KR20140045799A - Manufacturing method for thermoelectric material and thermelectric material manufactured thereby - Google Patents

Manufacturing method for thermoelectric material and thermelectric material manufactured thereby Download PDF

Info

Publication number
KR20140045799A
KR20140045799A KR1020120112011A KR20120112011A KR20140045799A KR 20140045799 A KR20140045799 A KR 20140045799A KR 1020120112011 A KR1020120112011 A KR 1020120112011A KR 20120112011 A KR20120112011 A KR 20120112011A KR 20140045799 A KR20140045799 A KR 20140045799A
Authority
KR
South Korea
Prior art keywords
nanowires
nanowire
thermoelectric material
thermoelectric
powder
Prior art date
Application number
KR1020120112011A
Other languages
Korean (ko)
Other versions
KR101409404B1 (en
Inventor
유봉영
서성호
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to KR1020120112011A priority Critical patent/KR101409404B1/en
Publication of KR20140045799A publication Critical patent/KR20140045799A/en
Application granted granted Critical
Publication of KR101409404B1 publication Critical patent/KR101409404B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Abstract

The present invention relates to a method for manufacturing a thermoelectric material with improved thermoelectric performance by forming nanowire-shaped grains. A method for manufacturing a thermoelectric material composed of at least two elements comprises a nanowire preparation step of preparing nanowires using at least one of raw materials for a thermoelectric material; a powder preparation step of preparing the raw materials for the thermoelectric material in the form of powder except for the material used for preparation of the nanowires; a mixing step of stoichiometrically mixing the nanowires and the powders; and a sintering step of sintering the mixture of the nanowires and the powders. According to the present invention, nanowires are prepared from raw materials forming a thermoelectric material and these nanowires are mixed and sintered with the remaining raw material powders, thereby maintaining grains to have a nanowire shape. Resultantly, the thermal conductivity is lowered due to phonon scattering effect while not reducing electrical conductivity and Seebeck coefficient, and also thermoelectric performance is improved eventually. Furthermore, since the raw material is prepared in the form of nanowire instead of the thermoelectric material, it is possible to select a mass production method for nanowires. [Reference numerals] (S01) Prepare Te nanowires; (S02) Prepare Bi, Sb nanopowders; (S03) Mix the nanowires and the nanopowders; (S04) Sinter the mixture with an SPS process

Description

열전재료의 제조방법 및 그에 따라 제조된 열전재료{MANUFACTURING METHOD FOR THERMOELECTRIC MATERIAL AND THERMELECTRIC MATERIAL MANUFACTURED THEREBY}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing a thermoelectric material, and a thermoelectric material produced by the method. BACKGROUND OF THE INVENTION 1. Field of the Invention [0002]

본 발명은 열전재료의 제조방법 및 그에 따라 제조된 열전재료에 관한 것으로, 더욱 자세하게는 나노선 형태의 결정립이 형성되어 열전성능이 향상된 열전재료의 제조방법 및 열전재료에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thermoelectric material and a thermoelectric material manufactured thereby, and more particularly, to a method of manufacturing a thermoelectric material and a thermoelectric material having a nanowire-shaped crystal grains formed thereon.

최근 대체 에너지의 개발 및 절약에 대한 관심이 고조되고 있는 가운데, 효율적인 에너지 변환 물질에 관한 조사 및 연구가 활발히 진행되고 있다. 특히, 열에너지와 전기 에너지를 변환하는 재료인 열전재료에 대한 연구가 가속화되고 있다.In recent years, interest in the development and conservation of alternative energy has been increasing, and researches and researches on efficient energy conversion materials are being actively carried out. In particular, research on thermoelectric materials, which are materials for converting heat energy and electric energy, is accelerating.

이러한 열전재료는 열을 전기로 또는 전기를 열로 직접 변화시키는 기능을 갖는 금속 또는 세라믹 재로서, 온도 차만 부여하면 가동 부분 없이도 발전이 가능하다는 장점이 있다.Such a thermoelectric material is a metal or ceramic material having a function of directly converting heat into electricity or electricity into heat, and it is advantageous that electricity can be generated without moving parts if only temperature difference is given.

이런 열전재료는 19세기 초에 열전현상인 제백효과(Seeback effect), 펠티에효과(Peltier effect), 톰슨효과(Thomson effect)의 발견 후, 1930년대 후반부터 반도체의 발전과 더불어 열전성능 지수가 높은 열전재료로 개발되고 있다.This type of thermoelectric material was found in the early 19th century after the discovery of the thermoelectric effect Seeback effect, Peltier effect, and Thomson effect. Since the late 1930s, along with the development of semiconductors, Materials.

최근 열전재료는, 열전발전 특성을 이용하여 산간벽지용, 우주용, 군사용 등의 특수 전원장치로의 사용되고 있으며, 또 열전냉각 특성을 이용하여 반도체 레이저 다이오드, 적외선 검출소자 등에서 정밀한 온도제어나 컴퓨터 관련 소형 냉각기둥 등에 사용되고 있다.Recently, thermoelectric materials have been used as special power devices such as wallpaper for the mountain, space, and military using thermoelectric power generation characteristics. In addition, thermoelectric cooling has been widely used in semiconductor laser diodes, infrared ray detection devices, Small cooling columns and so on.

열전재료의 효율은 무차원 열전성능지수(dimensionless figure of merit, ZT)로 평가되며, 이는 ZT=α2σκ-1 로 정의된다. 여기서, α는 제백계수이고 σ는 전기전도도이며 κ는 열전도도이다. 따라서 열전재료의 성능지수를 향상시키기 위해서는 높은 제백계수와 전기전도도 및 낮은 열전도도가 필요하다.The efficiency of the thermoelectric material is evaluated by the dimensionless figure of merit (ZT), which is defined as ZT = α 2 σκ -1 . Where α is the whiteness coefficient, σ is the electrical conductivity and κ is the thermal conductivity. Therefore, a high whiteness factor, electrical conductivity and low thermal conductivity are required to improve the performance index of thermoelectric materials.

최근에 열전도도를 낮추기 위하여, 열전재료의 원료물질을 나노미터 단위의 분말로 분쇄한 뒤에 소결하여 결정립의 크기를 줄이는 방법으로 포논 산란 효과를 극대화함으로써 열전도도를 낮추는 방법이 사용되고 있다. 그러나, 단순히 결정립의 크기만을 줄이는 경우에는 열전도도가 낮아지는 효과는 있지만, 동시에 전기전도도와 제벡계수가 낮아져서 원하는 정도의 열전성능의 향상을 얻을 수 없었다.In recent years, in order to lower the thermal conductivity, a method of reducing the thermal conductivity by maximizing the phonon scattering effect by pulverizing raw material of thermoelectric material into powder of nanometer unit followed by sintering to reduce the grain size is used. However, when the crystal grain size is simply reduced, the thermal conductivity is lowered, and at the same time, the electric conductivity and the Seebeck coefficient are lowered, and the desired improvement in the thermoelectric performance can not be obtained.

또한, 열전물질을 분말형태가 아닌 나노선 형태로 성장시키려는 노력도 이어지고 있으나, 열전물질을 나노선 형태로 성장시키는 것은 생산성이 낮아서 대량생산에는 적합하지 못하다.
In addition, attempts have been made to grow thermoelectric materials in the form of nanowires instead of powders, but the growth of thermoelectric materials into nanowires is not suitable for mass production due to low productivity.

대한민국 공개특허 10-2011-0080279Korean Patent Publication No. 10-2011-0080279 대한민국 등록특허 10-0872332Korean Patent No. 10-0872332

"Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks", Nano letters, Vol.8, p2580~2584, &Quot; Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks ", Nano Letters, Vol. 8, pp. 2580-2584,

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 나노선의특성을 그대로 유지하는 벌크 형태의 열전재료를 대량으로 생산할 수 있는 열전재료 제조방법을 제공하는데 그 목적이 있다.
It is an object of the present invention to provide a thermoelectric material manufacturing method capable of mass-producing a bulk thermoelectric material which retains the characteristics of a nanowire as it is to solve the problems of the above-described conventional techniques.

상기 목적을 달성하기 위한 본 발명에 의한 열전재료 제조방법은, 2이상의 원소로 구성되는 열전재료를 제조하는 방법에 있어서, 열전재료의 원료물질 중 적어도 하나의 원료물질로 나노선을 제조하는 나노선 제조 단계; 상기 나노선을 제조한 물질을 제외한 열전재료 원료물질을 분말 형태로 준비하는 분말 준비 단계; 상기 나노선과 상기 분말을 화학적양론에 따라서 혼합하는 혼합 단계; 및 상기 혼합된 나노선과 분말을 소결하는 소결 단계를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a thermoelectric material comprising two or more elements, comprising the steps of: preparing a nanowire with at least one raw material of a thermoelectric material; Manufacturing steps; A powder preparation step of preparing a thermoelectric material raw material in the form of powder except for the material from which the nanowire is manufactured; Mixing the nanowire and the powder according to a chemical stoichiometry; And a sintering step of sintering the mixed nanowire and the powder.

본 발명은 열전재료를 구성하는 원료물질로 나노선을 제조하고, 이 나노선을 다른 원료물질 분말과 혼합하여 소결함으로써, 결정립이 나노선의 형태를 유지하도록 하여, 포논의 산란 효과에 의해서 열전도도는 낮아지면서도 전기전도도와 제벡계수는 낮아지지 않는다.According to the present invention, nanowires are produced from a raw material constituting a thermoelectric material, and the nanowires are mixed with other raw material powders and sintered so that the crystal grains can maintain the nanowire shape, and the thermal conductivity The electrical conductivity and the Seebeck coefficient do not decrease.

이때, 나노선을 제조하는 원료물질이 Te이고, 열전재료 원료물질 분말은 Bi, Sb, Pb 및 Sn 중에서 선택된 하나 이상의 물질인 것이 좋다.At this time, it is preferable that the raw material for producing the nanowire is Te, and the thermoelectric material raw material powder is at least one material selected from Bi, Sb, Pb and Sn.

Te는 화학적인 방법으로 나노선을 대량으로 제작할 수 있으며, 이는 Te 전구체인 Te(OH)6와 환원제인 NH2OH를 혼합하고 90℃ 내지 100℃의 온도 범위에서 교반하여 수행되는 것일 수 있다.Te can be produced by a chemical method in large quantities of nanowires, which may be performed by mixing Te (OH) 6 , a Te precursor, and NH 2 OH, a reducing agent, and stirring at a temperature range of 90 ° C to 100 ° C.

그리고 본 발명의 소결 단계는 방전 플라즈마 소결법(spark plasma sintering, SPS)으로 수행되는 것이 바람직하다. 방전 플라즈마 소결법은 짧은 시간에 소결이 수행되기 때문에 나노선의 형태가 그대로 유지되며, 소결과정에서 원료물질 분말과의 확산에 의해서 열전물질이 합성된다.The sintering step of the present invention is preferably performed by spark plasma sintering (SPS). In the discharge plasma sintering method, since the sintering is performed in a short time, the shape of the nanowire is maintained and the thermoelectric material is synthesized by diffusion with the raw material powder in the sintering process.

나아가 나노선과 혼합되는 원료물질 분말은 평균직경이 1㎛ 미만인 것이 소결과 열전물질의 합성이 원활하게 이루어진다.Furthermore, raw material powders to be mixed with the nanowire have an average diameter of less than 1 mu m so that the synthesis of the sintering and the thermoelectric material is smoothly performed.

본 발명의 다른 형태에 의한 열전재료는, 이상의 제조방법으로 제조되며, 나노선 형태의 결정립이 소결된 구조인 것을 특징으로 한다.The thermoelectric material according to another embodiment of the present invention is produced by the above-described manufacturing method and is characterized in that the nanowire-shaped crystal grains are sintered.

상술한 바와 같이 구성된 본 발명은, 열전재료를 구성하는 원료물질로 나노선을 제조하고, 이 나노선을 다른 원료물질 분말과 혼합하여 소결함으로써, 결정립이 나노선의 형태를 유지하도록 하여, 포논의 산란 효과에 의해서 열전도도는 낮아지면서도 전기전도도와 제벡계수는 낮아지지 않으며, 최종적으로 열전성능이 향상된다.According to the present invention configured as described above, nanowires are produced from a raw material constituting a thermoelectric material, and the nanowires are mixed with other raw material powders and sintered so that the crystal grains can maintain the nanowire shape, The electric conductivity and the Seebeck coefficient are not lowered, and the thermoelectric performance is finally improved.

또한, 열전물질을 나노선 형태로 제조하는 것이 아니고, 원료물질을 나노선 형태로 제조하기 때문에 나노선을 대량으로 생산할 수 있는 방법을 선택할 수 있다.
In addition, since thermoelectric materials are manufactured in a nanowire form instead of being manufactured in a nanowire form, a method of mass production of nanowires can be selected.

도 1은 본 실시예의 BiSbTe 3원계 열전재료를 제조하는 과정을 나타내는 공정도이다.
도 2는 본 실시예에서 제조된 Te 나노선의 주사전자 현미경 사진이다.
도 3은 본 실시예에 따라서 제조된 열전재료에서 포논과 전자의 진행상태를 나타낸 모식도이다.
1 is a process diagram showing a process of manufacturing a BiSbTe ternary system thermoelectric material of this embodiment.
2 is a scanning electron microscope (SEM) image of a Te nanowire fabricated in this embodiment.
Fig. 3 is a schematic diagram showing progress of phonon and electrons in the thermoelectric material manufactured according to this embodiment.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, embodiments of the present invention will be described in detail.

도 1은 본 실시예의 BiSbTe 3원계 열전재료를 제조하는 과정을 나타내는 공정도이다.1 is a process diagram showing a process of manufacturing a BiSbTe ternary system thermoelectric material of this embodiment.

본 실시예에서는 먼저 화학적 합성법으로 Te 나노선을 제조한다.In this embodiment, Te nanowires are first prepared by a chemical synthesis method.

Te는 BiSbTe 3원계 열전물질에서 가장 높은 분율을 차지하고 있으며, 화학적 합성법으로 나노선을 대량생산할 수 있다.Te occupies the highest fraction of BiSbTe ternary thermoelectric materials, and can produce nanowires by chemical synthesis.

구체적으로, Te의 전구체인 Te(OH)6(텔루르산)와 환원제인 NH2OH(수산화아민)를 혼합하여, 글러브박스에서 95℃로 약 16시간 동안 교반하여 Te 나노선을 합성한다. Specifically, Te (OH) 6 (telluric acid) as a precursor of Te and NH 2 OH (hydroxylamine) as a reducing agent are mixed and stirred in a glove box at 95 ° C for about 16 hours to synthesize Te nanowires.

도 2는 본 실시예에서 제조된 Te 나노선의 주사전자 현미경 사진이다.2 is a scanning electron microscope (SEM) image of a Te nanowire fabricated in this embodiment.

왼쪽 사진과 같이 Te이 대량으로 합성되었으며, 오른쪽 사진과 같이 각각의 Te 나노선은 수 마이크로미터의 길이와 100nm 이하의 두께를 가진다.As shown in the picture on the left, Te is synthesized in a large amount, and each Te nanowire has a length of several micrometers and a thickness of 100 nm or less as shown in the right photograph.

다음으로 BiSbTe 3원계 열전물질의 원료물질인 Bi와 Sb를 분쇄하여 나노미터 단위의 분말을 제작한다.Next, Bi and Sb, which are raw materials of the BiSbTe ternary thermoelectric material, are pulverized to prepare a nanometer unit powder.

본 발명은 Te 나노선의 형태를 유지하면서, Bi와 Sb가 Te 나노선으로 확산하여 BiSbTe 열전 나노선을 제조하는 것이기 때문에, Bi와 Sb를 볼 밀링하여 나노미터 단위의 분말로 분쇄하여 준비한다.Since Bi and Sb diffuse into Te nanowires to produce BiSbTe thermoelectric nanowires while maintaining the shape of Te nanowires, Bi and Sb are ball-milled into nanometer-scale powders and prepared.

그리고 준비된 Bi, Sb 나노분말과 Te 나노선을 화학양론적으로 칭량하여 혼합하고 분산시킨다.The prepared Bi, Sb nanoparticles and Te nanowires are stoichiometrically weighed, mixed and dispersed.

본 실시예에서는 Bi, Sb, Te는 대표적인 조성비율인 1:3:6의 원자비로 혼합하였다.In this embodiment, Bi, Sb, and Te were mixed at an atomic ratio of 1: 3: 6, which is a typical composition ratio.

마지막으로 혼합된 원료물질을 방전 플라즈마 소결법으로 소결하여 BiSbTe 3원계 열전재료를 제조한다.Finally, the mixed raw materials are sintered by discharge plasma sintering to produce BiSbTe ternary thermoelectric materials.

방전 플라즈마 소결법(spark plasma sintering)은 고온과 고압의 환경에서 원료물질에 전류를 흘려주는 방법으로 수행되며, 이러한 방전 플라즈마 소결법은 약 10분 정도의 짧은 시간 동안에 소결이 진행되기 때문에 결정립의 성장은 거의 없이 소결이 진행된다. 따라서 Te 나노선의 형태를 유지한 상태에서 소결이 진행되며, 소결 과정에서 상호확산(interdiffusion)이 발생하여 BiSbTe 3원계 열전재료가 합성된다.Spark plasma sintering is performed by flowing a current through a raw material in a high-temperature and high-pressure environment. Since the sintering is carried out for a short time of about 10 minutes in such a discharge plasma sintering method, Without sintering. Therefore, sintering proceeds in the state of Te nanowire, and interdiffusion occurs in the sintering process to synthesize BiSbTe ternary thermoelectric materials.

본 실시예에 의해서 제조된 벌크상태의 BiSbTe 3원계 열전재료는 나노선 형태의 BiSbTe 3원계 열전재료 결정립들이 뭉쳐있는 구조이며, 이에 따라서 포논 산란 효과는 유지하면서도 전기전도도와 제벡계수가 낮아지지 않는다.The bulk BiSbTe ternary thermoelectric material manufactured by this embodiment has a structure in which nano-wire type BiSbTe ternary thermoelectric material grains are aggregated, and consequently, the electric conductivity and the Seebeck coefficient are not lowered while maintaining the phonon scattering effect.

도 3은 본 실시예에 따라서 제조된 열전재료에서 포논과 전자의 진행상태를 나타낸 모식도이다.Fig. 3 is a schematic diagram showing progress of phonon and electrons in the thermoelectric material manufactured according to this embodiment.

도시된 것과 같이 본 실시예에서 제조된 BiSbTe 3원계 열전재료는 나노선 형태의 결정립이 뭉쳐진 구조를 가지고 있다. 그리고 포논은 파동의 경로를 따르기 때문에 나노선 형태의 결정립들을 따라서 진행하는 과정에서 다수의 결정립계면을 지나치며 산란되고, 전자는 직선으로 이동하기 때문에 나노선 형태의 결정립들을 따라서 진행하는 동안에 결정립계면에서 산란되지 않는다.As shown in the figure, the BiSbTe ternary thermoelectric material produced in this embodiment has a structure in which nanowire-like grains are clustered. Since the phonons follow the path of the waves, they propagate along the crystal grains of the nanowire type, scattered over many grain boundaries, and the electrons move to the straight line. Therefore, during the progression along the grains of the nanowire type, It does not spawn.

따라서 본 실시예에 따라 제조된 열전재료는 포논의 산란에 따라서 열전도도가 감소하는 반면에, 전기전도도와 제벡계수는 낮아지지 않기 때문에 열전성능(ZT)이 좋아진다.Therefore, the thermoelectric material manufactured according to the present embodiment exhibits improved thermoelectric performance (ZT) because the electrical conductivity and the Seebeck coefficient are not lowered, while the thermal conductivity decreases with phonon scattering.

본 실시예에서는 Te 나노선을 기초로 하여 BiSbTe 3원계 열전재료를 제조하였으나, 이외에 Te를 포함하는 모든 열전재료를 제조할 수 있으며, Te가 포함된 열전물질로는 BiSbTe 외에도, BiTe, SbTe, PbTe, PbSnTe 등이 있다.In this embodiment, BiSbTe ternary system thermoelectric materials were manufactured on the basis of Te nanowires, but all of the thermoelectric materials including Te could be manufactured. In addition to BiSbTe, BiTe, SbTe, PbTe , PbSnTe, and the like.

또한, 본 실시예에서는 나노선을 제조하는 물질로 Te를 이용하였으나, Te가 아닌 다른 물질을 이용하여 나노선을 제조하고 열전재료를 구성하는 다른 원료물질 분말과 혼합하여 소결함으로써 포논의 산란 효과를 높인 열전재료를 제조할 수 있다.
In this embodiment, Te is used as a material for producing nanowires. However, nanowires are prepared by using materials other than Te, and they are mixed with other raw material powders constituting the thermoelectric material and sintered to produce phonon scattering effect It is possible to manufacture a thermoelectric material having a high thermal conductivity.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Those skilled in the art will understand. Therefore, the scope of protection of the present invention should be construed not only in the specific embodiments but also in the scope of claims, and all technical ideas within the scope of the same shall be construed as being included in the scope of the present invention.

Claims (8)

2이상의 원소로 구성되는 열전재료를 제조하는 방법에 있어서,
열전재료의 원료물질 중 적어도 하나의 원료물질로 나노선을 제조하는 나노선 제조 단계;
상기 나노선을 제조한 물질을 제외한 열전재료 원료물질을 분말 형태로 준비하는 분말 준비 단계;
상기 나노선과 상기 분말을 화학적양론에 따라서 혼합하는 혼합 단계; 및
상기 혼합된 나노선과 분말을 소결하는 소결 단계를 포함하는 것을 특징으로 하는 열전재료 제조방법.
A method of manufacturing a thermoelectric material comprising two or more elements,
A step of producing a nanowire using at least one raw material of the thermoelectric material;
A powder preparation step of preparing a thermoelectric material raw material in the form of powder except for the material from which the nanowire is manufactured;
Mixing the nanowire and the powder according to a chemical stoichiometry; And
Thermoelectric material manufacturing method comprising the step of sintering the mixed nanowires and powder.
청구항 1에 있어서,
상기 나노선을 제조하는 원료물질이 Te인 것을 특징으로 하는 열전재료 제조방법.
The method according to claim 1,
Wherein the raw material for producing the nanowires is Te.
청구항 2에 있어서,
상기 나노선 제조 단계가, Te 전구체인 Te(OH)6와 환원제인 NH2OH를 혼합하고 교반하여 수행되는 것을 특징으로 하는 열전재료 제조방법.
The method according to claim 2,
Wherein the step of preparing the nanowire is performed by mixing and stirring Te (OH) 6 as a Te precursor and NH 2 OH as a reducing agent.
청구항 3에 있어서,
상기 나노선 제조 단계가 90℃ 내지 100℃의 온도 범위에서 수행되는 것을 특징으로 하는 열전재료 제조방법.
The method of claim 3,
Wherein the nanowire-forming step is carried out at a temperature ranging from 90 ° C to 100 ° C.
청구항 2에 있어서,
상기 분말이 Bi, Sb, Pb 및 Sn 중에서 선택된 하나 이상의 물질인 것을 특징으로 하는 열전재료 제조방법.
The method according to claim 2,
Wherein the powder is at least one material selected from Bi, Sb, Pb and Sn.
청구항 1에 있어서,
상기 소결 단계가, 방전 플라즈마 소결법(spark plasma sintering, SPS)으로 수행되는 것을 특징으로 하는 열전재료 제조방법.
The method according to claim 1,
Wherein the sintering step is performed by spark plasma sintering (SPS).
청구항 1에 있어서,
상기 분말의 평균직경이 1㎛ 미만인 것을 특징으로 하는 열전재료 제조방법.
The method according to claim 1,
Wherein the average diameter of the powder is less than 1 占 퐉.
청구항 1 내지 청구항 7 중에 하나의 방법으로 제조된 열전재료로서,
나노선 형태의 결정립이 소결된 구조인 것을 특징으로 하는 열전재료.
A thermoelectric material produced by one of the methods of claims 1 to 7,
Wherein the nanowire-shaped crystal grains are sintered.
KR1020120112011A 2012-10-09 2012-10-09 Manufacturing method for thermoelectric material and thermelectric material manufactured thereby KR101409404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120112011A KR101409404B1 (en) 2012-10-09 2012-10-09 Manufacturing method for thermoelectric material and thermelectric material manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120112011A KR101409404B1 (en) 2012-10-09 2012-10-09 Manufacturing method for thermoelectric material and thermelectric material manufactured thereby

Publications (2)

Publication Number Publication Date
KR20140045799A true KR20140045799A (en) 2014-04-17
KR101409404B1 KR101409404B1 (en) 2014-06-20

Family

ID=50653092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120112011A KR101409404B1 (en) 2012-10-09 2012-10-09 Manufacturing method for thermoelectric material and thermelectric material manufactured thereby

Country Status (1)

Country Link
KR (1) KR101409404B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103750A (en) * 2014-07-23 2014-10-15 太原理工大学 Preparation method of magnesium-silicon based silicon nanowire composite thermoelectric material
CN105671344A (en) * 2014-11-21 2016-06-15 武汉理工大学 Method for preparing high-performance CoSb3-based thermoelectric materials by one step
CN108475716A (en) * 2016-01-13 2018-08-31 Lg伊诺特有限公司 Thermoelectric element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323492B1 (en) 1998-10-09 2002-05-13 황해웅 Thermoelectric material by the mechanical grinding method and its manufacturing method
KR101094458B1 (en) 2009-11-11 2011-12-15 이화여자대학교 산학협력단 The method for preparation of nanocomposite with enhanced thermoelectric ability and nanocomposite thereof
KR101264311B1 (en) 2009-12-31 2013-05-22 한국전기연구원 fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
KR101180263B1 (en) * 2010-05-24 2012-09-06 한국기계연구원 A thermoelectric powder and composotes made from thermoelectric material and Method for fabricating thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103750A (en) * 2014-07-23 2014-10-15 太原理工大学 Preparation method of magnesium-silicon based silicon nanowire composite thermoelectric material
CN105671344A (en) * 2014-11-21 2016-06-15 武汉理工大学 Method for preparing high-performance CoSb3-based thermoelectric materials by one step
CN108475716A (en) * 2016-01-13 2018-08-31 Lg伊诺特有限公司 Thermoelectric element
CN108475716B (en) * 2016-01-13 2023-07-18 Lg伊诺特有限公司 Thermoelectric element

Also Published As

Publication number Publication date
KR101409404B1 (en) 2014-06-20

Similar Documents

Publication Publication Date Title
Wei et al. Review of current high-ZT thermoelectric materials
Liu et al. Influence of Ag doping on thermoelectric properties of BiCuSeO
Kai et al. Zintl phase compounds AM2Sb2 (A= Ca, Sr, Ba, Eu, Yb; M= Zn, Cd) and their substitution variants: a class of potential thermoelectric materials
US8765003B2 (en) Nanocomposite thermoelectric conversion material and process for producing same
US9306145B2 (en) Methods of synthesizing thermoelectric materials
US20140352750A1 (en) Composite thermoelectric material, thermoelectric element and module including the same, and preparation method thereof
Weller et al. Thermoelectric performance of tetrahedrite synthesized by a modified polyol process
KR101902925B1 (en) Thermoelectric material, thermoelectric element, and thermoelectric module
JP2016529699A (en) Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements
JP5528873B2 (en) Composite thermoelectric material and method for producing the same
KR101409404B1 (en) Manufacturing method for thermoelectric material and thermelectric material manufactured thereby
KR102097063B1 (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
KR101068964B1 (en) Thermoelectric material and method of manufacturing thermoelectric material by chemical process
KR102109500B1 (en) Oxide nano particle dispersed and chalcogenide based composite thermoelectric material
KR20160137847A (en) Thermoelectric materials composite and preparation method of the same
US20220077375A1 (en) Thermoelectric material manufacturing method
JP2021015862A (en) Thermoelectric material and manufacturing method therefor, and thermoelectric power generation element
KR101851736B1 (en) The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
KR20120035793A (en) Magnesium silicide based thermoelectric material and manufacturing method for the same
JP2021044424A (en) Thermoelectric conversion material
KR102134306B1 (en) P-type thermoelectric composite and process for preparing the same
Zheng et al. Mechanical alloying-spark plasma sintering synthesis and thermoelectric properties of n-type NiSe 2+ x semiconductors: analysis of intrinsic defects and phase structures
Guin et al. Thermoelectric energy conversion in layered metal Chalcogenides
KR102435413B1 (en) Thermoelectric materials of Skinnerite Cu3SbS3 and method for preparing the same
KR101872095B1 (en) A-Bi-Te COMPOUND AND METHOD OF FORMING THE SAME

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
LAPS Lapse due to unpaid annual fee