또는 분자쪽으로 이동하는 경향이 있을 것이다.
금속 설파이드 촉매 입자의 고도로 극성인 특성이 아스팔텐 분자와의 결합을 야기하거나 허용하는 반면, 활성 촉매 입자의 분해 및 형성 전에, 고 극성 촉매 화합물과 소수성 중유 사이의 일반적인 불화합성은 중유 내에서 촉매 전구체 조성물의 상기 친밀한 또는 철저한 혼합을 필요로 한다. 금속 촉매 화합물은 극성이 높기 때문에, 직접 첨가하면 중유내에 효과적으로 분산시킬 수 없다. 실용적인 측면에서, 보다 작은 활성 촉매 입자를 형성하면 중유 전체에 보다 균일하게 분포된 촉매 부위를 제공하는 촉매 입자의 수를 증가시킨다.
IV. 업그레이드된 에뷸레이티드 베드 반응기
도 4는 개시된 방법 및 시스템에서 사용될 수 있는 예시적인 업그레이드된 에뷸레이티드 베드 수소첨가처리 시스템(400)을 개략적으로 도시한다. 에뷸레이티드 베드 수소첨가처리 시스템(400)은 업그레이드된 에뷸레이티드 베드 반응기(430) 및 고온 분리기(404)(또는 증류탑과 같은 다른 분리기)를 포함한다. 업그레이드된 에뷸레이티드 베드 반응기(430)를 생성하기 위해, 촉매 전구체(402)는 하나 이상의 혼합기(406)내에서 탄화수소 희석제(404)와 초기에 예비-혼합되어, 촉매 전구체 혼합물(409)이 형성된다. 촉매 전구체 혼합물(409)이 공급원료(408)에 첨가되고, 하나 이상의 혼합기(410)내에서 공급원료와 혼합되어, 컨디셔닝된 공급원료(411)를 형성한다. 컨디셔닝된 공급원료는 펌프 어라운드(414)를 갖춘 서지 용기(412)에 공급되어, 컨디셔닝된 공급원료 내에서 촉매 전구체의 추가의 혼합 및 분산을 일으킨다.
서지 용기(412)로부터의 컨디셔닝된 공급원료는 하나 이상의 펌프(416)에 의해 가압되고, 예열기(418)를 통해 통과하고, 에뷸레이티드 베드 반응기(430)의 바닥 또는 그 부근에 위치된 유입구(436)를 통해 가압된 수소 가스(420)와 함께 에뷸레이티드 베드 반응기(430)로 공급된다. 에뷸레이티드 베드 반응기(430)내 중유 재료(426)는 촉매 입자(424)로서 개략적으로 도시된, 분산된 금속 설파이드 촉매 입자를 함유한다.
중유 공급원료(408)는 중질 원유, 오일 샌드 역청, 원유로부터의 배럴 분획물의 앙금, 상압 탑 앙금, 진공 탑 앙금, 콜타르, 액화 석탄 및 기타 레시드 분획물을 포함하지만, 이에 한정되지 않는 임의의 원하는 화석연료 공급원료 및/또는 그의 분획물을 포함할 수 있다. 일부 구현예에서, 중유 공급원료(408)는 고비점 탄화수소(즉, 표면상 343℃(650℉) 이상, 보다 특히 표면상 약 524℃(975℉) 이상) 및/또는 아스팔텐의 상당한 분획물을 포함할 수 있다. 아스팔텐은 파라핀 측쇄를 갖는 상당 수의 응축된 방향족 및 나프텐 고리의 결과인 탄소에 대한 수소의 비교적 낮은 비율을 포함하는 복잡한 탄화수소 분자이다(도 1 참조). 응축된 방향족 및 나프텐 고리로 구성된 시트는 황 또는 질소 및/또는 폴리메틸렌 브릿지, 티오-에테르 결합 및 바나듐 및 니켈 착화합물과 같은 헤테로 원자에 의해 함께 유지된다. 아스팔텐 분획물은 또한 원유 또는 나머지 진공 레시드보다 황 및 질소의 함량이 높고, 또한(즉, 코크스 전구체 및 침전물을 형성하는) 고농도의 탄소-형성 화합물을 함유한다.
에뷸레이티드 베드 반응기(430)는 불균일 촉매(444)를 포함하는 확장된 촉매 구역(442)을 추가로 포함한다. 하부 불균일 촉매 자유 구역(448)은 확장된 촉매 구역(442) 아래에 위치되어 있으며, 상부 불균일 촉매 자유 구역(450)은 확장된 촉매 구역(442) 위에 위치되어 있다. 분산된 금속 설파이드 촉매 입자(424)는 확장된 촉매 구역(442), 불균일 촉매 자유 구역(448, 450, 452)을 포함하는 에뷸레이티드 베드 반응기(430) 내의 재료(426) 전체에 걸쳐 분산되어, 이원 촉매 시스템을 포함하도록 업그레이드되기 전에 에뷸레이티드 베드 반응기내 구성된 촉매 자유 구역내에서 반응을 업그레이드하는 것을 촉진시키는데 사용가능하다.
단순한 수소처리 반응보다는 수소첨가분해를 촉진시키기 위해, 수소첨가처리 반응기(들)는 바람직하게는 약 750℉(399℃) 내지 약 860℉(460℃)의 범위, 보다 바람직하게는 약 780℉(416℃) 내지 약 830℉(443℃)의 범위의 온도에서, 바람직하게는 약 1000 psig(6.9 MPa) 내지 약 3000 psig(20.7 MPa)의 범위, 더욱 바람직하게는 약 1500 psig(10.3 MPa) 내지 약 2500 psig(17.2 MPa)의 범위의 압력에서, 및 바람직하게는 약 0.05 hr-1 내지 약 0.45 hr-1의 범위, 보다 바람직하게는 약 0.15 hr-1 내지 약 0.35 hr-1의 범위의 공간 속도(LHSV)에서 작동된다. 수소첨가분해와 수소처리의 차이는 또한 레시드 전환의 관점에서 표현될 수 있다(수소첨가분해는 높은 비등의 낮은 비등 탄화수소로의 실질적인 전환을 일으키는 반면, 수소처리는 그렇지 않음). 본원에 개시된 수소첨가처리 시스템은 약 40% 내지 약 90%의 범위, 바람직하게는 약 55% 내지 약 80%의 범위로 레시드 전환을 초래할 수 있다. 바람직한 전환율 범위는 일반적으로 상이한 공급원료 사이의 처리 난이도의 차이 때문에 공급원료의 유형에 의존한다. 전형적으로, 본원에 개시된 바와 같이 이원 촉매 시스템을 사용하기 위해 업그레이드하기 전에 에뷸레이티드 베드 반응기를 작동시키는 것과 비교하여, 전환율은 적어도 약 5%, 바람직하게는 적어도 약 10% 이상 높을 것이다.
에뷸레이티드 베드 반응기(430) 내의 재료(426)는 에뷸레이팅 펌프(454)에 연결된 재순환 채널(452)에 의해 상부 불균일 촉매 자유 구역(450)으로부터 하부 불균일 촉매 자유 구역(448)으로 연속 재순환된다. 재순환 채널(452)의 상부가 깔때기 형상의 재순환 컵(456)인 경우, 그로부터 재료(426)가 상부 불균일 촉매 자유 구역(450)으로부터 배출된다. 재순환된 물질(426)은 신선한 컨디셔닝된 공급원료(411) 및 수소 가스(420)와 혼합된다.
새로운 불균일 촉매(444)는 촉매 유입관(458)을 통해 에뷸레이티드 베드 반응기(430)로 도입되고, 소비된 불균일 촉매(444)는 촉매 배출관(460)을 통해 배출된다. 완전히 사용된 촉매, 부분소비되었지만 활성인 촉매, 및 신선한 촉매 사이에 촉매 배출관(460)이 구별될 수 없지만, 분산된 금속 설파이드 촉매 입자들(424)의 존재로 인해 확장된 촉매 구역(442), 재순환 채널(452), 및 하부 및 상부 불균일 촉매 자유 구역(448, 450) 내에 추가 촉매 활성이 제공된다. 불균일 촉매(444) 외부에서 수소가 탄화수소에 첨가되면, 종종 불균일 촉매를 불활성화시키는 원인이 되는 침전물 및 코크스 전구체의 형성을 최소화한다.
에뷸레이티드 베드 반응기(430)는 배출구(438)를 추가로 포함하며, 이를 통해 배출구 또는 그 근처에서 전환된 재료(440)가 배출된다. 전환된 물질(440)은 고온 분리기 또는 증류탑(404) 내로 도입된다. 고온 분리기 또는 증류탑(404)은 고온 분리기의 하부 또는 증류 탑(404)으로부터 회수되는 레시드 분획물(407)로부터, 고온 분리기(404)의 상부로부터 회수되는 하나 이상의 휘발성 분획물(405)을 분리시킨다. 레시드 분획물(407)은 촉매 입자(424)로서 개략적으로 도시된 잔류 금속 설파이드 촉매 입자를 함유한다. 원한다면, 공급물 재료의 일부를 형성하고 추가의 금속 설파이드 촉매 입자를 공급하기 위해, 레시드 분획물(407)의 적어도 일부가 에뷸레이티드 베드 반응기(430)에 역으로 재순환될 수 있다. 대안적으로, 레시드 분획물(407)은 또 다른 에뷸레이티드 베드 반응기와 같은 하류 공정 장비를 사용하여 추가 처리될 수 있다. 이 경우, 분리기(404)는 스테이지간 분리기일 수 있다.
일부 구현예에서, 이원 촉매 시스템을 사용하면서 더 높은 반응기 심각도 및 전환된 생성물의 증가된 생성 속도로 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시켜, 에뷸레이티드 베드 반응기를 초기에 작동시킬때와 같거나 그보다 작은 장비 오염 속도를 초래한다.
예를 들어, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때의 장비 오염 속도는 에뷸레이티드 베드 반응기를 초기 작동시킬 때와 같거나 그보다 작은 세척을 위한 열교환기 셧다운의 빈도를 초래할 수 있다.
부가적으로 또는 대안적으로, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때의 장비 오염 속도는 초기에 에뷸레이티드 베드 반응기를 작동할 때와 같거나 더 적은 세척을 위한 상압 및/또는 진공 증류탑의 셧다운 빈도를 초래할 수 있다.
부가적으로 또는 대안적으로, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때의 오염 속도는 초기에 에뷸레이티드 베드 반응기를 작동할 때와 같거나 더 적은 필터 및 여과기의 교체 또는 세척 빈도를 초래할 수 있다.
부가적으로 또는 대안적으로, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때 오염 속도는 초기에 에뷸레이티드 베드 반응기를 작동시킬 때와 같거나 더 적은 여분의 열 교환기로의 스위치 빈도를 초래할 수 있다.
부가적으로 또는 대안적으로, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때 오염 속도는 초기에 에뷸레이티드 베드 반응기를 작동시킬 때보다 감소된, 열교환기, 분리기 또는 증류탑 중 하나 이상으로부터 선택된 장비내 외장 온도 감소 속도를 초래할 수 있다.
부가적으로 또는 대안적으로, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때 오염 속도는 초기에 에뷸레이티드 베드 반응기를 작동시킬 때보다 감소된, 가열로 튜브 금속 온도 증가 속도를 초래할 수 있다.
부가적으로 또는 대안적으로, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬 때 오염 속도는 초기에 에뷸레이티드 베드 반응기를 작동시킬 때보다 감소된, 열 교환기에 대한 계산된 오염 저항 인자의 증가 속도를 초래할수 있다.
일부 구현예에서, 이원 촉매 시스템을 사용하면서 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키면, 초기에 에뷸레이티드 베드 반응기를 작동시킬 때와 같거나 더 작은 침전물 생성 속도를 초래할 수 있다. 일부 구현예에서, 침전물 생성 속도는 (1) 상압 탑 앙금 생성물; (2) 진공 탑 앙금 생성물; (3) 고온 저압 분리기로부터의 생성물; 또는 (4) 커터 스톡(cutter stock)을 첨가하기 전 또는 후에 연료 오일 생성물 중 하나 이상에서 침전물 측정에 기반을 둘 수 있다.
일부 구현예에서, 이원 촉매 시스템을 사용하면서 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키면, 에뷸레이티드 베드 반응기를 초기에 작동시킬 때와 같거나 더 작은 생성물 침전물 농도를 초래할 수 있다. 일부 구현예에서, 생성물 침전물 농도는 (1) 상압 잔사 생성물 절단물 및/또는 상압 탑 앙금 생성물; (2) 진공 잔사 생성물 절단물 및/또는 진공 탑 앙금 생성물; (3) 상압 탑으로 공급된 재료; (4) 고온 저압 분리기로부터의 생성물; 또는 (5) 하나 이상의 커터 스톡을 첨가하기 전 또는 후의 연료 오일 생성물 중 하나 이상에서 침전물 측정에 기반을 둘 수 있다.
V. 실험 연구 및 결과
하기 시험 연구는 중유를 수소첨가처리할때 불균일 촉매 및 분산된 금속 설파이드 촉매 입자로 구성된 이원 촉매 시스템을 사용하기 위해 에뷸레이티드 베드 반응기를 업그레이드하는 효과 및 이점을 입증한다. 이 시험에 사용된 파일럿 플랜트는 도 5에 따라 설계되었다. 도 5에 개략적으로 도시된 바와 같이, 2개의 에뷸레이티드 베드 반응기(512, 512')를 시리즈로 연결한 파일럿 플랜트(500)를 사용하여 중유 공급원료를 처리할때 불균일 촉매를 단독으로 사용하는 것과 분산된 금속 설파이드 촉매 입자(즉, 분산된 몰리브덴 디설파이드 촉매 입자)와 조합하여 불균일 촉매로 구성된 이원 촉매 시스템을 사용하는 것의 차이를 측정한다.
하기 시험 연구를 위해, 진공 가스 중유가 탄화수소 희석제로서 사용되었다. 일정량의 촉매 전구체를 일정량의 탄화수소 희석제와 혼합하여 일정량의 촉매 전구체 혼합물을 형성한 다음, 일정량의 촉매 전구체 혼합물을 일정량의 중유 공급원료와 혼합하여, 컨디셔닝된 공급원료에 분산된 촉매의 목표 로딩을 달성함으로써 일정량의 촉매 전구체를 제조하였다. 특정 예시로서, 컨디셔닝된 공급원료내 30 ppm의 분산된 금속 설파이드 촉매의 목표 로딩을 갖는 한 시험 연구의 경우(여기서 로딩은 금속 농도에 기초하여 표현됨), 3000 ppm 농도의 금속으로 촉매 전구체 혼합물이 제조되었다.
실제 테스트를 위한 공급원료 및 작동 조건은 이하에 보다 구체적으로 설명된다. 불균일 촉매는 에뷸레이티드 반응기에서 통상적으로 사용되는 상업적으로 입수가능한 촉매였다. 분산된 금속 설파이드 촉매가 사용되지 않은 비교 시험 연구에서, 희석된 전구체 혼합물을 사용하는 경우와 동일한 비율로 탄화수소 희석제(진공 가스 중유)가 중유 공급원료에 첨가되었다는 것을 유의한다. 이는 이원 촉매 시스템을 사용하는 테스트와 불균일(에뷸레이티드 베드) 촉매만을 사용하는 테스트 사이에서 배경 조성이 동일함을 보장하므로 테스트 결과를 직접 비교할 수 있게된다.
파일럿 플랜트(500)는 특히, 컨디셔닝된 공급원료를 형성하기 위해 탄화수소 희석제 및 촉매 전구체(예를 들어, 몰리브덴 2-에틸헥사노에이트)를 포함하는 전구체 혼합물을 중유 공급원료(통틀어, 501로 도시됨)와 함께 블렌딩하기 위한 고전단 혼합 용기(502)를 포함하였다. 적절한 블렌딩은 먼저 촉매 전구체를 탄화수소 희석제와 예비-블렌딩하여 전구체 혼합물을 형성함으로써 달성될 수 있다.
컨디셔닝된 공급원료는 서지 용기 및 펌프-어라운드와 유사한 펌프(504)에 의해 재순환되고, 혼합 용기(502)로 다시 들어간다. 고정밀 용적 치환 펌프(506)는 재순환 루프로부터 컨디셔닝된 공급원료를 인출하여, 이를 반응기 압력으로 가압한다. 수소 가스(508)는 가압된 공급원료로 공급되고, 생성된 혼합물은 제1 에뷸레이티드 베드 반응기(512)로 도입되기 전에 예열기(510)를 통과한다. 예열기(510)는 컨디셔닝된 공급원료내 촉매 전구체의 적어도 일부를 분해시키고, 공급원료내에서 인시츄 활성 촉매 입자를 형성시킨다.
각 에뷸레이티드 베드 반응기(512, 512')는 약 3000 ml의 공칭 내부 체적을 가질 수 있고, 반응기 내에 불균일 촉매를 유지시키기 위한 메시 와이어 가드(514)를 포함할 수 있다. 각각의 반응기에는 또한 불균일 촉매층을 확장시키기 위해 반응기에서 요구되는 유속을 제공하는 재순환 라인 및 재순환 펌프(513, 513')가 구비된다. 지정된 반응기 온도에서 유지되는 두 반응기 및 각각의 재순환 라인의 혼합된 부피는 시스템의 열 반응 부피로 간주될 수 있으며, 액체 시간당 공간 속도(LHSV)의 계산을 위한 기초로 사용될 수 있다. 이들 예에서, "LHSV"는 시간당 반응기에 공급된 진공 잔사 공급원료의 부피를 열 반응량으로 나눈 값으로 정의된다.
각각의 반응기에서 촉매의 정착된 높이는 하부 점선(516)에 의해 개략적으로 표시되고, 사용시에 확장된 촉매층은 상부 점선(518)에 의해 개략적으로 표시된다. 재순환 펌프(513)는 처리되는 물질을 반응기(512)의 상부로부터 하부로 재순환시켜, 물질의 일정한 상향 유동 및 촉매층의 확장을 유지하는데 사용된다.
제1 반응기(512)로부터의 업그레이드된 물질은 보충 수소(520)와 함께 추가의 수소첨가처리를 위해 제2 반응기(512')로 이송된다. 제2 재순환 펌프(513')는 처리되는 물질을 제2 반응기(512')의 상부로부터 하부로 재순환시켜, 물질의 일정한 상향 유동 및 촉매층의 확장을 유지하는데 사용된다.
제2 반응기(512')로부터 추가로 업그레이드된 물질은 고온 분리기(522)로 도입되어, 전환되지 않은 중유로 구성된 액체 분획물(526)로부터 저비점 탄화수소 생성물 증기 및 가스(524)를 분리한다. 탄화수소 생성물 증기 및 가스(524)를 냉각시키고, 저온 분리기(528)로 통과하여, 이들은 기체(530) 및 전환된 탄화수소 생성물로 분리되고, 이것이 분리기 오버헤드(532)로서 회수된다. 고온 분리기(522)로부터의 액체 분획물(526)은 분리기 앙금(534)으로서 회수되어, 분석에 사용할 수 있다.
실시예 1-4
실시예 1 내지 4는 상기 언급된 파일럿 플랜트에서 수행되고, 침전물의 형성을 유지 또는 감소시키면서 동등한 공급 속도(처리량)에서 실질적으로 더 높은 전환율로 작동하는 이원 촉매 시스템을 사용하는 업그레이드된 에뷸레이티드 베드 반응기의 성능을 시험하였다. 증가된 전환율에는 더 높은 레시드 전환율, C7 아스팔텐 전환율 및 마이크로카본 잔류물(MCR) 전환율이 포함되었다. 본 연구에서 사용된 중유 공급원료는 Ural 진공 잔사(VR)였다. 위에 설명한 바와 같이, 컨디셔닝된 공급원료는 일정량의 촉매 전구체 혼합물을 일정량의 중유 공급원료와 혼합함으로써 필요한 양의 분산된 촉매를 함유하는 최종 컨디셔닝된 공급원료로 제조하였다. 이것의 예외는 분산된 촉매가 사용되지 않은 시험이었으며, 이 경우 진공 가스 중유가 동일한 비율로 촉매 전구체 혼합물로 대체되었다. 컨디셔닝된 공급원료는 도 5의 파일럿 플랜트 시스템으로 공급되었으며, 특정 매개변수를 사용하여 작동되었다. 관련 공정 조건 및 결과는 표 1에 제시되어 있다.
실시예 # 1 2 3 4
공급원료 Ural VR Ural VR Ural VR Ural VR
분산된 촉매 농도 0 0 30 50
반응기 온도(°F) 789 801 801 801
LHSV, 공급량/반응기 용적/hr 0.24 0.24 0.25 0.25
레시드 전환율,
1000°F+ 기준, %
60.0% 67.7% 67.0% 65.9%
제품 IP-375 침전물, 분리기 앙금 기준, 중량% 0.78% 1.22% 0.76% 0.54%
제품 IP-375 침전물,
공급물 오일 기준, 중량%
0.67% 0.98% 0.61% 0.45%
C7 아스팔텐 전환율, % 40.6% 43.0% 46.9% 46.9%
MCR 전환율, % 49.3% 51.9% 55.2% 54.8%
실시예 1 및 2는 본 발명에 따른 이원 촉매 시스템을 사용하도록 업그레이드되기 전에 에뷸레이티드 베드 반응기를 모의하기 위해 불균일 촉매를 사용하였다. 실시예 3 및 4는 실시예 1 및 2의 동일한 불균일 촉매 및 또한 분산된 몰리브덴 설파이드 촉매 입자로 구성된 이원 촉매 시스템을 사용하였다. 공급원료 중의 분산된 몰리브덴 설파이드 촉매 입자의 농도는 분산된 촉매에 의해 제공되는 몰리브덴 금속(Mo)의 백만분율(ppm)의 농도로서 측정되었다. 실시예 1 및 2의 공급원료는 분산된 촉매(0 ppm Mo)를 포함하지 않았고, 실시예 3의 공급원료는 분산된 촉매를 30 ppm Mo의 농도로 포함하고, 실시예 4의 공급원료는 분산된 촉매를 50 ppm Mo의 농도로 포함하였다.
실시예 1은 Ural VR이 789℉(421℃)의 온도 및 60.0%의 레시드 전환율에서 수소첨가처리된 기준 시험이었다. 실시예 2에서, 온도는 801℉(427℃)로 높아졌고, 레시드 전환율(1000℉+ 기준,%)은 67.7%로 증가되었다. 이는 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.78%에서 1.22%로, 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.67%에서 0.98%로, C7 아스팔텐 전환율을 40.6%에서 43.0%로, 및 MCR 전환율을 49.3%에서 51.9%로 실질적으로 증가시켰다. 이는 실시예 1 및 2에서 단독으로 사용된 불균일 촉매가 침전물 형성의 실질적인 증가없이 온도 및 전환율의 증가를 견딜 수 없었음을 나타낸다.
분산된 촉매(Mo 30ppm 제공)를 포함하는 이원 촉매 시스템을 사용하는 실시예 3에서, 반응기 온도는 801℉(427℃)로 높아졌고, 레시드 전환율은 67.0%로 증가되었다. 공급 속도는 0.24에서 0.25로 약간 증가시켰다(LHSV, 공급량/반응기 용적/시간). 보다 높은 온도, 레시드 전환율 및 공급 속도에서도 제품 IP-375 침전물(분리기 앙금 기준, 중량%)은 0.78%에서 0.76%로 약간 감소하여, 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.67%에서 0.61%로 실질적으로 감소시켰다. 증가된 레시드 전환율 외에도, C7 아스팔텐 전환율은 40.6%에서 46.9%로 증가했으며, MCR 전환율은 49.3%에서 55.2%로 증가했다.
실시예 3의 이원 촉매 시스템은 또한 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 1.22%에서 0.76%로, 및 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.98%에서 0.61%로 실질적으로 감소시키면서, C7 아스팔텐 전환율을 43.0%에서 46.9%로 추가로 증가시키고, MCR 전환율을 51.9%에서 55.2%로 증가시키는 것을 포함하여, 넓은 마진으로 실시예 2에서 단독으로 사용된 불균일 촉매를 실질적으로 능가했다.
분산된 촉매(Mo 50ppm 제공)를 포함하는, 이원 촉매 시스템을 사용한 실시예 4에서, 반응기 온도는 801℉(427℃)이었으며, 전환율은 65.9%이고, 공급 속도는 0.25(LHSV, 공급량/반응기 용적/시간)였다. 실시예 1과 비교하여, 제품 IP-375 침전물(분리기 앙금 기준, 중량%)이 0.78%에서 0.54%로 실질적으로 감소되었고, 제품 IP-375 침전물(공급 오일 기준, 중량%)이 0.67%에서 0.45%로 실질적으로 감소하였다. 또한, C7 아스팔텐 전환율은 40.6%에서 46.9%로 증가했으며, MCR 전환율은 49.3%에서 54.8%로 증가했다. 이는 실시예 4의 이원 촉매 시스템이 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 1.22%에서 0.54%로, 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.98%에서 0.45%로 감소시키면서, C7 아스팔텐 전환율을 43.0%에서 46.9%로 추가로 증가시키고, MCR 전환율을 51.9%에서 54.8%로 추가로 증가시키는 것을 포함하여, 넓은 마진으로 실시예 2에서 단독으로 사용된 불균일 촉매를 실질적으로 능가했음을 나타낸다.
실시예 3 및 4는 불균일 촉매만을 사용하는 에뷸레이티드 베드 반응기에 비해 침전물 생성을 실질적으로 감소시키면서, 증가된 작동 온도, 레시드 전환율, C7 아스팔텐 전환율 및 MCR 전환율 및 동일한 공급 속도(처리량)를 포함하는, 증가된 반응기 심각도를 허용하도록, 업그레이드된 에뷸레이티드 수소첨가처리 반응기에서 이원 촉매 시스템의 능력을 명확히 입증하였다.
실시예 5-8
실시예 5 내지 8은 상기 언급된 파일럿 플랜트에서 수행되었고, 침전물의 형성을 유지하거나 감소시키면서, 동등한 공급 속도(처리량)에서 실질적으로 더 높은 전환율로 작동하는 이원 촉매 시스템을 사용하는 업그레이드된 에뷸레이티드 베드 반응기의 능력을 시험하였다. 증가된 전환율은 더 높은 레시드 전환율, C7 아스팔텐 전환율 및 마이크로카본 잔류물(MCR) 전환율을 포함하였다. 이 연구에서 사용된 중유 공급원료는 Arab 중간 진공 잔사(VR)였다. 관련 공정 조건 및 결과는 표 2에 제시되어있다.
실시예 # 5 6 7 8
공급원료 Arab 중간 VR Arab 중간 VR Arab 중간 VR Arab 중간 VR
분산된 촉매 농도 0 0 30 50
반응기 온도(℉) 803 815 815 815
LHSV, 공급량/반응기 용적/hr 0.25 0.25 0.25 0.25
레시드 전환율,
1000℉+ 기준, %
73.2% 81.4% 79.9% 80.8%
제품 IP-375 침전물,
분리기 앙금 기준, 중량%
1.40% 0.91% 0.68% 0.43%
제품 IP-375 침전물,
공급 오일 기준, 중량%
1.05% 0.61% 0.49% 0.31%
C7 아스팔텐 전환율, % 55.8% 65.9% 72.9% 76.0%
MCR 전환율, % 47.2% 55.2% 57.7% 61.8%
실시예 5 및 6에 대한 침전물 데이터는 개념적으로 침전물 생성에 대해 잘못된 방향성 경향(즉, 동일한 불균일 촉매를 사용하고, 분산된 촉매를 사용하지 않는 동안 더 높은 레시드 전환율에서 더 낮은 침전물)을 가질 수 있음을 주목한다. 그럼에도 불구하고, 실시예 6 내지 8을 비교한 결과는 이원 촉매 시스템을 사용할 때 명백한 개선을 나타냈다.
실시예 5 및 6은 본 발명에 따른 이원 촉매 시스템을 사용하도록 업그레이드되기 전에 에뷸레이티드 베드 반응기를 모의하기 위해 불균일 촉매를 사용하였다. 실시예 7 및 8은 실시예 5 및 6의 동일한 불균일 촉매 및 분산된 몰리브덴 설파이드 촉매 입자로 구성된 이원 촉매 시스템을 사용하였다. 공급원료 중의 분산된 몰리브덴 설파이드 촉매 입자의 농도는 분산된 촉매에 의해 제공되는 몰리브덴 금속(Mo)의 백만분율(ppm)의 농도로서 측정되었다. 실시예 5 및 6의 공급원료는 분산된 촉매를 포함하지 않았으며(0 ppm Mo); 실시예 7의 공급원료는 분산된 촉매(30ppm Mo)를 포함하고, 실시예 8의 공급원료는 분산된 촉매(50ppm Mo)를 포함하였다.
실시예 5는 Arab 중간 VR이 803℉(428℃)의 온도 및 73.2%의 레시드 전환율에서 수소첨가처리된 기준 시험이었다. 실시예 6에서, 온도는 815℉(435℃)로 높아졌고, 레시드 전환율(1000℉+ 기준, %)은 81.4%로 증가되었다. 제품 IP-375 침전물(분리기 앙금 기준, 중량%)은 1.40%에서 0.91%로 감소하였고, 제품 IP-375 침전물(공급 오일 기준, 중량%)은 1.05%에서 0.61%로 감소하였고, C7 아스팔텐 전환율은 55.8%에서 65.9%로 증가하였으며, MCR 전환율은 47.2%에서 55.2%로 증가했다. 실시예 7 및 8의 이원 촉매 시스템의 효과를 비교하기 위해, 실시예 5 및 6을 사용할 수 있다. 그러나, 실시예 7 및 8과 실질적으로 동일한 레시드 전환율에서 실시한 실시예 6의 결과와 가장 직접적으로 비교한다.
분산된 촉매 입자(30 ppm Mo 제공)를 사용하는 실시예 7에서, 반응기 온도는 실시예 5의 803℉(428℃)에서 815℉(435℃)로 높아졌고, 레시드 전환율은 실시예 5의 73.2%에서 79.9%로 증가하였다. 공급 속도는 0.25(LHSV, 공급량/반응기 용적/시간)로 유지하였다. 보다 높은 온도, 전환율 및 공급 속도에서도 제품 IP-375 침전물(분리기 앙금 기준, 중량%)이 1.40%에서 0.68%로 감소하고, 제품 IP-375 침전물(공급 오일 기준, 중량%)이 1.05%에서 0.49%로 감소하였다. 증가된 레시드 전환율에 추가하여, C7 아스팔텐 전환율은 55.8%에서 72.9%로 증가했으며, MCR 전환율은 47.2%에서 57.7%로 증가했다.
실시예 7의 이원 촉매 시스템은 또한 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.91%에서 0.68%로 및 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.61%에서 0.49%로 실질적으로 감소시키면서, C7 아스팔텐 전환율을 65.9%에서 72.9%로, MCR 전환율을 55.2%에서 57.7%로 증가시키는 것을 포함하여 실시예 6에서 단독으로 사용된 불균일 촉매를 넓은 마진으로 실질적으로 능가했다.
분산된 촉매 입자(50ppm Mo를 제공)를 사용하는 실시예 8에서, 반응기 온도는 815℉(435℃)이고, 전환율은 80.8%이었으며, 공급 속도는 0.25(LHSV, 공급량/반응기 용적/시간)이었다. 실시예 5와 비교하여, 제품 IP-375 침전물(분리기 앙금 기준, 중량%)이 1.40%에서 0.43%로 실질적으로 감소하고, 제품 IP-375 침전물(공급 오일 기준, 중량%)이 1.05% 내지 0.31%로 실질적으로 감소하였다. 또한, C7 아스팔텐 전환율은 55.8%에서 76.0%로 증가하였으며, MCR 전환율은 47.2%에서 61.8%로 증가했다.
실시예 8의 이원 촉매 시스템은 또한 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.91%에서 0.43%로, 및 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.61%에서 0.31%로 감소시키면서, C7 아스팔텐 전환율을 65.9%에서 76.0%로, MCR 전환율을 55.2%에서 61.8%로 추가로 증가시키는 것을 포함하여, 실시예 6에서 단독으로 사용된 불균일 촉매를 실질적으로 능가했다.
실시예 7 및 8은 불균일 촉매만을 사용하는 에뷸레이티드 베드 반응기에 비해 침전물 생성을 실질적으로 감소시키면서, 높아진 작동 온도, 레시드 전환율, C7 아스팔텐 전환율 및 MCR 전환율, 및 동일한 공급 속도(처리량)를 포함하여, 증가된 반응기 심각도를 허용하기 위해 업그레이드된 에뷸레이티드 베드 수소첨가처리 반응기에서 이원 촉매 시스템의 능력을 명확히 입증하였다.
실시예 9-13
실시예 9 내지 13은 침전물의 형성을 유지하거나 감소시키면서 동등한 공급 속도(처리량)에서 실질적으로 더 높은 전환율을 가능하게하는 이원 촉매 시스템을 사용하는 업그레이드된 에뷸레이티드 베드 반응기의 능력을 보여주는 상업적 결과이다. 증가된 전환율에는 더 높은 레시드 전환율, C7 아스팔텐 전환율 및 마이크로카본 잔류물(MCR) 전환율이 포함되었다. 본 연구에서 사용된 중유 공급원료는 Ural 진공 잔사(VR)였다. 이 연구의 데이터는 고객의 기밀 유지를 위해 절대적인 결과보다는 상대적인 결과만을 보여준다. 관련 공정 조건 및 결과는 표 1에 제시되어있다.
실시예 # 9 10 11 12 13
조건 기준선 (분산된 촉매 없음) 분산된 촉매 +0℃ 분산된 촉매 +4℃ 분산된 촉매 +6℃ 분산된 촉매 +9℃
시험 소요일 7 내지 21일 35 내지 42일 48 내지 54일 56 내지 62일 65 내지 75일
공급원료 Ural VR Ural VR Ural VR Ural VR Ural VR
분산된 촉매 농도 0 32 32 32 32
반응기 온도(℉) Tbase Tbase Tbase +4℃ Tbase +6℃ Tbase +9℃
LHSV, 공급량/반응기 용적/hr LHSVbase LHSVbase LHSVbase LHSVbase LHSVbase
레시드 전환율,
1000℉+ 기준, %
(기준선으로부터 절대 차이)
Convbase Convbase -1.3% Convbase +2.7% Convbase +6.3 % Convbase +10.4%
제품 IP-375 침전물, 분리기 앙금 기준, 중량%(기준선으로부터 절대 차이) Sedbase Sedbase -0.12 중량% Sedbase -0.09 중량% Sedbase -0.06 중량% Sedbase -0.07 중량%
제품 IP-375 침전물, 공급 오일 기준, 중량%(기준선으로부터 절대 차이) Sedbase Sedbase -0.02 중량% Sedbase -0.05 중량% Sedbase -0.05 중량% Sedbase -0.07 중량%
C7 아스팔텐 전환율, %(기준선으로부터 절대 차이) C7 base C7 base +18% C7 base +25% C7 base +25% C7 base +18%
MCR 전환율, %(기준선으로부터 절대 차이) MCRbase MCRbase MCRbase +2% MCRbase +3% MCRbase +4%
실시예 9는 본 발명에 따른 이원 촉매 시스템을 사용하도록 업그레이드되기 전에 에뷸레이티드 베드 반응기에서 불균일 촉매를 사용하였다. 실시예 10 내지 13은 실시예 9의 동일한 불균일 촉매 및 분산된 몰리브덴 설파이드 촉매 입자로 구성된 이원 촉매 시스템을 사용하였다. 공급원료 중의 분산된 몰리브덴 설파이드 촉매 입자의 농도는 분산된 촉매에 의해 제공되는 몰리브덴 금속(Mo)의 백만분율(ppm)의 농도로서 측정되었다. 실시예 9의 공급원료는 분산된 촉매를 포함하지 않고(0 ppm Mo); 실시예 10 내지 13의 공급원료는 분산된 촉매를 포함하였다(32ppm Mo).
실시예 9는 Ural VR을 기준 온도(Tbase), 기본 공급 속도(LHSVbase), 기본 레시드 전환율(Convbase), 기본 침전물 형성(Sedbase), 기본 C7 전환율(C7 base) 및 기본 MCR 전환율(MCRbase)에서 수소첨가처리한 기준 시험이었다.
실시예 10에서, 온도(Tbase) 및 공급 속도(LHSVbase)는 실시예 9에서와 동일하였다. 분산된 촉매를 포함하면, 기본 레시드 전환율과 비교하여 1.3%의 레시드 전환율이 약간 감소되었고(Convbase -1.3%), 제품 IP-375 침전물(분리기 앙금 기준, 중량%)이 0.12% 감소되었으며(Sedbase -0.12%), 제품 IP-375 침전물(공급 오일 기준, 중량%)이 0.02% 감소되었으며(Sedbase -0.02%), C7 아스팔텐 전환율이 18% 증가하고(C7 base +18%), MCR 전환율(MCRbase)이 변화하지 않았다. 이는 단독으로 사용된 불균일 촉매(실시예 9) 대신에 이원 촉매 시스템(실시예 10)을 포함하도록 에뷸레이티드 베드 반응기를 간단히 업그레이드함으로써, C7 아스팔텐 전환율이 실질적으로 증가한 반면, 침전물 형성이 감소되었음을 나타낸다. 레시드 전환율이 약간 감소했지만, 훨씬 더 중요한 통계치는 코크스 형성 및 장비 오염에 가장 많이 관여하는 구성요소이기 때문에 C7 아스팔텐 전환율의 증가이다.
실시예 11에서, 온도(Tbase)는 실시예 9와 비교하여 4℃ 증가하였고(Tbase + 4℃), 공급 속도(LHSVbase)는 동일하였다. 이는 레시드 전환율을 2.7% 증가시키고(Convbase + 2.7%), 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.09% 감소시키고(Sedbase -0.09%), 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.05% 감소시키고(Sedbase -0.05%), C7 아스팔텐 전환율을 25% 증가시키고(C7 base + 25%) 및 MCR 전환율을 2% 증가시켰다(MCRbase + 2%). 이는 단독으로 사용되는 불균일 촉매 대신에 이원 촉매 시스템을 포함하는 에뷸레이티드 베드 반응기를 업그레이드하여 침전물 형성을 감소시키면서, 레시드 전환율을 증가시키고, 실질적으로 C7 아스팔텐 전환율을 증가시키고, MCR 전환율을 증가시키는 것을 나타낸다. 레시드 전환율이 약간 증가한 반면, 훨씬 더 중요한 통계치는 C7 아스팔텐 전환율이 실질적으로 더 높아진 것이다.
실시예 12에서, 온도(Tbase)는 실시예 9와 비교하여 6℃ 증가하였고(Tbase +6℃), 공급 속도(LHSVbase)는 동일하였다. 결과적으로 이는 실질적으로 레시드 전환율을 6.3% 더 높이고(Convbase + 6.3%), 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.06% 감소시키고(Sedbase -0.06%), 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.05% 감소시키고(Sedbase -0.05%), C7 아스팔텐 전환율을 25% 증가시키고(C7 base + 25%) 및 MCR 전환율을 3% 증가시켰다(MCRbase + 3%). 이는 단독으로 사용되는 불균일 촉매 대신에 이원 촉매 시스템을 포함하는 에뷸레이티드 베드 반응기를 업그레이드하여 침전물 형성을 감소시키면서, 실질적으로 레시드 전환율을 증가시키고, C7 아스팔텐 전환율을 증가시키고, MCR 전환율을 증가시키는 것을 나타낸다.
실시예 13에서, 온도(Tbase)는 실시예 9와 비교하여 9℃ 증가하였고(Tbase +9℃), 공급 속도(LHSVbase)는 동일하였다. 결과적으로 이는 실질적으로 레시드 전환율을 10.4% 더 높이고(Convbase + 10.4%), 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.07% 감소시키고(Sedbase -0.07%), 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.07% 감소시키고(Sedbase -0.07%), C7 아스팔텐 전환율을 18% 증가시키고(C7 base + 18%) 및 MCR 전환율을 4% 증가시켰다(MCRbase + 4%). 이는 단독으로 사용되는 불균일 촉매 대신에 이원 촉매 시스템을 포함하는 에뷸레이티드 베드 반응기를 업그레이드하여 침전물 형성을 감소시키면서, 실질적으로 레시드 전환율, C7 아스팔텐 전환율, 및 MCR 전환율을 증가시키는 것을 나타낸다.
실시예 10 내지 13은 불균일 촉매만을 사용하는 에뷸레이티드 베드 반응기에 비해 침전물 생성을 실질적으로 감소시키면서, 증가된 작동 온도, 레시드 전환율, C7 아스팔텐 전환율 및 MCR 전환율을 포함하여, 증가된 반응기 심각도, 및 동일 공급 속도(처리량)를 허용할 수 있는, 업그레이드된 에뷸레이티드 수소첨가처리 반응기에서 이원 촉매 시스템의 능력을 명확하게 입증하였다.
표 3에 제시된 데이터 외에, 도 6은 실시예 9 내지 13에 따른 상이한 촉매를 사용하여, 진공 잔사(VR)를 수소첨가처리할때, 기준선과 비교하여, 잔류물 전환율의 함수로서 진공 탑 앙금(VTB)내 IP-375 침전물을 그래프로 나타낸 산점도 및 선 그래프이다. 도 9는 이원 촉매 시스템을 사용하는 업그레이드된 에뷸레이티드 베드 반응기와 비교하여 종래의 에뷸레이티드 베드 반응기를 사용하여 제조된 진공 탑 앙금(VTB)내 침전물 양 사이의 시각적 비교를 제공한다.
실시예 14-16
실시예 14 내지 16은 상기 파일럿 플랜트에서 수행되었고, 침전물의 형성을 유지하거나 감소시키면서 동등한 레시드 전환율에서 실질적으로 더 높은 공급 속도(처리량)로 작동하도록 이원 촉매 시스템을 사용하는, 업그레이드된 에뷸레이티드 베드 반응기의 능력을 테스트하였다. 본 연구에서 사용된 중유 공급원료는 Arab 중간 진공 잔사(VR)였다. 관련 공정 조건 및 결과는 표 4에 개시되어 있다.
실시예 # 14 15 16*
공급원료 Arab 중간 VR Arab 중간 VR Arab 중간 VR
분산된 촉매 농도 0 0 30
반응기 온도(℉) 788 800 803
LHSV, 공급량/반응기 용적/hr 0.24 0.33 0.3
레시드 전환율,
1000℉+ 기준, %
62% 62% 62%
제품 IP-375 침전물,
분리기 앙금 기준, 중량%
0.37% 0.57% 0.10%
제품 IP-375 침전물,
공급 오일 기준, 중량%
0.30% 0.44% 0.08%
C7 아스팔텐 전환율, % 58.0% 48.0% 59.5%
MCR 전환율, % 58.5% 53.5% 57.0%
* 참고 : 동일한 파일럿 플랜트 가동 중 다른 테스트 조건의 성능을 기준으로 실시예 15의 조건으로부터 실시예 16의 조건을 외삽했다.
실시예 14 및 15는 본 발명에 따른 이원 촉매 시스템을 사용하도록 업그레이드되기 전에 에뷸레이티드 베드 반응기를 모의하기 위해 불균일 촉매를 사용하였다. 실시예 16은 실시예 14 및 15의 동일한 불균일 촉매 및 분산된 몰리브덴 설파이드 촉매 입자로 구성된 이원 촉매 시스템을 사용하였다. 공급원료 중의 분산된 몰리브덴 설파이드 촉매 입자의 농도는 분산된 촉매에 의해 제공되는 몰리브덴 금속(Mo)의 백만분율(ppm)의 농도로서 측정되었다. 실시예 14 및 15의 공급원료는 분산된 촉매를 포함하지 않고(0 ppm Mo); 실시예 16의 공급원료는 분산된 촉매를 포함하였다(30ppm Mo).
실시예 14는 Arab 중간 VR이 788℉(420℃)의 온도와 62%의 레시드 전환율에서 수소첨가처리된 기준 테스트이다. 실시예 15에서, 온도를 800℉(427℃)로 증가시키고, 레시드 전환율을 62%에서 유지시키고, 공급 속도(LHSV, 공급량/반응기 용적/시간)를 0.33으로 증가시켰다. 이는 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.37%에서 0.57%로 실질적으로 증가시키고, 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.30%에서 0.44%로 증가시키고, C7 아스팔텐 전환율을 58.0%에서 48.0%로 실질적으로 감소시켰으며, MCR 전환율을 58.5%에서 53.5%로 감소시켰다. 이는 실시예 14 및 15에서 단독으로 사용된 불균일 촉매가 침전물 형성을 실질적으로 증가시키지 않으면서, 온도 및 공급 속도의 증가를 견딜 수 없었음을 나타낸다.
분산된 촉매 입자(30 ppm Mo 제공)를 사용하는 실시예 16에서는 반응기 온도를 803℉(428℃)로 높이고, 레시드 전환율을 62%로 유지시키고, 공급 속도를 0.24에서 0.3으로 증가시켰다(LHSV, 공급량/반응기 용적/시간). 보다 높은 온도 및 공급 속도에서도, 동일한 레시드 전환율을 유지하면서 제품 IP-375 침전물(분리기 앙금 기준, 중량%)이 0.37%에서 0.10%로 실질적으로 감소하고, 제품 IP-375 침전물(공급 오일 기준, 중량%)이 0.30%에서 0.08%로 실질적으로 감소하였다. 또한, C7 아스팔텐 전환율은 58.0%에서 59.5%로 증가하고, MCR 전환율은 58.5%에서 57.0%로 감소했다.
실시예 16의 이원 촉매 시스템은 또한 제품 IP-375 침전물(분리기 앙금 기준, 중량%)을 0.57%에서 0.10%로 실질적으로 감소시키고, 제품 IP-375 침전물(공급 오일 기준, 중량%)을 0.44%에서 0.08%로 실질적으로 감소시키고, C7 아스팔텐 전환율을 48.0%에서 59.5%로 실질적으로 증가시키고, 및 MCR 전환율을 53.5%에서 57.0%로 증가시키는 것을 포함하는 넓은 마진으로 실시예 15의 불균일 촉매를 실질적으로 능가했다.
표 3에 나타낸 데이터에 더하여, 도 7은 실시예 14 내지 16에 따른 상이한 분산 촉매 농도 및 작동 조건을 사용하여 Arab 중간 진공 잔사(VR)를 수소첨가처리할 때 반응기 온도의 함수로서 레시드 전환율을 그래픽으로 나타내는 산점도 및 선 그래프이다.
도 8은 실시예 14 내지 16에 따른 상이한 촉매를 사용하여 Arab 중간 VR을 수소첨가처리할 때 레시드 전환율의 함수로서 O-6 하부에서 IP-375 침전물을 그래픽으로 나타내는 산점도 및 선 그래프이다.
도 9는 실시예 14 내지 16에 따른 상이한 분산된 촉매 농도 및 작동 조건을 사용하여 Arab 중간 VR을 수소첨가처리할 때 레시드 전환율의 함수로서 아스팔텐 전환율을 그래픽으로 나타내는 산점도 및 선 그래프이다.
도 10은 실시예 14 내지 16에 따른 상이한 분산된 촉매 농도 및 작동 조건을 사용하여 Arab 중간 VR을 수소첨가처리할 때 레시드 전환율의 함수로서 마이크로카본 잔사(MCR) 전환율을 그래픽으로 나타내는 산점도 및 선 그래프이다.
본 발명은 그의 사상 또는 본질적인 특성을 벗어나지 않으면서, 다른 특정 형태로 구체화될 수 있다. 본 기술된 구현예들은 모든 면에서 단지 예시적인 것으로서 제한적이지 않는 것으로 간주된다. 그러므로, 본 발명의 범주는 상기 설명에 의한 것보다는 첨부된 청구범위에 의해 표시된다. 청구범위와 균등한 의미 및 범위 내에 있는 모든 변경은 그 범위 내에 포함되어야 한다.

Claims (23)

  1. 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 하나 이상의 에뷸레이티드 베드 반응기를 포함하는 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법으로서:
    초기 반응기 심각도 및 전환된 생성물의 초기 생성 속도를 포함하는, 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계;
    그 후, 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동하도록 상기 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및
    초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬 때보다 더 높은 반응기 심각도 및 전환된 생성물의 증가된 생성 속도로, 이원 촉매 시스템을 사용하여, 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계
    를 포함하는, 방법.
  2. 제1항에 있어서, 상기 중유는 중질 원유, 오일 샌드 역청, 및 제련 공정으로부터의 잔사유, 표면상 비등점이 적어도 343℃(650℉)인 상압 탑 앙금, 표면상 비등점이 적어도 524℃(975℉)인 진공 탑 앙금, 고온 분리기로부터의 레시드, 레시드 피치, 용제 추출로부터의 레시드 또는 진공 잔사 중 적어도 하나를 포함하는, 방법.
  3. 제1항 또는 제2항에 있어서, 더 높은 심각도로 작동시키는 단계는 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 전환율을 유지하거나 증가시키면서 중유의 처리량 및 에뷸레이티드 베드 반응기의 작동 온도를 증가시키는 단계를 포함하는, 방법.
  4. 제3항에 있어서, 중유의 상기 증가된 처리량이 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 적어도 2.5% 높거나, 적어도 5% 높거나, 적어도 10% 높거나, 적어도 20% 높은, 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 더 높은 심각도에서 작동시키는 단계는 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 처리량을 유지하거나 증가시키면서 중유의 전환율 및 에뷸레이티드 베드 반응기의 작동 온도를 증가시키는 단계를 포함하는, 방법.
  6. 제5항에 있어서, 중유의 상기 증가된 전환율이 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 적어도 2.5% 높거나, 적어도 5% 높거나, 적어도 7.5% 높거나, 적어도 10% 높거나, 적어도 15% 높은, 방법.
  7. 제3항 내지 제6항 중 어느 한 항에 있어서, 상기 증가된 온도가 초기 조건에서 작동시킬때보다 적어도 2.5℃ 높거나, 적어도 5℃ 높거나, 적어도 7.5℃ 높거나, 적어도 10℃ 높은, 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 더 높은 심각도에서 작동시키는 단계는 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 전환율, 처리량, 및 에뷸레이티드 베드 반응기의 작동 온도를 증가시키는 단계를 포함하는, 방법.
  9. 제8항에 있어서, 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 상기 증가된 전환율이 적어도 2.5% 높거나, 상기 증가된 처리량이 적어도 2.5% 높거나, 상기 증가된 온도가 적어도 2.5℃ 높은, 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 더 높은 반응기 심각도 및 전환된 생성물의 증가된 생성 속도에서 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키면, 초기 조건에서 작동시킬때와 같거나 이때보다 적은 장비 오염 속도가 초래되는, 방법.
  11. 제10항에 있어서, 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시킬때 장비 오염 속도는:
    - 초기 조건에서 작동시킬때와 동일하거나 이때보다 적은, 세척을 위한 열교환기 셧다운 빈도;
    - 초기 조건에서 작동시킬때와 동일하거나 이때보다 적은, 세척을 위한 상압 및/또는 진공 증류 탑 셧다운 빈도;
    - 초기 조건에서 작동시킬때와 동일하거나 이때보다 적은, 필터 및 여과기의 교체 또는 세정 빈도;
    - 초기 조건에서 작동시킬때와 동일하거나 이때보다 적은, 여분의 열교환기에 대한 스위치 빈도;
    - 초기 조건에서 작동시킬때보다, 열교환기, 분리기 또는 증류 탑 중 하나 이상으로부터 선택된 장비내 감소된 스킨 온도의 감소 속도;
    - 초기 조건에서 작동시킬때보다, 감소된 노 튜브 금속 온도의 증가 속도; 또는
    - 초기 조건에서 작동시킬때보다, 열교환기를 위한 감소된 계산된 저항 오염인자의 증가 속도
    중 적어도 하나를 초래하는, 방법.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 더 높은 반응기 심각도 및 전환된 생성물의 증가된 생성 속도에서 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계는 초기 조건에서 작동시킬때와 동일하거나 이때보다 작은 침전물 생성 속도를 초래하는, 방법.
  13. 제12항에 있어서, 침전물 생성 속도는:
    - 상압 탑 앙금 생성물내 침전물 측정;
    - 진공 탑 앙금 생성물내 침전물 측정;
    - 고온 저압 분리기로부터의 생성물내 침전물 측정; 또는
    - 커터 스톡을 첨가하기 전 또는 후에 연료 오일 생성물내 침전물 측정
    중 적어도 하나를 기반으로 하는, 방법.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 더 높은 반응기 심각도 및 전환된 생성물의 증가된 생성 속도에서 이원 촉매 시스템을 사용하여 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계는 초기 조건에서 작동시킬때와 동일하거나 이때보다 작은 제품 침전물 농도를 초래하는, 방법.
  15. 제14항에 있어서, 제품 침전물 농도가:
    - 상압 탑 앙금 생성물내 침전물 측정;
    - 진공 탑 앙금 생성물내 침전물 측정;
    - 고온 저압 분리기로부터의 생성물내 침전물 측정;
    - 하나 이상의 커터 스톡을 첨가하기 전 또는 후, 연료 오일 생성물내 침전물 측정
    중 적어도 하나를 기반으로 하는, 방법.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서, 상기 분산된 금속 설파이드 촉매 입자의 크기는 1㎛ 미만, 또는 약 500 nm 미만, 또는 약 100 nm 미만, 또는 약 25 nm 미만, 또는 약 10 nm 미만인, 방법.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서, 상기 분산된 금속 설파이드 촉매 입자가 촉매 전구체로부터 중유내에 인시츄 형성되는, 방법.
  18. 제17항에 있어서, 상기 촉매 전구체를 희석제 탄화수소와 혼합하여 희석된 전구체 혼합물을 형성하는 단계, 상기 희석된 전구체 혼합물을 중유와 블렌딩하여 컨디셔닝된 중유를 형성하는 단계, 및 상기 컨디셔닝된 중유를 가열하여 촉매 전구체를 분해하고 분산된 금속 설파이드 촉매 입자를 인시츄 형성하는 단계를 추가로 포함하는, 방법.
  19. 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 하나 이상의 에뷸레이티드 베드 반응기를 포함하는 에뷸레이티드 베드 수소첨가처리 시스템을 업그레이드하는 방법으로서:
    초기 처리량, 작동 온도, 전환된 생성물의 초기 생성 속도 및 초기 오염 속도 및/또는 초기 침전물 생성 속도를 포함하는 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계;
    그후, 상기 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동하도록 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및
    초기 조건에서 상기 에뷸레이티드 베드 반응기를 작동시킬때보다 높은 처리량, 높은 작동 온도, 전환된 생성물의 증가된 생성 속도, 및 동일하거나 더 낮은 오염 속도 및/또는 침전물 생성 속도로 이원 촉매 시스템을 사용하여, 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계
    를 포함하는, 방법.
  20. 제19항에 있어서, 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 전환율을 유지하거나 증가시키면서, 상기 업그레이드된 에뷸레이티드 베드 반응기가 작동되는, 방법.
  21. 중유로부터 전환된 생성물의 생성 속도를 증가시키기 위해 하나 이상의 에뷸레이티드 베드 반응기를 포함하는 에뷸레이티드 베드 수소첨가처리 시스템의 업그레이드 방법으로서:
    초기 전환율, 초기 작동 온도, 전환된 생성물의 초기 생성 속도 및 초기 오염 속도 및/또는 초기 침전물 생성 속도를 포함하는 초기 조건에서 중유를 수소첨가처리하기 위해 불균일 촉매를 사용하여 에뷸레이티드 베드 반응기를 작동시키는 단계;
    그후, 상기 분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 사용하여 작동하도록 에뷸레이티드 베드 반응기를 업그레이드하는 단계; 및
    초기 조건에서 상기 에뷸레이티드 베드 반응기를 작동시킬때보다 높은 전환율, 높은 작동 온도, 전환된 생성물의 증가된 생성 속도, 및 동일하거나 더 낮은 오염 속도 및/또는 침전물 생성 속도로 중유를 수소첨가처리하기 위해 이원 촉매 시스템을 사용하여, 상기 업그레이드된 에뷸레이티드 베드 반응기를 작동시키는 단계
    를 포함하는, 방법.
  22. 제21항에 있어서, 초기 조건에서 에뷸레이티드 베드 반응기를 작동시킬때보다 중유의 처리량을 유지하거나 증가시키면서, 상기 업그레이드된 에뷸레이티드 베드 반응기가 작동되는, 방법.
  23. 설계된 대로 작동시킬때 종래의 에뷸레이티드 베드 시스템과 비교하여, 중유로부터 전환된 생성물의 증가된 생성 속도로 하나 이상의 에뷸레이티드 베드 반응기를 포함하는 에뷸레이티드 베드 수소첨가처리 시스템에 의해 중유를 수소첨가처리하는 개선된 방법으로서:
    중유를 수소첨가처리하기 위해 불균일 촉매를 사용하도록 설계되고, 설계된 대로 작동시킬때 기준 반응기 심각도 및 전환된 생성물의 기준 생성 속도를 포함하는 기준 조건에서 안정적으로 작동시킬 수 있는 에뷸레이티드 베드 반응기를 제공하는 단계;
    분산된 금속 설파이드 촉매 입자 및 불균일 촉매로 구성된 이원 촉매 시스템을 중유 및 수소와 함께 반응기에 도입시킴으로써 에뷸레이티드 베드 반응기에 의해 중유를 수소첨가처리하는 것을 개선시키는 단계; 및
    기준 조건에서 반응기의 안정한 작동과 비교하여, 더 높은 반응기 심각도, 및 전환된 생성물의 증가된 생성 속도로 이원 촉매 시스템을 사용하여 상기 개선된 에뷸레이티드 베드 반응기를 작동시키는 단계
    를 포함하는, 방법.
KR1020187011374A 2015-09-22 2016-09-12 전환된 생성물의 생성 속도가 증가된 업그레이드된 에뷸레이티드 베드 반응기 KR102623880B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562222073P 2015-09-22 2015-09-22
US62/222,073 2015-09-22
US15/258,653 2016-09-07
US15/258,653 US11414607B2 (en) 2015-09-22 2016-09-07 Upgraded ebullated bed reactor with increased production rate of converted products
PCT/US2016/051318 WO2017053117A1 (en) 2015-09-22 2016-09-12 Upgraded ebullated bed reactor with increased production rate of converted products

Publications (2)

Publication Number Publication Date
KR20180069827A true KR20180069827A (ko) 2018-06-25
KR102623880B1 KR102623880B1 (ko) 2024-01-11

Family

ID=58276730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187011374A KR102623880B1 (ko) 2015-09-22 2016-09-12 전환된 생성물의 생성 속도가 증가된 업그레이드된 에뷸레이티드 베드 반응기

Country Status (13)

Country Link
US (1) US11414607B2 (ko)
EP (1) EP3353267B1 (ko)
JP (1) JP7126442B2 (ko)
KR (1) KR102623880B1 (ko)
CN (1) CN108699451B (ko)
CA (1) CA2999448C (ko)
CO (1) CO2018003461A2 (ko)
EA (1) EA038765B1 (ko)
ES (1) ES2898338T3 (ko)
MX (1) MX2018002903A (ko)
PL (1) PL3353267T3 (ko)
PT (1) PT3353267T (ko)
WO (1) WO2017053117A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650346A1 (en) 2004-04-28 2013-10-16 Headwaters Heavy Oil, LLC Ebullated bed hydroprocessing method for treating heavy hydrocarbons
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
KR102505534B1 (ko) * 2017-03-02 2023-03-02 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨 오염 침전물이 적은 업그레이드된 에뷸레이티드 베드 반응기
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
CA3057131C (en) 2018-10-17 2024-04-23 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018923A (ko) * 2004-04-28 2007-02-14 헤드워터스 헤비 오일, 엘엘씨 에뷸레이트 베드 하이드로프로세싱 방법 및 시스템 및기존의 에뷸레이트 베드 시스템을 개량하는 방법

Family Cites Families (301)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2850552A (en) 1952-06-30 1958-09-02 Phillips Petroleum Co Control of reactions involving fluids of different densities
US3019180A (en) 1959-02-20 1962-01-30 Socony Mobil Oil Co Inc Conversion of high boiling hydrocarbons
US3161585A (en) 1962-07-02 1964-12-15 Universal Oil Prod Co Hydrorefining crude oils with colloidally dispersed catalyst
US3254017A (en) 1963-08-23 1966-05-31 Exxon Research Engineering Co Process for hydrocracking heavy oils in two stages
NL297593A (ko) 1964-03-05 1900-01-01
US3267021A (en) 1964-03-30 1966-08-16 Chevron Res Multi-stage hydrocracking process
US3362972A (en) 1964-06-29 1968-01-09 Halcon International Inc Process for the preparation of certain molybdenum and vanadium salts
US3297563A (en) 1964-08-17 1967-01-10 Union Oil Co Treatment of heavy oils in two stages of hydrotreating
DE1220394B (de) 1964-09-12 1966-07-07 Glanzstoff Koeln Ges Mit Besch Vorrichtung zum kontinuierlichen Mischen und Homogenisieren von Fluessigkeiten verschiedener Viskositaet
US3578690A (en) 1968-06-28 1971-05-11 Halcon International Inc Process for preparing molybdenum acid salts
US3595891A (en) 1969-09-17 1971-07-27 Jefferson Chem Co Inc Process for hydrocarbon soluble metal salts
US3622498A (en) 1970-01-22 1971-11-23 Universal Oil Prod Co Slurry processing for black oil conversion
US3622497A (en) 1970-01-22 1971-11-23 Universal Oil Prod Co Slurry process using vanadium sulfide for converting hydrocarbonaceous black oil
US3694352A (en) 1970-02-24 1972-09-26 Universal Oil Prod Co Slurry hydrorefining of black oils with mixed vanadium and manganese sulfides
US3694351A (en) 1970-03-06 1972-09-26 Gulf Research Development Co Catalytic process including continuous catalyst injection without catalyst removal
US3870623A (en) 1971-12-21 1975-03-11 Hydrocarbon Research Inc Hydroconversion process of residuum oils
US3907852A (en) 1972-06-23 1975-09-23 Exxon Research Engineering Co Silylhydrocarbyl phosphines and related compounds
US3816020A (en) 1972-10-19 1974-06-11 Selgo Pumps Inc Pump
US3892389A (en) 1972-11-29 1975-07-01 Bekaert Sa Nv Device and method for injecting liquids into a mixing head
DE2315114B2 (de) 1973-03-27 1979-08-23 Basf Ag, 6700 Ludwigshafen Verfahren zum Mischen von flüssigen Stoffen mit hohen Viskositätsunterschieden
US4125455A (en) 1973-09-26 1978-11-14 Texaco Inc. Hydrotreating heavy residual oils
US4068830A (en) 1974-01-04 1978-01-17 E. I. Du Pont De Nemours And Company Mixing method and system
US4066561A (en) 1974-01-04 1978-01-03 Mobil Oil Corporation Organometallic compounds and compositions thereof with lubricants
US3983028A (en) 1974-07-01 1976-09-28 Standard Oil Company (Indiana) Process for recovering upgraded products from coal
US3915842A (en) 1974-07-22 1975-10-28 Universal Oil Prod Co Catalytic conversion of hydrocarbon mixtures
US3919074A (en) 1974-08-22 1975-11-11 Universal Oil Prod Co Process for the conversion of hydrocarbonaceous black oil
US3992285A (en) 1974-09-23 1976-11-16 Universal Oil Products Company Process for the conversion of hydrocarbonaceous black oil
US3953362A (en) 1975-04-30 1976-04-27 Olin Corporation Molybdenum salt catalysts and methods of preparing them
US4022681A (en) 1975-12-24 1977-05-10 Atlantic Richfield Company Production of monoaromatics from light pyrolysis fuel oil
US4067798A (en) 1976-02-26 1978-01-10 Standard Oil Company (Indiana) Catalytic cracking process
US4066530A (en) 1976-07-02 1978-01-03 Exxon Research & Engineering Co. Hydroconversion of heavy hydrocarbons
US4067799A (en) 1976-07-02 1978-01-10 Exxon Research And Engineering Company Hydroconversion process
US4298454A (en) 1976-07-02 1981-11-03 Exxon Research And Engineering Company Hydroconversion of an oil-coal mixture
US4077867A (en) 1976-07-02 1978-03-07 Exxon Research & Engineering Co. Hydroconversion of coal in a hydrogen donor solvent with an oil-soluble catalyst
US4192735A (en) 1976-07-02 1980-03-11 Exxon Research & Engineering Co. Hydrocracking of hydrocarbons
US4148750A (en) 1977-01-10 1979-04-10 Exxon Research & Engineering Co. Redispersion of noble metals on supported catalysts
JPS541306A (en) 1977-06-07 1979-01-08 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of heavy hydrocarbon oil
US4181601A (en) 1977-06-17 1980-01-01 The Lummus Company Feed hydrotreating for improved thermal cracking
CA1097245A (en) 1977-11-22 1981-03-10 Chandra P. Khulbe Thermal hydrocracking of heavy hydrocarbon oils with heavy oil recycle
US4151070A (en) 1977-12-20 1979-04-24 Exxon Research & Engineering Co. Staged slurry hydroconversion process
US4169038A (en) 1978-03-24 1979-09-25 Exxon Research & Engineering Co. Combination hydroconversion, fluid coking and gasification
US4178227A (en) 1978-03-24 1979-12-11 Exxon Research & Engineering Co. Combination hydroconversion, fluid coking and gasification
US4196072A (en) 1978-05-23 1980-04-01 Exxon Research & Engineering Co. Hydroconversion process
US4226742A (en) 1978-07-14 1980-10-07 Exxon Research & Engineering Co. Catalyst for the hydroconversion of heavy hydrocarbons
US4313818A (en) 1978-10-30 1982-02-02 Exxon Research & Engineering Co. Hydrocracking process utilizing high surface area catalysts
FR2456774A1 (fr) 1979-05-18 1980-12-12 Inst Francais Du Petrole Procede d'hydrotraitement d'hydrocarbures lourds en phase liquide en presence d'un catalyseur disperse
US4411768A (en) 1979-12-21 1983-10-25 The Lummus Company Hydrogenation of high boiling hydrocarbons
SE416889B (sv) 1979-12-27 1981-02-16 Imo Industri Ab Forfarande for blandning av tva vetskor med olika viskositet samt anordning for genomforande av forfarandet
FR2473056A1 (fr) 1980-01-04 1981-07-10 Inst Francais Du Petrole Procede d'hydrotraitement d'hydrocarbures lourds en presence d'un catalyseur au molybdene
JPS601056B2 (ja) 1980-02-19 1985-01-11 千代田化工建設株式会社 アスファルテンを含む重質炭化水素油の水素化処理
US4305808A (en) 1980-04-14 1981-12-15 Mobil Oil Corporation Catalytic hydrocracking
US4338183A (en) 1980-10-14 1982-07-06 Uop Inc. Method of solvent extraction of coal by a heavy oil
US4325802A (en) 1980-11-17 1982-04-20 Pentanyl Technologies, Inc. Method of liquefaction of carbonaceous materials
US4485008A (en) 1980-12-05 1984-11-27 Exxon Research And Engineering Co. Liquefaction process
US4370221A (en) 1981-03-03 1983-01-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources Catalytic hydrocracking of heavy oils
NL8103703A (nl) 1981-08-06 1983-03-01 Stamicarbon Werkwijze voor de bereiding van een polymerisatiekatalysator en bereiding van etheenpolymeren daarmee.
US4465630A (en) 1981-08-24 1984-08-14 Asahi Kasei Kogyo Kabushiki Kaisha Tetraazaannulene cobalt complex compounds and method for preparation therefor
US4389301A (en) 1981-10-22 1983-06-21 Chevron Research Company Two-step hydroprocessing of heavy hydrocarbonaceous oils
US4422927A (en) 1982-01-25 1983-12-27 The Pittsburg & Midway Coal Mining Co. Process for removing polymer-forming impurities from naphtha fraction
US4420008A (en) 1982-01-29 1983-12-13 Mobil Oil Corporation Method for transporting viscous crude oils
CA1183098A (en) 1982-02-24 1985-02-26 Kenneth R. Dymock Hydrogenation of carbonaceous material
US4808007A (en) 1982-05-13 1989-02-28 Komax Systems, Inc. Dual viscosity mixer
US4457831A (en) 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
US4485004A (en) 1982-09-07 1984-11-27 Gulf Canada Limited Catalytic hydrocracking in the presence of hydrogen donor
US4427532A (en) 1982-09-28 1984-01-24 Mobil Oil Corporation Coking of coal with petroleum residua
JPS59108091A (ja) 1982-12-10 1984-06-22 Chiyoda Chem Eng & Constr Co Ltd 重質炭化水素の水素化分解方法
US4592827A (en) 1983-01-28 1986-06-03 Intevep, S.A. Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water
JPS59142848A (ja) 1983-02-02 1984-08-16 Toshitaka Ueda 触媒
GB2142930B (en) 1983-03-19 1987-07-01 Asahi Chemical Ind A process for cracking a heavy hydrocarbon
US4454023A (en) 1983-03-23 1984-06-12 Alberta Oil Sands Technology & Research Authority Process for upgrading a heavy viscous hydrocarbon
US4430207A (en) 1983-05-17 1984-02-07 Phillips Petroleum Company Demetallization of hydrocarbon containing feed streams
US4513098A (en) 1983-06-28 1985-04-23 Mobil Oil Corporation Multimetallic catalysts and their method of preparation from organometallic precursors
FR2549389A1 (fr) 1983-07-19 1985-01-25 Centre Nat Rech Scient Catalyseur d'hydrotraitement d'hydrocarbures, leur preparation et leur application
US4564441A (en) 1983-08-05 1986-01-14 Phillips Petroleum Company Hydrofining process for hydrocarbon-containing feed streams
JPS6044587A (ja) 1983-08-22 1985-03-09 Mitsubishi Heavy Ind Ltd 水素化分解反応装置
US4508616A (en) 1983-08-23 1985-04-02 Intevep, S.A. Hydrocracking with treated bauxite or laterite
US5164075A (en) 1983-08-29 1992-11-17 Chevron Research & Technology Company High activity slurry catalyst
US5162282A (en) 1983-08-29 1992-11-10 Chevron Research And Technology Company Heavy oil hydroprocessing with group VI metal slurry catalyst
US4710486A (en) 1983-08-29 1987-12-01 Chevron Research Company Process for preparing heavy oil hydroprocessing slurry catalyst
US4824821A (en) 1983-08-29 1989-04-25 Chevron Research Company Dispersed group VIB metal sulfide catalyst promoted with Group VIII metal
US4970190A (en) 1983-08-29 1990-11-13 Chevron Research Company Heavy oil hydroprocessing with group VI metal slurry catalyst
US5178749A (en) 1983-08-29 1993-01-12 Chevron Research And Technology Company Catalytic process for treating heavy oils
US4857496A (en) 1983-08-29 1989-08-15 Chevron Research Company Heavy oil hydroprocessing with Group VI metal slurry catalyst
US4762812A (en) 1983-08-29 1988-08-09 Chevron Research Company Heavy oil hydroprocess including recovery of molybdenum catalyst
US5094991A (en) 1983-08-29 1992-03-10 Chevron Research Company Slurry catalyst for hydroprocessing heavy and refractory oils
US4557824A (en) 1984-01-31 1985-12-10 Phillips Petroleum Company Demetallization of hydrocarbon containing feed streams
US5017712A (en) 1984-03-09 1991-05-21 Arco Chemical Technology, Inc. Production of hydrocarbon-soluble salts of molybdenum for epoxidation of olefins
JPS6115739A (ja) 1984-04-25 1986-01-23 Toa Nenryo Kogyo Kk 水素化処理用触媒
US4652311A (en) 1984-05-07 1987-03-24 Shipley Company Inc. Catalytic metal of reduced particle size
US4557823A (en) 1984-06-22 1985-12-10 Phillips Petroleum Company Hydrofining process for hydrocarbon containing feed streams
US4578181A (en) 1984-06-25 1986-03-25 Mobil Oil Corporation Hydrothermal conversion of heavy oils and residua with highly dispersed catalysts
US5055174A (en) 1984-06-27 1991-10-08 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US4579646A (en) 1984-07-13 1986-04-01 Atlantic Richfield Co. Bottoms visbreaking hydroconversion process
US4561964A (en) 1984-10-01 1985-12-31 Exxon Research And Engineering Co. Catalyst for the hydroconversion of carbonaceous materials
US4551230A (en) 1984-10-01 1985-11-05 Phillips Petroleum Company Demetallization of hydrocarbon feed streams with nickel arsenide
US4568657A (en) 1984-10-03 1986-02-04 Intevep, S.A. Catalyst formed of natural clay for use in the hydrodemetallization and hydroconversion of heavy crudes and residues and method of preparation of same
US4613427A (en) 1984-10-03 1986-09-23 Intevep, S.A. Process for the demetallization and hydroconversion of heavy crudes and residues using a natural clay catalyst
US4590172A (en) 1984-10-26 1986-05-20 Atlantic Richfield Company Preparation of soluble molybdenum catalysts for epoxidation of olefins
US4608152A (en) 1984-11-30 1986-08-26 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US4585545A (en) 1984-12-07 1986-04-29 Ashland Oil, Inc. Process for the production of aromatic fuel
US4824611A (en) 1984-12-18 1989-04-25 Mooney Chemicals, Inc. Preparation of hydrocarbon-soluble transition metal salts of organic carboxylic acids
US4633001A (en) 1984-12-18 1986-12-30 Mooney Chemicals, Inc. Preparation of transition metal salt compositions of organic carboxylic acids
US4582432A (en) 1984-12-20 1986-04-15 Usm Corporation Rotary processors and methods for mixing low viscosity liquids with viscous materials
US4652647A (en) 1984-12-26 1987-03-24 Exxon Research And Engineering Company Aromatic-metal chelate compositions
US4812228A (en) 1985-09-10 1989-03-14 Mobil Oil Corporation Process for hydrotreating residual petroleum oil
US4674885A (en) 1985-01-04 1987-06-23 Massachusetts Institute Of Technology Mixing liquids of different viscosity
CA1295112C (en) 1985-01-29 1992-02-04 Charles Nicoll Method and apparatus for assembling electrical connectors
CN1019003B (zh) 1985-02-14 1992-11-11 森纳·吉尔伯特 含碳酸钙水处理装置及其组成的设备
JPH066667B2 (ja) 1985-02-25 1994-01-26 三菱化成株式会社 中空成形体
JPH0662958B2 (ja) 1985-02-28 1994-08-17 富士スタンダ−ドリサ−チ株式会社 重質油の熱分解法
US4592830A (en) 1985-03-22 1986-06-03 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
JPS6239634A (ja) 1985-08-13 1987-02-20 Asahi Chem Ind Co Ltd ポリパラフェニレンテレフタルアミド系フィルムの製造方法
EP0199399B1 (en) 1985-04-24 1990-08-22 Shell Internationale Researchmaatschappij B.V. Improved hydroconversion catalyst and process
US4567156A (en) 1985-04-29 1986-01-28 Exxon Research And Engineering Co. Oil soluble chromium catalyst
US4676886A (en) 1985-05-20 1987-06-30 Intevep, S.A. Process for producing anode grade coke employing heavy crudes characterized by high metal and sulfur levels
US4614726A (en) 1985-06-21 1986-09-30 Ashland Oil, Inc. Process for cooling during regeneration of fluid cracking catalyst
US4606809A (en) 1985-07-01 1986-08-19 Air Products And Chemicals, Inc. Hydroconversion of heavy oils
US4678557A (en) 1985-09-09 1987-07-07 Intevep, S.A. Process for the regeneration of spent catalyst used in the upgrading of heavy hydrocarbon feedstocks
US5108581A (en) 1985-09-09 1992-04-28 Exxon Research And Engineering Company Hydroconversion of heavy feeds by use of both supported and unsupported catalysts
US4626340A (en) 1985-09-26 1986-12-02 Intevep, S.A. Process for the conversion of heavy hydrocarbon feedstocks characterized by high molecular weight, low reactivity and high metal contents
US4707245A (en) 1985-12-20 1987-11-17 Lummus Crest, Inc. Temperature control for hydrogenation reactions
US4746419A (en) 1985-12-20 1988-05-24 Amoco Corporation Process for the hydrodemetallation hydrodesulfuration and hydrocracking of a hydrocarbon feedstock
US4734186A (en) 1986-03-24 1988-03-29 Phillips Petroleum Company Hydrofining process
US4701435A (en) 1986-04-07 1987-10-20 Intevep, S.A. Catalyst and method of preparation from a naturally occurring material
US4740295A (en) 1986-04-21 1988-04-26 Exxon Research And Engineering Company Hydroconversion process using a sulfided molybdenum catalyst concentrate
US4765882A (en) 1986-04-30 1988-08-23 Exxon Research And Engineering Company Hydroconversion process
US4693991A (en) 1986-05-02 1987-09-15 Phillips Petroleum Company Hydrotreating catalyst composition
US4713167A (en) 1986-06-20 1987-12-15 Uop Inc. Multiple single-stage hydrocracking process
US4695369A (en) 1986-08-11 1987-09-22 Air Products And Chemicals, Inc. Catalytic hydroconversion of heavy oil using two metal catalyst
US4724069A (en) 1986-08-15 1988-02-09 Phillips Petroleum Company Hydrofining process for hydrocarbon containing feed streams
US4716142A (en) 1986-08-26 1987-12-29 Sri International Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts
US5166118A (en) 1986-10-08 1992-11-24 Veba Oel Technologie Gmbh Catalyst for the hydrogenation of hydrocarbon material
DE3634275A1 (de) 1986-10-08 1988-04-28 Veba Oel Entwicklungs Gmbh Verfahren zur hydrierenden konversion von schwer- und rueckstandsoelen
US4762814A (en) 1986-11-14 1988-08-09 Phillips Petroleum Company Hydrotreating catalyst and process for its preparation
US4707246A (en) 1986-11-14 1987-11-17 Phillips Petroleum Company Hydrotreating catalyst and process
CA1305467C (en) 1986-12-12 1992-07-21 Nobumitsu Ohtake Additive for the hydroconversion of a heavy hydrocarbon oil
US4851109A (en) 1987-02-26 1989-07-25 Mobil Oil Corporation Integrated hydroprocessing scheme for production of premium quality distillates and lubricants
US4764266A (en) 1987-02-26 1988-08-16 Mobil Oil Corporation Integrated hydroprocessing scheme for production of premium quality distillates and lubricants
GB8726838D0 (en) 1987-11-17 1987-12-23 Shell Int Research Preparation of light hydrocarbon distillates
US4802972A (en) 1988-02-10 1989-02-07 Phillips Petroleum Company Hydrofining of oils
FR2627105B3 (fr) 1988-02-16 1990-06-08 Inst Francais Du Petrole Procede de presulfuration de catalyseur de traitement d'hydrocarbures
US4834865A (en) 1988-02-26 1989-05-30 Amoco Corporation Hydrocracking process using disparate catalyst particle sizes
DE68902095T2 (de) 1988-05-19 1992-12-10 Inst Francais Du Petrol Katalytische zusammensetzung, die ein metallsulfid in form einer suspension mit einer asphalt enthaltenden fluessigkeit enthaelt und verfahren zur hydroviskoreduktion von kohlenwasserstoffen.
CA1300068C (en) 1988-09-12 1992-05-05 Keith Belinko Hydrocracking of heavy oil in presence of ultrafine iron sulphate
US5114900A (en) 1988-09-30 1992-05-19 Union Carbide Chemicals & Plastics Technology Corporation Alkoxylation using modified calcium-containing bimetallic or polymetallic catalysts
US5191131A (en) 1988-12-05 1993-03-02 Research Association For Utilization Of Light Oil Process for preparation of lower aliphatic hydrocarbons
US4959140A (en) 1989-03-27 1990-09-25 Amoco Corporation Two-catalyst hydrocracking process
US5578197A (en) 1989-05-09 1996-11-26 Alberta Oil Sands Technology & Research Authority Hydrocracking process involving colloidal catalyst formed in situ
US5013427A (en) 1989-07-18 1991-05-07 Amoco Corportion Resid hydrotreating with resins
US4983273A (en) 1989-10-05 1991-01-08 Mobil Oil Corporation Hydrocracking process with partial liquid recycle
CA2004882A1 (en) 1989-12-07 1991-06-07 Roger K. Lott Process for reducing coke formation during hydroconversion of heavy hydrocarbons
US5038392A (en) 1990-02-12 1991-08-06 International Business Machines Corporation Method and apparatus for adaptive image processing by recognizing a characterizing indicium in a captured image of a document
US5080777A (en) 1990-04-30 1992-01-14 Phillips Petroleum Company Refining of heavy slurry oil fractions
US5154818A (en) 1990-05-24 1992-10-13 Mobil Oil Corporation Multiple zone catalytic cracking of hydrocarbons
US5039392A (en) 1990-06-04 1991-08-13 Exxon Research And Engineering Company Hydroconversion process using a sulfided molybdenum catalyst concentrate
EP0460300A1 (en) 1990-06-20 1991-12-11 Akzo Nobel N.V. Process for the preparation of a presulphided catalyst; Process for the preparation of a sulphided catalyst, and use of said catalyst
US5868923A (en) 1991-05-02 1999-02-09 Texaco Inc Hydroconversion process
US5622616A (en) 1991-05-02 1997-04-22 Texaco Development Corporation Hydroconversion process and catalyst
US5229347A (en) 1991-05-08 1993-07-20 Intevep, S.A. Catalyst for mild hydrocracking of cracked feedstocks and method for its preparation
US5134108A (en) 1991-05-22 1992-07-28 Engelhard Corporation Process for preparing catalyst with copper or zinc and with chromium, molybdenum, tungsten, or vanadium, and product thereof
US5171916A (en) 1991-06-14 1992-12-15 Mobil Oil Corp. Light cycle oil conversion
US5358634A (en) 1991-07-11 1994-10-25 Mobil Oil Corporation Process for treating heavy oil
US5364524A (en) 1991-07-11 1994-11-15 Mobil Oil Corporation Process for treating heavy oil
US5281328A (en) 1991-07-24 1994-01-25 Mobil Oil Corporation Hydrocracking with ultra large pore size catalysts
US5474977A (en) 1991-08-26 1995-12-12 Uop Catalyst for the hydroconversion of asphaltene-containing hydrocarbonaceous charge stocks
FR2680983B1 (fr) 1991-09-10 1993-10-29 Institut Francais Petrole Dispositif melangeur continu, procede et utilisation dans une installation de pompage d'un fluide de forte viscosite.
CA2073417C (en) 1991-11-22 2004-04-20 Michael K. Porter Improved hydroconversion process
US5372705A (en) 1992-03-02 1994-12-13 Texaco Inc. Hydroprocessing of heavy hydrocarbonaceous feeds
FR2689137B1 (fr) 1992-03-26 1994-05-27 Inst Francais Du Petrole Procede d'hydro conversion de fractions lourds en phase liquide en presence d'un catalyseur disperse et d'additif polyaromatique.
CA2093412C (en) 1992-04-20 2002-12-31 Gerald Verdell Nelson Novel hydroconversion process employing catalyst with specified pore size distribution
JPH05339357A (ja) 1992-06-11 1993-12-21 Teijin Ltd ポリエステルの製造法
CA2088402C (en) 1993-01-29 1997-07-08 Roger Kai Lott Hydrocracking process involving colloidal catalyst formed in situ
US5332709A (en) 1993-03-22 1994-07-26 Om Group, Inc. (Mooney Chemicals, Inc.) Stabilized aqueous solutions for preparing catalysts and process for preparing catalysts
JPH06287574A (ja) 1993-04-07 1994-10-11 Ishikawajima Harima Heavy Ind Co Ltd 炭化水素油水添分解装置
JP3604414B2 (ja) 1993-05-31 2004-12-22 アルバータ オイル サンズ テクノロジー アンド リサーチ オーソリティ その場で調製したコロイド状触媒を用いるハイドロクラッキング法
US5452954A (en) 1993-06-04 1995-09-26 Halliburton Company Control method for a multi-component slurrying process
US5332489A (en) 1993-06-11 1994-07-26 Exxon Research & Engineering Co. Hydroconversion process for a carbonaceous material
US5396010A (en) 1993-08-16 1995-03-07 Mobil Oil Corporation Heavy naphtha upgrading
US6270654B1 (en) 1993-08-18 2001-08-07 Ifp North America, Inc. Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
JPH0762355A (ja) 1993-08-30 1995-03-07 Nippon Oil Co Ltd 炭素質生成を抑制した重質油の水素化処理法
US5374348A (en) 1993-09-13 1994-12-20 Energy Mines & Resources - Canada Hydrocracking of heavy hydrocarbon oils with heavy hydrocarbon recycle
JPH0790282A (ja) 1993-09-27 1995-04-04 Asahi Chem Ind Co Ltd 重質油分解・水素化処理方法
US6015485A (en) 1994-05-13 2000-01-18 Cytec Technology Corporation High activity catalysts having a bimodal mesopore structure
ZA961830B (en) 1995-03-16 1997-10-31 Inst Francais Du Petrole Catalytic hydroconversion process for heavy petroleum feedstocks.
US5597236A (en) 1995-03-24 1997-01-28 Chemineer, Inc. High/low viscosity static mixer and method
IT1275447B (it) 1995-05-26 1997-08-07 Snam Progetti Procedimento per la conversione di greggi pesanti e residui di distillazione a distillati
EP0753846A1 (en) 1995-07-13 1997-01-15 Sony Corporation Apparatus for producing optical disc and method of production thereof
ATE190242T1 (de) 1995-10-05 2000-03-15 Sulzer Chemtech Ag Mischeinrichtung zum mischen eines niedrigviskosen fluids in ein hochviskoses fluid
US5755955A (en) 1995-12-21 1998-05-26 Petro-Canada Hydrocracking of heavy hydrocarbon oils with conversion facilitated by control of polar aromatics
WO1997029841A2 (en) 1996-02-14 1997-08-21 Texaco Development Corporation Low pressure process for the hydroconversion of heavy hydrocarbo ns
US5871638A (en) 1996-02-23 1999-02-16 Hydrocarbon Technologies, Inc. Dispersed anion-modified phosphorus-promoted iron oxide catalysts
US6139723A (en) 1996-02-23 2000-10-31 Hydrocarbon Technologies, Inc. Iron-based ionic liquid catalysts for hydroprocessing carbonaceous feeds
US6190542B1 (en) 1996-02-23 2001-02-20 Hydrocarbon Technologies, Inc. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds
US5866501A (en) 1996-02-23 1999-02-02 Pradhan; Vivek R. Dispersed anion-modified iron oxide catalysts for hydroconversion processes
EP0888420B1 (en) 1996-03-15 2000-01-05 Petro-Canada Hydrotreating of heavy hydrocarbon oils with control of particle size of particulate additives
US5852146A (en) 1996-06-27 1998-12-22 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
US6068758A (en) 1996-08-16 2000-05-30 Strausz; Otto P. Process for hydrocracking heavy oil
US6059957A (en) 1996-09-16 2000-05-09 Texaco Inc. Methods for adding value to heavy oil
US5935419A (en) 1996-09-16 1999-08-10 Texaco Inc. Methods for adding value to heavy oil utilizing a soluble metal catalyst
EP0838259A1 (de) 1996-10-23 1998-04-29 Sulzer Chemtech AG Einrichtung zum Zuführen von Additiven in einen Strom einer hochviskosen Flüssigkeit
US6495487B1 (en) 1996-12-09 2002-12-17 Uop Llc Selective bifunctional multimetallic reforming catalyst
US6086749A (en) 1996-12-23 2000-07-11 Chevron U.S.A. Inc. Catalyst and method for hydroprocessing a hydrocarbon feed stream in a reactor containing two or more catalysts
US5954945A (en) 1997-03-27 1999-09-21 Bp Amoco Corporation Fluid hydrocracking catalyst precursor and method
US6712955B1 (en) 1997-07-15 2004-03-30 Exxonmobil Research And Engineering Company Slurry hydroprocessing using bulk multimetallic catalysts
US5962364A (en) 1997-07-30 1999-10-05 Bp Amoco Corporation Process for synthesis of molybdenum sulfide dimers
GB9717953D0 (en) 1997-08-22 1997-10-29 Smithkline Beecham Biolog Vaccine
CA2216671C (en) 1997-09-24 2000-12-05 Richard Anthony Mcfarlane Process for dispersing transition metal catalytic particles in heavy oil
DE19745904A1 (de) 1997-10-17 1999-04-22 Hoechst Ag Polymerstabilisierte Metallkolloid-Lösungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren für Brennstoffzellen
CN1101457C (zh) 1997-12-08 2003-02-12 中国石油化工集团总公司抚顺石油化工研究院 劣质重、渣油处理方法
US5925235A (en) 1997-12-22 1999-07-20 Chevron U.S.A. Inc. Middle distillate selective hydrocracking process
US6090858A (en) 1998-03-18 2000-07-18 Georgia Tech Reseach Corporation Shape control method for nanoparticles for making better and new catalysts
FR2776297B1 (fr) 1998-03-23 2000-05-05 Inst Francais Du Petrole Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique
US6342231B1 (en) 1998-07-01 2002-01-29 Akzo Nobel N.V. Haemophilus parasuis vaccine and diagnostic
US6214195B1 (en) 1998-09-14 2001-04-10 Nanomaterials Research Corporation Method and device for transforming chemical compositions
FR2787040B1 (fr) 1998-12-10 2001-01-19 Inst Francais Du Petrole Hydrotraitement de charges hydrocarbonees dans un reacteur en lit bouillonnant
DE60020292T2 (de) 1999-04-08 2006-05-04 Albemarle Netherlands B.V. Verfahren zur Sulfidierung eines organischen Stickstoff und Carbonyl enthaltenden Hydrobehandlungskatalysators
JP3824464B2 (ja) 1999-04-28 2006-09-20 財団法人石油産業活性化センター 重質油類の水素化分解方法
FR2794370B1 (fr) 1999-06-03 2003-10-17 Biovector Therapeutics Fragments proteiques polyepitopiques, leur obtention et leurs utilisations notamment en vaccination
EP1111604A1 (en) 1999-06-28 2001-06-27 Sony Corporation Optical recording medium and method for reading optical recording medium
US6217746B1 (en) 1999-08-16 2001-04-17 Uop Llc Two stage hydrocracking process
US20020179493A1 (en) 1999-08-20 2002-12-05 Environmental & Energy Enterprises, Llc Production and use of a premium fuel grade petroleum coke
FR2797883B1 (fr) 1999-08-24 2004-12-17 Inst Francais Du Petrole Procede de production d'huiles ayant un indice de viscosite eleve
JP4505084B2 (ja) 1999-09-13 2010-07-14 アイノベックス株式会社 金属コロイドの製造方法およびその方法によって製造された金属コロイド
US6559090B1 (en) 1999-11-01 2003-05-06 W. R. Grace & Co.-Conn. Metallocene and constrained geometry catalyst systems employing agglomerated metal oxide/clay support-activator and method of their preparation
US7026443B1 (en) 1999-12-10 2006-04-11 Epimmune Inc. Inducing cellular immune responses to human Papillomavirus using peptide and nucleic acid compositions
US6379532B1 (en) 2000-02-17 2002-04-30 Uop Llc Hydrocracking process
US6454932B1 (en) 2000-08-15 2002-09-24 Abb Lummus Global Inc. Multiple stage ebullating bed hydrocracking with interstage stripping and separating
JP3842086B2 (ja) 2000-08-28 2006-11-08 財団法人石油産業活性化センター 重質炭化水素油の流動接触分解用触媒及び流動接触分解方法
US6596155B1 (en) 2000-09-26 2003-07-22 Uop Llc Hydrocracking process
DE10048844A1 (de) 2000-10-02 2002-04-11 Basf Ag Verfahren zur Herstellung von Platinmetall-Katalysatoren
US6550960B2 (en) 2000-10-11 2003-04-22 The Procter & Gamble Company Apparatus for in-line mixing and process of making such apparatus
JP3509734B2 (ja) 2000-10-25 2004-03-22 松下電器産業株式会社 位置告知装置
CN1098337C (zh) 2000-11-02 2003-01-08 中国石油天然气股份有限公司 一种采用多金属液体催化剂的常压重油悬浮床加氢新工艺
WO2002087749A1 (en) 2001-04-30 2002-11-07 Postech Foundation Colloid solution of metal nanoparticles, metal-polymer nanocomposites and methods for preparation thereof
US6698917B2 (en) 2001-06-01 2004-03-02 E. I. Du Pont De Nemours And Company Process for blending fluids of widely differing viscosities
US20030094400A1 (en) 2001-08-10 2003-05-22 Levy Robert Edward Hydrodesulfurization of oxidized sulfur compounds in liquid hydrocarbons
JP2003193074A (ja) 2001-10-17 2003-07-09 Asahi Denka Kogyo Kk 燃焼排ガス中の窒素酸化物の低減方法及び燃料組成物
US6686308B2 (en) 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
CN1195829C (zh) 2002-04-04 2005-04-06 中国石油化工股份有限公司 劣质重、渣油轻质化的方法
US7090767B2 (en) 2002-05-02 2006-08-15 Equistar Chemicals, Lp Hydrodesulfurization of gasoline fractions
EP1512996A4 (en) 2002-05-28 2005-11-16 Matsushita Electric Works Ltd MATERIAL FOR JOINT MOUNTING OF OPTICAL CIRCUIT SUBSTRATE / ELECTRICAL CIRCUIT AND MIXED MOUNTING OF OPTICAL CIRCUIT SUBSTRATE / ELECTRICAL CIRCUIT
CN1203032C (zh) 2002-11-12 2005-05-25 石油大学(北京) 以复合离子液体为催化剂制备烷基化油剂的方法
CN2579528Y (zh) 2002-11-15 2003-10-15 虞跃平 薄膜复贴机
US6698197B1 (en) 2002-11-26 2004-03-02 Eaton Corporation Hydraulically actuated by-pass valve
WO2004056947A1 (en) 2002-12-20 2004-07-08 Eni S.P.A. Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
JP4427953B2 (ja) 2003-01-29 2010-03-10 株式会社豊田自動織機 駐車支援装置
JP4231307B2 (ja) 2003-03-03 2009-02-25 田中貴金属工業株式会社 金属コロイド及び該金属コロイドを原料とする触媒
US7011807B2 (en) 2003-07-14 2006-03-14 Headwaters Nanokinetix, Inc. Supported catalysts having a controlled coordination structure and methods for preparing such catalysts
CN1333044C (zh) 2003-09-28 2007-08-22 中国石油化工股份有限公司 一种烃油裂化方法
DE10349343A1 (de) 2003-10-23 2005-06-02 Basf Ag Stabilisierung von Hydroformylierungskatalysatoren auf Basis von Phosphoramiditliganden
US20050109674A1 (en) 2003-11-20 2005-05-26 Advanced Refining Technologies Llc Hydroconversion catalysts and methods of making and using same
JP4942911B2 (ja) 2003-11-28 2012-05-30 東洋エンジニアリング株式会社 水素化分解触媒、重質油を水素化分解する方法
US20070012595A1 (en) 2003-12-19 2007-01-18 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US20060289340A1 (en) 2003-12-19 2006-12-28 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
JP4481692B2 (ja) 2004-03-19 2010-06-16 オリンパス株式会社 内視鏡バルーン制御装置
JP4313237B2 (ja) 2004-03-29 2009-08-12 新日本石油株式会社 水素化分解触媒および液状炭化水素の製造方法
US7517446B2 (en) 2004-04-28 2009-04-14 Headwaters Heavy Oil, Llc Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
US10941353B2 (en) 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
ES2583505T3 (es) 2004-04-28 2016-09-21 Headwaters Heavy Oil, Llc Método de hidroprocesamiento y sistema para mejorar aceite pesado
CA2467499C (en) 2004-05-19 2012-07-17 Nova Chemicals Corporation Integrated process to convert heavy oils from oil sands to petrochemical feedstock
JP4313265B2 (ja) 2004-07-23 2009-08-12 新日本石油株式会社 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
FR2875509B1 (fr) 2004-09-20 2006-11-24 Inst Francais Du Petrole Procede d'hydroconversion d'une charge lourde avec un catalyseur disperse
CN100425676C (zh) 2005-04-29 2008-10-15 中国石油化工股份有限公司 一种加氢裂化催化剂组合物
US7790018B2 (en) 2005-05-11 2010-09-07 Saudia Arabian Oil Company Methods for making higher value products from sulfur containing crude oil
US8545952B2 (en) 2005-06-07 2013-10-01 The Coca-Cola Company Polyester container with enhanced gas barrier and method
US7594990B2 (en) 2005-11-14 2009-09-29 The Boc Group, Inc. Hydrogen donor solvent production and use in resid hydrocracking processes
CN1966618A (zh) 2005-11-14 2007-05-23 波克股份有限公司 氢供体溶剂的生产及其在渣油加氢裂化法中的应用
US7708877B2 (en) 2005-12-16 2010-05-04 Chevron Usa Inc. Integrated heavy oil upgrading process and in-line hydrofinishing process
US8435400B2 (en) 2005-12-16 2013-05-07 Chevron U.S.A. Systems and methods for producing a crude product
US7670984B2 (en) 2006-01-06 2010-03-02 Headwaters Technology Innovation, Llc Hydrocarbon-soluble molybdenum catalyst precursors and methods for making same
US7842635B2 (en) 2006-01-06 2010-11-30 Headwaters Technology Innovation, Llc Hydrocarbon-soluble, bimetallic catalyst precursors and methods for making same
US7618530B2 (en) 2006-01-12 2009-11-17 The Boc Group, Inc. Heavy oil hydroconversion process
US7906010B2 (en) 2006-01-13 2011-03-15 Exxonmobil Chemical Patents Inc. Use of steam cracked tar
JP5019757B2 (ja) 2006-02-10 2012-09-05 富士フイルム株式会社 バルーン制御装置
US7704377B2 (en) 2006-03-08 2010-04-27 Institut Francais Du Petrole Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
JP4813933B2 (ja) 2006-03-16 2011-11-09 株式会社神戸製鋼所 石油系重質油の水素化分解方法
US8372264B2 (en) 2006-11-17 2013-02-12 Roger G. Etter System and method for introducing an additive into a coking process to improve quality and yields of coker products
DE102007027274A1 (de) 2007-06-11 2008-12-18 Endress + Hauser Gmbh + Co. Kg Differenzdrucksensor
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8080155B2 (en) 2007-12-20 2011-12-20 Chevron U.S.A. Inc. Heavy oil upgrade process including recovery of spent catalyst
US7951745B2 (en) 2008-01-03 2011-05-31 Wilmington Trust Fsb Catalyst for hydrocracking hydrocarbons containing polynuclear aromatic compounds
US8142645B2 (en) 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US8097149B2 (en) 2008-06-17 2012-01-17 Headwaters Technology Innovation, Llc Catalyst and method for hydrodesulfurization of hydrocarbons
US7897035B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20110017637A1 (en) 2009-07-21 2011-01-27 Bruce Reynolds Systems and Methods for Producing a Crude Product
EP2328995A4 (en) 2008-09-18 2012-05-30 Chevron Usa Inc SYSTEMS AND METHODS FOR PRODUCING A GROSS PRODUCT
US9109165B2 (en) 2008-11-15 2015-08-18 Uop Llc Coking of gas oil from slurry hydrocracking
US8303082B2 (en) 2009-02-27 2012-11-06 Fujifilm Corporation Nozzle shape for fluid droplet ejection
US9523048B2 (en) 2009-07-24 2016-12-20 Lummus Technology Inc. Pre-sulfiding and pre-conditioning of residuum hydroconversion catalysts for ebullated-bed hydroconversion processes
FR2958188B1 (fr) 2010-03-30 2012-06-08 Oreal Aerographe
US9206361B2 (en) 2010-12-20 2015-12-08 Chevron U.S.A. .Inc. Hydroprocessing catalysts and methods for making thereof
CA2726602A1 (en) 2010-12-30 2012-06-30 Aman Ur Rahman Oxo-biodegradable additives for use in fossil fuel polymer films and once-used packaging
ITMI20111626A1 (it) 2011-09-08 2013-03-09 Eni Spa Sistema catalitico e procedimento per l'idroconversione totale degli oli pesanti
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US9789241B2 (en) 2012-03-01 2017-10-17 Medical Device Works Nv System for monitoring and controlling organ blood perfusion
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
CN202960636U (zh) 2012-12-06 2013-06-05 黄修文 产后止血***
ES2665668T3 (es) 2014-05-26 2018-04-26 Neurescue Aps Dispositivo para producir una reanimación o un estado suspendido en una parada cardíaca
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
KR102505534B1 (ko) 2017-03-02 2023-03-02 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨 오염 침전물이 적은 업그레이드된 에뷸레이티드 베드 반응기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018923A (ko) * 2004-04-28 2007-02-14 헤드워터스 헤비 오일, 엘엘씨 에뷸레이트 베드 하이드로프로세싱 방법 및 시스템 및기존의 에뷸레이트 베드 시스템을 개량하는 방법

Also Published As

Publication number Publication date
CA2999448C (en) 2023-09-26
EA201890770A1 (ru) 2018-09-28
ES2898338T3 (es) 2022-03-07
JP2018532839A (ja) 2018-11-08
WO2017053117A1 (en) 2017-03-30
EP3353267A1 (en) 2018-08-01
CO2018003461A2 (es) 2018-06-12
JP7126442B2 (ja) 2022-08-26
CN108699451A (zh) 2018-10-23
US11414607B2 (en) 2022-08-16
EA038765B1 (ru) 2021-10-15
PL3353267T3 (pl) 2022-02-21
KR102623880B1 (ko) 2024-01-11
CN108699451B (zh) 2022-01-18
EP3353267B1 (en) 2021-08-18
US20170081599A1 (en) 2017-03-23
MX2018002903A (es) 2018-08-01
PT3353267T (pt) 2021-11-23
CA2999448A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
KR102622236B1 (ko) 기회 공급원료와 함께 사용된 업그레이드된 에뷸레이티드 베드 반응기
KR102505534B1 (ko) 오염 침전물이 적은 업그레이드된 에뷸레이티드 베드 반응기
KR101493631B1 (ko) 에뷸레이트 베드 하이드로프로세싱 방법 및 시스템 및 기존의 에뷸레이트 베드 시스템을 개량하는 방법
KR102623880B1 (ko) 전환된 생성물의 생성 속도가 증가된 업그레이드된 에뷸레이티드 베드 반응기
KR102414335B1 (ko) 개선된 품질의 진공 잔사 생성물을 생성하기 위해 에뷸레이티드 베드를 업그레이드하기 위한 이원 촉매 시스템
US11732203B2 (en) Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
TWI737008B (zh) 不引起真空底層物中的瀝青質的再循環積聚的升級的沸騰床反應器
EA041453B1 (ru) Усовершенствованный реактор кипящего слоя без нарастания рециркулирующих асфальтенов в вакуумных остатках
EA041150B1 (ru) Способ модернизации реактора с кипящим слоем для незначительного загрязнения осадком

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant