KR20180020922A - 공진형 변환기들에서의 공진형 커패시터 안정기 - Google Patents

공진형 변환기들에서의 공진형 커패시터 안정기 Download PDF

Info

Publication number
KR20180020922A
KR20180020922A KR1020170104748A KR20170104748A KR20180020922A KR 20180020922 A KR20180020922 A KR 20180020922A KR 1020170104748 A KR1020170104748 A KR 1020170104748A KR 20170104748 A KR20170104748 A KR 20170104748A KR 20180020922 A KR20180020922 A KR 20180020922A
Authority
KR
South Korea
Prior art keywords
resonant
power switch
capacitor
voltage
driver
Prior art date
Application number
KR1020170104748A
Other languages
English (en)
Other versions
KR102226978B1 (ko
Inventor
문상철
김진태
최항석
Original Assignee
페어차일드코리아반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페어차일드코리아반도체 주식회사 filed Critical 페어차일드코리아반도체 주식회사
Publication of KR20180020922A publication Critical patent/KR20180020922A/ko
Application granted granted Critical
Publication of KR102226978B1 publication Critical patent/KR102226978B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3381Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement using a single commutation path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/14Indicating direction of current; Indicating polarity of voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3385Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • Y02B70/1433
    • Y02B70/1491

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

일 구현에 따라, 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기는 스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기, 및 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 제 2 구동기를 제어하여 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 공진형 커패시터 안정기를 포함한다.

Description

공진형 변환기들에서의 공진형 커패시터 안정기{RESONANT CAPACITOR STABILIZER IN RESONANT CONVERTERS}
본 출원은 그에 의해 전체적으로 참조로써 통합되는, 2016년 8월 19일에 출원된 35 U.S.C. § 119 하에서 미국 가 특허 출원 번호 제 62/377,063 호에 대한 우선권 및 그의 이득을 주장한다.
본 출원은 ____에 출원된, 미국 특허 출원 번호 제 ____ 호(대리인 사건 번호 FSC75487US), ____에 출원된, 미국 특허 출원 번호 제 ____ 호(대리인 사건 번호 FSC75497US), 및 ____에 출원된, 미국 특허 출원 번호 제 ____ 호(대리인 사건 번호 FSC75498US)에 관한 것이고, 그들의 각각은 전체적으로 참조로써 통합된다.
본 설명은 공진형 변환기들의 동작들을 개선하는 것이다.
공진형 변환기들은 입력 전압을 출력 전압으로 변환할 수 있다. 시동 시에, 공진형 커패시터의 전압은 예측가능하지 않을 수 있다. 예를 들면, 공진형 변환기 스위칭이 동작하는 동안, 공진형 커패시터의 전압은 저 전압 레벨과 고 전압 레벨 사이에서 달라질 수 있다. 공진형 커패시터가 동작하는 것을 중단하면(예로서, 파워 오프 또는 보호 메커니즘의 트리거링(triggering)), 브리지 회로의 스위칭 동작이 디스에이블링(disabling)될 수 있다. 이 때, 공진형 커패시터의 전압의 값은 공지되지 않을 수 있고, 이는 그것으로 하여금 후속 시동으로서 예측가능하지 않게 한다.
본 발명의 목적은 공진형 변환기들의 동작들을 개선하는 것이다.
일 구현에 따라, 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기는 스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기, 및 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 제 2 구동기를 제어하여 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 공진형 커패시터 안정기를 포함한다.
하나 이상의 구현들의 상세들은 하기의 첨부된 도면들 및 설명에서 제시된다. 다른 특징들은 설명 및 도면들로부터, 그리고 청구항들로부터 명백해질 것이다.
도 1a는 일 구현에 따른 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기를 도시한 도면.
도 1b는 또 다른 구현에 따른 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기를 도시한 도면.
도 2는 일 구현에 따른 공진형 변환기의 브리지 회로의 일례를 도시한 도면.
도 3은 일 구현에 따른 공진형 변환기의 피드백 회로 및 절연 회로(isolation circuit)의 일례를 도시한 도면.
도 4는 일 구현에 따른 공진형 변환기의 집적 전류 감지 회로의 일례를 도시한 도면.
도 5는 일 구현에 따른 공진형 변환기의 공진형 커패시터 안정기의 신호들의 타이밍도.
도 6은 일 구현에 따른 공진형 커패시터 안정기의 예시적인 시뮬레이션 결과들을 도시한 도면.
도 7은 일 구현에 따른 공진형 커패시터 안정기에 의한 커패시터 안정화를 통한 유연 시동 동작(soft start operation)들의 예시적인 시뮬레이션 결과들을 도시한 도면.
도 8은 일 구현에 따른 공진형 커패시터 안정기에 의한 커패시터 안정화를 이용하지 않는 유연 시동 동작들의 예시적인 시뮬레이션 결과들을 도시한 도면.
공진형 변환기는 시동 동안, 공진형 커패시턴스 안정화를 제공하도록 구성될 수 있다. 공진형 변환기는 발진기 및 공진형 커패시터 안정기를 포함할 수 있다. 발진기는 다수의 스위치들을 구동하도록 구성될 수 있고, 공진형 커패시터 안정기는 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 전력 스위치들 중 적어도 하나를 주기적으로 활성화하도록 구성될 수 있다. 공진형 커패시터 안정기는 전력 스위치들 중 하나를 통해 전류 스파이크(current spike)의 양을 감소시킬 수 있다.
도 1a는 일 구현에 따른 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기(100)를 도시한다. 일부 예들에서, 공진형 변환기(100)는 하나 이상의 주파수들로 공진하기 위해 튜닝(tuning)되는, 하나 이상의 인덕터들 및 하나 이상의 커패시터들의 망을 포함하는 전력 변환기이고, 공진형 전류 진동에 기초하여 입력 전압을 출력 전압으로 변환할 수 있다.
공진형 변환기(100)는 스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기(152)를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기(154)를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기(150)를 포함한다. 공진형 변환기(100)는 공진형 변환기(100)의 스위칭 동작들의 초기화 동안 공진형 네트워크(105)의 공진형 커패시터(110)를 방전시키기 위해 제 2 구동기(154)를 제어하여 (상이한 인스턴스들에서) 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 공진형 커패시터 안정기(101)를 포함한다.
일부 예들에서, 제 1 활성 인스턴스(activation instance)(시간 또는 시간 기간으로서 또한 언급될 수 있음)에 대해, 공진형 커패시터 안정기(101)는 공진형 변환기(100)의 스위칭 동작들의 안정화의 시작에 응답하여 공진형 커패시터(110)를 방전시키기 위해 커패시터 안정화 신호를 제 2 구동기(154)로 전송하여 제 2 전력 스위치를 턴 온(turn-on)하도록 구성된다. 제 1 활성 인스턴스에 대해, 집적 전류 감지 신호가 전압 임계치 이하일 때까지 제 2 전력 스위치가 활성화될 수 있다. 일부 예들에서, 공진형 커패시터 안정기(101)는 공진형 네트워크(105)의 변압기의 주 측 상에서 감지된 집적 전류 감지 신호를 수신할 수 있다.
예를 들면, 공진형 변환기(100)는 공진형 커패시터(110)에 접속된 집적 전류 감지 회로(140)를 포함할 수 있다. 집적 전류 감지 회로(140)는 공진형 네트워크(105)의 변압기의 주 측(primary side) 상의 집적 전류 감지 신호를 감지하도록 구성된다. 일부 예들에서, 집적 전류 감지 회로(140)는 커패시터 분압기(189)를 이용하여 집적 전류 감지 신호를 감지하도록 구성된다. 집적 전류 감지 신호의 전압이 전압 임계치 이하인 것에 응답하여, 제 2 전력 스위치는 비활성화 상태로 전이한다. 제 2 전력 스위치는, 제 2 전력 스위치가 제 1 활성 인스턴스 동안 활성화되는 제 1 지속기간을 가질 수 있다(예로서, 제 2 전력 스위치가 비활성화될 때까지 제 1 전력 스위치가 활성화되는 시간으로부터).
일부 구현들에서, 미리 결정된 시간이 제 2 전력 스위치의 비활성화 후에 만료된 후에, 공진형 커패시터 안정기(101)는 제 2 전력 스위치를 다시 턴 온하여 공진형 커패시터(110)를 방전시키기 위해 커패시터 안정화 신호를 제 2 구동기(154)로 전송함으로써 제 2 활성 인스턴스에서 제 2 전력 스위치를 재활성화할 수 있고, 집적 전류 감지 신호의 전압이 전압 임계치 이하일 때까지 제 2 전력 스위치는 활성화된 채로 유지된다. 제 2 전력 스위치는, 제 2 전력 스위치가 제 2 활성 인스턴스 동안 활성화되는 제 2 지속 기간을 가질 수 있다. 제 2 전력 스위치는 제 1 지속기간과 제 2 지속기간 사이의 시간 기간 동안 비활성화될 수 있다. 또한, 제 1 지속기간은 미리 결정된 시간 간격으로 제 2 지속기간으로부터 분리될 수 있다(다른 활성 인스턴스들 사이에서 동일하거나 상이할 수 있음).
공진형 커패시터(110)가 완전하게(또는 실질적으로) 방전될 때까지 공진형 커패시터 안정기(101)는 제 2 전력 스위치를 계속해서 주기적으로 활성화할 수 있다(예로서, 제 3 활성 인스턴스, 제 4 활성 인스턴스, 등에서). 예를 들면, 각각의 활성 인스턴스에서, 공진형 커패시터(110)가 완전하게(또는 실질적으로) 방전될 때까지 공진형 커패시터 안정기(101)는 공진형 커패시터(110)를 방전시킬 수 있다(시간에서 일부). 게다가, 제 2 전력 스위치의 활성화 시간은, 공진형 커패시터 안정기(101)가 제 2 전력 스위치를 주기적으로 활성화하기 때문에 시간에 따라 증가한다. 예를 들면, 제 2 활성 인스턴스가 제 1 활성 인스턴스 후에 발생할 때, (제 2 활성 인스턴스에서의) 제 2 지속기간은 (제 1 활성 인스턴스에서의) 제 1 지속기간보다 길 수 있다.
공진형 커패시터(110)가 방전된 후에(또는 커패시터 안정화 기간의 종료 후에), 공진형 커패시터 안정기(101)는 유연 시동 동작들을 시작하기 위해 유연 시동 회로(188)를 트리거링하도록 구성된다. 일부 예들에서, 공진형 커패시터 안정기(101)는 각각의 활성 인스턴스에서의 제 2 전력 스위치의 활성화 시간을 임계치와 비교하도록 구성되고, 활성화 시간(예로서, 제 2 지속기간의 길이)이 임계 시간보다 큰 것에 응답하여, 공진형 커패시터 안정기(101)는 공진형 커패시터(110)가 방전되었다고 결정하며, 그 다음 유연 시동 동작들을 시작하기 위해 유연 시동 회로(188)를 트리거링할 수 있다. 유연 시동 동작들 동안, 유연 시동 회로(188)는 제 1 클록 신호 및 제 2 클록 신호를 대안적으로 생성하고 듀티 사이클(duty cycle)을 점진적으로 증가시키며 제 1 및 제 2 클록 신호들의 스위칭 주파수를 점진적으로 감소시키기 위해 발진기(150)를 제어할 수 있다. 그러나, 유연 시동 동작들 전에 공진형 커패시터 안정기(101)의 동작들을 수행함으로써, 그렇지 않으면 공진형 네트워크(105)의 변압기의 주 측 상에서 발생할 수 있는 전류 스파이크들이 감소될 수 있다.
공진형 커패시터 안정기(101)를 가지는 공진형 변환기들은 기존의 해결책들에 대해 이로울 수 있는데, 이는 공진형 커패시터 안정기(101)가 공진형 커패시터(110)를 점진적인 방식으로 몇 배 방전시킴으로써 제 2 전력 스위치를 통해 전류 스파이크의 양을 감소시킬 수 있기 때문이다. 일부 실시예들에서, 제 1 전력 스위치를 활성화하기 전에, 기존의 해결책들은 상대적으로 긴 시간 기간 동안 제 2 전력 스위치를 활성화할 수 있고, 이는 제 2 전력 스위치를 통해 상대적으로 많은 양의 전류를 생성할 수 있다. 게다가, 공진형 커패시터 안정기(101)가 집적 전류 감지 신호의 전압을 전압 임계치와 비교(및 전압이 전압 임계치 미만일 때 공진형 커패시터(110) 방전을 비활성화)하기 때문에, 제 2 전력 스위치를 통해 흐르는 음의 전류의 양이 감소될 수 있다.
예를 들면, 유연 시동 동작 전에 어떠한 공진형 커패시턴스 방전도 존재하지 않고, 공진형 커패시터(110)의 전압이 상대적으로 높으면, 상대적으로 많은 양의 음의 전류가 제 2 전류 스위치를 통해 흐를 수 있다. 그러나, 공진형 커패시터 안정기(101)는 공진형 커패시터(110)를 상대적으로 저 레벨(예로서, 0V)로 방전시킬 수 있고, 짧은 제 1 클록 신호 및 더 긴 제 2 클록 신호의 후속 생성은 예를 들면, 도 7에서 더 도시된 바와 같이, 제 2 전력 스위치를 통해 전류 스파이크를 감소시킬 수 있다.
도 1b는 또 다른 구현에 따른 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기(180)를 도시한다. 일부 예들에서, 공진형 변환기(180)는 하나 이상의 주파수들로 공진하기 위해 튜닝되는, 하나 이상의 인덕터들 및 하나 이상의 커패시터들의 망을 포함하는 전력 변환기이고, 공진형 전류 진동에 기초하여 입력 전압(Vin)을 출력 전압(Vo)으로 변환할 수 있다. 일부 예들에서, 공진형 변환기(180)는 직류(DC)-DC 변환기일 수 있다. 일부 예들에서, 공진형 변환기(180)는 제로 전압으로 턴 온하는 제로 전압 스위칭(ZVS) 공진형 변환기일 수 있고, 출력 전압은 스위칭의 주파수를 변화시킴으로써 제어될 수 있다. 일부 예들에서, 공진형 변환기(180)는 ATX(Advanced Technology eXtended) 전력, 서버 전력, 오디오 시스템들, 조명, 게임 콘솔, 컴퓨팅 디바이스들, 저 대 고 전력 애플리케이션들, 및/또는 고 주파수 스위칭에 대한 소프트 스위칭과 같은 다양한 상이한 애플리케이션들에서 이용될 수 있다.
일부 예들에서, 공진형 변환기(180)는 복수의 핀들(예로서, 16 핀 또는 20 핀 배열)을 가지는 집적 회로(IC)로 통합된다. 도 1b에 도시된 바와 같이, 핀들은 집적 전류 감지 신호의 전압에 액세스하기 위한 집적 전류 감지 전압 액세스 핀(146), 주파수 제어 전압 신호(VFCTRL)에 액세스하기 위한 전압 신호 액세스 핀(148), 제 1 전력 스위치(106)의 게이트에 액세스하기 위한 제 1 게이트 액세스 핀(107), 제 2 전력 스위치(108)의 게이트에 액세스하기 위한 제 2 게이트 액세스 핀(109)을 포함할 수 있다. 일부 예들에서, 공진형 변환기(180)를 가지는 IC는 접지 핀, 전원 핀, 라인 전압 감지, 전압 스위칭 노드 핀, 등과 같은 다른 핀들을 포함할 수 있다. 일부 예들에서, 공진형 변환기(180)는 ____에 출원된, 미국 특허 출원 번호 제 ____ 호(대리인 사건 번호 FSC75487US)에 개시된 바와 같은 비 ZVS 검출기, ____에 출원된, 미국 특허 출원 번호 제 ____ 호(대리인 사건 번호 FSC75497US)에 개시된 바와 같은 집적 전류 감지 쇼트 방지, 및/또는 ____에 출원된, 미국 특허 출원 번호 제 ____ 호(대리인 사건 번호 FSC75498US)에 개시된 바와 같은 전력 추정치를 이용한 진보된 버스트 모드 제어와 같은 다른 구성요소들 및 회로들을 가질 수 있으며, 그들의 각각은 전체적으로 참조로써 통합된다.
공진형 변환기(180)는 입력 커패시턴스 회로(103), 브리지 회로(104), 공진형 네트워크(105), 변압기(116), 정류 회로(124), 및 출력 커패시턴스 회로(125)를 포함할 수 있다. 또한, 공진형 변환기(180)는 피드백 회로(144), 절연 회로(142), 및 전압 제어 발진기(150)(주파수 제어 신호(VFCTRL)에 의해 제어됨), 뿐만 아니라 제 1 구동기(152), 및 제 2 구동기(154)를 포함할 수 있다.
입력 커패시턴스 회로(103)는 입력 전압(Vin)을 수신할 수 있다. 입력 커패시턴스 회로(103)는 입력 커패시터(Cin)(102) 및 접지(113)를 포함할 수 있다. 일부 예들에서, 입력 커패시터(102)는 음의 단자 및 양의 단자를 가지는 극성화된 커패시터일 수 있다. 입력 커패시터(102)의 음의 단자는 접지(113)에 결합될 수 있다. 일부 예들에서, 입력 커패시턴스 회로(103)는 브리지 회로(104)로부터 분리된 회로로 고려될 수 있다. 일부 예들에서, 입력 커패시턴스 회로(103)는 브리지 회로(104)의 부분으로서 고려될 수 있다.
도 1b에 도시된 바와 같이, 브리지 회로(104)는 반 브리지 회로일 수 있다. 예를 들면, 브리지 회로(104)는 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)를 포함하는 한 쌍의 전력 스위치들을 포함할 수 있다. 일부 예들에서, 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)는 금속 산화물 반도체 전계 효과 트랜지스터(MOSFET) 전력 스위치들이다. 일부 예들에서, 브리지 회로(104)는 2개 이상의 쌍들의 MOSFET 스위치들을 가지는 전(full) 브리지 회로이다.
도 2는 일 구현에 따른 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)를 가지는 브리지 회로(104)의 일례를 도시한다. 일부 예들에서, 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)는 N 유형 MOSFET들일 수 있다. 도 2에 도시된 바와 같이, 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)의 각각은 게이트(G), 소스(S), 및 드레인(D)을 포함한다. 또한, 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)의 각각은 진성 바디 다이오드(intrinsic body diode)(131), 안티 다이오드(133), 및 기생 출력 커패시터(135)를 포함한다.
도 1b를 다시 참조하면, 브리지 회로(104)는 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)를 대안적으로 구동함으로써 구형파 전압을 생성할 수 있다. 일부 예들에서, 브리지 회로(104)는 각각의 스위치에 대해 50%의 듀티 사이클로 대안적으로 구동된다. 주파수 제어 신호(VFCTRL)에 기초하여, 전압 제어 발진기(150)는 제 1 구동기(152)를 제어하기 위한 제 1 클럭 신호, 및 제 2 구동기(154)를 제어하기 위한 제 2 클럭 신호를 생성한다. 제 1 구동기(152)는 제 1 전력 스위치(106)의 게이트에 접속되고, 제 2 구동기(154)는 제 2 전력 스위치(108)의 게이트에 접속된다.
정상 스위칭 동작들 동안, 제 1 구동기(152) 및 제 2 구동기(154)는 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)를 각각 대칭적으로 즉, 정확하게 동일한 시간(또는 약 동일한 시간) 동안 때때로 역위상으로 스위칭할 수 있다. 어느 하나의 전력 스위치(106, 108)의 수행 시간이 스위칭 기간의 50%보다 약간 짧을지라도, 이것은 50% 듀티 사이클 동작으로서 언급될 수 있다. 즉, 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)는 동일한 펄스 폭(또는 실질적으로 같은 펄스 폭)의 상태 하에서 동작할 수 있다. 일부 예들에서, 대기 시간(dead time)(예로서, 적은 대기 시간)이 어느 하나의 전력 스위치(106, 108)의 턴 오프와 상호보완적인 스위치의 턴 온 사이에 삽입된다. 이것은 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)가 교차 수행하지 않을 것임(또는 실질적으로 교차 수행하지 않음)을 보장할 수 있다.
제 1 전력 스위치(106) 및 제 2 전력 스위치(108)의 스위칭에 기초하여, 브리지 회로(104)는 구형 파형을 생성하고, 이는 공진형 네트워크(105)를 여기시킨다. 공진형 네트워크(105)는 브리지 회로(104)에 의해 생성된 구형 파형의 더 높은 고조파 전류들을 필터링한다. 기본적으로, 구형파 전압이 공진형 네트워크(105)에 인가될지라도 단지 사인파 전류가 공진형 네트워크(105)를 통해 흐르도록 허용된다. 이와 같이, 공진형 네트워크(105)는 변압기(116)에 의해 조정되고 정류 회로(124)에 의해 정류되는 공진형 사인 파형을 생성하고 출력하며, 출력 커패시턴스 회로(125)는 정류된 전류를 필터링하고 DC 출력 전압(Vo)을 출력한다. 출력 전압(Vo)은 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)의 동작 주파수를 변경함으로써 조정될 수 있다.
일부 예들에서, 공진형 네트워크(105)는 적어도 3개의 반응 소자들을 포함한다. 일부 예들에서, 공진형 변환기(180)는 LLC 공진형 변환기이다. 예를 들면, 공진형 네트워크(105)는 공진형 커패시터(Cr)(110), 공진형 인덕터(Lr)(112), 및 자화 인덕터(Lm)(114)를 포함할 수 있다. 자화 인덕터(114)는 션트 인덕터(shunt inductor)로서 동작하도록 구성된다. 전류는 공진형 네트워크(105)에 인가된 전압을 지연시키고, 이는 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)가 제로 전압으로 턴 온되는 것을 허용한다. 변압기(116)는 주 측 와인딩(120) 및 제 1 부(secondary) 측 와인딩(118)과 제 2 부 측 와인딩(122)과 같은 하나 이상의 부 측 와인딩들을 포함한다. 제 1 부 측 와인딩(118) 및 제 2 부 측 와인딩(122)은 직렬로 결합된다. 일부 예들에서, 부 측 와인딩은 단지 하나의 와인딩(예로서, 제 1 부 측 와인딩(118) 또는 제 2 부 측 와인딩(122))을 포함한다. 일부 예들에서, 변압기(116)는 주 측 상에 다수의 와인딩들 및 부 측 상에 다수의 와인딩들을 포함한다.
정류 회로(124)는 AC 전류를 정류함으로써 DC 전압을 생성할 수 있다. 예를 들면, 정류 회로(124)는 제 1 정류 다이오드(130), 및 제 2 정류 다이오드(132)와 같은 정류기 다이오드들로 AC 전류를 정류할 수 있다. 일부 예들에서, 정류 회로(124)는 단지 하나의 정류 다이오드(예로서, 제 1 정류 다이오드(130) 또는 제 2 정류 다이오드(132))를 포함한다. 일부 예들에서, 정류 회로(124)는 2개보다 많은 정류 다이오드들을 포함한다. 제 1 정류 다이오드(130)의 애노드(anode)는 제 1 부 측 와인딩(118)의 양의 단자에 접속되고, 제 2 정류 다이오드(132)의 애노드는 제 2 부 측 와인딩(122)의 음의 단자에 접속된다.
출력 커패시턴스 회로(125)는 정류된 전류를 필터링하고 DC 출력 전압(Vo)을 출력할 수 있다. 출력 커패시턴스 회로(125)는 출력 커패시터(Co)(126), 및 출력 저항기(Ro)(128)를 포함할 수 있다. 일부 예들에서, 출력 커패시터(126)는 출력 저항기(128)와 병렬로 접속된다. 일부 예들에서, 출력 커패시턴스 회로(125)는 정류 회로(124)로부터 분리된 회로로 고려될 수 있다. 일부 예들에서, 출력 커패시턴스 회로(125)는 정류 회로(124)의 부분으로서 고려될 수 있다.
제 1 정류 다이오드(130) 및 제 2 정류 다이오드(132)는 출력 커패시터(126)에 접속된다. 예를 들면, 제 1 정류 다이오드(130)의 캐소드(cathode)는 출력 커패시터(126)의 양의 단자에 접속되고, 제 2 정류 다이오드(132)의 캐소드는 또한, 출력 커패시터(126)의 양의 단자에 접속된다. 출력 커패시터(126)의 음의 단자는 접지(134)에 접속된다.
피드백 회로(144)는 출력 전압을 감지함으로써 전압 피드백 루프를 통해 공진형 변환기(180)의 스위칭 주파수를 조절하도록 구성될 수 있다. 피드백 회로(144)는 출력 커패시턴스 회로(125) 및/또는 정류 회로(124)에 접속될 수 있다. 절연 회로(142)는 안전 규정에 의해 요구된 절연을 제공하기 위해 전압 피드백 루프 상에 제공된다. 절연 회로(142)는 피드백 회로(144)로부터 신호를 수신하고, 그 다음 발진기(150)에 공급되는 주파수 제어 전압 신호(VFCTRL)를 생성할 수 있다.
도 3은 일 구현에 따른 피드백 회로(144) 및 절연 회로(142)의 일례를 도시한다. 일부 예들에서, 피드백 회로(144)는 션트 조절기(163)를 포함할 수 있다. 일부 예들에서, 피드백 회로(144)는 또한, 하나 이상의 보상 저항기들 및 하나 이상의 보상 커패시터들을 포함할 수 있다. 예를 들면, 피드백 회로(144)는 커패시터(153), 저항기(155), 저항기(159), 및 저항기(161)를 포함할 수 있다. 절연 회로(142)는 옵토 커플러(opto-coupler)(151)를 포함할 수 있다. 옵토 커플러(151)는 피드백 회로(144) 및 전압 제어 신호 액세스 핀(148)에 결합될 수 있다. 또한, 일부 예들에서, 공진형 변환기(180)는 저항기(Rfmin)(167), 저항기(Rss)(169), 커패시터(Css)(171), 저항기(173), 및 저항기(165)를 포함할 수 있다. 저항기(167)는 전압 제어 신호 액세스 핀(148)에 결합될 수 있고, 저항기(167)는 저항기(169) 및 커패시터(171)와 병렬일 수 있다. 저항기(173)는 옵토 커플러(151)와 전압 제어 신호 액세스 핀(148) 사이에 배치될 수 있다.
도 1b를 다시 참조하면, 전류(IPRI)(공진형 인덕터(112)를 통한)는 공진형 네트워크(105)에 인가된 전압을 지연시키고, 이는 제 1 전력 스위치(106) 및 제 2 전력 스위치(108)가 제로 전압으로 턴 온되는 것을 허용한다. 도 1b 및 도 2를 참조하면, 제 1 전력 스위치(106)에 걸친 전압이 제 1 전력 스위치(106)의 안티 다이오드(133)를 통해 전류를 흐르게 함으로써 제로(또는 거의 제로)인 동안 제 1 전력 스위치(106)가 턴 온한다. 제 1 전력 스위치(106)의 기생 출력 커패시터(135)는 제 1 전력 스위치(106)가 턴 온되기 전에 방전된다. 유사하게, 제 2 전력 스위치(108)에 걸친 전압이 제 2 전력 스위치(108)의 안티 다이오드(133)를 통해 전류를 흐르게 함으로써 제로(또는 거의 제로)인 동안 제 2 전력 스위치(108)가 턴 온한다. 제 2 전력 스위치(108)의 기생 출력 커패시터(135)는 제 2 전력 스위치(108)가 턴 온되기 전에 방전된다.
실시예들에 따라, 상기 설명된 스위칭 동작들의 시동 동안, 공진형 커패시터 안정기(101)는 유연 시동 회로(188)가 트리거링되기 전에 공진형 커패시터(110)를 안정화하도록 구성된다. 예를 들면, 공진형 커패시터 안정기(101)는 공진형 변환기(180)의 스위칭 동작들의 초기화 동안 시간에 따라 제 2 전력 스위치(108)를 주기적으로 활성화하여 공진형 커패시터(110)를 방전시키도록 제 2 구동기(154)를 제어할 수 있어서 공진형 커패시터(110)가 완전하게(또는 실질적으로) 방전될 때까지 공진형 커패시터(110)가 각각의 활성 인스턴스에 주기적으로 방전되게 한다.
공진형 커패시터 안정기(101)는 타이머(181), 전압 비교기(182), 래치(latch)(184), 및 온 타임 카운터(on-time counter)(186)를 포함할 수 있다. 래치(184)는 설정 단자(S), 재설정 단자(R), 및 출력 단자(Q)를 포함한다. 래치(184)의 출력 단자는 제 2 구동기(154)에 접속될 수 있다. 타이머(181)는 래치(184)의 설정 단자(S)에 접속될 수 있다. 전압 비교기(182)는 기준 전압(예로서, 전압 임계치)을 수신하도록 구성된 양의 입력 단자 및 집적 전류 감지 회로(140)에 의해 감지된 집적 전류 감지 신호의 전압을 수신하도록 구성된 음의 단자를 포함할 수 있다. 집적 전류 감지 회로(140)는 공진형 커패시터(110)에 접속되고, 변압기(116)의 주 측 상의 집적 전류를 감지하도록 구성된다.
도 4는 일 구현에 따른 집적 전류 감지 회로(140)의 일례를 도시한다. 집적 전류 감지 신호는 변압기(116)의 주 측의 집적 전류일 수 있다. 일부 예들에서, 집적 전류 감지 회로(140)는 공진 커패시터(110)의 전압으로부터 커패시터 분압기(189)에 의해 집적 전류 감지 신호를 감지한다. 집적 전류 감지 회로(140)는 제 1 커패시터(141) 및 제 2 커패시터(143)를 포함할 수 있다. 제 1 커패시터(141) 및 제 2 커패시터(143)는 공진 커패시터(110)의 전압으로부터 커패시터 분압기(189)로서 구성된다. 제 1 커패시터(141)는 제 2 커패시터(143)와 직렬일 수 있다. 집적 전류 감지 회로(140)는 제 2 커패시터(143)와 병렬인 저항기(145)를 포함할 수 있다. 일부 예들에서, 공진형 변환기(100)는 제 1 커패시터(141)와 제 2 커패시터 사이의 한 지점에 결합된 집적 전류 액세스 핀(149)을 포함할 수 있고, 상기 집적 전류 액세스 핀은 집적 전류 감지 신호를 수신할 수 있다. 집적 전류 감지 신호의 전압(VICS)은 공진 인덕터(112)를 통해 흐르는 전류(IPRI)와의 관계를 가질 수 있다. 예를 들면, VICS = k*(적분(IPRI)) - 바이어스 전압. 제 1 커패시터(141) 및 제 2 커패시터(143)의 비는 상수(k)를 결정할 수 있고, 저항기(145)는 커패시터 분압기(189)의 전압의 전압 오프셋(또는 전압 바이어스)을 제거할 수 있다.
도 1b를 참조하면, 전압 비교기(182)의 출력 단자는 래치(184)의 재설정 단자(R)에 접속될 수 있다. 온 타임 카운터(186)는 래치(184)의 출력 단자(Q)에 접속될 수 있고, 온 타임 카운터(186)는 타이머(181)에 접속될 수 있다.
공진형 변환기(180)의 스위칭 동작들의 초기화의 시작 시에(예로서, 절연 회로(142) 또는 다른 보호 메커니즘들의 파워 오프 또는 호출과 같은 스위칭 동작들이 방해된 후에), 타이머(181)는 공진형 커패시터(110)를 방전시키기 위해 (고 상태의 커패시터 안정화 신호를 트리거링함으로써) 제 2 전력 스위치(108)를 활성화하도록 구성된다. 타이머(181)는 래치(184)의 설정 단자(S)를 활성화하도록 구성되어, 래치(184)의 출력 단자(Q)가 고 상태의 커패시터 안정화 신호를 생성하고 제 2 구동기(154)로 전송하여 공진형 커패시터(110)를 방전시키기 위해 제 2 전력 스위치(108)를 턴 온하게 한다. 즉, 타이머(181)가 로직 하이일 때, 래치(184)의 설정 단자(S)는 로직 하이로 전이하고, 이는 래치(184)의 출력부(Q)로 하여금 로직 하이로 전이하게 하며(그에 의해 고 상태의 커패시터 안정화 신호를 제공함), 이는 제 2 구동기(154)에 제 2 전력 스위치(108)를 턴 온하도록 지시한다.
집적 전류 감지 신호의 전압이 전압 임계치 이하일 때까지, 공진형 커패시터 안정기(101)는 제 2 전력 스위치(108)를 활성화한다. 예를 들면, 전압 비교기(180)는 집적 전류 감지 신호의 전압을 기준 전압(V1)과 비교할 수 있고, 기준 전압이 집적 전류 감지 신호의 전압보다 큰 것에 응답하여, 전압 비교기(182)는 래치(184)를 재설정할 수 있고, 이는 제 2 전력 스위치(108)로 하여금 비활성화하게 한다.
제 2 전력 스위치(108)의 비활성화 후에 미리 결정된 시간 지속기간이 만료된 후에, 타이머(181)는 집적 전류 감지 신호의 전압이 전압 임계치 이하일 때까지 공진형 커패시터(110)를 재방전하기 위해 (고 상태의 커패시터 안정화 신호를 트리거링함으로써) 제 2 전력 스위치(108)를 재활성화할 수 있다. 공진형 커패시터 안정기(101)는 커패시터 안정화 기간 동안 제 2 전력 스위치(108)를 계속해서 재활성화하고 비활성화할 수 있다. 일부 예들에서, 타이머(181)는 X 마이크로초마다 제 2 전력 스위치(108)를 턴 온할 수 있고, X는 예를 들면, 9 내지 15 마이크로초 사이의 임의의 값을 포함할 수 있다. 일부 예들에서, 타이머(181)는 12.78 마이크로초마다 제 2 전력 스위치(108)를 턴 온할 수 있다. 일부 예들에서, 제 2 전력 스위치가 비활성화되는 전력 스위치 활성화들 사이의 시간의 길이는 커패시터 안정화 기간에 걸쳐 동일하다. 일부 예들에서, 하나 이상의 전력 스위치 활성화들 사이의 시간의 길이는 커패시터 안정화 기간 동안의 또 다른 전력 스위치 활성화와 상이하다. 예를 들면, 제 2 활성화는 제 1 활성화 후에 X 마이크로초 발생할 수 있고, 제 3 활성화는 제 2 활성화 후에 Y 마이크로초 발생할 수 있으며, 여기서 X 및 Y는 상이하다.
온 타임 카운터(186)는 제 2 전력 스위치(108)의 활성화 시간을 카운트할 수 있다(예로서, 제 2 전력 스위치(108)가 얼마나 오래 턴 온되거나 특정한 활성 인스턴스 내에서 활성화되었는지를). 온 타임 카운터(186)는 활성화 시간을 임계치와 비교할 수 있고, 활성화 시간이 임계 레벨보다 큰 것에 응답하여, 온 타임 카운터(186)는 안정화 종료 신호(커패시터 안정화 기간의 종료를 나타냄)를 타이머(181)로 전송할 수 있다.
예를 들면, 고 상태의 커패시터 안정화 신호가 임계치 이상일 때, 온 타임 카운터(186)는 안정화 종료 신호를 생성하고 타이머(181)로 전송할 수 있다. 이 상황에서, 공진형 커패시터(110)는 방전된 것으로 고려될 수 있고(예로서, 0V이거나 거의 0V), 고 측 스위치(예로서, 제 1 전력 스위치(106))는 동작할 준비가 되어 있을 수 있다. 안정화 종료 신호의 수신 시에, 타이머(181)는 디스에이블링될 수 있다. 또한, 안정화 종료 신호의 전송 시에 또는 그것의 전송 쯤에, 온 타임 카운터(186)는 공진형 변환기(180)의 유연 시동 동작들을 수행하기 위해 신호를 유연 시동 회로(188)로 전송할 수 있다. 도 7 및 도 8에 더 도시된 바와 같이, 유연 시동 회로(188)는 시간에 따라 듀티 사이클을 점진적으로 증가시키고, 시간에 따라 발진기(150)에 의해 생성된 제 1 및 제 2 클록 신호들의 스위칭 주파수를 점진적으로 감소시킬 수 있다.
도 5는 일 구현에 따른 공진형 커패시터 안정기(101)의 신호들의 타이밍도(500)이다. 타이밍도(500)는 타이머(181)에 의해 생성된 신호 파형(501), 제 2 전력 스위치(108)의 활성화 지속기간을 묘사하는 제 2 구동기(154)로 전송된 커패시터 안정화 신호(502), 집적 전류 감지 신호의 전압(VICS)(503), 공진형 커패시터(110)의 전압(VCR)(504), 및 온 타임 카운터(186)에 의해 생성된 안정화 종료 신호(505)를 보여준다.
타이머의 신호 파형(501)의 각각의 펄스의 리딩 엣지(leading edge)는 커패시터 안정화 신호(502)의 펄스를 시작한다. 예를 들면, 타이머(181)가 로직 하이로 전이할 때, 래치(184)의 설정 단자(S)는 로직 하이로 전이하여, 출력부(Q)로 하여금 로직 하이로 전이하게 하며(그에 의해 커패시터 안정화 신호(502)를 제공함), 이는 제 2 구동기(154)에 제 2 전력 스위치(108)를 턴 온하도록 지시한다. 고 상태의 커패시터 안정화 신호(502)의 펄스 폭은 제 2 전력 구동기(108)가 특정한 활성 인스턴스 동안 공진형 커패시터(110)를 방전시키기 위해 얼마나 오래 활성화되는지를 나타낸다. 집적 전류 감지 신호의 전압(VICS)(503)이 임계 전압(V1) 미만일 때, 비교기(182)의 출력은 래치(184)를 재설정하도록 로직 하이여서 제 2 전력 스위치(108)를 턴 오프한다(그에 의해, 커패시터 안정화 신호(502)의 고 상태의 특정한 펄스의 종료를 정의함). 공진형 커패시터 안정기(101)가 제 2 전력 스위치(108)를 주기적으로 활성화함에 따라, 공진형 커패시터(110)의 전압(VCR)(504)이 방전된다(예로서, 각각의 활성화는 전압(VCR)(504)으로 하여금, 공진형 커패시터(110)가 완전하게(또는 실질적으로) 방전될 때까지 특정 양을 감소시키게 함). 커패시터 안정화 신호(502)의 고 기간이 임계치(TTH) 이상일 때, 온 타임 카운터(186)는 로직 하이로 전이하고(그에 의해, 안정화 종료 신호를 제공함), 이는 타이머(181)를 디스에이블링한다. 도 5에 도시된 바와 같이, 커패시터 안정화 신호(502)의 고 기간은 임계치(TTH)에 도달할 때까지 점진적으로 더 길어져서, 공진형 커패시터(110)가 완전하게 충전되는 커패시터 안정화 기간의 종료를 야기한다.
도 6은 일 구현에 따른 공진형 커패시터 안정기(101)의 예시적인 시뮬레이션 결과들(600)을 도시한다. 시뮬레이션 결과들(600)은 시뮬레이션 시나리오 하에서 도 5의 다양한 신호들을 묘사한다. 도 6에 도시된 바와 같이, 공진형 커패시터 안정기(101)가 이전에 설명된 방식으로 제 2 전력 스위치(108)를 주기적으로 활성화함에 따라, 공진형 커패시터(110)의 전압(VCR)은 커패시터 안정화 기간 동안 점진적으로 방전된다.
도 7은 일 구현에 따른 공진형 커패시터 안정기(101)에 의한 커패시터 안정화를 통한 유연 시동 동작들의 예시적인 시뮬레이션 결과들(700)을 도시한다. 도 7에 도시된 바와 같이, 유연 시동 회로(162)는 발진기(150)로 하여금 교차의(alternating) 제 1 및 제 2 클록 신호들을 생성하게 한다. 시간에 따라, 유연 시동 회로(162)는 듀티 사이클을 증가시키고 제 1 및 제 2 클록 신호들의 주파수를 감소시킨다. 유연 시동 동작들의 과정 동안(듀티 사이클이 증가하고 주파수가 감소함에 따라), 변압기(116)의 주 측 상의 전류(IPRI)의 양이 증가한다.
도 8은 일 구현에 따른 공진형 커패시터 안정기(101)에 의한 커패시터 안정화를 이용하지 않는 유연 시동 동작들의 예시적인 시뮬레이션 결과들(800)을 도시한다. 도 8에 도시된 바와 같이, 유연 시동 동작들의 과정 동안(듀티 사이클이 증가하고 주파수가 감소함에 따라), 변압기(116)의 주 측 상의 전류(IPRI)의 양이 증가한다. 그러나, 시뮬레이션 결과들(700) 및 시뮬레이션 결과들(800)을 비교하면, 유연 시동 동작들 전의 공진형 커패시터 안정기(101)의 동작들은 변압기(116)의 주 측 상의 전류 스파이크들(IPRI)의 양을 감소시킨다. 대신에, 전류(IPRI)는 점진적으로 증가하고, 그에 의해 제 2 전력 스위치(108)에서 큰 전류 스파이크들을 가지는 효과들을 감소시킨다.
일 구현에 따라, 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기는 스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기, 및 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 제 2 구동기를 제어하여 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 공진형 커패시터 안정기를 포함한다.
일부 구현들에서, 공진형 변환기는 다음의 특징들 중 하나 이상(또는 그의 임의의 조합)을 포함할 수 있다. 공진형 커패시터 안정기는 제 1 지속기간 동안 제 2 전력 스위치를 활성화하고 제 2 지속기간 동안 제 2 전력 스위치를 활성화하도록 구성될 수 있어서, 제 2 전력 스위치가 제 1 지속기간과 제 2 지속기간 사이의 시간 기간 동안 비활성화되게 한다. 제 2 지속기간은 제 1 지속기간보다 길 수 있다. 제 2 전력 스위치가 하나의 활성 인스턴스 동안 활성화된 후에, 공진형 커패시터 안정기는 집적 전류 감지 신호가 전압 임계치 이하인 것에 응답하여 제 2 전력 스위치를 비활성화하도록 구성될 수 있다. 공진형 변환기는 공진형 커패시터에 접속된 집적 전류 감지 회로를 포함할 수 있고, 집적 전류 감지 회로는 공진형 네트워크의 변압기의 주 측 상의 집적 전류 감지 신호를 감지하도록 구성될 수 있다. 공진형 커패시터 안정기는 집적 전류 감지 신호의 전압을 수신하고, 집적 전류 감지 신호의 전압을 전압 임계치와 비교하도록 구성될 수 있다. 공진형 커패시터 안정기는 제 2 전력 스위치가 임계치보다 길게 활성화되는 것에 응답하여 유연 시동 동작들을 시작하기 위해 유연 시동 회로를 트리거링하도록 구성될 수 있다. 공진형 커패시터 안정기는 설정 단자, 재설정 단자, 및 출력 단자를 가지는 래치를 포함할 수 있고, 여기서 래치의 출력 단자는 제 2 구동기에 접속될 수 있다. 공진형 커패시터 안정기는 래치의 설정 단자에 접속된 타이머, 및 집적 전류 감지 신호의 전압에 접속된 제 1 입력 단자, 기준 전압에 접속된 제 2 입력 단자, 및 래치의 재설정 단자에 접속된 출력 단자를 가지는 전압 비교기를 포함할 수 있다. 공진형 커패시터 안정기는 래치의 출력 단자 및 타이머에 접속된 온 타임 카운터를 포함할 수 있다. 타이머는 래치의 설정 단자를 주기적으로 활성화하도록 구성될 수 있어서, 래치의 출력 단자가 공진형 커패시터를 방전시키기 위해 고 상태의 커패시터 안정화 신호를 제 2 구동기로 전송하여 제 2 전력 스위치를 턴 온하게 한다. 온 타임 카운터는 제 2 전력 스위치의 활성화 시간을 카운트하도록 구성될 수 있고, 활성화 시간이 임계치를 초과하는 것에 응답하여, 온 타임 카운터는 공진형 커패시터의 방전을 종료하기 위해 안정화 종료 신호를 타이머로 전송하도록 구성된다. 전압 비교기는 집적 전류 감지 신호의 전압 및 기준 전압을 비교하도록 구성될 수 있고, 기준 전압이 집적 전류 감지 신호의 전압보다 큰 것에 응답하여, 전압 비교기는 래치를 재설정하도록 구성되고, 이는 제 2 전력 스위치로 하여금 비활성화하게 한다.
일 구현에 따라, 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기는 스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기, 및 공진형 변환기의 스위칭 동작들의 초기화 동안 발생하는 커패시터 안정화 기간 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 제 2 구동기를 제어하여 제 2 전력 스위치를 활성화하도록 구성된 공진형 커패시터 안정기를 포함한다. 공진형 커패시터 안정기는 집적 전류 감지 신호의 전압이 임계 전압 이하인 것에 응답하여 제 2 구동기를 제어하여 제 2 전력 스위치를 비활성화하도록 구성된다.
일부 구현들에서, 공진형 변환기는 많은 상기/하기의 특징들 중 하나(또는 그의 임의의 조합)를 포함할 수 있다. 공진형 커패시터 안정기는 커패시터 안정화 기간 동안 다수 회 활성화하고 비활성화하기 위해 제 2 구동기를 제어하도록 구성될 수 있다. 공진형 커패시터 안정기는 제 1 시간에서 제 2 전력 스위치를 활성화하고 그 다음, 집적 전류 감지 신호의 전압이 임계 전압 이하일 때 제 2 전력 스위치를 비활성화하도록 구성되어서, 제 2 전력 스위치가 제 1 지속기간 동안 활성화되게 한다. 공진형 커패시터 안정기는 제 2 시간에서 제 2 전력 스위치를 활성화하고 그 다음, 집적 전류 감지 신호의 전압이 임계 전압 이하일 때 제 2 전력 스위치를 비활성화하도록 구성될 수 있어서, 제 2 전력 스위치가 제 2 지속기간 동안 활성화되게 한다. 제 2 지속기간은 제 1 지속기간보다 길 수 있다. 공진형 커패시터 안정기는 공진형 네트워크의 변압기의 주 측 상에서 감지된 집적 전류 감지 신호를 수신하도록 구성될 수 있다. 공진형 변환기는 공진형 커패시터에 접속된 집적 전류 감지 회로를 포함할 수 있고, 여기서 집적 전류 감지 회로는 공진형 네트워크의 변압기의 주 측 상의 집적 전류 감지 신호를 감지하도록 구성되며, 집적 전류 감지 회로는 커패시터 분압기를 포함한다. 공진형 커패시터 안정기는 제 2 전력 스위치의 활성화 기간이 임계치보다 긴 것에 응답하여 유연 시동 동작들을 시작하기 위해 유연 시동 회로를 트리거링하도록 구성될 수 있다.
일 구현에 따라, 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기는 스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기, 및 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 제 2 구동기를 제어하여 제 2 전력 스위치를 활성화하도록 구성된 공진형 커패시터 안정기를 포함한다. 공진형 커패시터 안정기는 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 타이머를 포함하고, 온 타임 카운터는 제 2 전력 스위치의 활성화 시간을 카운트하도록 구성된다. 공진형 커패시터 안정기는 제 2 전력 스위치의 활성화 기간이 임계치를 초과하는 것에 응답하여 유연 시동 동작들을 시작하기 위해 유연 시동 회로를 트리거링하도록 구성된다.
일부 구현들에서, 공진형 변환기는 많은 상기/하기의 특징들 중 하나(또는 그의 임의의 조합)를 포함할 수 있다. 공진형 커패시터 안정기는 집적 전류 감지 신호의 전압이 임계 전압 이하인 것에 응답하여 각각의 활성 인스턴스에서 제 2 전력 스위치를 비활성화하도록 구성될 수 있다. 제 2 전력 스위치는 저 측 금속 산화물 반도체 전계 효과 트랜지스터(MOSFET)일 수 있다.
설명된 구현들의 특정 특징들이 본 명세서에서 설명된 바와 같이 도시되었을지라도, 많은 수정들, 대체들, 변경들 및 등가물들이 이제 당업자들에게 발생할 것이다. 따라서, 첨부된 청구항들이 실시예들의 범위 내에 속하는 것과 같은 모든 이러한 수정들 및 변경들을 커버하도록 의도됨이 이해될 것이다. 그들이 제한하는 것이 아니라 단지 예로서 제공되어야 하고, 형태 및 상세하게 다양한 변경들이 행해질 수 있음이 이해되어야 한다. 본 명세서에서 설명된 장치 및/또는 방법들의 임의의 부분은 상호 배타적인 조합들을 제외하고, 임의의 조합으로 조합될 수 있다. 본 명세서에서 설명된 실시예들은 설명된 상이한 실시예들의 기능들, 구성요소들 및/또는 특징들의 다양한 조합들 및/또는 서브 조합들을 포함할 수 있다.
100, 180: 공진형 변환기
101: 공진형 커패시터 안정기 102: 입력 커패시터
103: 입력 커패시턴스 회로 104: 브리지 회로
105: 공진형 네트워크 106: 제 1 전력 스위치
107: 제 1 게이트 액세스 핀 108: 제 2 전력 스위치
109: 제 2 게이트 액세스 핀 110: 공진형 커패시터
112: 공진형 인덕터 113: 접지
114: 자화 인덕터 116: 변압기
118: 제 1 부 측 와인딩 120: 주 측 와인딩
122: 제 2 부 측 와인딩 124: 정류 회로
125: 출력 커패시턴스 회로 126: 출력 커패시터
128, 155, 159, 161, 165, 167, 169, 171, 173 : 저항기
130: 제 1 정류 다이오드 131: 진성 바디 다이오드
132: 제 2 정류 다이오드 133: 안티 다이오드
135: 기생 출력 커패시터
140: 집적 전류 감지 회로 141: 제 1 커패시터
142: 절연 회로 143: 제 2 커패시터
144: 피드백 회로
146: 집적 전류 감지 전압 액세스 핀
148: 전압 신호 액세스 핀 150: 발진기
151: 옵토 커플러 152: 제 1 구동기
154: 제 2 구동기
162, 188: 유연 시동 회로 163: 션트 조절기
181: 타이머 182: 전압 비교기
184: 래치 186: 온 타임 카운터
189: 커패시터 분압기

Claims (5)

  1. 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기에 있어서:
    스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기; 및
    상기 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 상기 제 2 구동기를 제어하여 상기 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 공진형 커패시터 안정기를 포함하는, 공진형 변환기.
  2. 제 1 항에 있어서,
    상기 공진형 커패시터 안정기는 제 1 지속기간 동안 상기 제 2 전력 스위치를 활성화하고 제 2 지속기간 동안 상기 제 2 전력 스위치를 활성화하도록 구성되어, 상기 제 2 전력 스위치가 상기 제 1 지속기간과 상기 제 1 지속기간보다 긴 상기 제 2 지속기간 사이의 시간 기간 동안 비활성화되게 하는, 공진형 변환기.
  3. 제 1 항에 있어서,
    상기 제 2 전력 스위치가 하나의 활성 인스턴스(activation instance) 동안 활성화된 후에, 상기 공진형 커패시터 안정기는 집적 전류 감지 신호가 전압 임계치 이하인 것에 응답하여 상기 제 2 전력 스위치를 비활성화하도록 구성되는, 공진형 변환기.
  4. 시동 동안 공진형 커패시턴스 안정화를 위한 공진형 변환기에 있어서:
    스위칭 동작들 동안 제 1 전력 스위치에 대해 제 1 구동기를 구동하기 위한 제 1 클록 신호, 및 제 2 전력 스위치에 대해 제 2 구동기를 구동하기 위한 제 2 클록 신호를 생성하도록 구성된 발진기; 및
    상기 공진형 변환기의 스위칭 동작들의 초기화 동안 공진형 네트워크의 공진형 커패시터를 방전시키기 위해 상기 제 2 구동기를 제어하여 상기 제 2 전력 스위치를 활성화하도록 구성된 공진형 커패시터 안정기를 포함하고, 상기 공진형 커패시터 안정기는:
    상기 제 2 전력 스위치를 주기적으로 활성화하도록 구성된 타이머; 및
    상기 제 2 전력 스위치의 활성화 시간을 카운트하도록 구성된 온 타임 카운터(on-time counter)를 포함하며,
    상기 공진형 커패시터 안정기는 상기 제 2 전력 스위치의 활성화 기간이 임계치를 초과하는 것에 응답하여 유연 시동 동작(soft start operation)들을 시작하기 위해 유연 시동 회로를 트리거링(triggering)하도록 구성되는, 공진형 변환기.
  5. 제 4 항에 있어서,
    상기 공진형 커패시터 안정기는 집적 전류 감지 신호의 전압이 임계 전압 이하인 것에 응답하여 각각의 활성 인스턴스에서 상기 제 2 전력 스위치를 비활성화하도록 구성되는, 공진형 변환기.
KR1020170104748A 2016-08-19 2017-08-18 공진형 변환기들에서의 공진형 커패시터 안정기 KR102226978B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662377063P 2016-08-19 2016-08-19
US62/377,063 2016-08-19
US15/668,975 2017-08-04
US15/668,975 US10193455B2 (en) 2016-08-19 2017-08-04 Resonant capacitor stabilizer in resonant converters

Publications (2)

Publication Number Publication Date
KR20180020922A true KR20180020922A (ko) 2018-02-28
KR102226978B1 KR102226978B1 (ko) 2021-03-15

Family

ID=61192297

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020170104695A KR20180020920A (ko) 2016-08-19 2017-08-18 공진형 변환기들에서의 비 제로 전압 스위칭(zⅴs) 검출
KR1020170104708A KR102225011B1 (ko) 2016-08-19 2017-08-18 공진형 변환기들에서의 버스트 모드 제어
KR1020170104748A KR102226978B1 (ko) 2016-08-19 2017-08-18 공진형 변환기들에서의 공진형 커패시터 안정기
KR1020170104680A KR20180020919A (ko) 2016-08-19 2017-08-18 공진형 변환기들을 위해 펄스 폭 변조(pwm)를 이용한 단락 보호

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020170104695A KR20180020920A (ko) 2016-08-19 2017-08-18 공진형 변환기들에서의 비 제로 전압 스위칭(zⅴs) 검출
KR1020170104708A KR102225011B1 (ko) 2016-08-19 2017-08-18 공진형 변환기들에서의 버스트 모드 제어

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020170104680A KR20180020919A (ko) 2016-08-19 2017-08-18 공진형 변환기들을 위해 펄스 폭 변조(pwm)를 이용한 단락 보호

Country Status (3)

Country Link
US (4) US10374516B2 (ko)
KR (4) KR20180020920A (ko)
CN (4) CN207368881U (ko)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374516B2 (en) 2016-08-19 2019-08-06 Semiconductor Components Industries, Llc Non zero-voltage switching (ZVS) detection in resonant converters
US10483855B2 (en) * 2017-08-07 2019-11-19 Semiconductor Components Industries, Llc Power limit protection for resonant power converter
US10277435B2 (en) * 2017-08-07 2019-04-30 Micron Technology, Inc. Method to vertically align multi-level cells
US10447512B2 (en) 2017-08-07 2019-10-15 Micron Technology, Inc. Channel equalization for multi-level signaling
US10530617B2 (en) 2017-08-07 2020-01-07 Micron Technology, Inc. Programmable channel equalization for multi-level signaling
WO2019183880A1 (zh) * 2018-03-29 2019-10-03 深圳驿普乐氏科技有限公司 一种llc谐振变换器及其控制电路、谐振电流采样电路
CN108923657B (zh) * 2018-07-02 2020-06-09 杭州茂力半导体技术有限公司 谐振变换器及其控制电路和控制方法
US10838016B2 (en) * 2018-07-06 2020-11-17 Texas Instruments Incorporated Short detect scheme for an output pin
KR102440976B1 (ko) 2018-07-27 2022-09-08 삼성디스플레이 주식회사 구동 전압 제공부
EP3624319A1 (en) * 2018-09-14 2020-03-18 Delta Electronics (Thailand) Public Co., Ltd. Switch protection
DE102018124581B4 (de) * 2018-10-05 2022-07-07 Infineon Technologies Austria Ag Leistungswandlersteuerung, asymmetrischer Leistungswandler und Verfahren zum Betreiben eines Leistungswandlers
US10644591B1 (en) 2018-10-16 2020-05-05 Linear Technology Holding Llc Regulator light load control techniques
US11196347B2 (en) * 2018-12-13 2021-12-07 Power Integrations, Inc. Apparatus and methods for controlling a switch drive signal following mode transitions in a switching power converter
US11081966B2 (en) 2018-12-13 2021-08-03 Power Integrations, Inc. Multi zone secondary burst modulation for resonant converters
US11196351B2 (en) * 2019-02-14 2021-12-07 Texas Instruments Incorporated Burst mode operation for a resonant converter
CN110212767B (zh) * 2019-04-30 2020-08-04 东南大学 实现llc谐振变换器多步调频的数字控制方法
TWI703423B (zh) * 2019-06-19 2020-09-01 群光電能科技股份有限公司 電源供應裝置以及電源供應方法
CN110518679A (zh) * 2019-08-30 2019-11-29 南方电网科学研究院有限责任公司 一种可控充电负载电路及其控制方法
CN110752750B (zh) * 2019-10-14 2021-09-10 成都芯源***有限公司 谐振变换器及其控制电路和控制方法
US10931204B1 (en) * 2019-11-12 2021-02-23 Monolithic Power Systems, Inc. Isolated resonant converter with fixed output ripple
JP7493711B2 (ja) * 2019-11-22 2024-06-03 株式会社アパード 電力変換器とその制御方法
KR102281633B1 (ko) * 2019-12-03 2021-07-23 엘에스일렉트릭(주) 인버터 제어장치 및 방법
US11502597B2 (en) * 2020-01-08 2022-11-15 Infineon Technologies Austria Ag Startup of a voltage converter
TWI728704B (zh) * 2020-02-17 2021-05-21 亞源科技股份有限公司 具有突發設定之功率因數校正電路及其操作方法
CN112886820B (zh) * 2020-03-06 2022-11-18 陶顺祝 一种谐振电路变换器及控制方法
TWI725807B (zh) * 2020-04-07 2021-04-21 新唐科技股份有限公司 穩壓控制系統及其方法
JP7472654B2 (ja) * 2020-05-27 2024-04-23 富士電機株式会社 スイッチング制御回路、llcコンバータ
CN111813000B (zh) * 2020-06-11 2023-04-11 广西电网有限责任公司电力科学研究院 一种配电网实境试验平台铁磁谐振仿真的方法及装置
TWI814025B (zh) 2020-06-30 2023-09-01 台達電子工業股份有限公司 Dc-dc諧振轉換器及其控制方法
CN112134453B (zh) * 2020-09-08 2021-10-29 台达电子企业管理(上海)有限公司 启动控制方法及***、尖峰电压检测电路及方法
US11594948B2 (en) 2021-02-09 2023-02-28 Excelsys Tecnologies Ltd. Reduced power consumption for LLC resonant converter under light load
US11799382B2 (en) * 2021-03-03 2023-10-24 Semiconductor Components Industries, Llc Resonant converter with dual-mode control
JP2022142919A (ja) * 2021-03-17 2022-10-03 富士電機株式会社 スイッチング制御回路、共振型コンバータ
CN112821762B (zh) * 2021-04-16 2021-09-03 深圳市拓尔微电子有限责任公司 控制电路及升压电路
CN115224915A (zh) * 2021-04-21 2022-10-21 友尚股份有限公司 功率转换器
CN113452254B (zh) * 2021-05-27 2023-03-31 华为数字能源技术有限公司 谐振变换***和控制方法
CN115882703A (zh) * 2021-08-19 2023-03-31 力智电子股份有限公司 智能功率级模块、电流监控信号产生电路及其方法
US11855544B2 (en) * 2022-02-03 2023-12-26 Lee Fredrik Mazurek Single stage synchronous harmonic current controlled power system
US11755304B2 (en) * 2022-02-04 2023-09-12 Toshiba Tec Kabushiki Kaisha Electric device and method for controlling same
WO2024016301A1 (zh) * 2022-07-22 2024-01-25 华为数字能源技术有限公司 非对称半桥反激电路的控制电路、电源模组和电子设备
TWI837944B (zh) * 2022-11-15 2024-04-01 宏碁股份有限公司 高輸出穩定度之電源供應器
US11855545B1 (en) * 2023-09-10 2023-12-26 Lee Fredrik Mazurek Single stage synchronous generalized regulator
CN117175952B (zh) * 2023-11-01 2024-01-30 艾科微电子(深圳)有限公司 电源控制器、开关式电源供应器及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146580A1 (en) * 2005-01-06 2006-07-06 Sanken Electric Co., Ltd. Resonant power source apparatus
US20150229220A1 (en) * 2014-02-11 2015-08-13 Fairchild Korea Semiconductor Ltd. Switch control circuit and resonant converter including the same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331755B1 (en) 1998-01-13 2001-12-18 International Rectifier Corporation Circuit for detecting near or below resonance operation of a fluorescent lamp driven by half-bridge circuit
US5973943A (en) 1998-01-05 1999-10-26 International Rectifier Corporation Non zero-voltage switching protection circuit
EP1101275B1 (en) 1999-05-26 2008-12-31 Nxp B.V. Converter for the conversion of an input voltage into an output voltage
KR100801773B1 (ko) 2000-04-10 2008-02-05 엔엑스피 비 브이 에너지 변환기
US6879115B2 (en) 2002-07-09 2005-04-12 International Rectifier Corporation Adaptive ballast control IC
KR101197512B1 (ko) 2005-12-02 2012-11-09 페어차일드코리아반도체 주식회사 안정기 집적회로
KR101357006B1 (ko) 2007-01-18 2014-01-29 페어차일드코리아반도체 주식회사 컨버터 및 그 구동 방법
TWI363481B (en) 2008-03-28 2012-05-01 Delta Electronics Inc Synchronous rectifying circuit having burst mode controller and controlling method thereof
US8279628B2 (en) 2008-07-25 2012-10-02 Cirrus Logic, Inc. Audible noise suppression in a resonant switching power converter
US8625308B2 (en) 2009-02-06 2014-01-07 Fairchild Korea Semiconductor Ltd. Soft-burst circuit for switched-mode power supplies
JPWO2011065024A1 (ja) 2009-11-30 2013-04-11 パナソニック株式会社 電源装置およびその制御方法
CN102136801B (zh) 2010-01-21 2014-02-19 台达电子工业股份有限公司 谐振转换器以及其间歇模式控制方法
KR101708482B1 (ko) 2010-02-24 2017-03-09 페어차일드코리아반도체 주식회사 스위치 구동 회로 및 스위치 구동 방법
EP2445098B1 (en) 2010-10-25 2019-08-07 STMicroelectronics Srl Control device for a resonant converter.
CN102055310B (zh) * 2010-11-01 2013-09-11 崇贸科技股份有限公司 具有开回路保护与短路保护的电源供应器
EP2458723B1 (en) 2010-11-24 2016-08-17 Nxp B.V. A circuit for a resonant converter
US8730687B2 (en) 2011-03-09 2014-05-20 System General Corporation Switching controller with valley-lock switching and limited maximum frequency for quasi-resonant power converters
US9143043B2 (en) 2012-03-01 2015-09-22 Infineon Technologies Ag Multi-mode operation and control of a resonant converter
CN103457453B (zh) 2012-06-04 2016-05-11 台达电子工业股份有限公司 一种用于降低音频噪音的控制方法
US20140009970A1 (en) 2012-07-06 2014-01-09 Power Systems Technologies, Ltd. Controller for a Power Converter and Method of Operating the Same
US9318966B2 (en) 2013-06-26 2016-04-19 Stmicroelectronics S.R.L. Method of controlling a switching converter in burst mode and related controller for a switching converter
CN104298331A (zh) * 2013-07-16 2015-01-21 鸿富锦精密工业(深圳)有限公司 电源控制芯片供电电路
US9203318B2 (en) 2013-12-18 2015-12-01 Texas Instruments Deutschland Gmbh Primary side current regulation on LLC converters for LED driving
US9257913B1 (en) * 2014-09-06 2016-02-09 Texas Instruments Incorporated LLC converter and loss of inductive mode detection circuit
US10374516B2 (en) 2016-08-19 2019-08-06 Semiconductor Components Industries, Llc Non zero-voltage switching (ZVS) detection in resonant converters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146580A1 (en) * 2005-01-06 2006-07-06 Sanken Electric Co., Ltd. Resonant power source apparatus
US20150229220A1 (en) * 2014-02-11 2015-08-13 Fairchild Korea Semiconductor Ltd. Switch control circuit and resonant converter including the same

Also Published As

Publication number Publication date
KR20180020919A (ko) 2018-02-28
CN107769567B (zh) 2020-12-11
CN107769583B (zh) 2021-05-14
US10193455B2 (en) 2019-01-29
CN107769567A (zh) 2018-03-06
US20180054111A1 (en) 2018-02-22
US20180054134A1 (en) 2018-02-22
KR102226978B1 (ko) 2021-03-15
KR20180020920A (ko) 2018-02-28
KR102225011B1 (ko) 2021-03-10
CN107769583A (zh) 2018-03-06
KR20180020921A (ko) 2018-02-28
US20180054133A1 (en) 2018-02-22
US10186948B2 (en) 2019-01-22
US10374516B2 (en) 2019-08-06
US10693379B2 (en) 2020-06-23
US20180054130A1 (en) 2018-02-22
CN207559860U (zh) 2018-06-29
CN207368881U (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
KR102226978B1 (ko) 공진형 변환기들에서의 공진형 커패시터 안정기
US11824453B2 (en) Secondary controller for use in synchronous flyback converter
US10277130B2 (en) Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter
US7218495B2 (en) Method and apparatus for fault condition protection of a switched mode power supply
US6229366B1 (en) Off-line converter with integrated softstart and frequency jitter
JP5900607B2 (ja) スイッチング電源装置
US9369054B2 (en) Reducing power consumption of a synchronous rectifier controller
KR20180013897A (ko) 스탠바이 모드일 때의 전력 변환기의 전력 저감
US11703550B2 (en) Resonance voltage attenuation detection circuit, semiconductor device for switching power, and switching power supply
EP2963793A1 (en) A SMPC, controller therefor, power supply and a method of controlling a SMPC

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant