CN107937089A - 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用 - Google Patents

二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用 Download PDF

Info

Publication number
CN107937089A
CN107937089A CN201711105618.4A CN201711105618A CN107937089A CN 107937089 A CN107937089 A CN 107937089A CN 201711105618 A CN201711105618 A CN 201711105618A CN 107937089 A CN107937089 A CN 107937089A
Authority
CN
China
Prior art keywords
mos
quantum dot
friction
qds
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711105618.4A
Other languages
English (en)
Inventor
王晓波
刘维民
吴新虎
宫奎亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201711105618.4A priority Critical patent/CN107937089A/zh
Publication of CN107937089A publication Critical patent/CN107937089A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用,MoS2或WS2量子点在合成润滑油中形成稳定的黄色分散体系,在50~200℃范围内表现出优异的减摩抗磨性能。

Description

二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添 加剂的应用
技术领域
本发明涉及一种MoS2或WS2 量子点作为高温合成润滑油减摩抗磨添加剂的应用。
背景技术
润滑剂是在运动的两个摩擦副间引入的一种物质,用来降低摩擦磨损、清洁和分散磨损残渣、传递热量、密封间隙和抑制腐蚀等。当今所有的润滑剂中都含有添加剂,它们的作用是用来增强润滑剂的某些性能。这些添加剂主要包括摩擦/磨损修饰剂、抗氧剂、防锈剂、消泡剂、极压剂、粘度指数改进剂、清净剂、乳化剂和金属减活剂。虽然润滑添加剂的种类很多,但高温润滑剂对高温减摩抗磨添加剂的需求依然很迫切。这是因为当今工业正经历着需要仪器设备在高温环境下工作的过程。这些应用需要特殊的润滑剂和相应的润滑添加剂来应对极端高温环境并保持润滑性能和提供一个合理的服役时间。因此,研究开发高温润滑剂是非常必要的。值得庆幸的是,近几年大量科研工作者报道了采用纳米颗粒作为润滑油添加剂为今后发展高温减摩抗磨添加剂提供了一条非常重要的途径。
层状过渡金属二硫化物(TMDCs)由于其独特的物理化学特性已经引起人们很大的关注。在这些二位层状材料中,二硫化钼(MoS2)和二硫化钨(WS2)已经被广泛的应用在多个领域,例如传感器、光电探测、电池和固体润滑剂。另外,为了促进MoS2和WS2在润滑领域的应用,将它们分散在润滑油中作为添加剂是最常使用的方法。由于这些材料具有固体层状结构,MoS2和WS2 作为润滑油添加剂表现出非常好的耐高温和抗氧化特性。然而,相对较差的分散稳定性限制了它们作为润滑油添加剂的发展。通常,MoS2和WS2 的颗粒尺寸和厚度会影响它们在液体润滑剂中的分散稳定性和摩擦学特性。例如,Rabaso等人认为更小的类富勒烯MoS2 (IF-MoS2)纳米颗粒能够更容易的进入摩擦副的接触表面,促使快速形成低摩擦磨损的均匀摩擦保护膜。然而,虽然大量研究报道了制备纳米尺寸的MoS2和WS2作为润滑油添加剂,至今还没有人研究MoS2和WS2量子点(粒径小于10 nm)作为润滑油添加剂。与纳米片的MoS2和WS2相比,MoS2和WS2量子点(MoS2和WS2 QDs)具有更小的颗粒尺寸和更大的比表面积,这些特性可能有助于增强它们的分散稳定性和润滑性能。因此MoS2和WS2 量子点作为润滑添加剂具有非常大的发展潜力,它们作为润滑油添加剂的摩擦学特性仍然等待着人们去开发利用。
发明内容
本发明的目的在于提供MoS2或WS2 量子点作为高温合成润滑油减摩抗磨添加剂的应用。
本发明所述的高温合成润滑油减摩抗磨添加剂是粒径小于10 nm的MoS2或WS2量子点。MoS2或WS2量子点通过超声波和溶剂热处理相结合的方法制备:在血清瓶中加入MoS2或WS2粉末和极性有机溶剂,将血清瓶放入功率为250 W的超声波发生器中超声处理对MoS2或WS2粉末进行剥离;然后将上层2/3的分散液转移到三口烧瓶中,在120~160 ℃搅拌4~10h;将得到的悬浮液在转速2000 rpm离心处理5 min,浅黄色的上层清液中即含有MoS2或WS2量子点,然后减压蒸馏除去极性有机溶剂,在真空100℃过夜干燥,得到MoS2或WS2量子点粉末。
所述MoS2或WS2粉末是片层状的商业产品,粒径为0.5 μm;所述极性有机溶剂为N,N-二甲基甲酰胺(DMF)或甲基吡咯烷酮(NMP)。
所述MoS2或WS2粉末与极性有机溶剂的质量体积比为1:50~1:150 g/mL。
所述超声波剥离MoS2或WS2粉末的时间为2~4 h。
MoS2或WS2 量子点作为高温合成润滑油减摩抗磨添加剂的应用,其特征在于所述MoS2或WS2量子点在合成润滑油中形成稳定的黄色分散体系,在50~200℃范围内表现出优异的减摩抗磨性能。
所述MoS2或WS2量子点在合成润滑油的添加量为0.1wt%~1.0 wt %。
所述合成润滑油为聚醚(PAG)、聚乙二醇(PEG)或合成酯类油。
附图说明
图1为实施例1中所述的MoS2(a,b)和WS2(c,d)量子点的高分辨透射电子显微图像。
图2为聚醚(PAG)、0.1%、0.5%和1.0% MoS2 QDs(实施例1中所制备)在150 ℃,频率25 Hz,载荷100 N长磨30 min时的摩擦系数曲线。
图3为聚醚(PAG)、0.1%、0.5%和1.0% WS2 QDs(实施例1中所制备)在150 ℃,频率25 Hz,载荷100 N长磨30 min时的摩擦系数曲线。
图4为聚醚(PAG)、0.1%、0.5%和1.0% MoS2 /WS2 QDs(实施例1中所制备)在150 ℃,频率25 Hz,载荷100 N长磨30 min时磨斑的磨损量。
图5为聚醚(PAG)、0.5% MoS2 nano、0.5% WS2 nano、0.5% MoS2 QDs、0.5% WS2 QDs(实施例1中所制备)在100 N,频率25 Hz,温度分别为25 ℃,50 ℃,100 ℃,150 ℃和200℃长磨30 min时的摩擦系数曲线。
图6为聚醚(PAG)、0.5% MoS2 nano、0.5% WS2 nano、0.5% MoS2 QDs、0.5% WS2 QDs(实施例1中所制备)在100 N,频率25 Hz,温度分别为25 ℃,50 ℃,100 ℃,150 ℃和200℃长磨30 min时磨斑的磨损量。
图7为聚醚(PAG)、0.5% MoS2 nano、0.5% WS2 nano、0.5% MoS2 QDs、0.5% WS2 QDs(实施例1中所制备)在150 ℃,频率25 Hz,载荷分别为50 N,100 N,200 N和300 N长磨30min时的摩擦系数曲线。
图8为聚醚(PAG)、0.5% MoS2 nano、0.5% WS2 nano、0.5% MoS2 QDs、0.5% WS2 QDs(实施例1中所制备)在150 ℃,频率25 Hz,载荷分别为50 N,100 N,200 N和300 N长磨30min时磨斑的磨损量。
具体实施方式
实施例1
在150 mL 血清瓶中加入1 g MoS2或WS2粉末,100 mL N,N-二甲基甲酰胺(DMF)。将血清瓶放入功率为250 W的超声波发生器中超声处理3 h对MoS2或WS2粉末进行剥离。然后将上层2/3的分散液转移到三口烧瓶中,在剧烈搅拌下加热到140 ℃反应 6 h。将得到的悬浮液在转速2000 rpm离心处理5 min。浅黄色的上层清液中即含有MoS2或WS2量子点。减压蒸馏除去溶剂DMF,在真空100 ℃过夜干燥,得到MoS2或WS2量子点粉末。
将上述制备的MoS2或WS2量子点粉末(MoS2/WS2 QDs),平均粒径为90 nm的商品MoS2或WS2 纳米颗粒(MoS2/WS2 nano)分别添加到聚醚(PAG)中,充分搅拌后,用超声波分散1 h,得到黄色MoS2/WS2 QDs 与PAG的稳定分散液,以及黑色MoS2/WS2 nano与PAG的分散体系。
实施例2
在150 mL 血清瓶中加入1 g MoS2或WS2粉末,150 mL N,N-二甲基甲酰胺(DMF)。将血清瓶放入功率为250 W的超声波发生器中超声处理3 h对MoS2或WS2粉末进行剥离。然后将上层2/3的分散液转移到三口烧瓶中,在剧烈搅拌下升温至160 ℃反应6 h。将得到的悬浮液在转速2000 rpm离心处理5 min。浅黄色的上层清液中即含有MoS2或WS2量子点。减压蒸馏除去溶剂DMF,在真空100 ℃过夜干燥,得到MoS2或WS2量子点粉末。
实施例3
在150 mL 血清瓶中加入1 g MoS2或WS2粉末,100 mL 甲基吡咯烷酮(NMP)。将血清瓶放入功率为250 W的超声波发生器中超声处理3 h对MoS2或WS2粉末进行剥离。然后将上层2/3的分散液转移到三口烧瓶中,在剧烈搅拌下升温至140 ℃反应6 h。将得到的悬浮液在转速2000 rpm离心处理5 min。浅黄色的上层清液中即含有MoS2或WS2量子点。减压蒸馏除去溶剂NMP,在真空100 ℃过夜干燥,得到MoS2或WS2量子点粉末。
结构分析:将实施例1的产物分散在DMF中,通过JEM-1200EX 透射电子显微镜测定其外观形貌,如附图1所示。结果表明在实施例1所制备的MoS2或WS2量子点尺寸为2~7 nm。
产物的摩擦学性能评价
1. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试实施例1中制备的0.1%, 0.5%和1.0% MoS2/WS2 QDs在聚醚(PAG)中,温度150 ℃,频率25 Hz,振幅1mm,载荷100 N时长磨30 min时的摩擦系数f,试验所用钢球为Φ=10 mm的GCr15轴承钢,下试样为Φ24×7.9 mm的GCr15钢块。结果见附图2, 3。由图可以看出,在150℃,0.5% 和1.0%MoS2/WS2 QDs均能显著降低PAG的摩擦系数。
2. 采用MicroXAM 3D 非接触的表面测试仪测试实施例1 中制备的0.1%, 0.5%和1.0% MoS2/WS2 QDs在聚醚(PAG)中,温度150 ℃,频率25 Hz,振幅1 mm,载荷100 N时长磨30min时磨斑的磨损体积,如附图4所示。结果表明,在150℃,0.5% 和1.0% MoS2/WS2 QDs均能显著增强PAG的抗磨性能。
3. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试0.5%MoS2 nano,0.5%WS2 nano, 0.5% MoS2 QDs和0.5% WS2 QDs在100 N,频率25 Hz,振幅1 mm,温度分别为25 ℃,50 ℃,100 ℃,150 ℃和200 ℃长磨30 min时的摩擦系数曲线。结果表明,在升高温度时(>50 ℃),MoS2/WS2 QDs均能够大幅度降低PAG的摩擦系数,并且MoS2/WS2 QDs的减摩性能显著优于MoS2/WS2 nano。
4. 采用MicroXAM 3D 非接触的表面测试仪测试0.5% MoS2 nano,0.5%WS2 nano,0.5% MoS2 QDs和0.5% WS2 QDs在100 N,频率25 Hz,振幅1 mm,温度分别为25 ℃,50 ℃,100 ℃,150 ℃和200 ℃长磨30 min时磨斑的磨损量。结果表明,在升高温度时(>50 ℃),MoS2/WS2 QDs能够大幅度增强PAG的抗磨性能,并且MoS2/WS2 QDs的抗磨性能显著优于MoS2/WS2 nano。
5. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试0.5%MoS2 nano,0.5%WS2 nano, 0.5% MoS2 QDs和0.5% WS2 QDs在150 ℃,频率25 Hz,振幅1mm,载荷分别为50 N,100 N,200 N,和300 N长磨30 min时的摩擦系数曲线。结果表明,在150 ℃, 不同载荷下,MoS2/WS2 QDs均能够大幅度降低PAG的摩擦系数,并且MoS2/WS2 QDs的减摩性能显著优于MoS2/WS2 nano。
6. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试0.5%MoS2 nano,0.5%WS2 nano, 0.5% MoS2 QDs和0.5% WS2 QDs在150 ℃,频率25 Hz,振幅1mm,载荷分别为50 N,100 N,200 N和300 N长磨30 min时磨斑的磨损量。结果表明,在150℃, 不同载荷下,MoS2/WS2 QDs均能够大幅度增强PAG的抗磨性能,并且MoS2/WS2 QDs的抗磨性能显著优于MoS2/WS2 nano。

Claims (3)

1.二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用,其特征在于所述MoS2或WS2量子点在合成润滑油中形成稳定的黄色分散体系,在50~200℃范围内表现出优异的减摩抗磨性能。
2.如权利要求1所述的应用,其特征在于所述MoS2或WS2量子点在合成润滑油的添加量为0.1wt%~1.0 wt %。
3.如权利要求1或2所述的应用,其特征在于所述合成润滑油为聚醚、聚乙二醇或合成酯类油。
CN201711105618.4A 2017-11-10 2017-11-10 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用 Pending CN107937089A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711105618.4A CN107937089A (zh) 2017-11-10 2017-11-10 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711105618.4A CN107937089A (zh) 2017-11-10 2017-11-10 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用

Publications (1)

Publication Number Publication Date
CN107937089A true CN107937089A (zh) 2018-04-20

Family

ID=61934724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711105618.4A Pending CN107937089A (zh) 2017-11-10 2017-11-10 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用

Country Status (1)

Country Link
CN (1) CN107937089A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143541A (zh) * 2020-10-12 2020-12-29 湘潭大学 一种二硫化钼和二硫化钨混合纳米润滑油添加剂及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692464A (zh) * 2015-03-06 2015-06-10 济宁利特纳米技术有限责任公司 二硫化钼量子点的制备及其在成品润滑油添加剂的应用
CN106520354A (zh) * 2016-10-21 2017-03-22 青岛大学 一种基于二维材料纳米片/碳量子点的水基润滑液及其制备方法
WO2017065340A1 (ko) * 2015-10-13 2017-04-20 한국세라믹기술원 2차원 하이브리드 복합체 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692464A (zh) * 2015-03-06 2015-06-10 济宁利特纳米技术有限责任公司 二硫化钼量子点的制备及其在成品润滑油添加剂的应用
WO2017065340A1 (ko) * 2015-10-13 2017-04-20 한국세라믹기술원 2차원 하이브리드 복합체 제조 방법
CN106520354A (zh) * 2016-10-21 2017-03-22 青岛大学 一种基于二维材料纳米片/碳量子点的水基润滑液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGJIE XU: "One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction", 《ADVANCED FUNCTIONAL MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143541A (zh) * 2020-10-12 2020-12-29 湘潭大学 一种二硫化钼和二硫化钨混合纳米润滑油添加剂及其应用

Similar Documents

Publication Publication Date Title
Peng et al. Tribological properties of diamond and SiO2 nanoparticles added in paraffin
Wang et al. Experimental research on tribological properties of liquid phase exfoliated graphene as an additive in SAE 10W-30 lubricating oil
Ouyang et al. 3D hierarchical porous graphene nanosheets as an efficient grease additive to reduce wear and friction under heavy-load conditions
Gulzar et al. Tribological performance of nanoparticles as lubricating oil additives
Ma et al. Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive
Chou et al. Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles
Chou et al. Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy
Rawat et al. Tribological performance of paraffin grease with silica nanoparticles as an additive
Kheireddin et al. Inorganic nanoparticle-based ionic liquid lubricants
Chang et al. Anti-wear and friction properties of nanoparticles as additives in the lithium grease
Baskar et al. Experimental analysis on tribological behavior of nano based bio-lubricants using four ball tribometer
Xu et al. Study on the selectivity of calcium carbonate nanoparticles under the boundary lubrication condition
Azman et al. Investigation of tribological properties of CuO/palm oil nanolubricant using pin-on-disc tribotester
Ye et al. Covalently attached strategy to modulate surface of carbon quantum dots: Towards effectively multifunctional lubricant additives in polar and apolar base fluids
Charoo et al. Tribological properties of IF-MoS 2 nanoparticles as lubricant additive on cylinder liner and piston ring tribo-pair
Cheng et al. Ga-based liquid metal with good self-lubricity and high load-carrying capacity
Xu et al. Insights into the rheological behaviors and tribological performances of lubricating grease: entangled structure of a fiber thickener and functional groups of a base oil
Karthikeyan et al. Thermophysical and wear properties of eco-friendly nano lubricants
Rawat et al. Current and future trends in grease lubrication
Gupta et al. Tribological study on rapeseed oil with nano-additives in close contact sliding situation
Patil et al. A review on effect of addition of nano particles on tribological properties of lubricants
Rawat et al. Effect of graphene-based nanoadditives on the tribological and rheological performance of paraffin grease
Guo et al. Constructing a novel and high-performance liquid nanoparticle additive from a Ga-based liquid metal
Cao et al. Study on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pair
Ma et al. Tribological properties of SiO 2@ Cu and SiO 2@ MoS 2 core–shell microspheres as lubricant additives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication