CN207559860U - 谐振变换器 - Google Patents

谐振变换器 Download PDF

Info

Publication number
CN207559860U
CN207559860U CN201721037508.4U CN201721037508U CN207559860U CN 207559860 U CN207559860 U CN 207559860U CN 201721037508 U CN201721037508 U CN 201721037508U CN 207559860 U CN207559860 U CN 207559860U
Authority
CN
China
Prior art keywords
short
circuit
resonant converter
controlled resonant
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721037508.4U
Other languages
English (en)
Inventor
文相喆
金镇兑
崔恒硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QUICK KOREA SEMICONDUCTOR CO Ltd
Fairchild Korea Semiconductor Ltd
Original Assignee
QUICK KOREA SEMICONDUCTOR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QUICK KOREA SEMICONDUCTOR CO Ltd filed Critical QUICK KOREA SEMICONDUCTOR CO Ltd
Application granted granted Critical
Publication of CN207559860U publication Critical patent/CN207559860U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3381Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement using a single commutation path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/14Indicating direction of current; Indicating polarity of voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3385Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本实用新型涉及谐振变换器。本实用新型的至少一个方面的目的在于提供一种谐振变换器。根据实现方式,用于短路保护的谐振变换器包括振荡器、被配置为检测谐振变换器的组件中的短路状况的短路检测器,以及被配置为在短路保护被触发之前以脉冲宽度调制(PWM)模式控制振荡器的PWM控制器。振荡器当处于PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。本实用新型的至少一个方面的技术效果在于提供了一种谐振变换器。

Description

谐振变换器
相关申请
本申请根据35U.S.C.§119要求于2016年8月19日提交的美国临时专利申请号62/377,063的优先权和权益,其全部内容通过引用合并至此。
技术领域
本描述涉及提高谐振变换器的操作。
背景技术
谐振变换器可以将输入电压变换成输出电压。短路状况可能在切换操作期间在谐振变换器中的组件上发生。短路状况可能以不期望的方式引起相对大的初级侧电流和较高的输出电压。
实用新型内容
本实用新型的至少一个方面的目的在于提供一种谐振变换器。
根据实现方式,用于短路保护的谐振变换器包括振荡器、被配置为检测谐振变换器的组件中的短路状况的短路检测器以及被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器的脉冲宽度调制PWM控制器。振荡器当处于脉冲宽度调制PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
本实用新型的至少一个方面提供了一种谐振变换器,所述谐振变换器用于短路保护,所述谐振变换器包括:振荡器;短路检测器,被配置为检测谐振变换器的组件中的短路状况;以及脉冲宽度调制 PWM控制器,被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器,振荡器当处于脉冲宽度调制PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
优选地,其中组件是谐振变换器的引脚。
优选地,其中组件是集成电流感测引脚。
优选地,其中组件是谐振变换器的变压器的初级侧上的电路元件。
优选地,其中短路检测器被配置为确定组件的电压等于或者小于电压阈值,并且脉冲宽度调制PWM控制器被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器。
优选地,所述的谐振变换器还包括:短路保护触发器,被配置为在从脉冲宽度调制PWM模式开始已经过去一段时间之后触发短路保护,其中响应短路保护被触发,短路保护被配置为停止振荡器的操作。
优选地,其中脉冲宽度调制PWM控制器被配置为控制振荡器以当处于脉冲宽度调制PWM模式中时并且在短路保护被触发之前减小第一时钟信号和第二时钟信号的占空比。
本实用新型的一个方面提供了一种谐振变换器,所述谐振变换器用于短路保护,所述谐振变换器包括:振荡器;短路检测器,被配置为检测连接到谐振变换器的谐振网络的集成电流感测电路中的短路状况;以及脉冲宽度调制PWM控制器,被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器,振荡器当处于脉冲宽度调制PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
优选地,其中集成电流感测电路包括第一电容器、第二电容器和电阻器,并且短路检测器被配置为响应第一电容器、第二电容器和电阻器的至少一个短路而检测集成电流感测电路中的短路状况。
优选地,其中短路保护触发器包括计数器,所述计数器被配置为计数从脉冲宽度调制PWM模式开始的时间,并且在所计数的时间达 到阈值之后触发短路保护。
本实用新型的至少一个方面的技术效果在于提供了一种谐振变换器。
一种或多种实现方式的细节在下面的附随附图和描述中陈述。其他特征将从描述和附图以及从权利要求书中清晰。
附图说明
图1A例示根据实现方式使用脉冲宽度调制(PWM)用于短路保护的谐振变换器。
图1B例示根据另一种实现方式使用脉冲宽度调制(PWM)用于短路保护的谐振变换器。
图2例示根据实现方式的谐振变换器的桥接电路的示例。
图3例示根据实现方式的谐振变换器的反馈电路和隔离电路的示例。
图4例示根据实现方式的谐振变换器的集成电流感测电路的示例。
图5例示根据实现方式的谐振变换器的振荡器的示例。
图6例示根据实现方式,在短路保护被触发之前没有使用脉冲宽度调制PWM的谐振变换器内短路状况的示例仿真结果。
图7例示根据实现方式,在短路保护被触发之前使用脉冲宽度调制PWM的谐振变换器内短路状况的示例仿真结果。
具体实施方式
图1A例示根据实现方式使用脉冲宽度调制(PWM)用于短路保护的谐振变换器100。在一些示例中,谐振变换器100可以是电功率变换器,包括一个或多个电感器以及一个或多个电容器的网络,它们被调谐以一个或多个频率谐振,并且基于谐振电流振荡将输入电压变换成输出电压。谐振变换器100在短路保护被触发之前启用PWM操作,以便减小初级侧上的电流尖脉冲和/或过冲电压的量。
谐振变换器100包括振荡器150,振荡器150被配置为在切换操作期间(例如,在正常模式和PWM模式期间)生成第一时钟信号以驱动第一功率开关以及生成第二时钟信号以驱动第二功率开关。谐振变换器100包括检测谐振变换器100的组件186中的短路状况的短路检测器182。在一些示例中,组件186是谐振变换器100的引脚。在一些示例中,组件186是集成电流感测引脚。在一些示例中,组件186是电路元件。在一些示例中,组件186是谐振变换器100的变压器的初级侧上的电路元件。在一些示例中,组件186是集成电流感测电路。在一些示例中,组件186是谐振电容器。短路检测器182可以响应组件186的电压等于或者小于电压阈值来检测组件186的短路状况。在一些示例中,短路检测器182可以响应集成电流感测信号等于或者小于电压阈值来检测集成电流感测引脚(或者集成电流感测电路)的短路状况。在一些示例中,短路检测器182包括比较组件186的电压与电压阈值,并且响应组件186的电压等于或者小于电压阈值而输出PWM控制信号的电压比较器。
谐振变换器100包括在短路保护185被触发之前以脉冲宽度调制(PWM)模式控制振荡器用于生成第一时钟信号和第二时钟信号的PWM控制器183。例如,响应组件186中短路状况的检测,短路检测器182可以发送PWM控制信号到PWM控制器183,以在短路保护185被触发之前以PWM模式控制振荡器150。PWM控制器183可以在短路保护185被触发之前以PWM模式控制振荡器150以减小第一时钟信号和第二时钟信号的占空比。例如,振荡器150可以根据第一频率并且使用第一占空比以正常模式(例如,正常切换操作)生成第一时钟信号和第二时钟信号,并且当PWM控制器183以PWM模式控制振荡器150时,振荡器150可以根据第二频率使用第二占空比生成第一时钟信号和第二时钟信号。在一些示例中,第二占空比小于第一占空比。在一些示例中,第二频率小于第一频率。
谐振变换器100可以包括在从PWM模式的开始已经过去一段时间之后触发短路保护185的短路保护触发器184。在一些示例中,短 路保护触发器184包括确定(例如,计数)从PWM模式的开始的时间的计数器并且在所确定(例如,计数)的时间达到阈值之后触发短路保护185。响应短路保护185的触发,短路保护185可以停止振荡器150生成第一时钟信号和第二时钟信号的操作。
谐振变换器100可以优于现有解决方案,因为谐振变换器100在短路保护机制触发之前使用PWM操作,这可以减少过多的功率传递到输出并且减少在短路状况期间可能发生的谐振变换器100的变压器的初级侧上的电流尖脉冲。例如,常规解决方案可以检测短路状况,并且然后调用短路保护机制以停止切换操作。然而,在短路状况时间附近,常规谐振变换器可能在电压输出处产生过冲电压,并且在初级侧上产生电流尖脉冲。谐振变换器100在短路保护被触发之前启用PWM操作以便减小初级侧上的电流尖脉冲和/或过冲电压的量。
图1B例示根据另一种实现方式使用PWM用于短路保护的谐振变换器180。在一些示例中,谐振变换器180可以是电功率变换器,包括一个或多个电感器以及一个或多个电容器的网络,它们被调谐以一个或多个频率谐振,并且基于谐振电流振荡将输入电压(Vin)变换成输出电压(Vo)。在一些示例中,谐振变换器180可以是直流(DC)到DC变换器。在一些示例中,谐振变换器180可以是零电压切换(ZVS)谐振变换器,其在零电压时接通,并且输出电压可以通过改变切换的频率而控制。在一些示例中,谐振变换器180可以在各种不同应用中使用,诸如先进技术扩展(ATX)电源、服务器电源、音频***、照明、游戏控制台、计算设备、低到高功率应用和/或软切换到高频切换。
在一些示例中,谐振变换器180合并到具有多个引脚(例如,16引脚至20引脚排列)的集成电路(IC)。如图1B中所示,引脚可以包括用于访问集成电流感测信号的电压的集成电流感测电压访问引脚146、用于访问频率控制电压信号(VFCTRL)的电压信号访问引脚148、用于访问第一功率开关106的栅极的第一栅极访问引脚107、用于访问第二功率开关108的栅极的第二栅极访问引脚109。在一些示 例中,具有谐振变换器180的IC可以包括其他引脚,诸如接地引脚、电源供给引脚、行电压感测、电压切换节点引脚等。在一些示例中,谐振变换器180可以具有其他组件和电路。
谐振变换器180可以包括输入电容电路103、桥接电路104、谐振网络105、变压器116、整流电路124和输出电容电路125。而且,谐振变换器180可以包括反馈电路144、隔离电路142、第一驱动器152、第二驱动器154和振荡器150(由频率控制信号(VFCTRL)控制)。
输入电容电路103可以接收输入电压(Vin)。输入电容电路103可以包括输入电容器(Cin)102和接地113。在一些示例中,输入电容器102是具有负极端子和正极端子的极化电容器。输入电容器102的负极端子可以耦合到接地113。在一些示例中,输入电容电路103可以是与桥接电路104分离的电路。在一些示例中,输入电容电路103可以是桥接电路104的部分。
如图1B中所示,桥接电路104可以是半桥电路。例如,桥接电路104可以包括一对功率开关,包括第一功率开关106和第二功率开关108。在一些示例中,第一功率开关106和第二功率开关108是金属氧化物半导体场效应晶体管(MOSFET)功率开关。在一些示例中,桥接电路104是具有两对或者更多对MOSFET开关的全桥电路。图2例示根据实现方式具有第一功率开关106和第二功率开关108的桥接电路104的示例。在一些示例中,第一功率开关106和第二功率开关108可以是N型MOSFET。如图2中所示,第一功率开关106和第二功率开关108的每个包括栅极(G)、源极(S)和漏极(D)。而且,第一功率开关106和第二功率开关108的每个包括本征导体衬底二极管131、反二极管133和寄生输出电容器135。
返回参考图1B,桥接电路104可以通过交替地驱动第一功率开关106和第二功率开关108生成方波电压。在一些示例中,桥接电路104使用关于每个开关50%占空比交替地驱动。基于电压控制信号(VFCTRL),振荡器150生成第一时钟信号以控制第一驱动器152以及生成第二时钟信号以控制第二驱动器154。第一驱动器152连接到 第一功率开关106的栅极,并且第二驱动器154连接到第二功率开关108的栅极。
在正常切换操作期间,第一驱动器152和第二驱动器154可以对称反相地,亦即,对于完全相同时间(大约在相同时间)分别接通和关闭第一功率开关106和第二功率开关108。这可以称作50%占空比操作,即使任一功率开关106、108的导电时间略微地短于切换周期的50%。换言之,第一功率开关106和第二功率开关108可以在相等脉冲宽度(或者基本上相等脉冲)的条件下操作。在一些示例中,在任一功率开关106、108的关闭与互补的开关的接通之间***死区时间(例如,小的死区时间)。这可以确保第一功率开关106和第二功率开关108将不会交叉导电(或者基本上不交叉导电)。
基于第一功率开关106和第二功率开关108的切换,桥接电路104生成激发谐振网络105的方波形。谐振网络105过滤由桥接电路104生成的方波形的较高谐波电流。本质上,仅允许正弦电流流过谐振网络105,即使方波电压应用于谐振网络105。如此,谐振网络105生成并且输出由变压器116进行比例调整并且由整流电路124整流的谐振正弦波形,并且输出电容电路125过滤经整流的电流并且输出DC输出电压(Vo)。输出电压(Vo)可以通过改变第一功率开关106和第二功率开关108的操作频率而调整。
在一些示例中,谐振网络105包括至少三个电抗元件。在一些示例中,谐振变换器180是LLC谐振变换器。例如,谐振网络105可以包括谐振电容器(Cr)110、谐振电感器(Lr)112和磁化电感器(Lm)114。磁化电感器114被配置为作为分路电感器而操作。电流可以滞后应用于谐振网络105的电压,这允许第一功率开关106和第二功率开关108使用零电压而接通。变压器116包括初级侧绕组120以及一个或多个次级侧绕组,诸如第一次级侧绕组118和第二次级侧绕组122。第一次级侧绕组118和第二次级侧绕组122串联耦合。在一些示例中,次级侧绕组包括唯一一个绕组(例如,第一次级侧绕组118或者第二次级侧绕组122)。在一些示例中,变压器116在初级侧上 包括多个绕组并且在次级侧上包括多个绕组。
整流电路124可以通过对AC电流进行整流而产生DC电压。例如,整流电路124可以使用诸如第一整流二极管130和第二整流二极管132这样的整流器二极管对AC电流进行整流。在一些示例中,整流电路124包括唯一一个整流二极管(例如,第一整流二极管130或者第二整流二极管132)。在一些示例中,整流电路124包括多于两个整流二极管。第一整流二极管130的阳极连接到第一次级侧绕组118的正极端子,并且第二整流二极管132的阳极连接到第二次级侧绕组122的负极端子。
输出电容电路125可以过滤经整流的电流并且输出DC输出电压(Vo)。输出电容电路125可以包括输出电容器(Co)126和输出电阻器(Ro)128。在一些示例中,输出电容器126与输出电阻器128并联连接。在一些示例中,输出电容电路125可以是与整流电路124分离的电路。在一些示例中,输出电容电路125可以是整流电路124的部分。
第一整流二极管130和第二整流二极管132连接到输出电容器126。例如,第一整流二极管130的阴极连接到输出电容器126的正极端子,并且第二整流二极管132的阴极也连接到输出电容器126的正极端子。输出电容器126的负极端子连接到接地134。
反馈电路144可以通过感测输出电压使用电压反馈回路调控谐振变换器180的切换频率。反馈电路144可以连接到输出电容电路125和/或整流电路124。隔离电路142提供在电压反馈回路上以便提供由安全规程需要的隔离。隔离电路142可以接收来自反馈电路144的信号,并且然后生成供给到振荡器150的频率控制电压信号VFCTRL
图3例示根据实现方式的反馈电路144和隔离电路142的示例。在一些示例中,反馈电路144包括分路调控器163。在一些示例中,反馈电路144包括一个或多个补偿电阻器以及一个或多个补偿电容器。例如,反馈电路144可以包括电容器153、电阻器155、电阻器159和电阻器161。隔离电路142可以包括光电耦合器151。光电耦合 器151可以耦合到反馈电路144和电压信号访问引脚148。而且,在一些示例中,谐振变换器180可以包括电阻器(Rfmin)167、电阻器(Rss)169、电容器(Css)171、电阻器173和电阻器165。电阻器167可以耦合到电压信号访问引脚148,并且电阻器167可以与电阻器169和电容器171并联。电阻器173可以布置在光电耦合器151与电压信号访问引脚148之间。
返回参考图1B,电流IPRI(通过谐振电感器112)滞后应用于谐振网络105的电压,这允许第一功率开关106和第二功率开关108使用零电压接通。参考图1B和图2,当跨越第一功率开关106的电压通过使电流流过第一功率开关106的反二极管133而为零时,第一功率开关106接通。第一功率开关106的寄生输出电容器135在第一功率开关106接通之前放电。类似地,当跨越第二功率开关108的电压通过使电流流过第二功率开关108的反二极管133而为零时,第二功率开关108接通。第二功率开关108的寄生输出电容器135在第二功率开关108接通之前放电。
谐振变换器180可以包括集成电流感测电路140。集成电流感测电路140可以连接到谐振网络105,并且可以感测变压器116的初级侧上的电压/电流。而且,集成电流感测电路140可以连接到集成电流感测电压访问引脚146。图4例示根据实现方式的集成电流感测电路140的示例。集成电流感测信号可以是变压器116的初级侧的集成电流。在一些示例中,集成电流感测电路140由电容分压器从谐振电容器110的电压中感测集成电流感测信号。集成电流感测电路140可以包括第一电容器141和第二电容器143。第一电容器141和第二电容器143被配置作为来自谐振电容器110的电压的电容分压器。第一电容器141可以与第二电容器143串联。集成电流感测电路140可以包括与第二电容器143并联的电阻器145。在一些示例中,谐振变换器100可以包括耦合到第一电容器141与第二电容器之间的点的集成电流感测访问引脚149,其可以接收集成电流感测信号。在一些示例中,集成电流感测访问引脚149和集成电流感测电压访问引脚146是相同 引脚。在一些示例中,集成电流感测访问引脚149是与集成电流感测电压访问引脚146不同的引脚。集成电流感测信号的电压(VICS)可以与流过谐振电感器112的电流(IPRI)有关。例如,VICS=k*(integral(IPRI))-偏压。第一电容器141与第二电容器143的比例可以确定常数k,并且电阻器145可以移除电容分压器的电压的电压偏移(或者电压偏置)。
根据实施例,如图1B中所示,谐振变换器180包括短路检测器182、短路保护触发器184和PWM控制器183。在一些示例中,短路检测器182包括电压比较器190。在一些示例中,短路保护触发器184包括计数器192。电压比较器190可以包括负极输入端子、正极输入端子和输出端子。电压比较器190的负极输入端子可以连接到集成电流感测电压访问引脚146。在一些示例中,电压比较器190的负极输入端子可以连接到集成电流感测电路140。电压比较器190的正极输入端子可以连接到基准电压(V1)(例如,电压阈值)。电压比较器190的输出端子可以连接到PWM控制器183。电压比较器190的输出端子可以连接到计数器192。计数器192可以连接到短路保护185。
电压比较器190可以检测集成电流感测电压访问引脚146、集成电流感测访问引脚149、集成电流感测电路140和/或谐振电容器110上的短路状况。在一些示例中,响应电容器141、电容器143、电阻器145、谐振电容器110的至少一个短路,集成电流感测电压访问引脚146、集成电流感测访问引脚149和/或集成电流感测电路140变得短路,其中如参考图5进一步说明的,集成电流感测信号的电压(VICS)变成零(或者几乎为零)并且切换频率降低。
图5例示根据实现方式的振荡器150的示例。振荡器150可以接收来自集成电流感测电压访问引脚146的集成电流感测电压VICS以及来自电压信号访问引脚148的电压控制信号VFCTRL,并且生成第一时钟信号CLK1和第二时钟信号CLK2。振荡器150可以包括晶体管502、电压比较器504(比较VFCTRL和V2)、生成与IFCTRL成比例的电流kIFCTRL的电流控制电流源508、定时电容器(CT)506、串联电 压加法器514、电压比较器516(比较VSAw和VH)和时钟生成器218。
电流kIFCTRL对定时电容器CT 506进行充电。串联电压加法器514将电容器电压VCT加到集成电流感测电压VICS以生成VSAW。然后,电压比较器516比较VSAW和阈值电压VH。时钟生成器518根据VSAW从VL到VH的增加时间输出第一时钟信号CLK1并且使得第二时钟信号CLK2与第一时钟信号CLK1具有相同的时间(或者基本上相同的时间)。切换频率由VICS和VCT确定。如果VICS变成零(或者几乎为零),那么切换频率仅由VCT确定,这使得切换频率立即(或者几乎立即)降低。
这可以引起过多的功率传递,因为短路保护185具有去抖动时间(例如,相对大的去抖动时间)。然而,如下面进一步说明的,当检测到短路状况时,振荡器150在短路保护185被触发之前在PWM模式内操作,由此减少否则过多的功率传递。
返回参考图1B,电压比较器190可以(经由它的负极输入端子)接收集成电流感测信号的电压(VICS)并且(经由它的正极输入端子)接收电压阈值(V1),并且比较集成电流感测信号的电压(VICS)和电压阈值(V1)。响应集成电流感测信号的电压(VICS)等于或者小于电压阈值(V1)(这指示VICS相对低或者集成电流感测电路140短路),电压比较器190输出高信号(其操作PWM控制信号)。
响应来自电压比较器190的输出端子的高信号,PWM控制器183在短路保护185被触发之前以PWM模式控制振荡器150用于生成第一时钟信号和第二时钟信号。例如,响应检测到集成电流感测电路140中的短路状况(例如,当VICS小于V1时),PWM控制器183可以发送PWM控制信号(电压比较器190的输出端子处输出为高)到PWM控制器183以在短路保护185被触发之前以PWM模式控制振荡器150。PWM控制器183可以在短路保护185被触发之前以PWM模式控制振荡器150以减小第一时钟信号和第二时钟信号的占空比。即使切换频率降低,PWM控制器183可以防止过多的功率传递。
计数器192可以接收PWM控制信号,并且确定(例如,计数) 从PWM模式开始的时间(例如,当电压比较器的输出为高时开始计数)。当所确定(例如,计数)的时间达到阈值时,计数器192可以触发短路保护185。在一些示例中,阈值在10-15毫秒的范围内。在一些示例中,阈值在20-30毫秒的范围内。响应短路保护185的触发,短路保护185可以停止振荡器150生成第一时钟信号和第二时钟信号的操作。
图6例示根据实现方式,在短路保护被触发之前没有使用PWM的谐振变换器内短路状况的示例仿真结果600。例如,响应在短路保护被触发之前没有使用PWM的短路状况,仿真结果600提供各种信号波形。仿真结果600描绘短路保护(SCP)信号601(其在11毫秒时转变成逻辑高)、第一时钟信号602、第二时钟信号603、电流IPRI信号604(通过谐振电感器)、集成电流感测信号VICS 605和输出电压信号606。如图6中所示,当集成电流感测电路或者引脚变得短路时(在8毫秒时),在短路保护被触发之前没有使用PWM的谐振变换器可以在电流IPRI信号604的位置610在谐振网络中产生过量的功率传递,并且在输出电压信号606的位置620产生过冲电压。
图7例示根据实现方式,在短路保护185被触发之前使用PWM的谐振变换器180内短路状况的示例仿真结果700。例如,响应在短路保护185被触发之前使用PWM的短路状况,仿真结果700提供各种信号波形。仿真结果700描绘短路保护(SCP)信号701(其在11毫秒时转变成逻辑高)、第一时钟信号702、第二时钟信号703、电流IPRI信号704(通过谐振电感器112)、集成电流感测信号VICS 705和输出电压信号706。如图7中所示,当集成电流感测电路140变得短路时(在8毫秒时),谐振变换器180可以在短路保护185被触发(在11毫秒时)之前开始PWM操作(例如,减小占空比),这减少电流IPRI信号704的位置710处谐振网络中过量的功率传递,并且减少输出电压信号706的位置720处的过冲电压。
根据实现方式,用于短路保护的谐振变换器包括振荡器、被配置为检测谐振变换器的组件中的短路状况的短路检测器,以及被配置为 在短路保护被触发之前以脉冲宽度调制(PWM)模式控制振荡器的PWM控制器。振荡器当处于PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
在一些实现方式中,谐振变换器可以包括下面特征的一个或多个(或者其任何组合)。组件可以是谐振变换器的引脚。组件可以是集成电流感测引脚。组件可以是谐振变换器的变压器的初级侧上的电路元件。短路检测器可以被配置为确定组件的电压等于或者小于电压阈值,并且PWM控制器被配置为在短路保护被触发之前以PWM模式控制振荡器。短路检测器可以包括被配置为比较组件的电压和电压阈值,并且响应组件的电压等于或者小于电压阈值而输出PWM控制信号到PWM控制器的电压比较器。谐振变换器可以包括被配置为从PWM模式的开始已经过去一段时间之后触发短路保护的短路保护触发器。短路保护触发器可以包括被配置为计数从PWM模式开始的时间,并且在所计数的时间达到阈值之后触发短路保护的计数器。PWM控制器被配置为控制振荡器当处于PWM模式中时并且在短路保护被触发之前减小第一时钟信号和第二时钟信号的占空比。响应短路保护被触发,短路保护可以被配置为停止振荡器的操作。
根据实现方式,用于短路保护的谐振变换器包括振荡器、被配置为检测连接到谐振变换器的谐振网络的集成电流感测电路中的短路状况的短路检测器,以及被配置为在短路保护被触发之前以脉冲宽度调制(PWM)模式控制振荡器的PWM控制器。振荡器当处于PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
在一些实现方式中,谐振变换器可以包括上面/下面特征的一个或多个(或者其任何组合)。短路检测器可以包括被配置为比较由集成电流感测电路感测的集成电流感测信号的电压和电压阈值,并且响应集成电流感测信号的电压等于或者小于电压阈值而输出PWM控制信号到PWM控制器的电压比较器。集成电流感测电路可以包括第一 电容器、第二电容器和电阻器,并且短路检测器被配置为响应第一电容器、第二电容器和电阻器的至少一个短路而检测集成电流感测电路中的短路状况。谐振变换器可以包括被配置为从PWM模式的开始已经过去一段时间之后触发短路保护的短路保护触发器。短路保护触发器可以包括被配置为计数从PWM模式开始的时间,并且在所计数的时间达到阈值之后触发短路保护的计数器。PWM控制器被配置为控制振荡器当处于PWM模式中时并且在短路保护被触发之前减小第一时钟信号和第二时钟信号的占空比。
根据实现方式,用于短路保护的谐振变换器包括振荡器、被配置为比较集成电流感测信号的电压和电压阈值的电压比较器,以及被配置为响应集成电流感测信号的电压等于或者低于电压阈值以脉冲宽度调制(PWM)模式控制振荡器的PWM控制器。PWM控制器被配置为在短路保护被触发之前以PWM模式控制振荡器。振荡器当处于PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
在一些实现方式中,谐振变换器可以包括上面/下面特征的一个或多个(或者其任何组合)。谐振变换器可以包括被配置为触发短路保护的计数器。谐振变换器可以包括连接到谐振变换器的谐振网络的谐振电容器的集成电流感测电路,并且集成电流感测电路被配置为使用谐振电容器的电压感测集成电流感测信号。电压比较器可以被配置为接收来自集成电流感测电路的集成电流感测信号。PWM控制器可以被配置为控制振荡器当处于PWM模式中时并且在短路保护被触发之前减小第一时钟信号和第二时钟信号的占空比。
虽然如这里描述的已经例示了所描述的实现方式的某些特征,但是许多修改、替代、改变和等同物现在将容易由本领域那些技术人员想到。因此,应当理解,附加的权利要求书打算覆盖如落在实施例的范围内的所有这种修改和改变。应当理解,它们已经仅经由示例而展示,而非限制,并且可以进行形式和细节的各种改变。这里描述的装置和/或方法的任何部分可以在任何组合中组合,除了相互排斥的组 合。这里描述的实施例可以包括所描述的不同实施例的功能、组件和/或特征的各种组合和/或子组合。

Claims (10)

1.一种谐振变换器,其特征在于,所述谐振变换器用于短路保护,所述谐振变换器包括:
振荡器;
短路检测器,被配置为检测谐振变换器的组件中的短路状况;以及
脉冲宽度调制PWM控制器,被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器,振荡器当处于脉冲宽度调制PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
2.根据权利要求1所述的谐振变换器,其特征在于,其中组件是谐振变换器的引脚。
3.根据权利要求1所述的谐振变换器,其特征在于,其中组件是集成电流感测引脚。
4.根据权利要求1所述的谐振变换器,其特征在于,其中组件是谐振变换器的变压器的初级侧上的电路元件。
5.根据权利要求1所述的谐振变换器,其特征在于,其中短路检测器被配置为确定组件的电压等于或者小于电压阈值,并且脉冲宽度调制PWM控制器被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器。
6.根据权利要求1所述的谐振变换器,其特征在于,还包括:
短路保护触发器,被配置为在从脉冲宽度调制PWM模式开始已经过去一段时间之后触发短路保护,其中响应短路保护被触发,短路保护被配置为停止振荡器的操作。
7.根据权利要求1所述的谐振变换器,其特征在于,其中脉冲宽度调制PWM控制器被配置为控制振荡器以当处于脉冲宽度调制PWM模式中时并且在短路保护被触发之前减小第一时钟信号和第二时钟信号的占空比。
8.一种谐振变换器,其特征在于,所述谐振变换器用于短路保护,所述谐振变换器包括:
振荡器;
短路检测器,被配置为检测连接到谐振变换器的谐振网络的集成电流感测电路中的短路状况;以及
脉冲宽度调制PWM控制器,被配置为在短路保护被触发之前以脉冲宽度调制PWM模式控制振荡器,振荡器当处于脉冲宽度调制PWM模式中时被配置为生成用于驱动第一功率开关的第一时钟信号和用于驱动第二功率开关的第二时钟信号。
9.根据权利要求8所述的谐振变换器,其特征在于,其中集成电流感测电路包括第一电容器、第二电容器和电阻器,并且短路检测器被配置为响应第一电容器、第二电容器和电阻器的至少一个短路而检测集成电流感测电路中的短路状况。
10.根据权利要求8所述的谐振变换器,其特征在于,其中短路保护触发器包括计数器,所述计数器被配置为计数从脉冲宽度调制PWM模式开始的时间,并且在所计数的时间达到阈值之后触发短路保护。
CN201721037508.4U 2016-08-19 2017-08-18 谐振变换器 Active CN207559860U (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662377063P 2016-08-19 2016-08-19
US62/377,063 2016-08-19
US15/668,980 2017-08-04
US15/668,980 US10693379B2 (en) 2016-08-19 2017-08-04 Short-circuit protection using pulse width modulation (PWM) for resonant converters

Publications (1)

Publication Number Publication Date
CN207559860U true CN207559860U (zh) 2018-06-29

Family

ID=61192297

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201721042467.8U Active CN207368881U (zh) 2016-08-19 2017-08-18 用于启动期间进行谐振电容稳定的谐振转换器
CN201721037508.4U Active CN207559860U (zh) 2016-08-19 2017-08-18 谐振变换器
CN201710709422.XA Active CN107769567B (zh) 2016-08-19 2017-08-18 谐振转换器中的突发模式控制
CN201710709398.XA Active CN107769583B (zh) 2016-08-19 2017-08-18 谐振转换器中的非零电压切换(zvs)检测

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201721042467.8U Active CN207368881U (zh) 2016-08-19 2017-08-18 用于启动期间进行谐振电容稳定的谐振转换器

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201710709422.XA Active CN107769567B (zh) 2016-08-19 2017-08-18 谐振转换器中的突发模式控制
CN201710709398.XA Active CN107769583B (zh) 2016-08-19 2017-08-18 谐振转换器中的非零电压切换(zvs)检测

Country Status (3)

Country Link
US (4) US10374516B2 (zh)
KR (4) KR20180020920A (zh)
CN (4) CN207368881U (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374516B2 (en) 2016-08-19 2019-08-06 Semiconductor Components Industries, Llc Non zero-voltage switching (ZVS) detection in resonant converters
US10483855B2 (en) * 2017-08-07 2019-11-19 Semiconductor Components Industries, Llc Power limit protection for resonant power converter
US10277435B2 (en) * 2017-08-07 2019-04-30 Micron Technology, Inc. Method to vertically align multi-level cells
US10447512B2 (en) 2017-08-07 2019-10-15 Micron Technology, Inc. Channel equalization for multi-level signaling
US10530617B2 (en) 2017-08-07 2020-01-07 Micron Technology, Inc. Programmable channel equalization for multi-level signaling
WO2019183880A1 (zh) * 2018-03-29 2019-10-03 深圳驿普乐氏科技有限公司 一种llc谐振变换器及其控制电路、谐振电流采样电路
CN108923657B (zh) * 2018-07-02 2020-06-09 杭州茂力半导体技术有限公司 谐振变换器及其控制电路和控制方法
US10838016B2 (en) * 2018-07-06 2020-11-17 Texas Instruments Incorporated Short detect scheme for an output pin
KR102440976B1 (ko) 2018-07-27 2022-09-08 삼성디스플레이 주식회사 구동 전압 제공부
EP3624319A1 (en) * 2018-09-14 2020-03-18 Delta Electronics (Thailand) Public Co., Ltd. Switch protection
DE102018124581B4 (de) * 2018-10-05 2022-07-07 Infineon Technologies Austria Ag Leistungswandlersteuerung, asymmetrischer Leistungswandler und Verfahren zum Betreiben eines Leistungswandlers
US10644591B1 (en) 2018-10-16 2020-05-05 Linear Technology Holding Llc Regulator light load control techniques
US11196347B2 (en) * 2018-12-13 2021-12-07 Power Integrations, Inc. Apparatus and methods for controlling a switch drive signal following mode transitions in a switching power converter
US11081966B2 (en) 2018-12-13 2021-08-03 Power Integrations, Inc. Multi zone secondary burst modulation for resonant converters
US11196351B2 (en) * 2019-02-14 2021-12-07 Texas Instruments Incorporated Burst mode operation for a resonant converter
CN110212767B (zh) * 2019-04-30 2020-08-04 东南大学 实现llc谐振变换器多步调频的数字控制方法
TWI703423B (zh) * 2019-06-19 2020-09-01 群光電能科技股份有限公司 電源供應裝置以及電源供應方法
CN110518679A (zh) * 2019-08-30 2019-11-29 南方电网科学研究院有限责任公司 一种可控充电负载电路及其控制方法
CN110752750B (zh) * 2019-10-14 2021-09-10 成都芯源***有限公司 谐振变换器及其控制电路和控制方法
US10931204B1 (en) * 2019-11-12 2021-02-23 Monolithic Power Systems, Inc. Isolated resonant converter with fixed output ripple
JP7493711B2 (ja) * 2019-11-22 2024-06-03 株式会社アパード 電力変換器とその制御方法
KR102281633B1 (ko) * 2019-12-03 2021-07-23 엘에스일렉트릭(주) 인버터 제어장치 및 방법
US11502597B2 (en) * 2020-01-08 2022-11-15 Infineon Technologies Austria Ag Startup of a voltage converter
TWI728704B (zh) * 2020-02-17 2021-05-21 亞源科技股份有限公司 具有突發設定之功率因數校正電路及其操作方法
CN112886820B (zh) * 2020-03-06 2022-11-18 陶顺祝 一种谐振电路变换器及控制方法
TWI725807B (zh) * 2020-04-07 2021-04-21 新唐科技股份有限公司 穩壓控制系統及其方法
JP7472654B2 (ja) * 2020-05-27 2024-04-23 富士電機株式会社 スイッチング制御回路、llcコンバータ
CN111813000B (zh) * 2020-06-11 2023-04-11 广西电网有限责任公司电力科学研究院 一种配电网实境试验平台铁磁谐振仿真的方法及装置
TWI814025B (zh) 2020-06-30 2023-09-01 台達電子工業股份有限公司 Dc-dc諧振轉換器及其控制方法
CN112134453B (zh) * 2020-09-08 2021-10-29 台达电子企业管理(上海)有限公司 启动控制方法及***、尖峰电压检测电路及方法
US11594948B2 (en) 2021-02-09 2023-02-28 Excelsys Tecnologies Ltd. Reduced power consumption for LLC resonant converter under light load
US11799382B2 (en) * 2021-03-03 2023-10-24 Semiconductor Components Industries, Llc Resonant converter with dual-mode control
JP2022142919A (ja) * 2021-03-17 2022-10-03 富士電機株式会社 スイッチング制御回路、共振型コンバータ
CN112821762B (zh) * 2021-04-16 2021-09-03 深圳市拓尔微电子有限责任公司 控制电路及升压电路
CN115224915A (zh) * 2021-04-21 2022-10-21 友尚股份有限公司 功率转换器
CN113452254B (zh) * 2021-05-27 2023-03-31 华为数字能源技术有限公司 谐振变换***和控制方法
CN115882703A (zh) * 2021-08-19 2023-03-31 力智电子股份有限公司 智能功率级模块、电流监控信号产生电路及其方法
US11855544B2 (en) * 2022-02-03 2023-12-26 Lee Fredrik Mazurek Single stage synchronous harmonic current controlled power system
US11755304B2 (en) * 2022-02-04 2023-09-12 Toshiba Tec Kabushiki Kaisha Electric device and method for controlling same
WO2024016301A1 (zh) * 2022-07-22 2024-01-25 华为数字能源技术有限公司 非对称半桥反激电路的控制电路、电源模组和电子设备
TWI837944B (zh) * 2022-11-15 2024-04-01 宏碁股份有限公司 高輸出穩定度之電源供應器
US11855545B1 (en) * 2023-09-10 2023-12-26 Lee Fredrik Mazurek Single stage synchronous generalized regulator
CN117175952B (zh) * 2023-11-01 2024-01-30 艾科微电子(深圳)有限公司 电源控制器、开关式电源供应器及控制方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331755B1 (en) 1998-01-13 2001-12-18 International Rectifier Corporation Circuit for detecting near or below resonance operation of a fluorescent lamp driven by half-bridge circuit
US5973943A (en) 1998-01-05 1999-10-26 International Rectifier Corporation Non zero-voltage switching protection circuit
EP1101275B1 (en) 1999-05-26 2008-12-31 Nxp B.V. Converter for the conversion of an input voltage into an output voltage
KR100801773B1 (ko) 2000-04-10 2008-02-05 엔엑스피 비 브이 에너지 변환기
US6879115B2 (en) 2002-07-09 2005-04-12 International Rectifier Corporation Adaptive ballast control IC
JP4506469B2 (ja) 2005-01-06 2010-07-21 サンケン電気株式会社 共振型電源装置
KR101197512B1 (ko) 2005-12-02 2012-11-09 페어차일드코리아반도체 주식회사 안정기 집적회로
KR101357006B1 (ko) 2007-01-18 2014-01-29 페어차일드코리아반도체 주식회사 컨버터 및 그 구동 방법
TWI363481B (en) 2008-03-28 2012-05-01 Delta Electronics Inc Synchronous rectifying circuit having burst mode controller and controlling method thereof
US8279628B2 (en) 2008-07-25 2012-10-02 Cirrus Logic, Inc. Audible noise suppression in a resonant switching power converter
US8625308B2 (en) 2009-02-06 2014-01-07 Fairchild Korea Semiconductor Ltd. Soft-burst circuit for switched-mode power supplies
JPWO2011065024A1 (ja) 2009-11-30 2013-04-11 パナソニック株式会社 電源装置およびその制御方法
CN102136801B (zh) 2010-01-21 2014-02-19 台达电子工业股份有限公司 谐振转换器以及其间歇模式控制方法
KR101708482B1 (ko) 2010-02-24 2017-03-09 페어차일드코리아반도체 주식회사 스위치 구동 회로 및 스위치 구동 방법
EP2445098B1 (en) 2010-10-25 2019-08-07 STMicroelectronics Srl Control device for a resonant converter.
CN102055310B (zh) * 2010-11-01 2013-09-11 崇贸科技股份有限公司 具有开回路保护与短路保护的电源供应器
EP2458723B1 (en) 2010-11-24 2016-08-17 Nxp B.V. A circuit for a resonant converter
US8730687B2 (en) 2011-03-09 2014-05-20 System General Corporation Switching controller with valley-lock switching and limited maximum frequency for quasi-resonant power converters
US9143043B2 (en) 2012-03-01 2015-09-22 Infineon Technologies Ag Multi-mode operation and control of a resonant converter
CN103457453B (zh) 2012-06-04 2016-05-11 台达电子工业股份有限公司 一种用于降低音频噪音的控制方法
US20140009970A1 (en) 2012-07-06 2014-01-09 Power Systems Technologies, Ltd. Controller for a Power Converter and Method of Operating the Same
US9318966B2 (en) 2013-06-26 2016-04-19 Stmicroelectronics S.R.L. Method of controlling a switching converter in burst mode and related controller for a switching converter
CN104298331A (zh) * 2013-07-16 2015-01-21 鸿富锦精密工业(深圳)有限公司 电源控制芯片供电电路
US9203318B2 (en) 2013-12-18 2015-12-01 Texas Instruments Deutschland Gmbh Primary side current regulation on LLC converters for LED driving
US9647528B2 (en) * 2014-02-11 2017-05-09 Fairchild Korea Semiconductor Ltd Switch control circuit and resonant converter including the same
US9257913B1 (en) * 2014-09-06 2016-02-09 Texas Instruments Incorporated LLC converter and loss of inductive mode detection circuit
US10374516B2 (en) 2016-08-19 2019-08-06 Semiconductor Components Industries, Llc Non zero-voltage switching (ZVS) detection in resonant converters

Also Published As

Publication number Publication date
KR20180020919A (ko) 2018-02-28
CN107769567B (zh) 2020-12-11
KR20180020922A (ko) 2018-02-28
CN107769583B (zh) 2021-05-14
US10193455B2 (en) 2019-01-29
CN107769567A (zh) 2018-03-06
US20180054111A1 (en) 2018-02-22
US20180054134A1 (en) 2018-02-22
KR102226978B1 (ko) 2021-03-15
KR20180020920A (ko) 2018-02-28
KR102225011B1 (ko) 2021-03-10
CN107769583A (zh) 2018-03-06
KR20180020921A (ko) 2018-02-28
US20180054133A1 (en) 2018-02-22
US10186948B2 (en) 2019-01-22
US10374516B2 (en) 2019-08-06
US10693379B2 (en) 2020-06-23
US20180054130A1 (en) 2018-02-22
CN207368881U (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
CN207559860U (zh) 谐振变换器
US10361633B2 (en) Control method and device for switching power supplies having more than one control mode
CN104660022B (zh) 为电源变换器提供过流保护的***和方法
CN103580000B (zh) 开关电源输出过压保护方法及电路及带该电路的开关电源
US9455623B2 (en) Power factor correction circuit and method
US7965523B2 (en) Switching power supply device
CN101657958B (zh) 用于谐振模功率变换器的控制布置
CN107093951A (zh) 开关电源装置
US8963529B2 (en) Transition mode charge control for a power converter
CN106936314A (zh) 从电流环路不稳定中恢复的方法
US9985527B2 (en) Switching power supply with short circuit detection
US8754625B2 (en) System and method for converting an AC input voltage to regulated output current
CN103368405A (zh) 用于谐振模功率变换器的控制布置
US7113411B2 (en) Switching power supply
CN101505105A (zh) 用于谐振模功率变换器的控制布置
CN104980050A (zh) 用于开关模式电源的***和方法
CN109980929A (zh) 具有电压变换器控制的准谐振降压-升压转换器
KR102182886B1 (ko) 컨버터의 데드타임 가변 시스템 및 데드타임 가변 방법
TW202030960A (zh) 輸出過壓感測系統和感測方法
GB2511843A (en) A power factor correction circuit
WO2003009690A2 (en) Oscillating circuit, converter with such oscillating circuit, and preconditioner with such converter
CN110474534A (zh) 一种改进型非隔离式电压变换器
US11063513B1 (en) Buck-boost converter with positive output voltage
CN109713919A (zh) 一种双绕组副边反馈开关电源
Santhosh Kumar Power factor correction using boost converter

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant