KR20170043694A - 2차원 하이브리드 복합체 제조 방법 - Google Patents

2차원 하이브리드 복합체 제조 방법 Download PDF

Info

Publication number
KR20170043694A
KR20170043694A KR1020150142682A KR20150142682A KR20170043694A KR 20170043694 A KR20170043694 A KR 20170043694A KR 1020150142682 A KR1020150142682 A KR 1020150142682A KR 20150142682 A KR20150142682 A KR 20150142682A KR 20170043694 A KR20170043694 A KR 20170043694A
Authority
KR
South Korea
Prior art keywords
plate
graphite
graphene
nanocrystal
dimensional
Prior art date
Application number
KR1020150142682A
Other languages
English (en)
Other versions
KR101844345B1 (ko
Inventor
허승헌
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020150142682A priority Critical patent/KR101844345B1/ko
Priority to US14/916,388 priority patent/US20170253824A1/en
Priority to JP2017545513A priority patent/JP6424280B2/ja
Priority to PCT/KR2015/011833 priority patent/WO2017065340A1/ko
Priority to CN201580002003.1A priority patent/CN107848803B/zh
Publication of KR20170043694A publication Critical patent/KR20170043694A/ko
Application granted granted Critical
Publication of KR101844345B1 publication Critical patent/KR101844345B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • C01B31/0206
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • C01B31/04
    • C01B31/043
    • C01B31/0438
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 2차원 판상소재에서 발생하는 문제 즉, 2차원 판상소재가 겹쳐짐에 따라 발생하는 단차 문제, 결함문제, 퍼짐문제 등을 해결할 수 있는 2차원 하이브리드 복합체 제조 방법에 관한 것이다.
본 발명은 「(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계; (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계; (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및 (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법」을 제공한다.

Description

2차원 하이브리드 복합체 제조 방법{Preparation Method of Hybrid Materials composed of Two-Dimensional Plate materials}
본 발명은 2차원 판상소재에서 발생하는 문제 즉, 2차원 판상소재가 겹쳐짐에 따라 발생하는 단차 문제, 결함문제, 퍼짐문제 등을 해결할 수 있는 2차원 하이브리드 복합체 제조 방법에 관한 것이다.
세라믹나노판(나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물 등), 금속플레이크(실버플레이크, 구리플레이크), 흑연, 카본나노플레이트, 그래핀, 그래핀나노플레이트, 그래핀산화물 등은 판상소재들이다. 복합화합물, 유무기하이브리드소재 등도 판상으로 성립될 수 있다.
이러한 판상소재들은 강도 증진(휨강도, 인장 강도 등), 전기전도성 향상, 열전도성 향상, 필러소재, 가스투과방지, 윤활제(고체 또는 액체), 액상 열전달체 등의 분야에서 매우 중요하게 이용되고 있다.
판상소재들은 종류별로 크게 비흑연계{세라믹나노판, 금속플레이크, 복합화합물, 유무기하이브리드소재 등}와 흑연계{흑연(카본플레이크, 토상흑연, 판상흑연, 인상흑연, 인조흑연 등), 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물 등}로 나눌 수 있다.
비흑연계 판상소재는 통상적으로 두께가 5nm 가량이다. 또한 고체윤활제로 매우 중요한 WS2 및 MOS2는 나노판의 층수가 몇 층 이하로 제어되도록 제조할 수 있다.
흑연계 판상소재의 경우, 흑연의 두께는 100nm 이상, 그래핀나노플레이트의 두께는 5~100nm 이며, 그래핀 및 그래핀산화물(흑연산화물)의 두께는 대략 5~7nm(1~20층) 이하이다.
흑연계 판상소재를 더욱 구체적으로 살펴보면, 흑연(Graphite)은 층간 약한 반데르발스 결합을 이루고 있는 두꺼운 판 구조로 되어 있으며, 흑연을 분쇄하는 과정에서 상기 반데르발스 결합이 우선적으로 깨지면서 두께가 얇아지게 된다. 그러나 두께가 100nm 이하가 되기는 힘들다.
카본나노플레이트(Carbon Nano Plate, 이하 'CNP'라 함)는 통상적으로 흑연보다는 매우 얇은 구조를 가지게 되어 그 두께는 5~200nm 가량이다.
한편, 이는 흑연층 사이에 화학종이 삽입된 GIC(Graphite Intercalated Compound)를 이용하여 판상소재를 만들 수 있다. 즉, 상기 GIC를 적당한 온도에서 열처리하거나 마이크로웨이브처리를 하여 흑연의 층과 층 사이가 팽창되어 애벌레 같이 길게 형성된 팽창흑연(Expanded Graphite, 이하 'EG'라 함)을 제조한 후, 기계적처리, 초음파처리, 화학적 처리, 전단력 인가, 볼밀링 등의 수단으로 EG 내부에 약한 결합을 갖는 층과 층 사이(즉, 나노플레이트 사이)를 분리시킴으로써 판상소재를 제조하는 것이다(이렇게 제조된 판상소재를 이하에서는 'EP'라 함). 물론 상기 EP도 카본나노플레이트의 일종으로 분류할 수 있으며, 본 명세서에서도 카본나노플레이트는 EP를 포함하는 개념으로 서술한다.
그래핀(Graphene, 이하 'GP'라 함)은 상기 흑연이나 CNP와는 달리 양자역학적 물성들이 발현되는 매우 얇은 탄소나노구조체 신물질이다. 그래핀의 전기전도도, 열전도도, 강도, 유연성, 가스투과방지물성 등의 물성은 현재까지 발견되거나 만들어진 소재 중에서 가장 우수한 것으로 알려져 있다. 특히 유연성(Flexible)과 펴짐성(stretchable)이 동시에 발현되면서 30%까지 늘어날 수 있으면서도 강도가 유지되며, 전기전도물성 및 열전도물성이 그대로 유지된다. 이러한 그래핀은 통상적으로 벌집구조를 갖는 단일 탄소원자층의 개수가 1~20층이며, 층간간격이 약 3.4Å임을 감안하면 두께가 약 5~7nm 이하가 된다.
흑연으로부터 그래핀산화물(Graphene Oxide, 이하 'GO'라 함) 또는 흑연산화물(Graphite Oxide, 이 역시 이하에서는 'GO'라 함, 즉 본 명세서 GO라 함은 그래핀산화물과 흑연산화물을 통칭함)을 제조한 후 GO를 액상, 기상, 고상에서 환원시켜 그래핀을 제조할 수 있다. 이 때 환원 방법은 크게 열환원법 및 화학적 환원법으로 나누어진다. 또한 그래핀은 그래핀산화물에 에너지를 조사(마이크로웨이브, 포톤, IR, 레이저 등)하여 만들 수 있다.
또한 그래핀은 흑연과 친화력이 아주 좋은 용매에 침지시켜 초음파등을 처리하여 흑연을 한층 한층 떼어낼 수 있다. 대표적인 용매는 GBL, NMP 등이 있으며, 그래핀의 품질은 좋으나 양산하기 어려운 단점이 있다.
이 밖에도 화학적 합성방법, 바텀(Bottom) 생성방법, 탄소나노튜브를 화학적으로 쪼개어 펼쳐는 방법 등으로도 그래핀을 제조할 수 있다. 구체적인 예로 흑연의 용매박리법, 흑연의 기계적 분쇄법 (초음파, 밀링, 기상 고속블레이딩), 전기적 박리법, 합성법 등이 있다.
한편, 현재까지 밝혀진 어떠한 방법에 의하더라도 그래핀 표면의 산화기들을 완전히 제거할 수는 없으며, 통상적으로 GO를 제외하고는 그래핀 표면 산화기에 의한 산소 함량은 탄소 백본(backbone) 대비 5wt% 이하이다. 본 발명에서도 표면 산화기에 의한 산소함량이 탄소 백본 대비 5wt% 이하인 것까지를 모두 '그래핀'으로 정의한다.
[도 1]에는 2차원 판 소재들의 뛰어난 물성을 설명하기 위하여 0차원 소재(입자형), 1차원 소재(선형), 2차원 소재(판형) 간 접촉 단면의 개념도를 나타내었다. 2차원 판상소재는 [도 1]에 도시된 바와 같이 0차원 소재 및 1차원 소재에서는 불가능한 판 끼리의 겹침, 즉 면간 겹침이 일어남을 알 수 있다. 특정 매트릭스 내에 0차원 소재(분말), 1차원 소재(섬유 등) 및 2차원 소재(판상소재)를 각각 혼입하는 경우를 통해 [도 1]의 개념도를 좀 더 살펴볼 수 있다. 0차원 소재의 경우 점접촉을 유도하기 위해 상당히 많은 양이 첨가되어야 하며, 많은 점접촉이 유도되더라도 점접촉을 통하여 전달되는 전기 및 열은 최소화된다. 1차원 소재의 경우는 적은 양으로도 손쉽게 점접촉이 유도되며 많은 양을 이용하면 선접촉도 가능하다. 따라서 0차원인 분말형 입자보다는 효율적인 접촉을 통하여 열 및 전기를 전달할 수 있는데 대표적인 경우가 실버나노와이어 투명전도막을 들 수 있다. 그런데 2차원인 판상소재는 면간 겹침이 손쉽게 일어나 열 전도성과 전기 전도성이 전술한 1차원 소재보다도 월등히 향상된다. 따라서 2차원 판상소재는 많은 분야에서 활용될 수 있는 핵심 소재이다.
또한 [도 2]에 도시된 바와 같이 입자형, 선형, 판형 소재끼리 직접 결합하지 않는 상태, 즉 레진, 분산제, 유기물, 무기물, 유무기소재, 제3의 소재 등이 첨가되는 경우 두 입자간에 작용하는 힘은 두 점 사이가 가장 인접거리가 되고, 선형 소재인 경우는 선형으로 작용하는 힘, 판상소재인 경우는 면 사이의 인력이 작용하게 된다. 이와 같이 직접 접촉을 하지 않는 경우에도 판상소재들간 공간이 이격된 상태에서도 면간 인력이 가장 유효하게 된다. 이와 같은 면간 유효한 성질들중 전기전도성(터널링, 절연파괴 등의 효과)인 수 밀리 무게 함량을 넣어 전기전도성을 부여하여 정전방지 효과를 부여할 수 있다. 비슷하게 강도(인장, 굴곡, 꺽임, 고온강도 등), 열전도성, 배리어 (이온, 가스, 액체 등 차단), 기능성 발현 (표면 등)에도 같은 원리가 적용된다.
그러나 2차원 판상소재의 두께가 클 경우에는 역효과가 일어난다. 즉 두꺼운 2차원 소재끼리 겹칠 경우 [도 3]의 모식도에서 보는 것처럼 단차 문제가 발생한다. 이 단차 문제에 의해 2차원 판상소재간 빈 공간이 생성되게 하며, 접촉 단면이 선 접촉이 되게 하며, 전기전도성, 열전도성, 충진율, 배리어물성, 막의 밀도, 두께 제어성, 막의 균일도, 계면 접합성 등의 물성들이 모두 저하되며, 레진과 같은 제 3의 소재가 복합화되어 두꺼운 판상소재가 공간적인 이격이 발생할 때도 같은 문제가 발생하게 된다. 대표적인 예로서 흑연은 값이 매우 싸고 산업적으로 매우 중요한 소재이지만 나날이 발전하는 전자, IT등의 산업에서의 이용이 점점 줄어들고 있는데, 그 이유는 흑연의 물성 향상 기술이 한계에 도달하여 시장이 요구하는 스펙을 만족시킬 수 없기 때문이며, 이 이면에는 전술한 단차문제가 심각하게 도사리고 있는 것이다.
2차원 판상소재가 얇을 경우에도 역효과가 일어난다. 즉 얇은 2차원 소재는 구겨지기 쉬워 [도 4]의 모식도에서 보는 것처럼 펴지지 않고 구겨져 불순물로 작용뿐만 아니라, 구겨진 판상소재 내주의 빈 공간 및 구겨진 판상소재간 공간사이가 결함으로 작용하게 된다. 따라서, 전기전도성, 열전도성, 충진율, 배리어물성, 막의 밀도, 두께 제어성, 막의 균일도, 계면 접합성 등의 물성들이 모두 저하되며, 레진과 같은 제3의 소재가 복합화되어 두꺼운 판상소재가 공간적인 이격이 발생할 때도 같은 문제가 발생하게 된다.
본 발명에서는 두께 및 유연성에서 두드러지게 차이가 나는 카본 플레이크, 카본나노플레이트(CNP), 그래핀, 그래핀산화물 등의 판상소재를 복합화하는 과정에서 발생하는 판상소재간 단차 문제 및 빈 공간 문제를 해결하고자 한다.
전술한 과제 해결을 위해 본 발명은 「(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계; (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계; (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및 (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법」을 제공한다.
상기 제1판상소재로는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상을 적용할 수 있다.
상기 제2판상소재로는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상을 적용할 수 있다.
한편, 상기 (c)단계에서는 첨가제를 더 혼합시킬 수 있는데, 상기 첨가제로는 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상을 적용할 수 있다.
또한, 본 발명은 「(a') 결합재를 준비하는 단계; (b') 제1판상소재 및 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 결합재 표면에 부착시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법」을 함께 제공한다.
본 발명에 따르면 2차원 판상소재의 겹침시 단차 문제를 해결함으로서 2차원 판상소재의 물성을 극대화시킬 수 있다. 특히 전기전도, 열전도, 방열, 필러, 배리어 등의 분야에 물성이 향상된 2차원 판상소재를 지속적으로 제공할 수 있다.
[도 1]은 0차원, 1차원, 2차원 소재간 접촉부의 단면 개념도이다.
[도 2]는 0차원, 1차원, 2차원 소재간 공간적인 거리가 있을 경우 상호 영향에 대한 개념도이다.
[도 3]은 2차원 판상소재에서 발생하는 단차문제의 개념도이다.
[도 4]는 2차원 판상소재가 구겨지는 문제에 대한 개념도이다.
[도 5]는 단차문제, 구겨지는 문제, 빈공간 문제의 해결 원리를 나타낸 개념도이다.
[도 6] 내지 [도 8]은 결합재가 혼합된 상태에서 판상소재들이 유효하게 영향을 주는 상황을 보여주는 상황에 대한 개념도이다.
[도 9] 내지 [도 11]은 결합재가 혼합된 상태(그림 내에서는 결합재 도시 생략)에서 판상소재들이 다양한 형태로 상호 영향을 주는 상황에 대한 개념도이다.
[도 12]는 단차문제가 극복된 흑연-카본플레이트 하이브리드 소재의 FE-SEM 사진이다.
[도 13]은 단차문제가 극복된 카본플레이트-그래핀 하이브리드 소재의 FE-SEM 사진이다.
[도 14]는 흑연-카본플레이트-그래핀 하이브리드 소재의 FE-SEM 사진이다.
[도 15]는 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 실버나노와이어 및 실버나노입자를 첨가한 소재의 FE-SEM사진이다.
[도 16]은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 분산제가 첨가된 소재의 FE-SEM사진이다.
종래에는 판상소재의 단차 문제를 극복하기 위하여 기존 소재를 완전히 대체하거나 고가(高價) 공정기술들을 활용하여 물성을 향상시키는 방법들을 이용하였지만, 본 발명에서는 간단하게 2차원 소재들의 뛰어난 면간 겹침을 최대한 활용하여 단차문제를 근본적으로 해결하려 하였다.
본 발명에서는 다음의 4가지 기술 사상을 도출하였다.
(1) 서로 다른 두께를 가지는 판상소재의 융합을 통한 단차 문제 극복
(2) 이종(異種) 판상소재의 융합을 통한 단차 문제 극복
(3) 서로 다른 두께를 가지는 판상소재(제1·2판상소재)가 공간적으로 이격되어 있는 상태에서도 공간적인 상호작용에 의한 유효성 극대화
(4) 하이브리드 소재의 고상화에 의한 면간 접촉 또는 공간적 상호작용의 극대화
위와 같은 두 가지 기술 사상의 이면에 깔려 있는 공통인자는 두께가 얇은 판상소재의 유연성 또는 초유연성이다. 즉, 하나의 판상소재에서 단차 문제가 발생하였을 경우 두께가 얇고 유연성이 큰 소재가 단차 발생부위에 삽입되고 [도 3] 내지 [도 5]에 도시된 바와 같이 단차 발생부위 전후 또는 상하 부분에 접촉됨으로써 단차 발생부위의 계면 접합면 면적을 크게 늘릴 수 있다.
위와 같은 기술 사상이 반영된 본 발명은 「(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계; (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계; (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및 (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법」을 제공한다. 이하에서는 본 발명을 각 단계별로 설명한다.
1. (a)단계
본 단계는 제1판상소재를 고상 또는 액상으로 준비하는 단계이다.
상기 제1판상소재로는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상을 적용할 수 있다.
2. (b)단계
본 단계는 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계이다.
상기 제2판상소재는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상을 적용할 수 있다. 이 중 카본나노플레이트와 그래핀은 열전도, 배리어, 강도, 전기전도도, 고체 윤활제, 액상 열전도체, 폴리머 충진제 등의 분야에 모두 이용될 수 있다.
상기 카본나노플레이트는 GIC(Graphite Intercalated Compound)를 팽창시켜 제조된 팽창흑연(Expanded Graphite)의 층을 분리하여 제조된 것을 적용할 수 있다. 상기 제2판상소재로서 카본나노플레이트를 적용하는 경우 5~200nm 두께의 카본나노플레이트를 전체 대비 20wt% 이하로 혼합시킬 수 있다.
또한, 상기 유연성 판상소재로는 그래핀을 적용할 수 있으며, 이 경우 상기 그래핀은 흑연산화물을 환원시켜 제조된 것을 적용할 수 있다. 또한, 상기 (b)단계는 층수가 1~20인 그래핀을 전체 복합체 대비 20wt% 이하로 혼합시킬 수 있다.
3. (c)단계
본 단계는 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계이다.
상기 결합재는 상기 제1·2판상소재를 결합시키는 물질로서, 폴리머, 레진, 바인더, 경화성폴리머, 단량체, 전구체, 세라믹전구체, 유무기하이브리드, 세라믹졸, 실란, 실옥싼 등을 적용할 수 있다.
상기 제1·2판상소재 및 결합재는 고상 또는 액상으로 하이브리드화시킬 수 있다.
고상 하이브리드화는 기계적 믹싱 등으로 실현할 수 있으며, 압출, 토출, 사출, 연신, 압착, 열압착, 스크류압출, 가압압출, 용융압출, 고상성형, 압축성형, 분말성형, 캐스트성형, 분말증착 등에 그대로 적용될 수 있다. 원료분말들은 용매에 넣어 충격파를 제공하여 분산 및 하이브리드화를 극대화시킬 수 있다.
액상 화이브리드화는 잉크, 페이스트 등의 액상 상태에서 진행하는 것으로서, 블렌딩 공정 및 충격파 제공 공정을 추가하여 진행할 수 있다.
상기 제1·2판상소재를 혼합하여 용매에 분산시킬 경우 분자단위 충격파를 가하여 동일 판상소재간의 틈을 벌리고 두께가 다른 판상소재나 이종의 판상소재를 끼어들게 하여 고르게 분산된 2차원 판상 하이브리드 소재가 제조될 수 있다.
분자단위 충격파를 제공하기 위해서는 마이크로 공동법(micro cavity 폭발 유도), 초음파 인가법, 분자단위 전단력 인가법(미세 노즐로 고압 토출시키는 고압 분출법, 고속 호모제나이저 등), 초고속 블레이딩, 초고속 스터링, 비즈볼(beads ball) 스터링(미세 비즈볼을 넣고 같이 스터링하는 방법), 고압분출법(미세틈으로 압착/분출하는 방법), 고속 호모제나이저법 등과 같은 물리적 에너지 인가법을 적용할 수 있다. 위와 같은 물리적 에너지 인가법은 어느 하나를 적용하거나 동시에 둘 이상을 적용할 수 있다. 예를 들어 초음파를 인가하면서 고에너지 전단력을 부여하는 방법을 채택할 수 있다. 나노 판상소재들이 잘 분산된 용액, 잉크, 페이스트 등에서 상기 충격파 제공 공정은 최소화될 수 있다.
상기 결합재는 제1·2판상소재 100중량부 대비 1~50,000중량부 첨가되도록 할 수 있다. 예를 들어 투명전도막 필름을 제조를 위한 비수계 그래핀 코팅액에는 결합재가 그래핀 100중량부 대비 20~600중량부 첨가되는 것이 바람직하다. 이러한 결합재로는 (1) 열경화성 수지, (2) 광경화성 수지, (3) 가수분해하여 축합반응을 일으키는 실란 컴파운드, (4) 열가소성 수지, (5) 전도성 고분자 중 어느 하나 이상을 적용할 수 있다.
(1) 열경화성 수지
상기 열경화성 수지는 우레탄수지, 에폭시수지, 멜라민수지, 폴리이미드 중 어느 하나 이상을 적용할 수 있다.
(2) 광경화성 수지
상기 광경화성 수지는 에폭시수지, 폴리에틸렌옥사이드, 우레탄수지, 반응성 올리고머, 반응성 단관능 모노머, 반응성 2관능 모노머, 반응성 3관능 모노머, 광개시제 중 어느 하나 이상을 적용할 수 있다.
① 반응성 올리고머
상기 반응성 올리고머는 에폭시 아크릴레이트, 폴리에스테르 아크릴레이트, 우레탄 아크릴레이트, 폴리에테르 아크릴레이트, 티올레이트, 유기실리콘 고분자, 유기실리콘 공중합체 중 어느 하나 이상을 적용할 수 있다.
② 반응성 단관능 모노머
상기 반응성 단관능 모노머는 2-에틸헥실아크릴레이트, 올틸데실아크릴레이트, 이소데실아크릴레이트, 드리데실메타크릴레이트, 2-페녹시에틸아크릴레이트, 노닐페놀에톡시레이크모노아크릴레이트, 테트라하이드로퍼푸릴레이트, 에톡시에틸아크릴레이트, 하이드록시에틸아크릴레이트, 하이드록시에틸메타아크릴레이트, 하이드록시프로필아크릴레이트, 하이드록시프로필메타아크릴레이트, 하이드록시부틸아크릴레이트, 하이드록시부틸메타아크릴레이트 중 어느 하나 이상을 적용할 수 있다.
③ 반응성 2관능 모노머
상기 반응성 2관능 모노머는 1,3-부탄디올디아크릴레이트, 1,4-부탄디올디아크릴레이트, 1,6-헥산디올디아크릴레이트, 디에틸렌글리콜디아크릴레이트, 드리에틸렌글리콜디 메타크릴레이트, 네오펜틸글리콜디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 테트라에틸렌글리콜메타크릴레이트, 폴리에틸렌글리콜디메타크릴레이트, 트리프로필렌글리콜디아크릴레이트, 1,6-헥산디올디아크릴레이트 중 어느 하나 이상을 적용할 수 있다.
④ 반응성 3관능 모노머
상기 반응성 3관능 모노머는 트리메틸올프로판드리아크릴레이트, 트리메틸올프로판트리메타크릴레이트, 펜타에리스리톨트리아크릴레이트, 글리시딜펜타트리아크릴레이트, 글리시딜펜타트리아크릴레이트 중 어느 하나 이상을 적용할 수 있다.
⑤ 광개시제
상기 광개시제는 벤조페논계, 벤질디메틸케탈계, 아세토페논계, 안트라퀴논계, 티윽소잔톤계 중 어느 하나 이상을 적용할 수 있다.
(3) 실란 컴파운드
상기 실란 컴파운드는 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 어느 하나 이상을 적용할 수 있다.
① 테트라알콕시실란류
상기 테트라알콕시실란류는 테트라메톡시실란, 테트라에톡시실란, 테트라-n-프로폭시실란, 테트라-i-프로폭시실란, 테트라-n-부톡시실란 중 어느 하나 이상을 적용할 수 있다.
② 트리알콕시실란류
상기 트리알콕시실란류는 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, i-프로필트리메톡시실란, i-프로필트리에톡시실란, n-부틸트리메톡시실란, n-부틸트리에톡시실란, n-펜틸트리메톡시실란, n-헥실트리메톡시실란, n-헵틸트리메톡시실란, n-옥틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 시클로헥실트리메톡시실란, 시클로헥실트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 3,3,3-트리플루오로프로필트리메톡시실란, 3,3,3-트리플루오로프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 2-히드록시에틸트리메톡시실란, 2-히드록시에틸트리에톡시실란, 2-히드록시프로필트리메톡시실란, 2-히드록시프로필트리에톡시실란, 3-히드록시프로필트리메톡시실란, 3-히드록시프로필트리에톡시실란, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 3-이소시아네이트프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 3-(메트)아크릴옥시프로필트리메톡시실란, 3-(메트)아크릴옥시프로필트리에톡시실란, 3-우레이도프로필트리메톡시실란, 3-우레이도프로필트리에톡시실란 중 어느 하나 이상을 적용할 수 있다.
③ 디알콕시실란류
상기 디알콕시실란류는 디메틸디메톡시실란, 디메틸디에톡시실란, 디에틸디메톡시실란, 디에틸디에톡시실란, 디-n-프로필디메톡시실란, 디-n-프로필디에톡시실란, 디-i-프로필디메톡시실란, 디-i-프로필디에톡시실란, 디-n-부틸디메톡시실란, 디-n-부틸디에톡시실란, 디-n-펜틸디메톡시실란, 디-n-펜틸디에톡시실란, 디-n-헥실디메톡시실란, 디-n-헥실디에톡시실란, 디-n-헵틸디메톡시실란, 디-n-헵틸디에톡시실란, 디-n-옥틸디메톡시실란, 디-n-옥틸디에톡시실란, 디-n-시클로헥실디메톡시실란, 디-n-시클로헥실디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 중 어느 하나 이상을 적용할 수 있다.
(4) 열가소성 수지
상기 열가소성 수지는 폴리스티렌, 폴리스티렌 유도체, 폴리스티렌 부타디엔 공중합체, 폴리카보네이트, 폴리염화비닐, 폴리술폰, 폴리에테르술폰, 폴리에테르이미드, 폴리아크릴레이트, 폴리에스테르, 폴리이미드, 폴리아믹산, 셀룰로오스 아세테이트, 폴리아미드, 폴리올레핀, 폴리메틸메타크릴레이트, 폴리에테 르케톤, 폴리옥시에틸렌 중 어느 하나 이상을 적용할 수 있다.
(5) 전도성 고분자
상기 전도성 고분자는 폴리티오펜계 단일중합체, 폴리티오펜계 공중합체, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴(3,4-에틸렌디옥시티오펜), 펜타센계 화합물 중 어느 하나 이상을 적용할 수 있다.
본 (c)단계에서는 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상의 첨가제를 더 혼합시킬 수 있다.
상기 첨가제 중 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말 등은 제1판상소재의 면간 겹침시 발생하는 단차 문제의 추가적 보완(계면의 추가적인 확장, 빈 공간 채움 등)을 위한 것이다.
구체적인 예를 들면, 상기 나노입자는 분말형 소재로서 이들은 판상소재의 면간 겸침에 따른 단차에서 발생하는 공간을 채워준고, 상기 나노와이어(실버나노와이어, 구리나노와이어 등)는 단차 부위의 계면 길이를 확장시킨다.
하이브리드 효율 향상을 위한 분산제, 코팅물성 향상(막의 팩킹과 들뜸을 방지)을 위한 바인더 등 2차원 하이브리드 판상소재의 추가적인 물성 향상을 위한 것이 있으며, 이들을 혼합하여 적용할 수도 있다. 이들은 소재 간 접촉 면적을 최대화시키고 밀도를 높여주는 효과를 가져올 수 있으며, 이에 따라 결국 하이브리드 복합체의 물성이 향상된다.
한편, 분산안정성 향상, 코팅물성 향상, 복합체 제조 등을 위해 적용될 수 있는 첨가제는 계면활성제, 분산제, BYK, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질 등이며, 이들 중 어느 하나 이상인 첨가제로 함께 적용할 수 있다. 물론 상기 0차원 나노소재, 1차원 노나소재, 제3판상소재(2차원 나노소재)들도 이에 함께 적용할 수 있다. 특히 금속나노입자, 금속나노와이어(실버나노와이어, 구리나노와이어 등), 금속나노플레이크, 탄소나노튜브(CNT) 등은 코팅물의 전기전도성을 향상시킬 수 있다.
이상의 첨가제 중 용매류(유기용제, 양쪽성용매, 수용액계, 친수성 용매 등), 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제 등은 분산성, 코팅성, 안정성, 접착성, 라벨링물성, 점도물성, 코팅막의 물성, 건조물성등을 향상시키기 위하여 적용하는 것이다.
또한 산화물, 세라믹, 자성체, 탄소나노튜브 등은 하이브리드 복합체의 기능성을 더 발현시키기 위해 적용하는 것이다.
이하에서는 첨가제로 적용될 수 있는 여러 가지 물질들에 대해 상술하기로 한다.
(1) 금속 나노와이어
상기 금속 나노와이어로는 구리 나노와이어 또는 은 나노와이어를 적용할 수 있다. 이러한 금속 나노와이어의 첨가로 코팅물의 전기전도도를 향상시킬 수 있다. 상기 구리(Cu) 나노와이어는 보호막이 코팅된 것을 적용할 수 있으며, 상기 보호막은 폴리머 또는 금속으로 형성시킬 수 있다.
(2) 분산제
상기 분산제로는 BYK, 블록 중공합체(block copolymer), BTK-Chemie, 트리톤 엑스백(Triton X-100), 폴리에틸렌옥사이드, 폴리에틸렌옥사이드-폴리프로필렌옥사이드 공중합체, 폴리비닐피롤, 폴리비닐알코올, 가넥스(Ganax), 전분, 단당류(monosaccharide), 다당류(polysaccharide), 도데실벤젠술폰산 나트륨(dodecyl benzene sulfate), 도데실벤젠설폰산나트륨 (sodium dodecyl benzene sulfonate, NaDDBS), 도데실설폰산나트륨(sodium dodecylsulfonate, SDS), 4-비닐벤조산 세실트리메틸암모늄(cetyltrimethylammounium 4-vinylbenzoate), 파이렌계 유도체(pyrene derivatives), 검 아라빅(Gum Arabic, GA), 나피온(nafion) 중 어느 하나 이상을 적용할 수 있다.
(3) 계면활성제
상기 계면활성제로는 LDS(Lithium Dodecyl Sulfate), CTAC(Cetyltrimethyl Ammonium Chloride), DTAB(Dodecyl-trimethyl Ammonium Bromide), nonionic C12E5(Pentaoxoethylenedocyl ether), 덱스트린(Dextrin(polysaccharide)), PEO(Poly Ethylene Oxide), GA(Gum Arabic), EC(ethylene cellulose) 중 어느 하나 이상을 적용할 수 있다.
4. (d)단계
본 단계는 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계이다. 이 단계에서 상기 복합체에 압력을 가하여 면접촉을 더 유도 시키거나 공간적인 면간 유효 작용을 더욱 증진시킬 수 있다.
일 예로, 상기 복합체가 액상에서 분산된 코팅액을 제조한 후 코팅건조하여 압착, 열압착등을 수행하여 판상소재간 면간접촉을 더욱 향상시킬 수 있다.
다른 예로, 제1·2판상소재 및 결합재가 혼합된 분말 형태의 복합체를 원료로 압출성형하거나 가압성형 하는 경우 단순한 용융복합체 제조시보다 공간적인 면간 상호작 (거리 등)을 더욱 증진시킬 수 있다.
이하에서는 실시예와 함께 본 발명을 상세히 설명한다. 다만 이하의 실시예는 이 기술분야에서 통상의 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것이므로 본 발명의 범위가 기재된 실시예에 한정되는 것은 아니다.
[실시예 1]
흑연 산화물을 제조하는 방법으로는 Modified Hummers 방법을 비롯한 Hummers법, Brodie법, Hofman&Frenzel법, Hamdi법, Staus법 등이 사용될 수 있다.
본 실시예에서는 Modified Hummers 방법을 사용하였다. 구체적으로는, 마이크로 흑연 분말 50g과 NaNO3 40g을 200mL H2SO4 용액에 넣고 냉각시키면서, KMnO4 250g을 1시간에 걸쳐 천천히 넣어 준다. 그 후 4~7% H2SO4 5L를 1시간에 걸쳐 천천히 넣어주고 H2O2을 넣어준다. 그 후 원심 분리하여 침전물을 3%H2SO4-0.5%H2O2 및 증류수로 씻어주면 황갈색의 수계 그래핀 슬러리가 얻어진다.
[실시예 2]
화학적 환원방법을 구체적으로 살펴보면 3% GO 슬러리 2g에 증류수 100ml를 넣어서 잘 분산 시킨 후 히드라진 수화물(hydrazine hydrate) 1ml를 넣고 100℃에서 3~24시간 환원 처리 한다 검은색으로 환원된 그래핀들은 거름종이로 걸러 물과 메탄올을 이용하여 세척해준다. 하이드라이진 수화물과 같은 강력한 환원제를 처리하기 전 KI, NaCl처럼 알카리 금속 혹은 알카리 토금속의 염을 처리하여 GO에서 미리 H2O를 빼내어 탄소간 이중결합을 부분적으로 복원시키는 공정을 사용할 수 있다.
구체적인 실험예로서 5% GO 슬러리에 KI 6g를 첨가하고 6일 동안 방치하여 반응을 완결시킨다. 그 후 증류수로 씻어내고 필터링 한다. 기타 GO수용액에 환원제를 투입하는 방법은 상기 하이드라진법, KI법 이외에도 NaBH4, Pyrogallol, HI, KOH, Lawesson's reagnet, Vitamin C, Ascorbic acid 등이 있다.
[실시예 3]
상기 [실시예 1]에서 얻어진 수계 그래핀 슬러리를 300℃ 이상 열처리하여 그래핀 분말을 얻을 수 있는데 본 발명에서는 질소 불활성 기체 분위기 600℃에서 10분간 열처리하여 열환원 그래핀 분말을 제조하였다.
[실시예 4]
상용 GIC를 마이크로웨이브에서 30초간 처리하여 EP를 얻어낸 후, 초음파에서 30분간 처리하여 CNP를 얻어냈다. 또한 또다른 공정으로서 불활성 분위기 500℃에서 GIC를 순간적으로 집어넣은 후 EP를 얻어낸 후 초음파에서 30초간 처리하여 CNP를 얻어냈다. 두께는 투과형 전자현미경 관찰에서 5~100nm였다. 본 발명에서 중간단계에서 얻어진 EP도 사실상 CNP가 부분적으로 결합되어져 있는 상태이므로 본 발명의 CNP에 포함시킬 수 있다. 이 경우에는 상기 별도의 초음파 공정을 거치지 않고 EP 상태의 CNP와 기타 다른 판상소재 즉, 그래핀 혹은 흑연을 혼합한 후 분자단위 충격파들 예로서 초음파 분산 등을 처리하여 2차원 하이브리드 소재를 제조할 수 있다.
[실시예 5]
도 12는 제1판상소재인 그래핀과 제2판상소재인 CNP 표면에 나노입자를 장식한 전자현미경 사진이다. 제1판상소재인 경우 실버계 유기금속화합물을 액상환원법을 이용하여 그래핀에 나노입자를 부착한 경우이며, 제2판상소재인 경우 니켈계 유기금속화합물을 CNP 표면에 흡착시킨후 열처리하여 제조하였다. 이들 소재들을 8.5:1.5 (CNP계 : 그래핀계) 혼합 분산한 경우 3.5Ω/□으로 매우 크게 낮아졌으며, 새로운 자성물성이 발현됨을 알 수 있었다. SQUID를 이용한 자성 측정에서 보자력이 15 Oe이고 포화자화 대비 잔류자화 비율이 3.7%였다. 이는 연자성 물성을 보이면서도 좋은 전기전도 물성을 갖는 하이브리드 막이 본 발명의 원리를 이용하여 실현될 수 있음을 보여준다.
[실시예 6]
CNP(85%)-그래핀(15%) 하이브리드 소재에 0.5%를 초음파 분산한 후 코팅하여 막의 면저항을 측정한 결과 2Ω/□ 정도로 전기저항이 4배 이상 향상됨을 알 수 있다. 이는 실버나노입자가 판상소재들에서 발생하는 단체문제를 해결하는데 매우 중요한 역할을 하고 있음을 알 수 있다. 즉, 계면에서의 충진율 (접촉면적이 아님)을 좋게 해주는 결과로 해석되며 도 13에서 보는 투과형 전자현미경 관찰에서 보는것처럼 판상 소재 틈에 나노입자들이 개별적으로 분산되어 들어가 있음을 보여준다.
[실시예 7]
상기 [실시예 4]에서 얻어진 CNP와 흑연 혼합소재를 IPA에 혼합한후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하여, 이를 [표 1]에 정리하여 나타내었다 (윗표). 흥미로운 점은 플레이크카본-카본나노플레이트 하이브드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 카본나노플레이트가 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 및 구겨지는 문제 극복 프로세스로 설명이 가능하다. 즉 얇고 유연한 카본 나노플레이트가 플레이크 카본에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다. 추가로 [도 14]에서 보는 것처럼 플레이크 카본에서 관찰되던 빈 틈 들과 거친 표면들([도 14]의 좌측)이 2차원 하이브리드화 되면서 매끄러워짐을 알 수 있다([도 14] 우측). 압착을 한 경우에도 전기저항이 크게 올라감을 알 수 있으며, 그 변화량도 본 발명의 하이브리드 효과에 따라 크게 변화됨을 알 수 있다. 표 1 의 아랫표는 제3 결합재로서 에폭시 레진을 10% 넣은 결과와 압착결과를 보여주고 있다. 이 결과도 흥미로운 점은 플레이크카본-카본나노플레이트 하이브드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 카본나노플레이트가 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 및 구겨지는 문제 극복 프로세스로 설명이 가능하다. 또한 면간 직접결합이 이루어지지 않더라도 공간적인 면간 영향력이 상당히 큼을 알 수 있으며, 이 효과는 압착에 의해 더욱 유효해진다.
[표 1]
Figure pat00001
[실시예 8]
상기 [실시예 2]에서 얻어진 그래핀과 흑연 혼합소재를 IPA에 혼합한 후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하였다. 이를 [표 2]에 정리하여 나타내었다. 흥미로운 점은 플레이크카본-그래핀 하이브리드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 그래핀 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 극복 프로세스로 설명이 가능하다. 즉 얇고 초유연한 그래핀이 플레이크 카본에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다.
또한 비선형 거동이 키본 나노플레이트를 사용할 경우와 비교하여 더 심하게 변하는데(좋은 쪽으로) 이는 그래핀의 전기전도 물성 및 초유연성으로 설명이 가능하다. 추가로 [도 15]에서 보는 것처럼 카본 나노플레이트에서 관찰되던 빈 틈들과 거친 표면들([도 15]의 좌측)이 2차원 하이브리드화 되면서 매끄러워짐을 알 수 있다([도 15]의 우측). 압착 및 폴리머 첨가에 의한 본 발명의 효과도 실시예 7과 같은 거동을 보이고 있다.
[표 2]
Figure pat00002
[실시예 9]
상기 [실시예 2]에서 얻어진 그래핀과 상기 [실시예 2]에서 얻어진 CNP 혼합소재를 IPA에 혼합한 후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하였다. 이를 [표 3]에 정리하여 나타내었다. 흥미로운 점은 카본나노플레이트-그래핀 하이브드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 그래핀 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 극복 프로세스로 설명이 가능하다. 즉 얇고 초유연한 그래핀이 카본나노플레이트에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다.
또한 이 실시예는 플레이크카본보다 비교적 얇은 카본나노플레이트인 경우에도 단차문제가 존재하며, 이 단차문제를 좀 더 얇고 유연한 소재인 그래핀을 이용하여 극복할 수 있음을 보여준다. 이 원리는 두께가 그래핀처럼 얇고 도전성이 좋은 소재라면 그래핀을 대체할 수 있으며(예, 금속 나노플레이트), 도전성이 아닌 고체윤활제을 향상시키는 경우라면 카보나노플레이트-WS2나노판, MoS2나노판-그래핀, 흑연-WS2나노판-그래핀, MoS2나노판-흑연, 광촉매인 경우 MoS2나노판-TiO2나노판 등의 조합으로 확장이 가능하다. 즉, 두께와 유연성이 본 발명의 핵심 키워드이며, 원하는 물성에 따라 나노판 소재의 변화(이종소재)가 가능하여 다양한 2차원 판소재에서 발생하는 단차문제들을 본 발명을 통하여 해결할 수 있다. 대표적으로 [도 16]에서 3종 판 소재들의 하이브리드화된 모습을 나타내었다. 압착 및 폴리머 첨가에 의한 본 발명의 효과도 실시예 7 및 실시예 8과 같은 거동을 보이고 있다.
[표 3]
Figure pat00003
[실시예 10]
상기 [실시예 2]에서 얻어진 그래핀, 상기 [실시예 2]에서 얻어진 CNP, 흑연 3종혼합소재를 IPA에 혼합한후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하였다. 이를 [표 4]에 정리하여 나타내었다. 흥미로운 점은 플레이크카본-카본나노플레이트-그래핀 3종 판소재의 하이브드화는 아주 적은량의 그래핀이 함유되었음에도 [표 1]의 거동보다 매우 뛰어난 물성을 보여줌을 알 수 있다. 이는 흑연플레이크에서 발생하는 단차 및 카본나노플레이트에서 발생하는 단차문제들이 효율적으로 해결이 되도 있는 모습을 보여준다. 향후 공정조건 및 조성 변화를 통하여 매우 뛰어난 하이브리드 소재가 나올 수 있을것으로 기대한다. 따라서 3종 이상의 하이브리드화가 유효함을 알 수 있다. 추가적으로 제3의 판상소재 및 제4의 판상소재들이 교체되거나 추가될 수 있으며, 전기전도분야에서는 금속 나노플레이트 (금속나노플레이크)를 이용하는 것이 물성향성에 큰 도움이 될 수 있다. 압착 및 폴리머 첨가 거동도 실시예 7~실시예 9에 따른 거동들이 예측된다.
[표 4]
Figure pat00004
[실시예 11]
흑연(80%)-카본나노플레이트(15%)-그래핀산화물(5%) 하이브리드 판상소재는 [표 4]에서 보는 것처럼 면저항이 39Ω/□인데, 이 3종 하이브리드 소재 중량비를 80%로 하고 여기에 15%인 실버나노와이어(직경 30nm, 길이 5미크론)와 30nm급 실버나노입자 5%를 초음파 분산한 후 코팅하여 막의 면저항을 측정한 결과 1Ω/□ 정도로 약 40배 이상 전기전도도가 향상되었음을 알 수 있었다. 이는 실버나노와이어 및 실버나노입자가 판상소재들에서 발생하는 단체문제를 해결하는데 매우 중요한 역할을 하고 있음을 알 수 있다. 즉, 계면에서의 접촉길이(접촉면적이 아님)을 확장시켜주는 역할이다. 이는 나노와이어를 통하여 나노판 계면에서 접촉 길이 문제(특히 전도성인 경우 중요)를 보완시켜준다. 전기전도성 향상인 경우 나노와이어는 실버나노와이어 및 구리나노와이어와 같은 금속나노와이어를 사용할 수 있으며, 탄소나노튜브도 사용이 가능하다. 또한 단차문제에서 발생하는 빈공간을 채워주는 역할을 나노입자가 중요하게 수행함을 알 수 있다. 따라서 2차원 하이브리드 소재에서 발생하는 2차 문제점들을 기타 나노입자 및 나노와이어를 통하여 추가적으로 보충 할 수 있다. 참고로 실버나노와이어 및 실버나노입자만 이용하여 두꺼운 막을 제조하기는 매우 힘들며(모래알 같은 성질), 본 발명에서처럼 이들 소재들은 2차원 판상소재(판구조에 의한 적층형 코팅막 형성이 우수)의 박막성 및 후막성 성질과 융합되어 신규하고 뛰어난 물성들이 추가적으로 발현된다. [도 17]은 이와 같은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 실버나노와이어 및 실버나노입자를 첨가한 소재의 FE-SEM사진이다.
[실시예 12]
흑연80%-카본나노플레이트15%-그래핀산화물5% 하이브리드 판상소재로 좀 더 안정한 막을 만들기 위하여 IPA 분산 공정중(초음파 처리) BYK 시리즈 분산제 및 PVP 바인더를 첨가하여 막을 제조하였다. 분산제를 통하여 다른 두께의 나노 판상소재들의 하이브리드화가 더 균일해지고 소량의 바인더를 통하여 막의 팩킹이 고밀도화가 됨을 알 수 있다. 이들 첨가제들은 2차원 하이브리드 소재에서 추가적으로 발생하는 문제점들을 해결하는데 도움이 될 수 있음을 보여준다. [도 18]은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 분산제가 첨가된 소재의 FE-SEM사진이다.
[실시예 13]
제1판상소재인 그래핀 산화물과 제2판상소재인 카본 나노플레이트의 함량 효과 실험을 하였다. 상기 [실시예 4]에서 얻어진 CNP와 [실시예 1]에서 얻어진 그래핀 산화물 GO 혼합소재를 IPA에 혼합한후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하여, 이를 [표 5]에 정리하여 나타내었다. 열처리는 200~500도에서 수행하였다. 흥미로운 점은 카본나노플레이트-그래핀산화물 하이브이드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 카본나노플레이트가 5% (무게중량) 이상 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 극복 및 구겨짐 방지 프로세스로 설명이 가능하다. 즉 얇고 유연한 그래핀산화물이 CNP에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다. 또한 제 1판상소재인 그래핀산화물 (25오옴/sq), 제 2판상소재인 CNP (20오옴/sq)에서 달성하지 못했던 저항값이 CNP60% + 그래핀산화물40%에서 가장 작은값인 6오옴/sq를 보인다. 이 값은 본 발명의 유효성을 보이며, 현재까지 바인더 없이 후막을 코팅하는 경우에서 세계적으로도 베스트 값이다. 따라서 본 발명의 실시예를 기반으로 용매, 분산공정, 코팅공정 등을 최적할 할 경우 더 좋은 물성을 발현시킬수 있을것으로 기대한다. 표 5는 또한 CNP의 함량이 60% 이하에서는 물성이 나빠지는 경향을 보이는데 효율적인 접촉이 포화되고 나머지 그래핀이 불순물과 같은 결함으로 작용하고 있음을 보여준다. 압착 및 폴리머 첨가 거동도 실시예 7~실시예 9에 따른 거동들이 예측된다.
[표 5]
Figure pat00005
[실시예 14]
제1판상소재인 그래핀 산화물과 제 2판상소재인 카본 나노플레이트의 무게함량을 15:85로 고정한후 제 3의 판상소재인 그래핀을 추가하여 하이브리드 효과를 실험하였다. 그래핀은 실시예 2에서 얻어진 RGO 1~10층 소재를 이용하였다. 표 3에서 보는 것처럼 그래핀을 추가할수록 전기저항이 낮아짐을 알 수 있으며 이는 본 발명의 단차문제 및 개별적인 소재들의 문제들이 크게 개선되었음을 의미한다. 압착 및 폴리머 첨가 거동도 실시예 7~실시예 9에 따른 거동들이 예측된다.
[표 6]
Figure pat00006
결합재의 양이 적거나 결합재의 강도다 약하게 하는 경우 표면 보호막을 코팅할 수 있다. 일예로, 제1·2판상소재를 분산제가 있는 상태에서 액상 분산 혼합한 후 기판에 코팅하고, 진공건조 후 열처리하여 분산제를 제거한 후, 가압압착을 통하여 면접촉을 극대화 시키고, 코팅막을 보호하기 위하여 코팅막 표면에 레진을 보호막으로 형성시킬 수 있다.
또한 결합재로서 레진 성분이 주성분인 것을 적용하는 경우 제1·2판상소재를 고상혼합하여 3가지 성분들을 적절히 혼합 (액상인 경우는 건조과정이 필요하며, 반액상 상태에서 공정중 자연적으로 건조될 수 있다) 한 후 사출성형 공정을 통하여 일방향 배향을 시키면서 안정적인 복합체를 제조할 수 있다.
또한 결합재가 폴리머 칩 혹은 폴리머 분말인 경우 이들 표면에 제1판상소재 및 제 2판상소재를 흡착(액상 혹은 정전기인력 혹은 반데르발스인력 등) 또는 부착시킨 후 사출 성형을 하면 배향성과 균일성이 확보된 본발명의 복합체를 제조할 수 있다.
없음

Claims (5)

  1. (a) 제1판상소재를 고상 또는 액상으로 준비하는 단계;
    (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계;
    (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및
    (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법.
  2. 제1항에서,
    상기 제1판상소재는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상인 것을 특징으로 하는 하이브리드 복합체 제조방법.
  3. 제1항에서,
    상기 제2판상소재는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상인 것을 특징으로 하는 2차원 하이브리드 소재 제조방법.
  4. 제1항에서,
    상기 (c)단계에서 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상의 첨가제를 더 혼합시키는 것을 특징으로 하는 하이브리드 복합체 제조 방법.
  5. (a') 결합재를 준비하는 단계;
    (b') 제1판상소재 및 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 결합재 표면에 부착시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법.
KR1020150142682A 2015-10-13 2015-10-13 2차원 하이브리드 복합체 제조 방법 KR101844345B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150142682A KR101844345B1 (ko) 2015-10-13 2015-10-13 2차원 하이브리드 복합체 제조 방법
US14/916,388 US20170253824A1 (en) 2015-10-13 2015-11-05 Method for preparing two-dimensional hybrid composite
JP2017545513A JP6424280B2 (ja) 2015-10-13 2015-11-05 2次元ハイブリッド複合体の製造方法
PCT/KR2015/011833 WO2017065340A1 (ko) 2015-10-13 2015-11-05 2차원 하이브리드 복합체 제조 방법
CN201580002003.1A CN107848803B (zh) 2015-10-13 2015-11-05 二维混杂复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150142682A KR101844345B1 (ko) 2015-10-13 2015-10-13 2차원 하이브리드 복합체 제조 방법

Publications (2)

Publication Number Publication Date
KR20170043694A true KR20170043694A (ko) 2017-04-24
KR101844345B1 KR101844345B1 (ko) 2018-04-03

Family

ID=58517337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150142682A KR101844345B1 (ko) 2015-10-13 2015-10-13 2차원 하이브리드 복합체 제조 방법

Country Status (5)

Country Link
US (1) US20170253824A1 (ko)
JP (1) JP6424280B2 (ko)
KR (1) KR101844345B1 (ko)
CN (1) CN107848803B (ko)
WO (1) WO2017065340A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028247A (ko) * 2018-09-06 2020-03-16 한국과학기술원 2차원 흑린의 제조 방법, 2차원 흑린을 포함하는 열전 복합체 및 그 제조 방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208886A1 (ko) * 2015-06-22 2016-12-29 한국전기연구원 금속/이차원 나노소재 하이브리드 전도막 및 그 제조방법
CN107937089A (zh) * 2017-11-10 2018-04-20 中国科学院兰州化学物理研究所 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用
CN108517238B (zh) * 2018-04-04 2021-04-02 中国科学院宁波材料技术与工程研究所 蛋白质修饰还原氧化石墨烯水润滑添加剂、其制法与应用
CN109011082A (zh) * 2018-06-23 2018-12-18 创意塑胶工业(苏州)有限公司 呼吸面罩
CN109126867B (zh) * 2018-07-28 2021-05-07 浙江致远环境科技有限公司 一种用于水处理的光催化分离膜及制备方法
US11830735B2 (en) * 2018-10-03 2023-11-28 Northwestern University Two-dimensional semiconductor based printable optoelectronic inks, fabricating methods and applications of same
CN109502648B (zh) * 2018-12-10 2020-11-03 中南大学 一种超声辅助的二硫化钼纳米片物理剥离方法及其装置
CN110257135B (zh) * 2019-05-07 2022-06-07 北京玖星智能科技有限公司 固体润滑剂及其制备方法和用途
CN112442406B (zh) * 2019-09-03 2022-03-08 清华大学 一种多元二维复合材料及其制备方法
CN110655060B (zh) * 2019-09-03 2021-09-24 中国农业科学院油料作物研究所 一种双面两亲性载体及其制备方法和应用
CN110628498B (zh) * 2019-10-15 2021-11-05 河北欧狮顿新能源科技有限公司 一种环保水基金属加工液及其制备方法
CN111876213B (zh) * 2020-07-17 2022-05-27 西安唐朝烯材料科技有限公司 耐盐雾腐蚀添加剂、润滑脂、制备方法及其应用
CN113213455A (zh) * 2021-05-13 2021-08-06 无锡纤发新材料科技有限公司 一种微波辅助快速制备磁性石墨烯多维杂化材料的方法
ES2937334B2 (es) * 2021-09-24 2023-10-27 Univ Del Pais Vasco / Euskal Herriko Unibertsitatea Fotocatalizadores de oxido de grafeno y semiconductor
CN114703003B (zh) * 2022-04-14 2023-04-28 上海绿晟环保科技有限公司 一种负载碳量子点的纳米材料润滑添加剂及其制备方法
CN116386928B (zh) * 2023-06-02 2023-08-04 山东科技大学 一种海藻酸钠/二氧化钛复合多孔电极材料及制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140792A1 (en) * 2006-10-31 2010-06-10 The Regents Of The University Of California Graphite nanoplatelets for thermal and electrical applications
CN102142550B (zh) * 2011-02-25 2013-10-16 浙江大学 一种石墨烯纳米片/ws2的复合纳米材料及其制备方法
CN102142551B (zh) * 2011-02-25 2014-02-19 浙江大学 一种石墨烯纳米片/MoS2复合纳米材料及其合成方法
CN102142548B (zh) * 2011-02-25 2014-01-01 浙江大学 一种石墨烯与MoS2的复合纳米材料及其制备方法
SG192904A1 (en) * 2011-04-07 2013-09-30 Univ Nanyang Tech Multilayer film comprising metal nanoparticles and a graphene-based material and method of preparation thereof
DE102011056761A1 (de) * 2011-12-21 2013-08-08 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Pigmentiertes, feinstrukturiertes tribologisches Kompositmaterial
TW201335350A (zh) * 2012-02-29 2013-09-01 Ritedia Corp 熱傳導膏
US9561955B2 (en) * 2012-03-08 2017-02-07 Nanotek Instruments, Inc. Graphene oxide gel bonded graphene composite films and processes for producing same
US20140005304A1 (en) * 2012-07-02 2014-01-02 Baker Hughes Incorporated Nanocomposite and method of making the same
US8871296B2 (en) * 2013-03-14 2014-10-28 Nanotek Instruments, Inc. Method for producing conducting and transparent films from combined graphene and conductive nano filaments
KR102034657B1 (ko) * 2013-12-31 2019-11-08 엘지디스플레이 주식회사 용액 공정용 그래핀 복합층을 갖는 플렉서블 디바이스
CN103903861B (zh) * 2014-04-23 2017-05-03 南开大学 金属硫化物与石墨烯复合材料对电极及其制备方法和应用
CN103956470B (zh) * 2014-04-28 2016-04-13 浙江大学 一种二维层状复合薄膜的制备方法及其产品和应用
CN104183830A (zh) * 2014-08-19 2014-12-03 中南大学 一种二维无机层状化合物/石墨烯复合材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028247A (ko) * 2018-09-06 2020-03-16 한국과학기술원 2차원 흑린의 제조 방법, 2차원 흑린을 포함하는 열전 복합체 및 그 제조 방법

Also Published As

Publication number Publication date
WO2017065340A1 (ko) 2017-04-20
JP2018504360A (ja) 2018-02-15
CN107848803A (zh) 2018-03-27
US20170253824A1 (en) 2017-09-07
JP6424280B2 (ja) 2018-11-14
KR101844345B1 (ko) 2018-04-03
CN107848803B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
KR101844345B1 (ko) 2차원 하이브리드 복합체 제조 방법
Wu et al. Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss
Wang et al. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering
Ma et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review
Zhang et al. Reduced graphene oxide wrapped cube-like ZnSnO3: as a high-performance microwave absorber
Arapov et al. Conductive screen printing inks by gelation of graphene dispersions
Tien et al. Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers
Sattler Handbook of nanophysics: functional nanomaterials
Sun et al. A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications
KR101614318B1 (ko) 탄소나노판 복합체 제조방법
Meschi Amoli et al. Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: The effect of NPs sintering on the electrical conductivity improvement
Choi et al. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites
Wang et al. Highly thermally conductive polymer nanocomposites based on boron nitride nanosheets decorated with silver nanoparticles
Wen et al. High performance electromagnetic interference shielding of lamellar MoSi2/glass composite coatings by plasma spraying
WO2020047500A1 (en) Graphene material-metal nanocomposites and processes of making and using same
Luo et al. A timesaving, low-cost, high-yield method for the synthesis of ultrasmall uniform graphene oxide nanosheets and their application in surfactants
Yang et al. High thermal conductive silicone rubber composites constructed by strawberry-structured Al2O3-PCPA-Ag hybrids
Chen et al. Regulation of multidimensional silver nanostructures for high-performance composite conductive adhesives
KR20150118625A (ko) 비수계 그래핀 코팅액 제조 방법
Ma et al. Preparation of modified hexagonal boron nitride by ball-milling and enhanced thermal conductivity of epoxy resin
Zulkarnain et al. Effects of silver microparticles and nanoparticles on thermal and electrical characteristics of electrically conductive adhesives
Zhang et al. Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects
KR101763180B1 (ko) 탄소기반 2차원 하이브리드 박막 제조 방법
KR101763179B1 (ko) 탄소기반 2차원 하이브리드 소재 제조 방법
Chen et al. Constructing a BNNS/aramid nanofiber composite paper via thiol-ene click chemistry for improved thermal conductivity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant