KR20130076800A - Hec1 활성의 조절인자 및 이의 방법 - Google Patents

Hec1 활성의 조절인자 및 이의 방법 Download PDF

Info

Publication number
KR20130076800A
KR20130076800A KR1020127027026A KR20127027026A KR20130076800A KR 20130076800 A KR20130076800 A KR 20130076800A KR 1020127027026 A KR1020127027026 A KR 1020127027026A KR 20127027026 A KR20127027026 A KR 20127027026A KR 20130076800 A KR20130076800 A KR 20130076800A
Authority
KR
South Korea
Prior art keywords
mmol
ethanone
solution
dimethylphenyl
alkyl
Prior art date
Application number
KR1020127027026A
Other languages
English (en)
Other versions
KR101609856B1 (ko
Inventor
존슨 라우
지안-지 후앙
Original Assignee
타이벡스 세라피틱스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타이벡스 세라피틱스 인코포레이티드 filed Critical 타이벡스 세라피틱스 인코포레이티드
Publication of KR20130076800A publication Critical patent/KR20130076800A/ko
Application granted granted Critical
Publication of KR101609856B1 publication Critical patent/KR101609856B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/44Acylated amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Abstract

본 발명은 Hec1/Nek2 상호작용을 조절하기 위한 화합물, 조성물 및 방법을 제공한다. Nck2/Hec1 결합을 파괴하는 화합물이 특히 바람직하며, 이에 따라 이러한 화합물은 신생물 질환을 위한 화학치료제로서 유용하다.

Description

HEC1 활성의 조절인자 및 이의 방법{MODULATORS OF HEC1 ACTIVITY AND METHODS THEREFOR}
본 출원은 2010년 3월 17일에 출원된 본 출원인의 공동 계류 중인 US 가출원번호 제61/314798호를 우선권으로 주장한다.
본 발명의 분야
본 발명의 분야는 HEC1의 활성 조절과 관련된, 특히 종양 세포 증식 억제와 관련된 다양한 화합물, 조성물, 및 방법이다.
유사분열 조절과 관련된 메카니즘이 종양 세포 성장을 감소시키기 위한 시도에서 개념상으로 고려되는 타겟(attractive target)이지만, 매우 특이적인 활성 및 선택성 및 요망되는 약리학적 프로파일을 갖는 화합물들은 찾기 어렵다. 예를 들어, 방추체(spindle apparatus)는 비교적 높은 활성을 갖는 방추체 독(spindle poison)(예를 들어, 탁산, 빈카 알칼로이드 등)으로 타겟화될 수 있지만, 많은 방추체 독들은, 이러한 독들이 흔히 비-특이적인 바 약물적 개입(pharmaceutical intervention)에 허용되지 않는다.
치료 특이성을 개선시키기 위하여, 기능적으로 암과 관련된 것으로 나타난 방추체 및 동원체 조절 또는 유사분열 체크포인트 조절을 위한 구성성분들이 선택될 수 있다. 예를 들어, Hec1은 암에서 크게 발현되는 방추체 체크포인트 시그널링에서 중요한 구성요소로서 세포 분화 동안에 염색체의 정확한 분리를 확보하는데 도움을 준다. Hec1은 Nuf2, Spc24, Spc25, 및 Zwint-1을 포함한 다양한 다른 동원체 구성요소, 뿐만 아니라 유사분열 키나아제 Nek2 및 Aurora B와 상호작용한다. Hec1의 과발현은 매우 다양한 암 및 암 세포주에서 공통적이고, 흔히 원발성 유방암 및 다른 암들에서 진단 마커로서 제공될 수 있다. 종양 세포 성장에서 Hec1의 드러난 중요성을 기초로 하여, RNAi는 Hec1 발현을 감소시키기 위해 사용되었고 적어도 동물 모델에서, 상당한 가능성을 나타내었다. 그러나, 종양에 대한 높은 특이성을 갖는 siRNA의 생체내 전달이 흔히 문제가 된다.
보다 최근에, Nek2/Hec1 상호작용을 방해하는 다양한 소세포 억제제들이 개발되었다. Nek2가 유사분열에서 Hec1의 조절 구성요소이기 때문에, Hec1/Nek2 기능의 폐기(abrogation)는 염색체 분리 불량 및 세포 사멸을 초래할 것으로 예상되었다. 유의미한 세포 사멸 활성을 가지고 Hec1/Nek2 경로를 직접적으로 타겟화하는 여러 유망한 화합물들이 보고되었다[참조, J. Med. Chem., 2009, 52 (6), pp 1757-1767, Cancer Res. 2008 Oct 15;68(20):8393-9]. 이러한 자료 및 상기 문헌에서 논의되는 다른 모든 외부 자료들은 이의 전문이 참고로 포함된다. 포함된 참고문헌에서의 용어의 정의 또는 사용이 본원에 제공된 용어의 정의와 일치하지 않거나 상반되는 경우에, 본원에 제공된 용어의 정의가 적용되며, 참고문헌에서의 용어의 정의는 적용되지 않는다. 그러나, 관찰된 활성이 적어도 일부 경우에서 유망하였지만, 그럼에도 불구하고 용해도, 독성, 및 비교적 높은 절반-최대 억제 농도(half-maximal ihhibitory concentration)와 관련된 문제들이 존재한다.
이에 따라, Hec1 억제를 위한 개선된 화합물, 조성물, 및 방법이 여전히 요구되고 있으며, 특히 암 치료에서 이러한 화합물의 용도에 관한 것이 여전히 요구되고 있다.
본 발명은 Hec1 억제를 위한 다양한 화합물, 조성물, 및 방법에 관한 것이다. 보다 특히, 고려되는 화합물들은 하기 화학식 (I)에 따른 화합물을 포함할 것이다:
Figure pct00001
상기 식에서, R1, R2, R3, R4, 및 R5는 하기에 기술된 바와 같다. 또한 특히 바람직한 화합물들은 하기 화학식 (II) 및 (III)에 따른 구조를 지닐 것이다(개개의 라디칼은 또한 하기에서 보다 상세히 기술된다).
Figure pct00002
본 발명의 일 양태에서, 고려되는 화합물들은 Hec1의 억제제이고/거나, Hec1/Nek2 상호작용을 방해하는 것으로서 특징될 수 있다. 그 결과, 본원에 기술된 화합물들은 특히 유사분열 경로(mitotic pathway)를 방해하는 치료제로서 사용하기에 적합하다. 이에 따라, 그리고 또 다른 관점으로 볼 때에, 특히 고려되는 조성물들은 고려되는 화합물들 중 하나 이상을, 조성물이 환자에게 투여될 때 환자에게서 Hec1/Nek2 결합을 방해하기에 효과적인 농도로 포함하는 약제 조성물을 포함한다.
이에 따라, 본 발명의 다른 양태에서, Nek2/Hec1 상호작용을 방해하는 방법이 고려되고 Nek2/Hec1 복합물을 본원에 기술된 하나 이상의 화합물과 Nek2/Hec1 결합을 방해하기에 유효한 양으로 접촉시키는 단계를 포함할 것이다. 모든 접촉 방식이 일반적으로 고려되지만, 통상적으로, Nek2/Hec1 복합물을 접촉시키는 단계가 포유 동물의 생체 내에서 수행되며, 접촉 단계가 또한 미세소관 형성 또는 분해를 방해하는 제제와 조합하여 수행될 수 있는 것이 바람직하다.
본 발명의 다양한 목적들, 특징들, 양태들 및 장점들은 동일한 숫자가 동일한 구성성분을 나타내는 첨부된 도면과 함께, 하기 바람직한 구체예들의 상세한 설명으로부터 더욱 명확하게 될 것이다.
도 1a 및 도 1b는 종양 세포(1a) 및 정상 세포(1b)에 대한 선택된 화합물들의 세포독성 효과를 예시한 표이다.
도 2a 내지 도 2d는 선택된 화합물들에 의해 야기된 Hec1/Nek2 상호작용의 방해(2a, 2b), Nek2 분해(2c), 및 Nek2 불안정(2d)을 도시한 웨스턴 블롯의 사진이다.
도 3은 고려되는 화합물들에 의해 영향을 받은 유사분열 세포(mitotic cell)의 백분율을 예시한 표이다.
도 4는 단백질 키나아제에 대한 고려되는 화합물들의 높은 특이성을 예시한 표이다.
도 5a 및 도 5b는 누드 마우스에서 종양 용적에 대한 선택된 화합물들의 생체내 효과를 도시한 그래프이다.
고려되는 화합물
본 발명자들은, 화학식 (I)에 따른 특정 화합물들이 제조될 수 있고 Hec1을 방해하는 부분으로서 유리한 성질들을 지닌다는 것을 발견하였다. 특히 바람직한 화합물들은 하기 화학식 (I)에 따른 화합물을 포함할 것이다:
Figure pct00003
특히 바람직한 양태에서, R1은 수소, 알킬, 알케닐, 알키닐, 알콕시, 아릴, 할로겐, 니트로, 시아노, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 헤테로시클로알케닐, ORa, SRa, NRaRb, -S(O)2Ra, -S(O)2NRaRb, -C(O)Ra, -C(O)NRaRb, -NRaC(O)Rb, -NRaS(O)2Rb, -N=CRaRb, 또는 -NRaC(O)NHRb이며; Ra 및 Rb는 독립적으로 수소, 알킬, 알케닐, 알키닐, 아릴, 아릴옥시, 알콕시, 하이드록시, 헤테로아릴, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 또는 헤테로시클로알케닐이거나, Ra 및 Rb는 이들에 결합된 질소 원자와 함께, 헤테로아릴, 헤테로시클로알킬, 또는 헤테로시클로알케닐이며; R2, R3, 및 R4는 독립적으로 수소, C1-C6 알킬, 할로겐, 또는 ORa이며; R5는 알킬, 페닐알킬, 헤테로아릴알킬, 페닐알케닐, 헤테로아릴알케닐, 페닐, 헤테로아릴, 헤테로시클로알킬, 또는 헤테로시클로알케닐이며; R1, R2, R3, R4, R5, Ra, 및 Rb 각각은 독립적으로 임의적으로 치환된다. 보다 덜 바람직한 화합물들은 (I) R1 및 R2가 메틸이며 R3가 수소이며 R5가 티아졸릴, N-메틸이미다졸릴, 피라지닐, 피리디닐, 모르폴리닐, 페닐, 또는 디메톡시페닐이 아닌 화합물; (II) R1, R2, 및 R3이 메틸이며 R5가 티아졸릴, N-메틸이미다졸릴, 피라지닐, 피리디닐, 모르폴리닐, 페닐, 메톡시페닐, 디하이드록시페닐, 하이드록시메톡시페닐, 트리플루오로메틸페닐, 또는 디메톡시페닐이 아닌 화합물; 및 (III) R1 및 R2가 메틸이며 R3가 하이드록실 또는 메톡시이며 R5가 페닐이 아닌 화합물을 포함한다.
R1이 알콕시, SRa, ORa, 또는 -S(O)2Ra이며, Ra가 알킬 또는 임의적으로 치환된 아릴이며, R2, R3, 및 R4가 독립적으로 수소 또는 C1-C6 알킬이며, R5가 임의적으로 치환된 헤테로아릴인 것이 특히 바람직하다. 이러한 것들 중 더욱 바람직한 화합물들은 R1이 알콕시, SRa, ORa, 또는 -S(O)2Ra이고 Ra가 알킬 또는 임의적으로 치환된 아릴이고 R2 및 R3이 C1-C6 알킬이고 R5가 임의적으로 치환된 (예를 들어, 할로겐화된) 피리디닐인 화합물이다. 가장 바람직하게, R1은 ORa이며, 여기서 Ra는 임의적으로 치환된 아릴이며, R2 및 R3은 C1-C6 알킬이며, R5는 임의적으로 치환된 피리디닐이다.
결과적으로, 그리고 다른 관점으로 보면, 하기 화학식 (II)에 따른 구조를 지닌 화합물들이 또한 바람직하다.
Figure pct00004
상기 식에서, X1 및 X2는 독립적으로 H, 알킬, 알케닐, 알키닐, 할로겐, 니트로, 시아노, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 헤테로시클로알케닐, ORa, NRaRb, -S(O)2Ra, -S(O)2NRaRb, -C(O)Ra, -C(O)NRaRb, -NRaC(O)Rb, -NRaS(O)2Rb, -N=CRaRb, 또는 -NRaC(O)NHRb이며; Y는 CH2, CHRa, CRaRb, O, NH, NRa, S, SO, 또는 SO2이며; R1, R2, 및 R3은 독립적으로 H, 알킬, 알콕시, 또는 할로겐이며; n은 0, 1, 또는 2이며; A는 임의적으로 치환된 아릴 또는 임의적으로 치환된 헤테로아릴, 및 가장 바람직하게 하기에 도시된 화합물이며,
Figure pct00005
X1 및 X2 각각은 독립적으로 임의적으로 치환되며, Rc 및 Rd는 독립적으로 Ra이다. 이러한 화합물들 중에서, 또한 Y가 O, S, 또는 SO2이고/거나 A가 임의적으로 치환된 피리디닐인 것이 바람직하다. 가장 통상적으로, 이러한 화합물들에서 X1 및 X2는 독립적으로 H, 알킬, 및 알콕시일 것이며, n은 0 또는 1이다. 나머지 라디칼과 관련하여, 화학식 (I)에 대해 제공된 것과 동일한 요건들이 적용된다.
또 다른 바람직한 화합물들은 하기 화학식 (III)에 따른 구조를 지닌다.
Figure pct00006
상기 식에서, X1, X2 및 X3는 독립적으로 H, 알킬, 알케닐, 알키닐, 할로겐, 니트로, 시아노, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 헤테로시클로알케닐, ORa, NRaRb, -S(O)2Ra, -S(O)2NRaRb, -C(O)Ra, -C(O)NRaRb, -NRaC(O)Rb, -NRaS(O)2Rb, -N=CRaRb, 또는 -NRaC(O)NHRb이며; Y는 CH2, CHRa, CRaRb, O, NH, NRa, S, SO, 또는 SO2이며; R1, R2, 및 R3은 독립적으로 H, 알킬, 알콕시, 또는 할로겐이며; n은 0, 1, 또는 2이며; X1 및 X2 각각은 독립적으로 임의적으로 치환되며; Rc 및 Rd는 독립적으로 Ra이며, A 및 Het는 독립적이고 바람직하게 방향족 및 임의적으로 치환된 아릴 또는 헤테로아릴이다. 다른 적합한 선택 중에서, 통상적으로
Figure pct00007
Figure pct00008
이 바람직하다.
나머지 라디칼에 대하여, 화학식 (I)에 대해 주지된 바와 동일한 요건들이 적용된다. 화학식 (II)에 따른 특히 바람직한 화합물들은 A가 임의적으로 치환된 피리디닐이고/거나 Y가 O, S, 또는 SO2인 화합물을 포함할 것이다.
상기 및 추가의 실험 데이타(하기 참조)를 고려하여, 특히 바람직한 화합물들은 하기에 도시된 구조를 지닐 것이다.
Figure pct00009
본원에서 사용되는 용어 "알킬"은 선형, 환형 또는 분지형일 수 있는 탄화수소 라디칼을 칭한다. 용어 "알케닐"은 적어도 하나의 이중 결합을 갖는 알킬을 칭한다. 하나 초과의 이중 결합이 존재하는 경우에, 이중 결합이 컨주게이션되거나 비-컨주게이션될 수 있음이 고려된다. 본원에서 사용되는 용어 "알키닐"은 적어도 하나의 삼중 결합을 갖는 알킬을 칭한다. 고려되는 알키닐은 다른 삼중 결합 또는 이중 결합을 추가로 포함할 수 있는데, 이러한 결합들은 첫번째 삼중 결합과 컨주게이션될 수 있거나 되지 않을 수 있다. 본원에서 사용되는 용어 "알콕시"는 O-알킬기를 칭하는 것으로서, 여기서 "알킬"은 상기에 제공된 바와 같이 정의된다.
본원에서 사용되는 "시클로알킬"은 3개 내지 14개의 탄소 원자를 지닌 비-방향족 일가 모노시클릭 또는 폴리시클릭 라디칼을 칭하는 것으로서, 이들 각각은 포화되거나 불포화될 수 있고 본원에서 정의된 바와 같이 하나 이상의 적합한 치환체에 의해 치환되거나 비치환될 수 있으며, 이러한 기에 하나 이상의 치환체로 치환되거나 비치환될 수 있는 하나 이상의 아릴 기, 헤테로아릴 기, 시클로알킬 기, 또는 헤테로시클로알킬 기가 융합될 수 있다. 시클로알킬 기의 예는 시클로프로필, 시클로헵틸, 시클로옥틸, 시클로데실, 시클로부틸, 아다만틸, 노르피나닐, 데칼리닐, 노르보르닐, 시클로헥실, 및 시클로펜틸을 포함한다.
본원에서 사용되는 "헤테로시클로알킬"은 질소, 산소 및 황으로부터 선택된 1개 내지 5개의 헤테로원자를 갖는 비-방향족 일가 모노시클릭 또는 폴리시클릭 라디칼을 칭하는 것으로서, 이는 본원에서 정의된 바와 같이 하나 이상의 적합한 치환체로 치환되거나 비치환될 수 있으며, 이러한 기에 하나 이상의 치환체로 치환되거나 비치환될 수 있는 하나 이상의 아릴 기, 헤테로아릴 기, 시클로알킬 기, 또는 헤테로시클로알킬 기가 융합될 수 있다. 헤테로시클로알킬 기의 예는 옥시라닐, 피롤리디닐, 피페리디닐, 테트라하이드로푸란, 및 모르폴리닐을 포함한다.
본원에서 사용되는 "아릴"(Ar)은 일반적으로 5원 내지 18원의 탄소 고리를 포함하는 방향족 모노시클릭 또는 폴리시클릭 라디칼을 칭하는 것으로서, 이는 본원에서 정의된 바와 같이 하나 이상의 적합한 치환체로 치환되거나 비치환될 수 있으며, 이러한 기에 하나 이상의 치환체로 치환되거나 비치환될 수 있는 하나 이상의 아릴 기, 헤테로아릴 기, 시클로알킬 기, 또는 헤테로시클로알킬 기와 융합될 수 있다. 이에 따라, 용어 "아릴 기"는 벤질 기(Bzl)를 포함한다. 예는 페닐, 바이페닐, 1,2,3,4-테트라하이드로나프틸, 나프틸, 안트릴, 및 페난트릴을 포함한다.
본원에서 사용되는 "헤테로아릴"은 질소, 산소, 및 황으로부터 선택된 1개 내지 5개의 헤테로원자를 포함한, 일반적으로 4원 내지 18원 고리를 포함하는 방향족 모노시클릭 또는 폴리시클릭 라디칼을 칭하는 것으로서, 이는 하기에 정의된 바와 같이 하나 이상의 적합한 치환체로 치환되거나 비치환될 수 있으며, 이러한 기에 하나 이상의 치환체로 치환되거나 비치환될 수 있는 하나 이상의 아릴 기, 헤테로아릴 기, 시클로알킬 기, 또는 헤테로시클로알킬 기가 융합될 수 있다. 예는 티에닐, 푸라닐, 티아졸릴, 트리아졸릴, 이미다졸릴, 이속사졸릴, 옥사디아졸릴, 테트라졸릴, 피리딜, 피롤릴, 티아디아졸릴, 옥사디아졸릴, 옥사티아디아졸릴, 티아트리아졸릴, 피리미디닐, 이소퀴놀리닐, 퀴놀리닐, 나프티리디닐, 프탈이미딜, 벤즈이미다졸릴, 및 벤족사졸릴을 포함한다.
본원에서 사용되는 용어 "헤테로사이클" 또는 "헤테로시클릭"은 통상적으로 고리를 형성하는 4개 내지 10개의 원자를 가지고, 하나 이상의 헤테로 원자(통상적으로, O, S 또는 N)를 함유하는 방향족 및 비-방향족 헤테로시클릭 기를 칭하는 것이다. 비-방향족 헤테로시클릭 기는 이의 고리계에 단지 4개의 원자만을 갖는 기를 포함하며, 방향족 헤테로시클릭 기는 통상적으로 이의 고리계에 적어도 5개의 원자를 갖는다. 비-방향족 헤테로시클릭 기의 예는 피롤리디닐, 테트라하이드로푸라닐, 테트라하이드로티에닐, 테트라하이드로피라닐, 테트라하이드로티오피라닐, 피페리디노, 모르폴리노, 티오모르폴리노, 티옥사닐, 피페라지닐, 아제티디닐, 옥세타닐, 티에타닐, 호모피페리디닐, 옥세파닐, 티에파닐, 옥사제피닐, 디아제피닐, 티아제피닐, 1,2,3,6-테트라하이드로피리디닐, 2-피롤리디닐, 3-피롤리디닐, 인돌리닐, 2H-피라닐, 4H-피라닐, 디옥사닐, 1,3-디옥솔라닐, 피라졸리닐, 디티아닐, 디티올라닐, 디하이드로피라닐, 디하이드로티에닐, 디하이드로푸라닐, 피라졸리디닐, 이미다졸리닐, 이미다졸리디닐, 3-아자비시클로[3.i.0]헥사닐, 3H-인돌릴, 및 퀴놀리지닐을 포함한다.
방향족 헤테로시클릭 기의 예는 피리디닐, 이미다졸릴, 피리미디닐, 피라졸릴, 트리아졸릴, 피라지닐, 테트라졸릴, 푸릴, 티에닐, 이속사졸릴, 티아졸릴, 옥사졸릴, 이소티아졸릴, 피롤릴, 퀴놀리닐, 이소퀴놀리닐, 인돌릴, 벤즈이미다졸릴, is 벤조푸라닐, 신놀리닐, 인다졸릴, 인돌리지닐, 프탈라지닐, 피리다지닐, 트리아지닐, 이소인돌릴, 프테리디닐, 푸리닐, 옥사디아졸릴, 티아디아졸릴, 푸라자닐, 벤조푸라자닐, 벤조티오페닐, 퀴나졸리닐, 벤조티아졸릴, 벤족사졸릴, 퀴녹사지닐, 나프티리디닐, 및 푸로피리디닐을 포함한다. 고려되는 4원 내지 10원 헤테로사이클은 C-결합 또는 N-결합일 수 있다(적절한 경우). 예를 들어, 피롤로부터 유래된 기는 피롤-1-일 (N-결합) 또는 피롤-3-일(C-결합)일 수 있다.
본원에서 추가로 사용되는 바와 같이, 본원에서 사용되는 용어 "치환된"은 치환된 분자를 형성시키기 위해 분자에서의 원자(라디칼) 또는 화학적 기(예를 들어, NH2 또는 OH)를 작용기로 대체 또는 개질시키는 것을 칭하는 것이며, 특히 고려되는 작용기는 친핵성 기(예를 들어, -NH2, -OH, -SH, -NC, 등), 친전자성 기(예를 들어, C(O)OR, C(O)OH, 등), 극성 기(예를 들어, -OH), 비-극성 기(예를 들어, 아릴, 알킬, 알케닐, 알키닐, 등), 이온성 기(예를 들어, -NH3 +), 및 할로겐(예를 들어, -F, -Cl), 및 이의 모든 화학적으로 적절한 조합을 포함한다. 예를 들어, 분자가 알킬이며 대체된 라디칼이 수소 라디칼이며 작용기가 하이드록실 기인 경우에, H-원자는 OH 기로 치환되어 치환된 알킬을 형성한다. 다른 예에서, 분자가 아미노산이며 개질된 기가 아미노 기이며 작용기가 알킬 기인 경우에, 아미노 기는 알킬화되어 N-치환된 아미노산을 형성한다.
예를 들어, 적합한 치환체는 할로겐 (클로로, 아이오도, 브로모, 또는 플루오로); C1 -6-알킬; C1 -6-알케닐; C1 -6-알키닐, 하이드록실, C1 -6 알콕실; 아미노; 니트로; 티올; 티오에테르; 이민; 시아노; 아미도; 포스포네이토; 포스핀; 카복실; 카보닐; 아미노카보닐; 티오카보닐; 설포닐; 설폰아민; 설폰아미드; 케톤; 알데하이드; 에스테르; 산소(=O); 할로알킬 (예를 들어, 트리플루오로메틸); 모노시클릭 또는 융합되거나 비융합된 폴리시클릭일 수 있는 카보시클릭 시클로알킬(예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 또는 시클로헥실), 또는 모노시클릭 또는 융합되거나 비융합된 폴리시클릭일 수 있는 헤테로시클로알킬(예를 들어, 피롤리디닐, 피페리디닐, 피페라지닐, 모르폴리닐, 또는 티아지닐); 카보시클릭 또는 헤테로시클릭, 모노시클릭 또는 융합되거나 비융합된 폴리시클릭 아릴(예를 들어, 페닐, 나프틸, 피롤릴, 인돌릴, 푸라닐, 티오페닐, 이미다졸릴, 옥사졸릴, 이속사졸릴, 티아졸릴, 트리아졸릴, 테트라졸릴, 피라졸릴, 피리디닐, 퀴놀리닐, 이소퀴놀리닐, 아크리디닐, 피라지닐, 피리다졸릴, 피리미디닐, 벤즈이미다졸릴, 벤조티오페닐, 또는 벤조푸라닐); 아미노(1차, 2차 또는 3차); 니트로; 티올; 티오에테르, O-저급 알킬; O-아릴, 아릴; 아릴-저급 알킬; CO2CH3; CONH2; OCH2CONH2; NH2; SO2NH2; OCHF2; CF3; OCF3; 등을 포한한다. 본원에서 고려되는 모든 치환체들은 임의적으로 상기에 주지된 하나 이상의 치환체로 추가로 치환될 수 있다는 것이 추가로 주지되어야 한다. 특히 바람직한 치환체는 하이드록실 기, 할로겐, 옥소 기, 알킬 기(및 특히, 저급 알킬), 아실 기, 설포닐 기, 머캅토 기, 알킬티오 기, 알킬옥실 기, 시클로알킬 기, 헤테로시클로알킬 기, 아릴 기, 헤테로아릴 기, 카복실 기, 아미노 기, 알킬아미노 기, 디알킬아미노 기, 카바모일 기, 아릴옥실 기, 헤테로아릴옥실 기, 아릴티오 기, 헤테로아릴티오 기를 포함한다.
또한, 본 발명에 따른 화합물들이 하나 이상의 비대칭 중심을 포함할 수 있고, 이에 따라 상이한 거울상 이성질체 형태로 존재할 수 있으며, 고려되는 화합물들의 모든 거울상 이성질체 형태가 본원에서 상세하게 고려되는 것으로 인식되어야 한다. 유사하게, 고려되는 화합물들이 광학적 활성을 나타내고/거나 입체이성질체를 갖는 경우에, 모든 광학적 활성 및/또는 이성질체 형태들이 본원에서 고려된다. 유사하게, 이중 결합이 E-형태와 Z-형태를 (또는 트랜스-와 시스-를) 구별하는 경우에, 둘 모두의 이성질체가 고려된다. 또한, 본 발명에 따른 화합물들이 또한 동위원소로 라벨링될 수 있다는 것이 주지된다. 적합한 동위원소의 예는 2H, 3H, 13C, 14C, 15N, 18O, 17O, 18F, 또는 36Cl이다. 본 발명의 특정의 동위원소로 라벨링된 화합물들, 예를 들어 14C 또는 3H가 도입된 화합물들은 약물 및/또는 기질 조직 분포 검정에서 유용할 수 있다. 다른 한편으로, 비-방사성 동위원소(예를 들어, 2H 또는 13C)로의 치환은 보다 큰 대사 안정성, 예를 들어 증가된 생체내 반감기 또는 감소된 투약량 요건을 초래하는 특정 치료학적 장점들을 제공할 수 있고, 이에 따라 몇몇 상황에서 바람직할 수 있다.
고려되는 화합물들은 약제학적으로 허용되는 염(들)으로서 제조될 수 있으며, 이는 특히 고려되는 화합물에 존재할 수 있는 산성 또는 염기성 기의 염을 포함한다. 예를 들어, 고려되는 화합물들이 본래 염기성인 경우에, 이러한 화합물들이 다양한 무기산 및 유기산을 갖는 매우 다양한 염을 형성할 수 있다는 것이 주지되어야 한다. 적합한 산은 클로라이드, 브로마이드, 아이오다이드, 니트레이트, 설페이트, 비설페이트, 포스페이트, 산 포스페이트, 이소니코티네이트, 아세테이트, 락테이트, 살리실레이트, 시트레이트, 산 시트레이트, 타르트레이트, 판토테네이트, 비타르트레이트, 아스코르베이트, 숙시네이트, 말레이트, 겐티시네이트, 푸마레이트, 글루코네이트, 글루카로네이트, 사카레이트, 포르메이트, 벤조에이트, 글루타메이트, 메탄설포네이트, 에탄설포네이트, 벤젠설포네이트, p-톨루엔설포네이트, 및 파모에이트 [1,1'-메틸렌-비스-(2-하이드록시-3-나프토에이트] 음이온을 포함하는 약리학적으로 허용되는 음이온을 제공할 것이다. 유사하게, 고려되는 화합물들이 본래 산성인 경우에, 이러한 화합물들이 다양한 약리학적으로 허용되는 양이온을 갖는 염기 염을 형성할 수 있으며, 특히 적합한 양이온이 알칼리 금속 또는 알칼리토 금속 이온(예를 들어, 소듐 및 칼륨 양이온)을 포함한다는 것이 주지되어야 한다.
또다른 고려되는 양태에서, 본원에 제시된 화합물들은 프로드러그(prodrug)로서 제조될 수 있으며, 프로드러그의 모든 공지된 방식 및 타입은, 이러한 프로드러그가 타겟 기관, 타겟 세포, 및/또는 Hec1에서 약물(또는 프로드러그의 대사물)의 농도를 증가시키는 한, 본원에서 사용하기에 적합한 것으로 여겨진다. 예를 들어, 고려되는 화합물들이 자유 아미노, 아미도, 하이드록시, 티오, 또는 카복실 기를 갖는 경우에, 이러한 기가 약물을 프로드러그로 변환시키는 부분을 공유적으로 및 분리 가능하게 결합하기 위해 이용될 수 있다는 것이 고려된다. 이에 따라, 프로드러그는 특히, 고려되는 화합물들이 다른 분열가능한 부분과 에스테르, 아미드, 또는 디설파이드 결합을 형성하는 화합물들을 포함한다. 이러한 부분들은 약물의 기관 또는 세포-특이적 전달을 도울 수 있고, 이에 따라 특히 수용체 리간드 및 이들의 유사체, 항체 단편 또는 다른 고-친화력 리간드(Kd<106M)를 포함한다.
예를 들어, 카복실 기는 아미드 또는 알킬 에스테르를 형성하기 위해 유도될 수 있으며, 이는 에테르, 아민-, 및/또는 카복실산 기를 포함할 수 있다. 자유 하이드록실 기는 문헌[D. Fleisher, R. Bong, B. H. Stewart, Advanced Drug Delivery 40 Reviews (1996) 19, 115]에 개략된 바와 같이, 헤미숙시네이트, 포스페이트 에스테르, 디메틸아미노아세테이트, 및 포스포릴옥시메틸옥시-카보닐을 이용하여 유도될 수 있다. 하이드록실 및 아미노 기의 카바메이트 프로드러그는 또한, 하이드록실 기의 카보네이트 프로드러그 및 설페이트 에스테르와 같이, 포함된다. (아실옥시)메틸 및 (아실옥시)에틸에테르 (여기서, 아실기는 알킬 에스테르 (임의적으로 치환됨)일 수 있거나 아실 기가 아미노산 에스테르임)로서 하이드록실 기의 유도가 또한 고려된다[이러한 타입의 프로드러그는 문헌[R. P. Robinson et al., J. Medicinal Chemistry (1996) 39:p.10)]에 기술된다].
또다른 고려되는 양태에서, 본 발명에 따른 화합물들이 또한 대사물(프로드러그 또는 비-프로드러그 형태)로서 활성화될 수 있으며 이러한 대사물 모두가 특히 본원에서 고려되는 것으로 인식되어야 한다. 예를 들어, 안정한 대사물은 하이드록실화된 형태, 산화된 형태, 글루쿠론화된 형태, 설페이트화된 형태, 등을 포함한다. 또한, 대사물이 본래 투여되는 형태를 더욱 활성화시킬 수 있다는 것이 또한 주지된다.
고려되는 조성물 및 제형
Hec1 조절인자로서의 화합물의 활성을 기초로 하여, 본 발명자들은 본 발명에 따른 화합물 및 조성물들이 Hec1 기능 장애 및/또는 과발현과 관련된 다양한 질환, 및 실제로 고려되는 화합물들의 투여에 대해 긍정적으로 반응하는 모든 질환의 예방 및/또는 치료를 위해 사용될 수 있다는 것을 고려한다. 본원에서 사용되는 용어 "Hec1의 기능 장애"는 Hec1에서의 임의의 이상(abnormality)을 칭하는 것으로서, 이는 Nek2 기능 및 방추체 체크포인트 시그널링(spindle checkpoint signaling)과의 관계와 관련이 있다. 이러한 이상은 돌연변이(예를 들어, 결합 파트너에 대한 친화력을 증가 또는 감소), 일시적 또는 영구적 과발현(예를 들어, 적절치 않거나 돌연변이된 촉진제에 의한 활성화), 활성제의 비가역적 또는 단단한 결합, 비-생리학적 분자에 의한 적절치 않은 활성화 등 중 하나 이상으로 기인할 수 있다. 그 결과, 특히 고려되는 질환들은 신생물 질환, 및 특히 암성 신생물 질환(예를 들어, 유방암, 편평 세포 암, 방광암, 위암, 췌장암, 두부암, 경부암, 식도암, 전립선암, 결장직장암, 폐암, 신장암, 부인암(gynecological cancer) 또는 갑상선암)을 포함한다. 비-암성 신생물 질환은 피부(예를 들어, 건선) 또는 전립샘(예를 들어, 양성 전립선 비대(BPH))의 양성 과다형성을 포함한다.
이에 따라, 본 발명자는 또한 본원에 제시된 화합물들을 포함한 여러 약제 조성물들을 고려하며, 이는 일반적으로 본 발명에 따른 화합물들이 치료학적 유효량의 화합물들(또는 이의 약제학적으로 허용되는 염, 수화물, 또는 프로드러그) 및 약제학적으로 허용되는 담체를 지닌 약제 조성물로 제형화될 수 있다는 것이 고려된다.
활성, 독성, 및 다른 약리학적 및 약물역학적 파라미터들은 여러 공지된 프로토콜을 이용하여 제시된 화합물들에 대해 규명될 수 있다. 유사하게, 세포독성은 다양한 세포주에서 MTS 검정을 통해 규명될 수 있으며, Hec1-Nek2 상호작용의 붕괴는 공동-면역침전(co-immunoprecipitation) 또는 효모 이중 보합계(yeast two-hybrid system)를 통하여 모니터링될 수 있다. 세포 주기 분석은 다양한 단계 집단(stage population)(예를 들어, sub-G1, G0/G1, S, 등)을 모니터링함으로써 수행될 수 있으며, 중기 염색체 정렬 불량 정량화는 당해 분야에 널리 공지된 면역형광법을 이용하여 수행될 수 있다. 생체내 활성은 다양한 동물 모델, 및 특히 이종이식 모델을 이용하여 규명될 수 있다. 대표적인 결과는 첨부된 표 및 표준화된 데이타로 제공된다. 그 결과, 본 발명자들은 약제학적으로 허용되는 담체, 및 본원의 고려되는 화합물들을 포함하는 약제 조성물을 고려하는데, 여기서 상기 화합물들은, 조성물이 환자에게 투여될 때 환자에게서 Hec1/Nek2 결합을 붕괴시키기에 유효한 농도로 존재한다. 본 발명자들은 또한, 본 발명에 따른 여러 화합물들이 경구 투여 시에 생체 이용가능하였고 경구 투여 또는 정맥내(i.v.) 투여 이후에 긴 기간에 걸쳐 혈청에서 검출될 수 있다는 것을 발견하였다(하기 참조).
가장 바람직하게, 고려되는 화합물들은 하나 이상의 비-독성의 약제학적으로 허용되는 담체와 함께 제형화되고, 바람직하게 경구 투여를 위한 고체 또는 액체 형태로, 또는 비경구 주사용으로 제형화된다. 이에 따라, 본 발명에 따른 약제 조성물은 경구, 직장, 비경구, 복막내, 질내, 또는 국소 경로를 포함한 다양한 경로를 이용하여 인간 및 다른 동물들에 투여될 수 있는 것으로 인식되어야 한다.
예를 들어, 주사를 위한 적합한 약제 조성물은, 바람직하게 약제학적으로 허용되는 멸균 수용액 또는 비수용액, 분산액, 에멀젼, 또는 현탁액, 뿐만 아니라 사용 전에 멸균 주사 가능한 용액 또는 분산액으로 재구성하기 위한 멸균 분말을 포함한다. 적합한 수성 및 비수성 담체, 희석제, 용매, 또는 비히클의 예는 물, 에탄올, 폴리올(예를 들어, 글리세롤, 프로필렌 글리콜, 폴리에틸렌 글리콜 등), 및 이의 적합한 혼합물, 오일, 및 주사 가능한 유기 에스테르(예를 들어, 에틸 올레이트)를 포함한다. 고려되는 조성물들은 또한, 보존제, 습윤제, 에멀젼제, 및/또는 분산제를 포함한, 다양한 비활성 구성성분들을 함유할 수 있다. 멸균성은 항박테리아제 및/또는 항진균제(예를 들어, 파라벤, 페놀 소르브산, 클로로부탄올, 등)의 포함에 의해 확보될 수 있다. 적절한 경우에, 삼투 활성제(예를 들어, 당, 소듐 클로라이드 등)가 포함될 수 있다.
대안적으로, 고려되는 조성물들은 경구 투여를 위한 고체 투약형으로 제형화될 수 있고, 이에 따라 캡슐, 정제, 환제, 분말, 및 과립일 수 있다. 바람직한 고체 투약형에서, 고려되는 화합물들은 약제학적으로 허용되는 부형제 또는 담체(예를 들어, 소듐 시트레이트 또는 디칼슘 포스페이트), 충전제 또는 증량제(예를 들어, 전분, 락토즈, 수크로즈, 글루코즈, 만니톨, 또는 규산), 결합제(예를 들어, 카복시메틸 셀룰로즈, 알기네이트, 젤라틴, 폴리비닐피롤리돈, 수크로즈 등), 보습제(humectant)(예를 들어, 글리세롤), 붕해제(예를 들어, 아가-아가, 칼슘 카보네이트, 감자 또는 타피오카 전분, 알긴산, 특정 실리케이트, 또는 소듐 카보네이트), 용액 지연제(solution retarding agent)(예를 들어, 파라핀), 흡수 촉진제(예를 들어, 4차 암모늄 화합물), 습윤제(예를 들어, 세틸 알코올 및 글리세롤 모노스테아레이트), 및 흡착제(예를 들어, 카올린 또는 벤토나이트 클레이), 및 윤활제(예를 들어, 탈크, 칼슘 스테아레이트, 마그네슘 스테아레이트, 고체 폴리에틸렌 글리콜, 소듐 라우릴 설페이트) 중 적어도 하나와 혼합된다.
유사한 타입의 고체 조성물은 또한 부형제, 예를 들어 락토즈 또는 유당, 뿐만 아니라 고분자량 폴리에틸렌 글리콜 등을 이용하여 연질 및 경질-충전 젤라틴 캡슐에서 충전제로서 이용될 수 있다. 정제, 당의정, 캡슐, 환제, 및 과립의 고체 투약형은 코팅 및 쉘, 예를 들어 장용제, 및 약제학적 제형 분야에서 널리 공지된 다른 코팅으로 제조될 수 있다. 고려되는 조성물들은 활성 성분(들)만을 방출하거나, 우선적으로 장관의 특정 부분에, 임의적으로 지연된 방식으로 방출하기 위해 추가로 제형화될 수 있다. 사용될 수 있는 침입 조성물(embedding composition)의 예는 폴리머 물질 및 왁스를 포함한다. 고려되는 화합물들은 또한 적절한 경우에 하나 이상의 상술된 부형제와 함께 마이크로캡슐화된 형태로 이루어질 수 있다.
경구 투여를 위한 액체 투약형은 약제학적으로 허용되는 에멀젼, 용액, 현탁액, 시럽 및 엘릭시르를 포함한다. 활성 화합물 이외에, 액체 투약형은 당해 분야에서 일반적으로 사용되는 불활성 희석제(예를 들어, 물, 또는 다른 용매, 가용화제), 에멀젼제(예를 들어, 에틸 알코올, 이소프로필 알코올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸렌 글리콜, 디메틸 포름아미드), 오일(및 특히, 목화씨, 땅콩, 옥수수, 배아, 올리브, 캐스터, 및 참기름), 글리세롤, 테트라하이드로푸르푸릴 알코올, 폴리에틸렌 글리콜, 및 소르비탄의 지방산 에스테르, 및 이들의 혼합물을 함유할 수 있다. 불활성 희석제 이외에, 경구 조성물은 또한 어주번트, 예를 들어 습윤제, 에멀젼화 및 현탁화 제제, 감미제, 착향제, 및 향수 제제(perfuming agent)를 포함할 수 있다.
본 발명에 따른 화합물들은 또한 리포솜의 형태로 투여될 수 있으며, 이는 단일층(unilamellar), 올리고층(oligolamellar), 또는 폴리층(polylamellar)일 수 있다. 리포솜 형태의 고려되는 조성물들은 안정화제, 보존제, 부형제 등을 추가로 함유할 수 있다. 리포솜 형태를 위한 바람직한 지질은 인지질 및 포스파티딜 콜린(레시틴)을 포함하며, 이 둘 모두는 천연 및 합성이다. 리포솜을 형성시키는 방법은 당해 분야에 공지되어 있다[예를 들어, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et seq].
본 발명에 따른 약제 조성물에서 고려되는 화합물들의 실제 투약 수준은 특정 환자, 조성, 및 투여 모드에 대한 요망되는 치료학적 반응을 달성하기 위해 효과적인 고려되는 화합물(들)의 양을 얻기 위해 변경될 수 있다. 이에 따라, 선택된 투약 수준은 특정 화합물의 활성, 투여 경로, 치료되는 증상의 중증도, 및 치료되는 환자의 상태 및 종래 의학적 히스토리를 포함하는 다양한 인자에 따를 것이다. 그러나, 당해 분야 내에서, 요망되는 치료 효과를 달성하고 요망되는 효과가 달성될 때까지 투여량을 점진적으로 증가시키기 위해 요구되는것 보다 낮은 수준으로 화합물의 투약이 개시된다. 일반적으로, 하루에 체중 1 킬로그램 당 약 0.01 mg 내지 약 500 mg, 더욱 바람직하게 약 0.5 mg 내지 약 50 mg의 투약 수준의 고려되는 화합물은 포유동물 환자에게 경구로 투여된다. 요망되는 경우에, 유효한 일일 용량은 투여 목적을 위해 여러 회의 용량, 예를 들어 하루에 2회 내지 4회 개별적인 용량으로 분할될 수 있다. 이에 따라, 고려되는 제형들은 특히 경구 투여, 비경구 투여, 크림으로서 또는 점안액 또는 다른 액체 국소 제형으로서 투여하기 위해 적합한 제형을 포함한다.
또한, 예비 데이타는, 다양한 Hec1 억제제가 선택된 화학치료 억제제와 함께 상승 효과를 나타내는 것으로 나타났다. 다른 화학치료 억제제들 중에서, 탁솔, 빈크리스틴 및 빈블라스틴을 포함하는 화합물들은 상승 효과를 나타내었고, 또한 튜불린 형성 또는 중합 억제제, 뿐만 아니라 프리튜불린 억제제와 관련하여 상승 효과를 가질 것으로 예상된다. 이에 따라, 적합한 화학치료 억제제는 특히 미세소관 형성 또는 분해를 방해하는 하나 이상의 약물을 포함한다. 이에 따라, 세포 분화 및 임의의 항대사작용에 영향을 미치는 임의의 약물은 본원에서 고려되는 Hec1 억제제와 조합하여 유용할 것으로 여겨진다. 반대로, 안트라시클린(예를 들어, 독소루비신)은 단지 최대 첨가 효과를 가지고 Hec1 억제제와의 상승 효과를 가지지 않는 것으로 나타난다.
고려되는 약제 조성물은 또한 추가의 약제학적 활성 화합물을 포함할 수 있으며, 특히 고려되는 추가의 약제학적 활성 화합물은 항신생물제를 포함하는데, 이는 DNA 복제, 세포 주기, 세포 대사, 혈관형성에 작용하거나 아폽토시스를 유도할 수 있는 것으로 또한 인식되어야 한다. 다른 적합한 활성제는 면역학적 활성제(예를 들어, 항염증제, 면역억제제, 스테로이드, 인터페론(알파, 베타 또는 감마), 및 이들의 단편, 및 Th1 및/또는 Th2 사이토카인 발현을 선택적으로 증가 또는 억제하는 분자)를 포함한다. 또다른 적합한 활성제는 항박테리아성 및 항바이러스성 제제, 대사작용을 자극하거나 변경시키는 약물, 신경학적 활성 약물, 및 진통제를 포함한다. 물론, 추가의 약제학적 활성 화합물들은 동일한 약제 조성물에 포함될 수 있거나, 별도로 투여될 수 있으며 당업자는 추가의 약제학적 활성 화합물의 적합한 동시 투여의 스케줄 및 경로를 용이하게 결정하는 것으로 인지되어야 한다.
실시예 / 실험예
4-아릴-2- 아미도티아졸의 대표적인 합성
고려되는 4-아릴-2-아미도티아졸 화합물들은 여러 합성 경로들로 제조될 수 있으며, 하기는 단지 대표적인 안내를 제공하기 위해 제공된 것이다. 하기 반응식을 이용하여 본원에 제시된 대부분의 화합물들을 제조할 수 있지만, 다른 화합물들은 당업자에게 더욱 명확하게 되는 일반식에 대해 최소한의 변경을 필요로 할 수 있다.
Figure pct00010
상기 반응식은 4-아릴-2-아미노티아졸(E)의 합성을 위한 방법을 예시한 것이다. 치환된 벤젠, 피리딘, 또는 다른 헤테로시클릭 화합물(5원, 6원 또는 7원)을 포함하는 구조 A의 방향족 화합물을 AlCl3의 존재 하에 아세틸 클로라이드와 반응하여 아세틸화된 아렌(B)을 수득한다. B의 브롬화는 α-Br-아세틸화된 아렌(C)을 수득하고, 이는 티오우레아와 반응하여 C-4 위치에 아릴 치환체를 지닌 아미노티아졸(D)을 형성시킬 수 있다. 이에 따라 제조된 아미노티아졸은 다른 산들과 반응하여 최종 4-아릴-2-아미도티아졸(E)을 수득한다.
Ar1의 아세틸화:
Figure pct00011
Ar1의 아세틸화는 상기 반응식에 도시된 상이한 시약들을 사용함으로써 달성될 수 있다.
아세틸 Ar1의 브롬화:
Figure pct00012
적합한 브롬화제는 에테르, THF, 할로겐화된 탄화수소, 에스테르 등을 포함하는 다양한 용매 중의 Br2, HBr, NBS, TBABr3, CuBr2, 등을 포함한다.
아미노티아졸의 아미드화:
Figure pct00013
적합한 커플링제는 CDI, EDC, CDC, 등을 포함한다.
Figure pct00014
X는 통상적으로 Cl 또는 Br이며, 염기는 통상적으로 Et3N, Me3N, DIPEA, K2C03, Na2CO3, DMAP, 등을 포함한다. 대안적으로, 4-아릴-2-아미도티아졸은 하기와 같이 제조될 수 있다:
Figure pct00015
대안적으로, 커플링은 또한 하기와 같이 수행될 수 있다:
Figure pct00016
CH2Cl2 중의 4-아릴티아졸-2-아민(1.0 당량)의 용액에, 트리에틸아민(3.0 당량) 또는 DMAP(3.0 당량)를 첨가한 후에 아릴옥시 클로라이드(1.5 당량) 또는 아릴옥시클로라이드 하이드로클로라이드(1.5 당량)를 첨가하였다. 반응 혼합물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 온수를 첨가하였다. 얻어진 침전물을 여과하고, 진공 하에서 건조시켜 상응하는 4-아릴-2-아미도티아졸을 수득하였다. 특정 합성예에 대하여, 하기를 참조한다.
대표적인 아미노티아졸 및 관련된 중간체의 합성
Figure pct00017
2- 브로모 -1- 메시틸에탄온. EtOAc(50 mL) 중 1-메시틸에탄온(1.02 g, 6.27 mmol)의 용액에 구리(II) 브로마이드(CuBr2, 2.85 g, 12.8 mmol)를 첨가하였다. 반응 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 냉각시키고, 얻어진 고형물을 여과하고, EtOAc로 세척하였다. 여액을 감압 하에 농축시켜 미정제 2-브로모-1-메시틸에탄온(1.67 g)을 황색 오일로서 수득하였다:
Figure pct00018
4- 메시틸티아졸 -2-아민. 2-브로모-1-메시틸에탄온(2.43 g, 10.1 mmol) 및 티오우레아(0.810 g, 10.6 mmol)를 95% 에탄올(20 mL) 중에 용해시켰다. 반응 혼합물을 환류 하에 2.0 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔류물을 2-프로판올로부터 재결정화하여 요망되는 4-메시틸티아졸-2-아민(2.36 g)을 백색 고형물로서 수득하였다:
Figure pct00019
4-(p- 톨릴 )티아졸-2-아민. 95% EtOH(33.5 mL) 중의 2-브로모-1-(p-톨릴)에탄온(5.00 g, 23.5 mmol) 및 티오우레아(1.97 g, 25.9 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고 물(50 mL) 및 Na2CO3 수용액(1.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고 온수로 세척하였다. 고형물을 여과하고 진공 하에서 건조시켜 4-(p-톨릴)티아졸-2-아민(4.40 g)을 백색 고형물로서 99%의 수율로 수득하였다:
Figure pct00020
5- 메틸 -4-(p- 톨릴 )티아졸-2-아민. 95% EtOH(43 mL) 중의 2-브로모-1-(p-톨릴)프로판-1-온(6.88 g, 30.3 mmol) 및 티오우레아(2.54 g, 33.4 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고 톨루엔에서 재결정화하였다. 고형물을 여과하고 진공 하에서 건조시켜 5-메틸-4-(p-톨릴)티아졸-2-아민(6.10 g)을 백색 고형물로서 99%의 수율로 수득하였다:
Figure pct00021
2- 브로모 -1-(4- 메톡시 -2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(64 mL) 중 1-(4-메톡시-2,6-디메틸페닐)에탄온(5.7 g, 32 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 15.4 g, 32.0 mmol)를 첨가하였다. 반응물을 실온에서 80분 동안 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-메톡시-2,6-디메틸페닐)에탄온(9.14 g)을 수득하였으며, 이는 추가 정제 없이 다음 단계에서 바로 사용되었다.
Figure pct00022
4-(4- 메톡시 -2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(48 mL) 중의 2-브로모-1-(4-메톡시-2,6-디메틸페닐)에탄온(8.65 g, 33.6 mmol) 및 티오우레아(2.56 g, 33.6 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고 톨루엔(50 mL)에서 재결정화하였다. 고형물을 여과하고 진공 하에서 건조시켜 4-(4-메톡시-2,6-디메틸페닐)티아졸-2-아민(5.9 g)을 백색 고형물로서 66%의 수율로 수득하였다:
Figure pct00023
2- 브로모 -1-(2,4,6- 트리메틸피리딘 -3-일) 에탄온 하이드로브로마이드. 아세트산 용액(10.2 mL)에서 33% HBr 중의 1-(2,4,6-트리메틸피리딘-3-일)에탄온(5.0 g, 30.6 mmol)의 용액에 아세트산(10.2 mL) 중의 브롬(1.57 ml, 30.6 mmol)을 적가하였다. 반응물을 70℃에서 2.0 시간 동안 교반하였다. 용액을 실온으로 냉각시키고, 에테르로 세척하였다. 잔부를 감압 하에서 건조시켜 2-브로모-1-(2,4,6-트리메틸피리딘-3-일)에탄온 하이드로브로마이드를 수득하였으며, 이는 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00024
4-(2,4,6- 트리메틸피리딘 -3-일)티아졸-2-아민. 95% EtOH(39.8 mL) 중의 2-브로모-1-(2,4,6-트리메틸피리딘-3-일)에탄온 하이드로브로마이드(9.00 g, 27.9 mmol) 및 티오우레아(2.12 g, 27.9 mmol)의 혼합물을 환류 하에서 120분 동안 가열하였다. 용액을 농축시키고 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,4,6-트리메틸피리딘-3-일)티아졸-2-아민(3.80 g)을 황색 고형물로서 62% 수율로 수득하였다:
Figure pct00025
2- 브로모 -1-(4- 에톡시 -2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(41.6 mL) 중의 1-(4-에톡시-2,6-디메틸페닐)에탄온(4.00 g, 20.8 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 10.0 g, 20.8 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-에톡시-2,6-디메틸페닐)에탄온(6.40 g)을 수득하였고, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00026
4-(4- 에톡시 -2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(33.5 mL) 중의 2-브로모-1-(4-에톡시-2,6-디메틸페닐)에탄온(6.35 g, 23.4 mmol) 및 티오우레아(1.78 g, 23.4 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고 진공 하에서 건조시켜 4-(4-에톡시-2,6-디메틸페닐)티아졸-2-아민(4.18 g)을 백색 고형물로서 72% 수율로 수득하였다:
Figure pct00027
4-아세틸-3,5- 디메틸페닐 트리플루오로메탄설포네이트. 무수 CH2Cl2(20.1 mL) 중의 1-(4-하이드록시-2,6-디메틸페닐)에탄온(3.30 g, 20.1 mmol), 트리에틸아민(4.07 g, 40.2 mmol)의 용액을 0℃로 냉각시키고, 트리플루오로메탄설폰산 무수물(4.0 mL, 24 mmol)을 적가하였다. 첨가를 완료한 후에, 반응 혼합물을 실온으로 가온시키고 1.0 시간 동안 교반하였다. 용액에 물을 첨가하고 에틸 아세테이트(60 mL)로 추출하였다. 유기층을 분리하고, MgSO4(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 크로마토그래피로 정제하여 4-아세틸-3,5-디메틸페닐 트리플루오로메탄설포네이트(5.0 g)를 황색 오일로서 85% 수율로 수득하였다.
Figure pct00028
1-(3,5-디메틸-[1,1'- 바이페닐 ]-4-일) 에탄온. THF(4.0 mL) 중의 4-아세틸-3,5-디메틸페닐 트리플루오로메탄설포네이트(1.00 g, 3.38 mmol), KF(0.65 g, 11 mmol), 및 페닐보론산(0.49 g, 4.0 mmol)의 용액에 트리시클로헥실포스핀(11.4 mg, 0.04 mmol) 및 Pd(OAc)2(7.6 mg, 0.03 mmol)를 첨가하였다. 반응 혼합물을 N2 하, 실온에서 5.0 시간 동안 교반하였다. 반응 혼합물을 작은 셀라이트(Celite) 패드를 통해 여과하고, 케이크를 에틸 아세테이트(40 mL)로 세척하였다. 여액을 감압 하에 농축시키고, 잔부를 실리카겔 상에서 플래시 크로마토그래피로 정제하여 1-(3,5-디메틸-[1,1'-바이페닐]-4-일)에탄온(0.68 g)을 90% 수율로 수득하였다:
Figure pct00029
2- 브로모 -1-(3,5-디메틸-[1,1'- 바이페닐 ]-4-일) 에탄온. 아세토니트릴(16.9 mL) 중의 1-(3,5-디메틸-[1,1'-바이페닐]-4-일)에탄온(1.89 g, 8.43 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 4.07 g, 8.43 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(3,5-디메틸-[1,1'-바이페닐]-4-일)에탄온(3.2 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00030
4-(3,5-디메틸-[1,1'- 바이페닐 ]-4-일)티아졸-2-아민. 95% EtOH(12.1 mL) 중의 2-브로모-1-(3,5-디메틸-[1,1'-바이페닐]-4-일)에탄온(2.56 g, 8.44 mmol) 및 티오우레아(0.64 g, 8.44 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고 물(50 mL) 및 Na2CO3 포화 수용액(1.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(10 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(3,5-디메틸-[1,1'-바이페닐]-4-일)티아졸-2-아민(0.66 g)을 황색 고형물로서 28% 수율로 수득하였다:
Figure pct00031
1-(4- 클로로 -2,6- 디메틸페닐 ) 에탄온. 무수 구리(II) 클로라이드(98.9 g, 0.74 mol)를 아세토니트릴(1.02 L)에서 3차-부틸 니트라이트(94.8 g, 0.83 mol)와 혼합하였다. 용액을 0℃로 냉각시키고, 5.0분 동안에 1-(4-아미노-2,6-디메틸페닐)에탄온(100 g, 0.61 mol)을 서서히 첨가하였다. 첨가를 완료한 후에, 반응 혼합물을 실온으로 가온시키고, 염산 수용액(20%, 1.0 L)에 부었다. 용액을 EtOAc(800 mL)로 추출하고, 유기층을 분리하고, H2O(1.0 L)로 세척하고, MgSO4(s)로 건조시키고, 감압 하에 농축하였다. 액체를 증류하여 1-(4-클로로-2,6-디메틸페닐)에탄온(85.0 g)을 황색 오일로서 76% 수율로 수득하였다:
Figure pct00032
2- 브로모 -1-(4- 클로로 -2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(54.8 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(5.0 g, 27 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 13.2 g, 27.4 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgSO4(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-클로로-2,6-디메틸페닐)에탄온(7.2 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00033
4-(4- 클로로 -2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(35.7 mL) 중의 2-브로모-1-(4-클로로-2,6-디메틸페닐)에탄온(6.54 g, 25.0 mmol) 및 티오우레아(1.90 g, 25.0 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL)을 첨가한 후에 Na2CO3 포화 수용액(4.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-클로로-2,6-디메틸페닐)티아졸-2-아민(4.30 g)을 백색 고형물로서 72% 수율로 수득하였다:
Figure pct00034
N-(4-(2- 브로모아세틸 )-3,5- 디메틸페닐 ) 아세트아미드. 아세토니트릴(48.7 mL) 중 N-(4-아세틸-3,5-디메틸페닐)아세트아미드(5.00 g, 24.4 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 11.7 g, 24.4 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 N-(4-(2-브로모아세틸)-3,5-디메틸페닐)아세트아미드(7.00 g)를 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00035
N-(4-(2- 아미노티아졸 -4-일)-3,5- 디메틸페닐 ) 아세트아미드. 95% EtOH(36.9 mL) 중의 N-(4-(2-브로모아세틸)-3,5-디메틸페닐)아세트아미드(7.34 g, 25.8 mmol) 및 티오우레아(1.97 g, 25.9 mmol)의 혼합물을 환류 하에서 120분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(50 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 N-(4-(2-아미노티아졸-4-일)-3,5-디메틸페닐)아세트아미드(5.83 g)를 황색 고형물로서 86% 수율로 수득하였다:
Figure pct00036
2- 브로모 -1-(2,4,6- 트리이소프로필페닐 ) 에탄온. 아세토니트릴(81 mL) 중의 1-(2,4,6-트리이소프로필페닐)에탄온(10.0 g, 65.3 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 19.6 g, 40.6 mmol)를 첨가하였다. 반응물을 실온에서 3.0 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(2,4,6-트리이소프로필페닐)에탄온(13.2 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00037
4-(2,4,6- 트리이소프로필페닐 )티아졸-2-아민. 95% EtOH(60.9 mL) 중의 2-브로모-1-(2,4,6-트리이소프로필페닐)에탄온(13.9 g, 42.7 mmol) 및 티오우레아(3.24 g, 42.6 mmol)의 혼합물을 환류 하에서 밤새 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(10 mL)을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시키고, 이를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 33% EtOAc)로 정제하여 4-(2,4,6-트리이소프로필페닐)티아졸-2-아민(3.28 g)을 백색 고형물로서 25% 수율로 수득하였다:
Figure pct00038
1-(2,6-디메틸-4- 페녹시페닐 ) 에탄온. 톨루엔(49.3 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(4.50 g, 24,6 mmol), K3P04(10.5 g, 49.3 mmol), 및 페놀(2.78 g, 29.5 mmol)의 용액에 2-(디-3차-부틸포스피노)바이페닐(221 mg, 0.74 mmol) 및 Pd(OAc)2(233 mg, 1.04 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 2.0 시간 동안 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(2,6-디메틸-4-페녹시페닐)에탄온을 황색 오일로서 68% 수율로 수득하였다:
Figure pct00039
2- 브로모 -1-(2,6-디메틸-4- 페녹시페닐 ) 에탄온. 아세토니트릴(30 mL) 중의 1-(2,6-디메틸-4-페녹시페닐)에탄온(3.60 g, 15.0 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 7.95 g, 15.0 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(2,6-디메틸-4-페녹시페닐)에탄온(4.8 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00040
4-(2,6-디메틸-4- 페녹시페닐 )티아졸-2-아민. 95% EtOH(23.2 mL) 중의 2-브로모-1-(2,6-디메틸-4-페녹시페닐)에탄온(5.18 g, 16.2 mmol) 및 티오우레아(1.24 g, 16.3 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,6-디메틸-4-페녹시페닐)티아졸-2-아민(2.84 g)을 황색 고형물로서 59% 수율로 수득하였다:
Figure pct00041
2- 브로모 -1-(4- 이소프로폭시 -2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(41.7 mL) 중의 1-(4-이소프로폭시-2,6-디메틸페닐)에탄온(4.3 g, 20.9 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 11.1 g, 22.9 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-이소프로폭시-2,6-디메틸페닐)에탄온(5.9 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00042
4-(4- 이소프로폭시 -2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(26 mL) 중의 2-브로모-1-(4-이소프로폭시-2,6-디메틸페닐)에탄온(5.18 g, 18.2 mmol) 및 티오우레아(1.38 g, 18.2 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-이소프로폭시-2,6-디메틸페닐)티아졸-2-아민(3.44 g)을 황색 고형물로서 72.2% 수율로 수득하였다:
Figure pct00043
2- 브로모 -1-(4-( 시클로펜틸옥시 )-2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(39.6 mL) 중의 1-(4-(시클로펜틸옥시)-2,6-디메틸페닐)에탄온(4.60 g, 1 .8 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 10.5 g, 21.8 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(시클로펜틸옥시)-2,6-디메틸페닐)에탄온(6.2 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00044
4-(4-( 시클로펜틸옥시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(28.3 mL) 중의 2-브로모-1-(4-(시클로펜틸옥시)-2,6-디메틸페닐)에탄온(6.16 g, 19.8 mmol) 및 티오우레아(1.51 g, 19.8 mmol)의 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-(시클로펜틸옥시)-2,6-디메틸페닐)티아졸-2-아민(4.2 g)을 백색 고형물로서 73.7% 수율로 수득하였다:
Figure pct00045
1-(4-(4- 메톡시페녹시 )-2,6- 디메틸페닐 ) 에탄온. 톨루엔(78.2 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(10.0 g, 54.8 mmol), K3P04(23.2 g, 110 mmol) 및 4-메톡시페놀(8.16 g, 65.7 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(349 mg, 0.82 mmol), Pd(OAc)2(259 mg, 1.15 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 5.0 시간 동안 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 MeOH에서 재결정화하여 1-(4-(4-메톡시페녹시)-2,6-디메틸페닐)에탄온(11.1 g)을 백색 고형물로서 75.0% 수율로 수득하였다:
Figure pct00046
2- 브로모 -1-(4-(4- 메톡시페녹시 )-2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(28.1 mL) 중의 1-(4-(4-메톡시페녹시)-2,6-디메틸페닐)에탄온(3.80 g, 14.1 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 7.46 g, 15.5 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(4-메톡시페녹시)-2,6-디메틸페닐)에탄온(5.25 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00047
4-(4-(4- 메톡시페녹시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(20.0 mL) 중의 2-브로모-1-(4-(4-메톡시페녹시)-2,6-디메틸페닐)에탄온(4.90 g, 14.0 mmol) 및 티오우레아(1.07 g, 14.1 mmol)의 혼합물을 환류 하에서 100분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-(4-메톡시페녹시)-2,6-디메틸페닐)티아졸-2-아민(3.10 g)을 황색 고형물로서 68% 수율로 수득하였다:
Figure pct00048
1-(4-(4- 플루오로페녹시 )-2,6- 디메틸페닐 ) 에탄온. 톨루엔(49.3 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(4.50 g, 24.6 mmol), K3P04(10.5 g, 49.3 mmol), 및 4-플루오로페놀(3.31 g, 29.5 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(314 mg, 0.74 mmol), Pd(OAc)2(233 mg, 1.04 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 밤새 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(100 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(4-(4-플루오로페녹시)-2,6-디메틸페닐)에탄온(4.40 g)을 황색 오일로서 68% 수율로 수득하였다:
Figure pct00049
2- 브로모 -1-(4-(4- 플루오로페녹시 )-2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(34.1 mL) 중의 1-(4-(4-플루오로페녹시)-2,6-디메틸페닐)에탄온(4.40 g, 17.0 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 9.04 g, 18.8 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(4-플루오로페녹시)-2,6-디메틸페닐)에탄온(5.8 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00050
4-(4-(4- 플루오로페녹시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(24.3 mL) 중의 2-브로모-1-(4-(4-플루오로페녹시)-2,6-디메틸페닐)에탄온(5.74 g, 17.0 mmol) 및 티오우레아(1.30 g, 17.1 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-(4-플루오로페녹시)-2,6-디메틸페닐)티아졸-2-아민(4.50 g)을 황색 고형물로서 84% 수율로 수득하였다:
Figure pct00051
2- 브로모 -1-(4- 이소부톡시 -2,6- 디메페닐 ) 에탄온. 아세토니트릴(39 mL) 중의 1-(4-이소부톡시-2,6-디메틸페닐)에탄온(4.3 g, 19.5 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 9.41 g, 19.5 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-이소부톡시-2,6-디메틸페닐)에탄온(6.1 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00052
4-(4- 이소부톡시 -2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(28 mL) 중의 2-브로모-1-(4-이소부톡시-2,6-디메틸페닐)에탄온(5.84 g, 19.5 mmol) 및 티오우레아(1.49 g, 19.6 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-이소부톡시-2,6-디메틸페닐)티아졸-2-아민(4.4 g)을 백색 고형물로서 82% 수율로 수득하였다:
Figure pct00053
1-(4-( 벤조[d][1,3]디옥솔 -5- 일옥시 )-2,6- 디메틸페닐 ) 에탄온. 톨루엔(54.8 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(5.0 g, 27.4 mmol), K3PO4(11.6 g, 54.7 mmol), 및 세사몰 (4.54 g, 32.9 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(349 mg, 0.82 mmol), Pd(OAc)2(259 mg, 1.15 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 밤새 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 MeOH에서 재결정화하여 1-(4-(벤조[d][1,3]디옥솔-5-일옥시)-2,6-디메틸페닐)에탄온(4.80 g)을 백색 고형물로서 62% 수율로 수득하였다:
Figure pct00054
1-(4-( 벤조[d][1,3]디옥솔 -5- 일옥시 )-2,6- 디메틸페닐 )-2- 브로모에탄온. 아세토니트릴(33.8 mL) 중의 1-(4-(벤조[d][1,3]디옥솔-5-일옥시)-2,6-디메틸페닐)에탄온(4,80 g, 16.9 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 8.14 g, 16.9 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 1-(4-(벤조[d][1,3]디옥솔-5-일옥시)-2,6-디메틸페닐)-2-브로모에탄온(6.70 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00055
4-(4-( 벤조[d][1,3]디옥솔 -5- 일옥시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(24.1 mL) 중의 1-(4-(벤조[d][1,3]디옥솔-5-일옥시)-2,6-디메틸페닐)-2-브로모에탄온(6.13 g, 16.9 mmol) 및 티오우레아(1.29 g, 16.9 mmol)의 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-(벤조[d][1,3]디옥솔-5-일옥시)-2,6-디메틸페닐)티아졸-2-아민(5.50 g)을 황색 고형물로서 96% 수율로 수득하였다:
Figure pct00056
1-(4-(3,5- 디메틸페녹시 )-2,6- 디메틸페닐 ) 에탄온. 톨루엔(54.8 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(5.0 g, 27.4 mmol), K3P04(11.6 g, 54.7 mmol), 3,5-디메틸페놀(4.01 g, 32.8 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(349 mg, 0.82 mmol), Pd(OAc)2(259 mg, 1.15 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 밤새 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(4-(3,5-디메틸페녹시)-2,6-디메틸페닐)에탄온(6.3 g)을 황색 고형물로서 86% 수율로 수득하였다:
Figure pct00057
2- 브로모 -1-(4-(3,5- 디메틸페녹시 )-2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(47.0 mL) 중의 1-(4-(3,5-디메틸페녹시)-2,6-디메틸페닐)에탄온(6.30 g, 23.5 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 11.9 g, 24.7 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgSO4(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(3,5-디메틸페녹시)-2,6-디메틸페닐)에탄온(8.3 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00058
4-(4-(3,5- 디메틸페녹시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(33.5 mL) 중의 2-브로모-1-(4-(3,5-디메틸페녹시)-2,6-디메틸페닐)에탄온(8.15 g, 23.5 mmol) 및 티오우레아(1.79 g, 23.5 mmol)의 혼합물을 환류 하에서 120분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-(3,5-디메틸페녹시)-2,6-디메틸페닐)티아졸-2-아민(4.50 g)을 황색 고형물로서 59% 수율로 수득하였다:
Figure pct00059
1-(4-(3- 메톡시페녹시 )-2,6- 디메틸페닐 ) 에탄온. 톨루엔(54.8 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(5.00 g, 27.4 mmol), K3P04(11.6 g, 54.7 mmol), 3-메톡시페놀(4.08 g, 32.9 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(349 mg, 0.82 mmol), Pd(OAc)2(259 mg, 1.15 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 밤새 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(4-(3-메톡시페녹시)-2,6-디메틸페닐)에탄온(5.4 g)을 황색 오일로서 73% 수율로 수득하였다:
Figure pct00060
2- 브로모 -1-(4-(3- 메톡시페녹시 )-2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(40.0 mL) 중의 1-(4-(3-메톡시페녹시)-2,6-디메틸페닐)에탄온(5.40 g, 20.0 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 10.1 g, 21.0 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(3-메톡시페녹시)-2,6-디메틸페닐)에탄온(7.00 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00061
4-(4-(3- 메톡시페녹시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(28.5 mL) 중의 2-브로모-1-(4-(3-메톡시페녹시)-2,6-디메틸페닐)에탄온(6.98 g, 20.0 mmol) 및 티오우레아(1.52 g, 20.0 mmol)의 혼합물을 환류 하에서 5.0 시간 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(1.0 mL)을 첨가하고, 에틸 아세테이트(100 ml)로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 4-(4-(3-메톡시페녹시)-2,6-디메틸페닐)티아졸-2-아민(4.30 g)을 진한 갈색 오일로서 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00062
1-(2,6-디메틸-4-(4-( 트리플루오로메틸 ) 페녹시 ) 페닐 ) 에탄온. 톨루엔(60.9 mL) 중의 1-클로로-4-(트리플루오로메틸)벤젠(6.60 g, 36.6 mmol), K3P04(12.9 g, 60.9 mmol), 1-(4-하이드록시-2,6-디메틸페닐)에탄온(5.00 g, 30.5 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(388 mg, 0.91 mmol) 및 Pd(OAc)2(288 mg, 1.28 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 120분 동안 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(2,6-디메틸-4-(4-(트리플루오로메틸)페녹시)페닐)에탄온(1.8 g)을 황색 오일로서 19% 수율로 수득하였다:
Figure pct00063
2- 브로모 -1-(2,6-디메틸-4-(4-( 트리플루오로메틸 ) 페녹시 ) 페닐 ) 에탄온. 아세토니트릴(11.7 mL) 중의 1-(2,6-디메틸-4-(4-(트리플루오로메틸)페녹시)페닐)에탄온(1.80 g, 5.84 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 2.82 g, 5.84 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgSO4(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(2,6-디메틸-4-(4-(트리플루오로메틸)페녹시)페닐)에탄온(2.16 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00064
4-(2,6-디메틸-4-(4-( 트리플루오로메틸 ) 페녹시 ) 페닐 )티아졸-2-아민. 95% EtOH(8.1 mL) 중의 2-브로모-1-(2,6-디메틸-4-(4-(트리플루오로메틸)페녹시)페닐)에탄온(2.20 g, 5.68 mmol) 및 티오우레아(0.43 g, 5.68 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(1.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,6-디메틸-4-(4-(트리플루오로메틸)페녹시)페닐)티아졸-2-아민(1.30 g)을 황색 고형물로서 63% 수율로 수득하였다:
Figure pct00065
1-(4-(4- 에틸페녹시 )-2,6- 디메틸페닐 ) 에탄온. 톨루엔(54.8 mL) 중의 1-(4-클로로-2,6-디메틸페닐)에탄온(5.0 g, 27.4 mmol), K3PO4(11.6 g, 54.7 mmol), 4-에틸페놀(4.01 g, 32.8 mmol)의 용액에 2-디-3차-부틸포스피노-2',4',6'-트리이소프로필바이페닐(349 mg, 0.82 mmol) 및 Pd(OAc)2(259 mg, 1.15 mmol)를 첨가하였다. 반응물을 N2 하, 100℃에서 밤새 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(4-(4-에틸페녹시)-2,6-디메틸페닐)에탄온(6.0 g)을 황색 오일로서 82% 수율로 수득하였다:
Figure pct00066
2- 브로모 -1-(4-(4- 에틸페녹시 )-2,6- 디메틸페닐 ) 에탄온. 아세토니트릴(44.7 mL) 중의 1-(4-(4-에틸페녹시)-2,6-디메틸페닐)에탄온(6.00 g, 22.4 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 10.8 g, 22.4 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(4-에틸페녹시)-2,6-디메틸페닐)에탄온(8.2 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00067
4-(4-(4- 에틸페녹시 )-2,6- 디메틸페닐 )티아졸-2-아민. 95% EtOH(31.7 mL) 중의 2-브로모-1-(4-(4-에틸페녹시)-2,6-디메틸페닐)에탄온(7.70 g, 22.2 mmol) 및 티오우레아(1.69 g, 22.2 mmol)의 혼합물을 환류 하에서 180분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-(4-에틸페녹시)-2,6-디메틸페닐)티아졸-2-아민(6.30 g)을 황색 고형물로서 88% 수율로 수득하였다:
Figure pct00068
2- 브로모 -1-(3,5- 디플루오로 -4- 메톡시페닐 ) 에탄온. 1-(3,5-디플루오로-4-메톡시페닐)에탄온(5.0 g, 26.9 mmol, 1.0 당량)을 함유한 CH3CN 용액(56 mL)에 TBABr3(12.95 g, 26.9 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에서 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 2.0% EtOAc)로 정제하여 2-브로모-1-(3,5-디플루오로-4-메톡시페닐)에탄온(5.05 g, 19.0 mmol)을 백색 고형물로서 71% 수율로 수득하였다:
Figure pct00069
4-(3,5- 디플루오로 -4- 메톡시페닐 )티아졸-2-아민. EtOH(20.0 mL) 중의 2-브로모-1-(3,5-디플루오로-4-메톡시페닐)에탄온(2.0 g, 7.5 mmol, 1.0 당량) 및 티오우레아(0.57 g, 7.5 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 3.0 시간 동안 가열하였다. 잔부를 NaHCO3 포화 수용액(20 mL)으로 염기화시키고, EtOAc(3×30 mL)로 추출하였다. 유기층을 분리하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 얻어진 고형물을 헥산으로 세척하여 4-(3,5-디플루오로-4-메톡시페닐)티아졸-2-아민(1.54 g, 6.4 mmol)을 백색 고형물로서 84% 수율로 수득하였다:
Figure pct00070
1-(2,6- 디플루오로 -4- 메톡시페닐 ) 에탄온. CH2Cl2(50.0 mL) 중의 알루미늄 클로라이드(10.0 g, 69.4 mmol, 5.0 당량) 및 아세틸 클로라이드(2.0 mL, 28 mmol, 2.0 당량)의 혼합물을 0℃에서 30분 동안 교반하였다. 반응 혼합물에 CH2Cl2(10.0 mL) 중의 1,3-디플루오로-5-메톡시-벤젠(2.0 g, 13.9 mmol, 1.0 당량)을 서서히 첨가하고, 얻어진 용액을 실온에서 추가 2.0 시간 동안 교반하였다. 용액을 NaHCO3 포화 수용액(20 mL)을 이용하여 pH 8-9로 염기화하였다. 유기층을 분리하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 15% EtOAc)로 정제하여 1-(2,6-디플루오로-4-메톡시페닐)에탄온(1.5 g, 8.1 mmol)을 황색 오일로서 58% 수율로 수득하였다:
Figure pct00071
2- 브로모 -1-(2,5- 디플루오로 -4- 메톡시페닐 ) 에탄온. 1-(2,6-디플루오로-4-메톡시페닐)에탄온(1.5 g, 8.1 mmol, 1.0 당량)을 함유한 CH3CN 용액(20 mL)에 TBABr3(3.88 g, 8.1 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에서 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 2.0% EtOAc)로 정제하여 2-브로모-1-(2,5-디플루오로-4-메톡시페닐)에탄온(5.05 g, 19.1 mmol)을 황색 오일로서 84% 수율로 수득하였다:
Figure pct00072
4-(2,6- 디플루오로 -4- 메톡시페닐 )티아졸-2-아민. EtOH(15.0 mL) 중의 2-브로모-1-(2,5-디플루오로-4-메톡시페닐)에탄온(1.5 g, 5.7 mmol, 1.0 당량) 및 티오우레아(430.8 mg, 5.7 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 6.0 시간 동안 가열하였다. 잔부를 NaHCO3 포화 수용액(20 mL)으로 염기성화시키고, EtOAc(3×30 mL)로 추출하였다. 유기층을 분리하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 4-(2,6-디플루오로-4-메톡시-페닐)-티아졸-2-아민(928.6 mg, 3.8 mmol)을 백색 고형물로서 68% 수율로 수득하였다:
Figure pct00073
1-(4-(2- 하이드록시프로폭시 )-2,6- 디메틸페닐 ) 에탄온. 50% NaOH 수용액(5.0 mL) 중 1-(4-하이드록시-2,6-디메틸페닐)에탄온(500 mg, 3.1 mmol, 1.0 당량) 및 2-메틸옥시란(0,22 mL, 3.1 mmol, 1.0 당량)으로 채워진 압력 유리 용기를 140℃에서 4.0 시간 동안 교반하였다. 혼합물을 H2O(20 mL)로 희석시키고 EtOAc로 추출하였다. 유기층을 합하고, MgSO4(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 30% EtOAc)로 정제하여 1-(4-(2-하이드록시프로폭시)-2,6-디메틸페닐)에탄온(445.9 mg, 2.1 mmol)을 황색 오일로서 66% 수율로 수득하였다:
Figure pct00074
2- 브로모 -1-(4-(2- 하이드록시프로폭시 )-2,6- 디메틸페닐 ) 에탄온. 1-(4-(2-하이드록시프로폭시)-2,6-디메틸페닐)에탄온(445.9 mg, 2.0 mmol, 1.0 당량)을 함유한 CH3CN 용액(6.0 mL)에 TBABr3(967.3 mg, 2.0 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용매를 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에서 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 2-브로모-1-(4-(2-하이드록시프로폭시)-2,6-디메틸페닐)에탄온(547.8 mg, 1.8 mmol)을 갈색 오일로서 91% 수율로 수득하였다:
Figure pct00075
1-(4-(2- 아미노티아졸 -4-일)-3,5- 디메틸페녹시 )프로판-2-올. EtOH(3.0 mL) 중의 2-브로모-1-(2,5-디플루오로-4-메톡시페닐)에탄온(547.8 mg, 1.8 mmol, 1.0 당량) 및 티오우레아(138.5 mg, 1.8 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(30 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고 MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 30% EtOAc)로 정제하여 1-(4-(2-아미노티아졸-4-일)-3,5-디메틸페녹시)프로판-2-올(332.5 mg, 1.2 mmol)을 황색 오일로서 66% 수율로 수득하였다:
Figure pct00076
1-(4-(2,3- 디하이드록시프로폭시 )-2,6- 디메틸페닐 ) 에탄온. 50% NaOH 수용액(20.0 mL) 중 1-(4-하이드록시-2,6-디메틸페닐)에탄온(2.00 g, 12.2 mmol, 1.0 당량) 및 3-클로로프로판-1,2-디올(1.02 mL, 12.2 mmol, 1.0 당량)로 채워진 압력 유리 용기를 140℃에서 16 시간 동안 가열하였다. 혼합물을 H2O(20 mL)로 희석시키고, EtOAc로 추출하였다. 유기층을 합하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 30% EtOAc)로 정제하여 1-(4-(2,3-디하이드록시프로폭시)-2,6-디메틸페닐)에탄온(1.66 g, 7.0 mmol)을 황색 오일로서 57% 수율로 수득하였다:
Figure pct00077
2- 브로모 -1-(4-(2,3- 디하이드록시프로폭시 )-2,6- 디메틸페닐 ) 에탄온. 1-(4-(2,3-디하이드록시프로폭시)-2,6-디메틸페닐)에탄온(1.0 g, 4.2 mmol, 1.0 당량)을 함유한 CH3CN 용액(10.0 mL)에 TBABr3(2.04 g, 4.2 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에서 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 2-브로모-1-(4-(2,3-디하이드록시프로폭시)-2,6-디메틸페닐)에탄온(741.9 mg, 2.3 mmol)을 황색 오일로서 56% 수율로 수득하였다:
Figure pct00078
3-(4-(2- 아미노티아졸 -4-일)-3,5- 디메틸페녹시 )프로판-1,2- 디올. EtOH(10.0 mL) 중의 2-브로모-1-(4-(2,3-디하이드록시프로폭시)-2,6-디메틸페닐)에탄온(741.9 mg, 2.3 mmol, 1.0 당량) 및 티오우레아(178.1 mg, 2.3 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(30 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 30.0% EtOAc)로 정제하여 3-(4-(2-아미노티아졸-4-일)-3,5-디메틸페녹시)프로판-1,2-디올(694.1 mg, 2.4 mmol)을 황색 고형물로서 >99% 수율로 수득하였다:
Figure pct00079
1-(4-(2- 메톡시에톡시 )-2,6- 디메틸페닐 ) 에탄온. 50% NaOH 수용액(5.0 mL) 중의 1-(4-하이드록시-2,6-디메틸페닐)에탄온(500 mg, 3.1 mmol, 1.0 당량) 및 1-클로로-2-메톡시에탄(0.28 mL, 3.1 mmol, 1.0 당량)으로 채워진 압력 유리 용기를 140℃에서 16 시간 동안 가열하였다. 잔부를 H20(20 mL)로 희석시키고 EtOAc(3×30 mL)로 추출하였다. 유기층을 분리하고, MgS04로 건조시키고, 감압 하에 농축시켜 1-(4-(2-메톡시에톡시)-2,6-디메틸페닐)에탄온(430.9 mg, 1.9 mmol)을 황색 오일로서 64% 수율로 수득하였다:
Figure pct00080
2- 브로모 -1-(4-(2- 메톡시에톡시 )-2,6- 디메틸페닐 ) 에탄온. 1-(4-(2-메톡시에톡시)-2,6-디메틸페닐)에탄온(400 mg, 1.8 mmol, 1.0 당량)을 함유한 CH3CN 용액(6.0 mL)에 TBABr3(867.7 mg, 1.8 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 2-브로모-1-(4-(2-메톡시에톡시)-2,6-디메틸페닐)에탄온(322.9 mg, 1.1 mmol)을 황색 고형물로서 60% 수율로 수득하였다:
Figure pct00081
4-(4-(2- 메톡시에톡시 )-2,6- 디메틸페닐 )티아졸-2-아민. EtOH(3.0 mL) 중의 2-브로모-1-(4-(2-메톡시에톡시)-2,6-디메틸페닐)에탄온(322.9 mg, 1.1 mmol, 1.0 당량) 및 티오우레아(81.61 mg, 1.1 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(20 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 30% EtOAc)로 정제하여 4-(4-(2-메톡시에톡시)-2,6-디메틸페닐)티아졸-2-아민(281.0 mg, 1.0 mmol)을 황색 고형물로서 94% 수율로 수득하였다:
Figure pct00082
1-(4-(3- 메톡시프로폭시 )-2,6- 디메틸페닐 ) 에탄온. 50% NaOH 수용액(10.0 mL) 중의 1-(4-하이드록시-2,6-디메틸페닐)에탄온(800 mg, 4.9 mmol, 1.0 당량) 및 1-클로로-3-메톡시프로판(528.97 mg, 4.9 mmol, 1.0 당량)으로 채워진 압력 유리 용기를 140℃에서 16 시간 동안 교반하였다. 잔부를 H20(20 mL)로 희석시키고, EtOAc(3×30 mL)로 추출하였다. 유기층을 분리시키고, MgS04(s)로 건조시키고, 감압 하에 농축시켜 1-(4-(3-메톡시프로폭시)-2,6-디메틸페닐)에탄온(987.8 mg, 4.2 mmol)을 황색 오일로서 86% 수율로 수득하였다:
Figure pct00083
2- 브로모 -1-(4-(3- 메톡시프로폭시 )-2,6- 디메틸페닐 ) 에탄온. 1-(4-(3-메톡시프로폭시)-2,6-디메틸페닐)에탄온(987.8 mg, 4.2 mmol, 1.0 당량)을 함유한 CH3CN 용액(15.0 mL)에 TBABr3(2.02 g, 4.2 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 2-브로모-1-(4-(3-메톡시프로폭시)-2,6-디메틸페닐)에탄온(1.23 g, 3.9 mmol)을 황색 오일로서 93% 수율로 수득하였다:
Figure pct00084
4-(4-(3- 메톡시프로폭시 )-2,6- 디메틸페닐 )티아졸-2-아민. EtOH(10.0 mL) 중의 2-브로모-1-(4-(3-메톡시프로폭시)-2,6-디메틸페닐)에탄온(500.0 mg, 1.6 mmol, 1.0 당량) 및 티오우레아(126.8 mg, 1.6 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 30% EtOAc)로 정제하여 4-(4-(3-메톡시프로폭시)-2,6-디메틸페닐)티아졸-2-아민(328.9 mg, 1.1 mmol)을 황색 고형물로서 71% 수율로 수득하였다:
Figure pct00085
1-(2,6-디메틸-4-( 페닐티오 ) 페닐 ) 에탄온. DMF(4.4 mL) 및 H20(1.1 mL) 중의 1-(4-아이오도-2,6-디메틸페닐)에탄온(1.5 g, 5.5 mmol, 1.0 당량), 벤젠티올(0.60 mL, 8.2 mmol, 1.5 당량), 구리(I) 옥사이드(39.2 mg, 0.3 mmol, 0.05 당량), 및 칼륨 하이드록사이드(614.1 mg, 11.0 mmol, 2.0 당량)의 혼합물을 환류 하에서 20 시간 동안 가열하였다. 혼합물을 H2O(10 mL)로 켄칭하고 에테르(2×20 mL)로 추출하였다. 유기층을 합하고, MgSO4(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 1-(2,6-디메틸-4-(페닐티오)페닐)에탄온(931 mg, 3.6 mmol)을 황색 오일로서 66% 수율로 수득하였다:
Figure pct00086
2- 브로모 -1-(2,6-디메틸-4-( 페닐티오 ) 페닐 ) 에탄온. 1-(2,6-디메틸-4-(페닐티오)페닐)에탄온(816.3 mg, 3.2 mmol, 1.0 당량)을 함유한 CH3CN 용액(15.0 mL)에 TBABr3(1.54 g, 3.2 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 2-브로모-1-(2,6-디메틸-4-(페닐티오)페닐)에탄온(591.7 mg, 1.6 mmol)을 황색 오일로서 55% 수율로 수득하였다:
Figure pct00087
4-(2,6-디메틸-4-( 페닐티오 ) 페닐 )티아졸-2-아민. EtOH(15.O mL) 중의 2-브로모-1-(2,6-디메틸-4-(페닐티오)페닐)에탄온(591.7 mg, 1.8 mmol, 1.0 당량) 및 티오우레아(134.3 mg, 1.8 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 5.0% EtOAc)로 정제하여 4-(2,6-디메틸-4-(페닐티오)페닐)티아졸-2-아민(483.7 mg, 1.6 mmol)을 황색 고형물로서 88% 수율로 수득하였다:
Figure pct00088
1-(2,6-디메틸-4-(p- 톨릴티오 ) 페닐 ) 에탄온. DMF(4.4 mL) 및 H2O(1.1 mL) 중의 1-(4-아이오도-2,6-디메틸페닐)에탄온(1.5 g, 5.5 mmol, 1.0 당량), 4-메틸벤젠티올(1.02 g, 8.2 mmol, 1.5 당량), 구리(I) 옥사이드(39.2 mg, 0.3 mmol, 0.05 당량), 및 칼륨 하이드록사이드(614.1 mg, 11.0 mmol, 2.0 당량)의 혼합물을 환류 하에서 20 시간 동안 가열하였다. 혼합물을 H2O(10 mL)로 켄칭하고 에테르(2×20 mL)로 추출하였다. 유기층을 합하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 1-(2,6-디메틸-4-(p-톨릴티오)페닐)에탄온(1.16 g, 4.3 mmol)을 황색 오일로서 79% 수율로 수득하였다:
Figure pct00089
2- 브로모 -1-(2,6-디메틸-4-(p- 톨릴티오 ) 페닐 ) 에탄온. 1-(2,6-디메틸-4-(p-톨릴티오)페닐)에탄온(1.0 g, 3.7 mmol, 1.0 당량)을 함유한 CH3CN 용액(20.0 mL)에 TBABr3(1.79 g, 3.7 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 2-브로모-1-(2,6-디메틸-4-(p-톨릴티오)페닐)에탄온(394.8 mg, 1.1 mmol)을 황색 오일로서 31% 수율로 수득하였다:
Figure pct00090
4-(2,6-디메틸-4-(p- 톨릴티오 ) 페닐 )티아졸-2-아민. EtOH(10.O mL) 중의 2-브로모-1-(2,6-디메틸-4-(p-톨릴티오)페닐)에탄온(394.8 mg, 1.1 mmol, 1.0 당량) 및 티오우레아(86.04 mg, 1.1 mmol, 1. O 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 5.0% EtOAc)로 정제하여 4-(2,6-디메틸-4-(p-톨릴티오)페닐)티아졸-2-아민(371.9 mg, 1.1 mmol)을 황색 고형물로서 >99% 수율로 수득하였다:
Figure pct00091
1-(4-(4- 메톡시페닐티오 )-2,6- 디메틸페닐 ) 에탄온. DMF(4.4 mL) 및 H20(1.1 mL) 중 1-(4-아이오도-2,6-디메틸페닐)에탄온(1.5 g, 5.5 mmol, 1.0 당량), 4-메톡시벤젠티올(1.01 mL, 8.2 mmol, 1.5 당량), 구리(I) 옥사이드(39.2 mg, 0.3 mmol, 0.05 당량), 및 칼륨 하이드록사이드(614.1 mg, 11.0 mmol, 2.0 당량)의 혼합물을 환류 하에서 20 시간 동안 가열하였다. 혼합물을 H2O(10 mL)로 켄칭하고 에테르(2×20 mL)로 추출하였다. 유기층을 합하고, MgSO4(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 1-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)에탄온(1.41 g, 4.9 mmol)을 황색 오일로서 90% 수율로 수득하였다:
Figure pct00092
2- 브로모 -1-(4-(4- 메톡시페닐티오 )-2,6- 디메틸페닐 ) 에탄온. 1-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)에탄온(1.0 g, 3.5 mmol, 1.0 당량)을 함유한 CH3CN 용액(20.0 mL)에 TBABr3(1.684 g, 3.5 mmol, 1.0 당량)를 첨가하였다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 3.0% EtOAc)로 정제하여 2-브로모-1-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)에탄온(1.06 g, 2.9 mmol)을 황색 오일로서 83% 수율로 수득하였다:
Figure pct00093
4-(4-(4- 메톡시페닐티오 )-2,6- 디메틸페닐 )티아졸-2-아민. EtOH(20.0 mL) 중의 2-브로모-1-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)에탄온(1.06 g, 2.9 mmol, 1.0 당량) 및 티오우레아(221.5 mg, 2.9 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 16 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중 5.0% EtOAc)로 정제하여 4-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)티아졸-2-아민(890.9 mg, 2.6 mmol)을 황색 고형물로서 90% 수율로 수득하였다:
Figure pct00094
2- 브로모 -1-(4-(4- 메톡시페닐설포닐 )-2,6- 디메틸페닐 ) 에탄온. 디클로로메탄(10.0 mL) 중의 2-브로모-1-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)에탄온(1.0 g, 2.7 mmol, 1.0 당량) 및 m-클로로퍼옥시벤조산(1.69 g, 6.8 mmol, 2.5 당량)의 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(4-메톡시페닐설포닐)-2,6-디메틸페닐)에탄온(1.09 g, 2.7 mmol)을 백색 고형물로서 >99% 수율로 수득하였다:
Figure pct00095
4-(4-(4- 메톡시페닐설포닐 )-2,6- 디메틸페닐 )티아졸-2-아민. EtOH(5.0 mL) 중의 2-브로모-1-(4-(4-메톡시페닐설포닐)-2,6-디메틸페닐)에탄온(1.33 g, 3.4 mmol, 1.0 당량) 및 티오우레아(254.8 mg, 3.4 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 1.0 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 얻어진 고형물을 헥산으로 세척하여 4-(4-(4-메톡시페닐설포닐)-2,6-디메틸페닐)티아졸-2-아민(839.2 mg, 2.2 mmol)을 황색 고형물로서 65% 수율로 수득하였다:
Figure pct00096
2- 브로모 -1-(4-(4- 메톡시페닐설피닐 )-2,6- 디메틸페닐 ) 에탄온. 디클로로메탄(10.0 mL) 중 2-브로모-1-(4-(4-메톡시페닐티오)-2,6-디메틸페닐)에탄온(500.0 mg, 1.3 mmol, 1.0 당량), 아세트산 무수물(0.14 mL, 1.5 mmol, 1.1 당량), 30% 과산화수소(55.86 mg, 1.6 mmol, 1.2 당량) 및 실리카겔(273.75 mg, 230-400 메시)의 혼합물을 실온에서 16 시간 동안 교반하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(4-(4-메톡시페닐설피닐)-2,6-디메틸페닐)에탄온(235.4 mg, 0.6 mmol)을 엷은 황색 오일로서 48% 수율로 수득하였다:
Figure pct00097
N-(4-(4-(4- 메톡시페닐설피닐 )-2,6- 디메틸페닐 )티아졸-2-일) 이소니코틴아미 . EtOH(5.0 mL) 중의 2-브로모-1-(4-(4-메톡시페닐설피닐)-2,6-디메틸페닐)에탄온(235.4 mg, 0.6 mmol, 1.0 당량) 및 티오우레아(47.0 mg, 0.60 mmol, 1.0 당량)를 함유한 반응 혼합물을 환류 하에서 1.0 시간 동안 가열하였다. 용액을 감압 하에 농축시키고, 잔부를 EtOAc(50 mL)에 다시 용해시켰다. 용액을 NaHCO3 포화 수용액(30 mL)으로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 얻어진 고형물을 헥산으로 세척하여 N-(4-(4-(4-메톡시페닐설피닐)-2,6-디메틸페닐)티아졸-2-일)이소니코틴아미드(236.7 mg, 0.70 mmol)를 황색 고형물로서 >99% 수율로 수득하였다:
Figure pct00098
5- 메틸 -4- 페닐티아졸 -2-아민. 95% EtOH(30 mL) 중의 2-브로모-1-페닐프로판-1-온(3.00 g, 19.5 mmol) 및 티오우레아(1.56 g, 20.5 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)으로 세척하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 5-메틸-4-페닐티아졸-2-아민(4.07 g)을 황색 고형물로서 77% 수율로 수득하였다:
Figure pct00099
2- 브로모 -1-(4- 메톡시페닐 )프로판-1-온. EtOAc(120 mL) 중의 1-(4-메톡시페닐)프로판-1-온(5.01 g, 30.2 mol)의 용액에 구리(II) 브로마이드(CuBr2, 13.6 g, 6.8 mmol)를 첨가하였다. 반응 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 냉각시키고, 얻어진 고형물을 여과하고, EtOAc로 세척하였다. 여액을 감압 하에 농축시켜 미정제의 2-브로모-1-(4-메톡시페닐)프로판-1-온(10.4 g)을 황색 오일로서 수득하였다:
Figure pct00100
4-(4- 메톡시페닐 )-5- 메틸티아졸 -2-아민. 95% EtOH(70 mL) 중의 2-브로모-1-(4-메톡시페닐)프로판-1-온(10.4 g, 36.1 mmol) 및 티오우레아(2.76 g, 36.2 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)으로 세척하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-메톡시페닐)-5-메틸티아졸-2-아민(6.16 g)을 황색 고형물로서 78% 수율로 수득하였다:
Figure pct00101
2- 브로모 -1-(2,4,6- 트리메톡시페닐 ) 에탄온. EtOAc(100 mL) 중의 1-(2,4,6-트리메톡시페닐)에탄온(5.0 g, 23.3 mmol)의 용액에 구리(II) 브로마이드(CuBr2, 10.4 g, 46.7 mmol)를 첨가하였다. 반응 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 냉각시키고, 얻어진 고형물을 여과하고, EtOAc로 세척하였다. 여액을 감압 하에 농축시켜 미정제의 2-브로모-1-(2,4,6-트리메톡시페닐)에탄온(2.70 g)을 황색 오일로서 수득하였다:
Figure pct00102
4-(2,4,6- 트리메톡시페닐 )티아졸-2-아민. 95% EtOH(16 mL) 중의 2-브로모-1-(2,4,6-트리메톡시페닐)에탄온(2.49 g, 8.6 mmol) 및 티오우레아(0.67 g, 8.7 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)과 혼합하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,4,6-트리메톡시페닐)티아졸-2-아민(1.75 g)을 황색 고형물로서 >99% 수율로 수득하였다:
Figure pct00103
2- 브로모 -1-(4- 메톡시페닐 ) 에탄온. EtOAc(250 mL) 중의 1-(4-메톡시페닐)에탄온(15.2 g, 0.10 mol)의 용액에 구리(II) 브로마이드(CuBr2, 45.1 g, 0.20 mol)를 첨가하였다. 반응 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 냉각시키고, 얻어진 고형물을 여과하고, EtOAc로 세척하였다. 여액을 감압 하에 농축시켜 미정제의 2-브로모-1-(4-메톡시페닐)에탄온(15.8 g)을 황색 오일로서 수득하였다:
Figure pct00104
4-(4- 메톡시페닐 )티아졸-2-아민. 95% EtOH(40 mL) 중의 2-브로모-1-(4-메톡시페닐)에탄온(5.00 g, 21.8 mmol) 및 티오우레아(1.72 g, 22.6 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)과 혼합하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(4-메톡시페닐)티아졸-2-아민(5.24 g)을 황색 오일로서 >99% 수율로 수득하였다:
Figure pct00105
2- 브로모 -1-(2,4- 디메톡시페닐 ) 에탄온. EtOAc(220 mL) 중의 1-(2,4-디메톡시페닐)에탄온(10.0 g, 54.4 mmol)의 용액에 구리(II) 브로마이드(CuBr2, 24.3 g, 0.11 mol)를 첨가하였다. 반응 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 냉각시키고, 얻어진 고형물을 여과하고, EtOAc로 세척하였다. 여액을 감압 하에 농축시켜 미정제의 2-브로모-1-(2,4-디메톡시페닐)에탄온(14.5 g)을 황색 오일로서 수득하였다:
Figure pct00106
4-(2,4- 디메톡시페닐 )티아졸-2-아민. 95% EtOH(110 mL) 중의 2-브로모-1-(2,4-디메톡시페닐)에탄온(14.5 g, 55.8 mmol) 및 티오우레아(4.32 g, 56.7 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)과 혼합하였다. 얻어진 침전물을 여과하고, 톨루엔에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,4-디메톡시페닐)티아졸-2-아민(10.9 g)을 황색 고형물로서 62% 수율로 수득하였다:
Figure pct00107
2- 클로로 -1-(2,4,6- 트리플루오로페닐 ) 에탄온. 디클로로에탄(14.0 mL) 중의 1,3,5-트리플루오로벤젠 (6.0 mL, 58 mmol)의 기계적으로 교반된 용액에 주의하면서 15분에 걸쳐 AlCl3(15.5 g, 116 mmol)를 점진적으로 첨가하였다. 격렬한 범핑(violent bumping) 및 HCl 가스 방출이 관찰되었다. 혼합물을 조심스럽게 환류 하에 가열하고, 클로로아세틸 클로라이드(5.5 mL, 69 mmol)를 45분에 걸쳐 조심스럽게 적가하였다. 반응 혼합물을 환류 하에서 추가 6.0 시간 동안 가열하였다. 용액을 냉각시키고, 얼음/물 슬러시(200 mL) 상에 조심스럽게 붓고, 수용액을 에테르(3×50 mL)로 추출하였다. 합한 에테르 층들을 10% 수성 HCl(2×30 mL), 1.0 N 수성 NaOH(3×30 mL), 및 염수(25 mL)로 세척하였다. 용액을 MgS04로 건조시키고, 감압 하에 농축시켜 2-클로로-1-(2,4,6-트리플루오로페닐)에탄온(5.28 g)을 황색 고형물로서 51% 수율로 수득하였다:
Figure pct00108
4-(2,4,6- 트리플루오로페닐 )티아졸-2-아민. 95% EtOH(50 mL) 중의 2-클로로-1-(2,4,6-트리플루오로페닐)에탄온(9.04 g, 43.5 mmol) 및 티오우레아(3.51 g, 46.1 mmol)의 혼합물을 환류 하에 밤새 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)과 혼합하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,4,6-트리플루오로페닐)티아졸-2-아민(9.71 g)을 핑크-화이트 고형물로서 97% 수율로 수득하였다:
Figure pct00109
1-(2,6-디메틸-4-( 페닐아미노 ) 페닐 ) 에탄온. DMF(35.0 mL) 중의 1-(4-아미노-2,6-디메틸페닐)에탄온(3.26 g, 20.0 mmol), K3P04(9.2 g, 40 mmol), 및 1-아이오도벤젠 (4.08 g, 20.0 mmol)의 용액에 CuI(761.8 mg, 40 mmol)를 첨가하였다. 반응물을 N2 하, 110℃에서 밤새 가열하였다. 용액을 실온으로 냉각시키고, 작은 셀라이트 패드를 통해 여과하였다. 케이크를 에틸 아세테이트(50 mL)로 세척하고, 합한 여액을 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(2,6-디메틸-4-(페닐아미노)페닐)에탄온을 적갈색 시럽으로서 수득하였다:
Figure pct00110
1-(4-(4- 브로모페닐아미노 )-2,6- 디메틸페닐 )-2- 브로모에탄온. 아세토니트릴(50 mL) 중의 1-(2,6-디메틸-4-(페닐아미노)페닐)에탄온(2.10 g, 8.78 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 4.24 g, 8.78 mmol)를 첨가하였다. 반응물을 실온에서 60분 동안 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 1-(4-(4-브로모페닐아미노)-2,6-디메틸페닐)-2-브로모에탄온(2.01 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00111
4-(4-(4- 브로모페닐아미노 )-2,6- 디메틸페닐 )티아졸]-2-아민. 아세토니트릴(30 mL) 중의 1-(4-(4-브로모페닐아미노)-2,6-디메틸페닐)-2-브로모에탄온(1.6 g, 4.0 mmol) 및 티오우레아(0.79 g, 7.2 mmol)의 용액을 환류 하에서 90분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(1.0 mL)을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 생성물(1.1g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00112
3- 클로로 -5- 메틸 - 페닐아민 . 1-클로로-3-메틸-5-니트로-벤젠(5.0 g, 29 mmol)을 함유한 에탄올 용액(75 mL)에 SnCl2-2H20(32.8 g, 146 mmol)를 첨가하였다. 반응 혼합물을 3.0 시간 동안 환류하였다. 용액을 진공 하에서 농축시키고, 잔부를 수성 NaOH에 다시 용해시키고, 여과하고, EtOAc로 추출하였다. 유기층을 합하고, 염수로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피로 정제하여 3-클로로-5-메틸-페닐아민(4.0 g)을 밝은 황색 고형물로서 97% 수율로 수득하였다:
Figure pct00113
N-(3- 클로로 -5- 메틸 - 페닐 )- 아세트아미드. 아세트산 무수물(6.7 mL) 및 3-클로로-5-메틸-페닐아민(5.0 g, 35 mmol)을 혼합하고 2.0 시간 동안 정치시켰다. 반응 혼합물을 실온으로 냉각시켜 N-(3-클로로-5-메틸-페닐)아세트아미드(5.1 g)를 밝은 황색 고형물로서 79% 수율로 수득하였다:
Figure pct00114
N-(4-아세틸-3- 클로로 -5- 메틸 - 페닐 )- 아세트아미드. N-(3-클로로-5-메틸-페닐)아세트아미드(5.0 g, 27 mmol) 및 아세틸 클로라이드(2.9 ml, 40.8 mmol)를 함유한 무수 CS2 용액(30 mL)에 알루미늄 클로라이드(9.1 g, 68 mmol)를 서서히 첨가하였다. 반응 혼합물을 환류 하에 30분 동안 가열하고, 실온으로 냉각시키고, 4.0 시간 동안 정치시켰다. CS2를 디켄팅하고(decanted) 잔류하는 시럽을 차가운 HCl에 부었다. 얻어진 고형물을 합하고, EtOH에 다시 용해시키고, 목탄을 이용하여 탈색시켰다. 용액을 여과하고, 여액을 진공 하에서 농축시켜 N-(4-아세틸-3-클로로-5-메틸페닐)아세트아미드(5.2 g)를 밝은 황색 고형물로서 85% 수율로 수득하였다:
Figure pct00115
1-(4-아미노-2- 클로로 -6- 메틸페닐 ) 에탄온. N-(4-아세틸-3-클로로-5-메틸페닐)아세트아미드(0.53 g, 2.3 mmol) 및 진한 염산(1.6 mL)을 함유한 에탄올 용액(4.0 mL)을 환류 하에서 15 시간 동안 가열하였다. 용액에 10% 수성 NaOH를 첨가하고, 얻어진 고형물을 합하여 1-(4-아미노-2-클로로-6-메틸페닐)에탄온(0.37 g)을 밝은 황색 고형물로서 88% 수율로 수득하였다:
Figure pct00116
1-(2- 클로로 -4- 아이오도 -6- 메틸 - 페닐 )- 에탄온. KI(2.5 g, 15 mmol) 및 3차-부틸 니트라이트(2.00 mL, 16.9 mmol)를 함유한 CH3CN 용액(20 mL)에 -10℃에서 CH3CN(13 mL) 중의 1-(4-아미노-2-클로로-6-메틸-페닐)에탄온(2.3 g, 12.5 mmol)을 첨가하였다. 얻어진 혼합물을 실온으로 가온시키고, 수성 HCl(20%, 23 mL)에 부었다. 용액을 EtOAc(20 mL)로 추출하고, 유기층을 분리하고, H20(23 mL)로 세척하고, MgSO4(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-(2-클로로-4-아이오도-6-메틸페닐)에탄온(1.28 g)을 황색 오일로서 35% 수율로 수득하였다:
Figure pct00117
1-[2- 클로로 -4-(4- 메톡시 - 페녹시 )-6- 메틸 - 페닐 ]- 에탄온. DMF(55 mL) 중의 1-(2-클로로-4-아이오도-6-메틸-페닐)에탄온(1.1 g, 3.7 mmol), K3P04(1.6 g, 7.4 mmol), 및 4-메톡시페놀(0.55 g, 4.44 mmol)의 용액에 테트라부틸암모늄브로마이드(0.12 g, 0.37 mmol) 및 구리(I) 아이오다이드(70 mg, 0.37 mmol)를 첨가하였다. 반응물을 환류 하에서 22 시간 동안 가열하였다. 용액을 EtOAc(10 mL)로 추출하고, 유기층을 분리하고, H20(11 mL)로 세척하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 1-[2-클로로-4-(4-메톡시페녹시)-6-메틸페닐]에탄온을 황색 오일로서 19% 수율로 수득하였다:
Figure pct00118
2- 브로모 -1-[2- 클로로 -4-(4- 메톡시페녹시 )-6- 메틸페닐 ] 에탄온. 아세토니트릴(6.0 mL) 중의 1-[2-클로로-4-(4-메톡시페녹시)-6-메틸페닐]에탄온(0.20 g, 0.69 mmol)의 용액에 TBABr3(0.33 g, 0.69 mmol)를 첨가하였다. 반응물을 실온에서 30분 동안 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(2,6-디메틸-4-페녹시페닐)에탄온을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00119
4-[2- 클로로 -4-(4- 메톡시 - 페녹시 )-6- 메틸 - 페닐 ]-티아졸-2- 일아민. 95% EtOH(3.0 mL) 중의 2-브로모-1-(2,6-디메틸-4-페녹시페닐)에탄온 및 티오우레아(63 mg, 0.83 mmol)의 혼합물을 환류 하에서 60분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 NaHCO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-[2-클로로-4-(4-메톡시페녹시)-6-메틸페닐]티아졸-2-일아민(0.10 g)을 황색 고형물로서 42% 수율로 수득하였다:
Figure pct00120
2- 브로모 -1-(2,6-디메틸-4-( 메틸티오 ) 페닐 ) 에탄온. 아세토니트릴(34.0 mL) 중의 1-(4-(시클로펜틸옥시)-2,6-디메틸페닐)에탄온(3.30 g, 17.0 mmol)의 용액에 테트라부틸암모늄트리브로마이드(TBABr3, 8.19 g, 17.0 mmol)를 첨가하였다. 반응물을 실온에서 밤새 교반하였다. 용액을 감압 하에 농축시키고, 물을 첨가하고, 에틸 아세테이트로 추출하였다. 유기층을 염수로 세척하고, 무수 MgS04(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(2,6-디메틸-4-(메틸티오)페닐)에탄온(5.2 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00121
4-(2,6-디메틸-4-( 메틸티오 ) 페닐 )티아졸-2-아민. 95% EtOH(24.3 mL) 중의 2-브로모-1-(2,6-디메틸-4-(메틸티오)페닐)에탄온(4.64 g, 17.0 mmol) 및 티오우레아(1.29 g, 17.0 mmol)의 혼합물을 환류 하에서 120분 동안 가열하였다. 용액을 농축시키고, 물(50 mL) 및 Na2CO3 포화 수용액(4.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(30 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,6-디메틸-4-(메틸티오)페닐)티아졸-2-아민(1.9 g)을 밝은 황색 고형물로서 45% 수율로 수득하였다:
Figure pct00122
2- 브로모 -1-(2,6-디메틸-4-( 메틸설포닐 ) 페닐 ) 에탄온. 0℃에서 CH2Cl2(36 mL) 중의 2-브로모-1-(2,6-디메틸-4-(메틸티오)페닐)에탄온(4.92 g, 0.653 mol)의 용액에 mCPBA(70%, 11.1 g, 1.63 mol)를 첨가하였다. 혼합물을 실온에서 7.0 시간 동안 교반하였다. 용액을 여과하고, 여액에 NaHCO3 포화 수용액(50 mL)을 첨가하였다. 유기층을 무수 MgSO4(s)로 건조시키고, 감압 하에 농축시켜 2-브로모-1-(2,6-디메틸-4-(메틸설포닐)페닐)에탄온(7.6 g)을 수득하였으며, 이를 추가 정제 없이 다음 단계에서 바로 사용하였다.
Figure pct00123
4-(2,6-디메틸-4-( 메틸설포닐 ) 페닐 )티아졸-2-아민. 95% EtOH(35.6 mL) 중의 2-브로모-1-(2,6-디메틸-4-(메틸설포닐)페닐)에탄온(7.60 g, 24.9 mmol) 및 티오우레아(1.90 g, 25.0 mmol)의 혼합물을 환류 하에서 90분 동안 가열하였다. 용액을 농축시키고, 물(100 mL) 및 Na2CO3 포화 수용액(5.0 mL)을 첨가하였다. 얻어진 침전물을 여과하고, 톨루엔(20 mL)에서 재결정화하였다. 고형물을 여과하고, 진공 하에서 건조시켜 4-(2,6-디메틸-4-(메틸설포닐)페닐)티아졸-2-아민(3.28 g)을 황색 고형물로서 47% 수율로 수득하였다:
Figure pct00124
2-아미노-N-(4-(4-(4- 메톡시페녹시 )-2,6- 디메틸페닐 )티아졸-2-일) 이소니코틴 아미드. 에탄올(10 mL) 중의 N-(4-(4-(4-메톡시페녹시)-2,6-디메틸페닐)티아졸-2-일)-2-니트로이소니코틴아미드(0.20 g, 0.40 mmol) 및 Pd/C(0.15 g, 10% w/w)의 혼합물을 N2 하에서 밤새 교반하였다. 반응물을 규조토를 통해 여과하고, 감압 하에 농축시켜 2-아미노-N-(4-(4-(4-메톡시페녹시)-2,6-디메틸페닐)티아졸-2-일)이소니코틴아미드(0.11 g)를 황색 고형물로서 59% 수율로 수득하였다:
Figure pct00125
N-(4- 메시틸티아졸 -2-일)-2- 모르폴리노이소니코틴아미드. 메틸피롤리돈 (15.0 mL) 중의 2-클로로-N-(4-메시틸티아졸-2-일)이소니코틴아미드(500.0 mg, 1.4 mmol, 1.0 당량) 및 모르폴린(1.5 mL, 16.8 mmol, 12 당량)의 혼합물을 150℃에서 16 시간 동안 교반하였다. 혼합물을 차가운 H20(20.0 mL)에 붓고, 얻어진 고형물을 여과하여 N-(4-메시틸티아졸-2-일)-2-모르폴리너이소니코틴아미드(358.6 mg, 0.90 mmol)를 황색 고형물로서 63% 수율로 수득하였다:
Figure pct00126
N-(4- 메시틸티아졸 -2-일)-2-(4- 메틸피페라진 -1-일) 이소니코틴아미드. 메틸피롤리돈(9.0 mL) 중의 2-클로로-N-(4-메시틸티아졸-2-일)이소니코틴아미드(300.0 mg, 0.8 mmol, 1.0 당량) 및 1-메틸피페라진(1.12 mL, 10.1 mmol, 12 당량)의 혼합물을 150℃에서 16 시간 동안 교반하였다. 혼합물을 차가운 H20(15.0 mL)에 붓고 얻어진 고형물을 여과하여 N-(4-메시틸티아졸-2-일)-2-(4-메틸피페라진-1-일)이소니코틴아미드(95.6 mg, 0.20 mmol)를 황색 고형물로서 27% 수율로 수득하였다:
Figure pct00127
N-(4- 메시틸티아졸 -2-일)-2-(피페리딘-1-일) 이소니코틴아미드. 메틸피롤리돈(6.0 mL) 중의 2-클로로-N-(4-메시틸티아졸-2-일)이소니코틴아미드(200 mg, 0.60 mmol, 1.0 당량) 및 피페리딘(0.70 mL, 6.7 mmol, 12 당량)의 혼합물을 150℃에서 16 시간 동안 교반하였다. 혼합물을 차가운 H2O(10.0 mL)에 붓고, 얻어진 고형물을 여과하였다. 고형물을 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중의 15% EtOAc)로 정제하여 N-(4-메시틸티아졸-2-일)-2-(피페리딘-1-일)이소니코틴아미드(87.2 mg, 0.20 mmol)를 황색 고형물로서 38% 수율로 수득하였다:
Figure pct00128
2-(디메틸아미노)-N-(4- 메시틸티아졸 -2-일) 이소니코틴아미드. DMF(6.0 mL) 중의 2-클로로-N-(4-메시틸티아졸-2-일)이소니코틴아미드(200 mg, 0.60 mmol, 1.0 당량), 세슘 카보네이트(2.73 g, 0.6 mmol, 15 당량) 및 THF 중의 2.0 M 디메틸아민(3.4 mL, 6.7 mmol, 12 당량)의 혼합물을 환류 하에서 16 시간 동안 가열하였다. 혼합물을 차가운 H2O(10.0 mL)에 붓고, EtOAc로 추출하였다. 유기층을 합하고, MgS04(s)로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 컬럼 크로마토그래피(용리액으로서 헥산 중의 15% EtOAc)로 정제하여 2-(디메틸아미노)-N-(4-메시틸-티아졸-2-일)이소니코틴아미드(5.5 mg, 0.10 mmol)를 황색 고형물로서 3.0% 수율로 수득하였다:
Figure pct00129
N-(4-(4-벤질-2,6- 디메틸페닐 )티아졸-2-일) 이소니코틴아미드. 벤질아연(II) 브로마이드(4.0 mL, 2.0 mmol)의 THF 용액을 THF(5.0 mL) 중의 N-(4-(4-아이오도-2,6-디메틸페닐)티아졸-2-일)이소니코틴아미드(435 mg, 1.0 mmol) 및 테트라키스트리페닐포스핀 팔라듐(57.8 mg, 0.10 mmol)의 탈기된 용액에 첨가하였다. 반응 혼합물을 N2 하, 환류 하에서 16 시간 동안 가열하고, NaHC03 수용액에 부었다. 혼합물을 에틸 아세테이트로 추출하고, 염수로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 N-(4-(4-벤질-2,6-디메틸페닐)티아졸-2-일)이소니코틴아미드를 수득하였다:
Figure pct00130
N-(4-(4-(4-메톡시벤질)-2,6- 디메틸페닐 )티아졸-2-일) 이소니코틴아미드. 4-메톡실벤질아연(II) 브로마이드(4.0 mL, 2.0 mmol)의 THF 용액을 THF(5.0 mL) 중의 N-(4-(4-아이오도-2,6-디메틸페닐)티아졸-2-일)이소니코틴아미드(435 mg, 1.0 mmol) 및 테트라키스페닐포스핀 팔라듐(57.8 mg, 0.10 mmol)의 탈기된 용액에 첨가하였다. 반응 혼합물을 N2 하, 환류 하에서 16 시간 동안 가열하고, NaHCO3 포화 수용액에 부었다. 혼합물을 에틸 아세테이트로 추출하고, 염수로 세척하고, MgS04로 건조시키고, 감압 하에 농축시켰다. 잔부를 실리카겔 상에서 플래시 컬럼 크로마토그래피로 정제하여 4-(4-(4-(4-메톡시벤질)-2,6-디메틸페닐)티아졸-2-일)이소니코틴아미드를 수득하였다:
Figure pct00131
대표적인 화합물들 및 물리화학적 데이타
Figure pct00132
Figure pct00133
Figure pct00134
Figure pct00135
Figure pct00136
Figure pct00137
Figure pct00138
Figure pct00139
Figure pct00140
Figure pct00141
Figure pct00142
Figure pct00143
Figure pct00144
Figure pct00145
Figure pct00146
Figure pct00147
Figure pct00148
Figure pct00149
Figure pct00150
Figure pct00151
Figure pct00152
Figure pct00153
4-아릴-2-아미도티아졸의 합성에 대한 일반적인 절차 II. 디클로로메탄 중 아릴카복실산(1.5 당량)의 현탁액에 1,1'-카보닐디이미다졸(CDI, 3.0 당량)을 첨가하였다. 실온에서 2.0 시간 동안 교반한 후에, 용액에 4-아릴티아졸-2-아민(q.O 당량)을 첨가하였다. 반응 혼합물을 실온에서 밤새 교반하였다. 용액을 농축시키고, 잔부를 디클로로메탄에 다시 용해시켰다. 용액을 염수로 세척하고, MgSO4로 건조시키고, 감압 하에 농축시켜 상응하는 4-아릴-2-아미도티아졸을 수득하였다.
Figure pct00154
Figure pct00155
Figure pct00156
Figure pct00157
Figure pct00158
Figure pct00159
Figure pct00160
Figure pct00161
Figure pct00162
대표적인 화합물 및 억제 활성
하기 표는 명시된 화합물에 대한 성장 배지 중에서의 세포의 노출을 이용하여 선택된 암 세포에 대한 항증식 활성을 예시하는 선택된 화합물에 대한 대표적인 결과를 기술한 것이다. 항증식 효과는 마이크몰(microMolar) 최종 농도의 IC50 값으로 표시된다.
Figure pct00163
Figure pct00164
Figure pct00165
Figure pct00166
Figure pct00167
Figure pct00168
Figure pct00169
Figure pct00170
Figure pct00171
Figure pct00172
Figure pct00173
Figure pct00174
선택된 화합물들의 대표적인 생물학적 활성
하기 데이타는 시험관내 및 생체내에서의 특정 화합물의 생물학적 활성에 대한 대표적인 안내(guidance)를 제공한다. 화합물들이 숫자로 참조되는 경우에, 숫자는 상기 표에 기술된 화합물에 대한 것이다.
세포독성 및 항증식 활성: 규명된 세포주(예를 들어, MDA-MB-231 , MDA-MB-468, Hela, 및 K562와 같은 세포주)로부터의 세포를 DMEM 배지(Sigma, D5523) 중의 10% FBS(Hylcone)에서 배양하였으며, 세포를 37℃, 5% C02 및 95% 공기를 갖는 습한 대기에서 성장시켰다. 세포를 96 웰 조직 배양판에 시딩하였다.
세포를 하룻밤 동안 인큐베이션한 후에 화합물 처리를 개시하였다(T0). 화합물을 10 μM 내지 4.6 nM의 8 포인트 3배 희석으로 제조하였다. 화합물을 상기 판의 삼중배 웰에 첨가하고, 상기 판을 96 시간 동안 인큐베이션하였다. DMSO(화합물 희석액)를 또한 포함시키고, 판의 대조군 웰에 첨가하였다. 세포 생존능력을 CellTiter 96® AQueous 비-방사성 세포 증식 검정 시스템(Promega)을 이용한 MTS 검정으로 결정하였다. 판 판독기(Molecular Devices, Vmax)를 이용하여 광학적 밀도를 판독하고, 상기 결과를 이용하여 농도-반응 곡선을 추론하였다. 모든 데이타는 3회 실험의 결과를 나타낸 것이고, ±20% 미만의 편차를 갖는 3회의 별도의 측정 평균값이다. 결과를 선형 회귀 소프트웨어(GraphPad Prism 5; GraphPad Software Inc.)를 이용하여 분석하였다.
IC50 값은 50% 성장 억제를 야기시키는 농도를 칭하는 것이다. GI50 값(성장 억제 활성)을 시간 0에 세포 카운트에 대한 보정을 강조하기 위해 측정하였다. 이에 따라, 시험 약물의 억제율(%)은 [1-(T - T0)/(C - T0)] x 100이며, 이러한 값을 이용하여 농도-반응 곡선을 플롯팅하고, 이후에 선형 회귀 소프트웨어(GraphPad Prism 5)로 분석하였다.
도 1a로부터 알 수 있는 바와 같이, 선택된 화합물들은 여러 고형 종양 세포 뿐만 아니라 백혈병 세포에 대해 유의미한 세포독성 및 항증식 효과를 나타내었다. 반대로, 도 1b로부터 알 수 있는 바와 같이, 동일한 화합물들은 여러 정상 세포주에 대해 유의미한 세포독성 및 항증식 효과를 나타내지 않았다. 여기서, WI-38은 인간 정상 폐 섬유아세포주이며, RPTEC는 신장 근위세뇨관 상피 세포이며, HuVec는 인간 탯줄 정맥 내피 세포이며, HAoSMC는 인간 대동맥 평활근 세포이다.
선택된 화합물들은 Hec1/Nek2 상호작용을 파괴하고, Nek2 분해를 유발시키고, Nek2 단백질 불안정성을 증가시킨다. 세포를 얼음 냉각 용해 완충액250 (50 mM Tris-HCl, pH 7.4, 250 mM NaCl, 0.3% Nonidet P-40, 10 mM NaF, 프로테아제 억제제가 보충됨)에 다시 현탁시키고, 3회의 냉동/해동 사이클로 처리하고, 14,000 rpm, 실온에서 2분 동안 원심분리하였다. 상청액을 용해물 분석 또는 면역침강을 위해 사용하였다. 면역침강을 위하여, 상청액을 항-Hec1 항체 mAb1 9G3or 마우스 폴리클로날 항-Nek2과 함께 1 시간 동안 인큐베이션시킨 후에, 단백질 A-세파로즈 비드와 함께 1 시간 동안 인큐베이션하였다. 비드를 수집하고, 고장성 NaCl을 함유한 용해 완충액으로 5회 세척하고, 면역블롯 분석을 위하여 SDS-로딩 완충액에서 비등시켰다. Immobilon-P 멤브레인(Millipore Corp., Bedford, MA)에 면역블롯팅시킨 후에, 블롯을 항-Hec1 항체 또는 항-Nek2 항체(Genetex, Irvine, CA)로 프로빙하였다. 블롯을 ECL 화학발광키트(Amersham Biosciences)를 이용하여 현상시켰다. 추가 상세한 사항은 다른 문헌[Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem. 2002 Dec 20;277(51):49408-16. Epub 2002 Oct 16]에서 확인될 수 있다.
도 2a 및 2b는 이러한 실험의 대표적인 결과를 도시한 것으로서, 여기서 시험된 선택된 화합물들이 Hec1/Nek2 상호작용을 상당히 파괴하였음이 잘 나타나 있다. 도 2c는 1 mcM의 시험 화합물과 함께 24 시간 동안 K562 세포의 인큐베이션 시에 Nek2 감소의 통상적인 결과를 나타낸 것이며, 도 2d는 1 mcM 최종 농도의 선택된 화합물에 노출된 K562 세포의 처리 후에 시간에 따른 Nek2의 단백질 불안정성을 나타낸 결과를 도시한 것이다.
선택된 화합물들은 이상 유사분열(aberrant mitosis)을 유도한다: 세포를 커버 슬립 상에서 성장시키고, PEMG 완충액[80 mM 피페라진-N,N-비스(2-에탄설폰산)(PIPES), pH 6.8, 5 mM EGTA, 1 mM MgCl2, 및 4 M 글리세롤] 또는 포스페이트-완충된 살린(PBS)으로 온화하게 세척하였다. 이후에, 세포를 -20℃ 또는 PEMG 또는 PBS 완충액 중 4% 파라포름알데하이드로 고정시키고, 0.4% Triton-X 100로 침투시켰다. 세포를 PBS 중 5% 염소 혈청(NGS)으로 블로킹하고, 5% NGS를 함유한 PBS 중의 1차 항체와 함께 인큐베이션하였다(실온에서 1 내지 2 시간). 2차 항체를 Alexa 488 또는 594(Invitrogen, Carlsbad, CA)로 컨주게이션하였다. 2차 항체와 함께 인큐베이션한 후에, 4,6-디아미디노-2-페닐인돌(DAPI)로 염색하고, 세포를 Prolong 금 안티-페이드(anti-fade) 시약(Invitrogen)과 함께 커버 슬라이드에 마운팅하였다. 이미지를 디지털 카메라 및 SPOT 디지털 영상 소프트웨어(version 4, Diagnostic Instruments, Inc)가 장착된 Nikon H550L 현미경으로 캡쳐하였다. 추가 이미지 분석 또는 정량화를 Image-Pro Plus(MediaCybernetics, Bethesda, MD) 또는 Adobe Photoshop 소프트웨어(Adobe Systems, Mountain View, CA)로 수행하였다. 추가의 상세한 사항은 다른 문헌[Hec1 contributes to mitotic centrosomal microtubule growth for proper spindle assembly through interaction with Hice1. Mol Biol Cell. 2009 Nov;20(22):4686-95. Epub 2009 Sep 23]에 기술되어 있다.
도 3은 유사분열에 대한 선택된 화합물들의 효과를 도시한 표이다. 보다 상세하게, 이러한 결과들은 48 시간에 걸쳐 분열기 세포에서의 염색체 정렬 불량의 백분율로서 나타낸 것이다. 이로부터 알 수 있는 바와 같이, 시험된 화합물들은 상당한 수의 세포에서 유사분열에 실질적으로 영향을 미쳤다.
선택된 화합물들은 고도의 선택성 키나아제 억제제이다: 시험 화합물에 의한 키나아제 활성의 억제를, 시험 화합물의 존재 하에 기질의 [33P] 도입량을 정량화함으로써 측정하였다. 표준 키나아제 검정을 시험 화합물(4% DMSO의 최종 농도로 희석됨) 또는 DMSO 대조군의 존재 하에 MgATP와 함께 개시하였고, 3% 인산을 첨가하여 정지시키고, 단일필터 수확기(PerkinElmer, Boston, MA, U.S.A.)를 이용하여 필터 플레이트 상에서 수확하고, TopCount를 이용하여 계수하였다. 키나아제 활성 억제의 1차 스크리닝을 위하여, 각 시험 화합물을 2개의 농도(10 mM 및 1 mM)에서 2회 평가하였다. 이러한 결과들은 2회 측정의 평균값이고, 억제율(화합물 처리 대 DMSO 대조군)로서 나타내었다. 이용 가능한 키나아제 검정은 하기와 같다: VEGFR2, PDGFR-β, FGFR1, Flt3, c-Met, CHK1, CHK2, Cdk1/CyclinκB, Aurora A, Aurora B, B-Raf, B-RaF(V600E), C-Raf, 및 mTOR. 대부분의 키나아제 검정에서 사용되는 ATP 농도는 각 효소에 대한 ATP에 대해 Km 또는 그 미만이다.
매우 낮은 IC50에서 고려되는 화합물들의 유의미한 결과에도 불구하고, 억제 프로파일은 도 4의 표로부터 알 수 있는 바와 같이 매우 선택적이었다.
생체이용률: 선택된 화합물들을 랫트에 하기 널리 공지된 절차에 따라 os로 또는 주사를 통하여 투여하였다. 예를 들어, 화합물 82를 5% DMSO, 10% Cremophor, 및 85% WFI를 함유한 제형으로 2 mg/kg의 농도로 i.v. 주사하였다. 하기 표는 대표적인 약물 동력학 데이타를 기술한 것이다.
Figure pct00175
화합물 82를 또한 1% 메틸-셀룰로즈를 함유한 제형으로 20 mg/kg의 농도로 경구 투여하였다. 하기 표는 대표적인 약물 동력학 데이타를 기술한 것이다.
Figure pct00176
유사하게, PK 데이타를 화합물 42 및 95에 대해 그밖의 동일한 제형 및 투여 경로로 획득하였다. 하기 표들은 이러한 결과를 대표적으로 기술한 것이다.
화합물 42 i.v. 및 경구는 하기 각각의 표에 나타내었다:
Figure pct00177
화합물 95 i.v. 및 경구는 하기 개개 표에 나타내었다:
Figure pct00178
선택된 화합물들은 마우스 이종이식 모델에서 효과적이다: 절차를 이전에 공개된 프로토콜(Small molecule targeting the Hec1Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res. 2008 Oct 15;68(20):8393-9)로부터 구성하였다. 보다 상세하게, 암컷 BALB/c 누드(nu/nu) 마우스(5 내지 8주령)를 Lasco(Taiwan)로부터 구입하였다. 동물들을 특정 병원체-부재 조건 하에서 유지시키고, 음식 및 물을 임의로 공급하였다. 동물을 포함하는 하우징 및 모든 절차를 DCB에서 IACUC에 의해 승인된 프로토콜에 따라 수행하였다. MDA-MB-468 및 MDA-MB-231 세포의 피하 이식을 위하여, 세포(각각 동물 당 매트릭스 겔 중 1 x107, 동물 당 0.5 x107)를 오른쪽 엽액 아래 영역(right subaxillary region)에 피하로 주사하였다. 종양을 이식하고 10일 후에, 마우스를 비히클 A(5% DMSO, 10% Cremophor, 85% H2O), 또는 비히클 A로 제형화된 후보 화합물로 처리하였다(전체적으로, i.v., QD/21 주기 또는 p.o., QD/28 주기)(체중 1 kg 당 7.5 내지 150 mg). 각 종양의 수직 직경 측정은 디지털 캘리퍼스 및 수학식 (Lx W x W)/2를 이용하여 계산된 종양의 용적으로 이루어졌으며, 상기 식에서, L 및 W는 각각 길이 및 폭을 나타낸다. 체중은 1주일에 3회 측정하였다. 각 처리군의 평균 종양 성장 억제는 비히클 대조군과 비교되었으며, 종양 성장 억제 값은 수학식 [1-(T/C) x100%]을 이용하여 계산하였다.
누드 마우스에서 종양 용적에 대한 고려되는 화합물들의 생체내 효과는 도 5a 및 도 5b에서의 그래프로부터 명확해진다. 종양 감소에도 불구하고, 체중은 모든 경우에서 일정하게 유지되었다(데이타 미도시됨).
이미 기술된 것 이외의 여러 다른 변형들이 본원의 개념들로부터 벗어나지 않고 가능하다는 것은 당업자에게 자명할 것이다. 이에 따라, 본 발명은 청구항들의 사상을 벗어나서 제한되지 않아야 한다. 또한, 본 명세서 및 청구항 둘 모두를 해석함에 있어서, 모든 용어들은 문맥과 일치하는 가능한 한 가장 넓은 방식으로 해석되어야 한다. 특히, 용어 "포함하다" 및 "포함하는"은 엘리먼트, 구성요소, 또는 단계들을 비-배타적인 방식으로 칭하는 것으로서 해석되어야 하며, 이는 언급된 엘리먼트, 구성요소, 또는 단계들이 명확하게 언급되지 않은 다른 엘리먼트, 구성요소 또는 단계들과 함께 존재하거나, 사용되거나, 합쳐질 수 있다는 것으로 명시된다. 명세서 청구항이 A, B, C…, 및 N으로 이루어진 군으로부터 선택된 것들 중 적어도 하나를 칭하는 경우에, 본문은 A 플러스 N, 또는 B 플러스 N 등이 아닌, 상기 군으로부터의 단지 하나의 엘리먼트를 요구하는 것으로서 해석되어야 한다.

Claims (20)

  1. 하기 화학식 (I)에 따른 구조를 지닌 화합물:
    Figure pct00179

    상기 식에서, R1은 수소, 알킬, 알케닐, 알키닐, 알콕시, 아릴, 할로겐, 니트로, 시아노, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 헤테로시클로알케닐, ORa, SRa, NRaRb, -S(O)2Ra, -S(O)2NRaRb, -C(O)Ra, -C(O)NRaRb, -NRaC(O)Rb, -NRaS(O)2Rb, -N=CRaRb, 또는 -NRaC(O)NHRb이며;
    Ra 및 Rb는 독립적으로 수소, 알킬, 알케닐, 알키닐, 아릴, 아릴옥시, 알콕시, 하이드록시, 헤테로아릴, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 또는 헤테로시클로알케닐이거나, Ra 및 Rb는, 이들에 결합된 질소 원자와 함께, 헤테로아릴, 헤테로시클로알킬, 또는 헤테로시클로알케닐이며;
    R2, R3, 및 R4는 독립적으로 수소, C1-C6 알킬, 할로겐, 또는 ORa이며;
    R5는 알킬, 페닐알킬, 헤테로아릴알킬, 페닐알케닐, 헤테로아릴알케닐, 페닐, 헤테로아릴, 헤테로시클로알킬, 또는 헤테로시클로알케닐이며;
    여기서, R1, R2, R3, R4, R5, Ra, 및 Rb 각각은 독립적으로 치환되거나 비치환되며;
    단,
    (I) R1 및 R2가 메틸이며 R3가 수소인 경우에, R5는 티아졸릴, N-메틸이미다졸릴, 피라지닐, 피리디닐, 모르폴리닐, 페닐, 또는 디메톡시페닐이 아니며;
    (II) R1, R2, 및 R3이 메틸인 경우에, R5는 티아졸릴, N-메틸이미다졸릴, 피라지닐, 피리디닐, 모르폴리닐, 페닐, 메톡시페닐, 디하이드록시페닐, 하이드록시메톡시페닐, 트리플루오로메틸페닐, 또는 디메톡시페닐이 아니며;
    (III) R1 및 R2가 메틸이며 R3가 하이드록실 또는 메톡시인 경우에, R5는 페닐이 아니다.
  2. 제 1항에 있어서, R1이 알콕시, SRa, ORa, 또는 -S(O)2Ra이며, 여기서 Ra는 알킬 또는 치환되거나 비치환된 아릴이며, R2, R3, 및 R4가 독립적으로 수소 또는 C1-C6 알킬이며, R5가 치환되거나 비치환된 헤테로아릴인 화합물.
  3. 제 2항에 있어서, R1이 알콕시, SRa, ORa, 또는 -S(O)2Ra이며, 여기서 Ra는 알킬 또는 치환되거나 비치환된 아릴이며, R2 및 R3이 C1-C6 알킬이며, R5가 치환되거나 비치환된 피리디닐인 화합물.
  4. 제 3항에 있어서, R1이 ORa이며, 여기서 Ra는 치환되거나 비치환된 아릴이며, R2 및 R3이 C1-C6 알킬이며, R5가 치환되거나 비치환된 피리디닐인 화합물.
  5. 제 1항에 있어서, 하기 화학식 (II)에 따른 구조를 지닌 화합물:
    Figure pct00180

    상기 식에서, X1 및 X2는 독립적으로 H, 알킬, 알케닐, 알키닐, 할로겐, 니트로, 시아노, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 헤테로시클로알케닐, ORa, NRaRb, -S(O)2Ra, -S(O)2NRaRb, -C(O)Ra, -C(O)NRaRb, -NRaC(O)Rb, -NRaS(O)2Rb, -N=CRaRb, 또는 -NRaC(O)NHRb이며;
    Y는 CH2, CHRa, CRaRb, O, NH, NRa, S, SO, 또는 SO2이며;
    R1, R2, 및 R3은 독립적으로 H, 알킬, 알콕시, 또는 할로겐이며;
    n은 0, 1, 또는 2이며;
    여기서, X1 및 X2 각각은 독립적으로 치환되거나 비치환되며;
    Figure pct00181
    이며,
    여기서, Rc 및 Rd는 독립적으로 Ra이다.
  6. 제 5항에 있어서, Y가 O, S, 또는 SO2인 화합물.
  7. 제 5항에 있어서,
    Figure pct00182
    Figure pct00183
    인 화합물.
  8. 제 5항에 있어서, Y가 O, S, 또는 SO2이며,
    Figure pct00184
    Figure pct00185
    이며, R1, R2, 및 R3이 독립적으로 H 또는 알킬인 화합물.
  9. 제 8항에 있어서, X1 및 X2가 독립적으로 H, 알킬, 및 알콕시이며, n이 0 또는 1인 화합물.
  10. 제 5항에 있어서, n이 0인 화합물.
  11. 제 1항에 있어서, 하기 화학식 (III)에 따른 구조를 지닌 화합물:
    Figure pct00186

    상기 식에서, X1, X2, 및 X3은 독립적으로 H, 알킬, 알케닐, 알키닐, 할로겐, 니트로, 시아노, 시클로알킬, 헤테로시클로알킬, 시클로알케닐, 헤테로시클로알케닐, ORa, NRaRb, -S(O)2Ra, -S(O)2NRaRb, -C(O)Ra, -C(O)NRaRb, -NRaC(O)Rb, -NRaS(O)2Rb, -N=CRaRb, 또는 -NRaC(O)NHRb이며;
    Y는 CH2, CHRa, CRaRb, O, NH, NRa, S, SO, 또는 SO2이며;
    R1, R2, 및 R3은 독립적으로 H, 알킬, 알콕시, 또는 할로겐이며;
    n은 0, 1, 또는 2이며;
    여기서, X1 및 X2 각각은 독립적으로 치환되거나 비치환되며;
    Rc 및 Rd는 독립적으로 Ra이며;
    Figure pct00187
    이며,
    Figure pct00188
    이다.
  12. 제 11항에 있어서,
    Figure pct00189
    Figure pct00190
    인 화합물.
  13. 제 11항에 있어서, Y가 O, S, 또는 SO2이며,
    Figure pct00191
    Figure pct00192
    이며, R1, R2, 및 R3이 독립적으로 H 또는 알킬인 화합물.
  14. 제 1항에 있어서, 하기 구조로 이루어진 군으로부터 선택된 구조를 지닌 화합물:
    Figure pct00193
  15. 약제학적으로 허용되는 담체, 및 환자에게 투여될 때 환자에게 Hec1 Nek2 결합을 붕괴시키기에 유효한 농도의 제 1항에 따른 화합물을 포함하는 약제 조성물.
  16. 제 15항에 있어서, 미세소관 형성 또는 분해를 방해하는 약물을 추가로 포함하는, 약제 조성물.
  17. 제 15항에 있어서, 화합물이 제 14항에 따른 화합물인, 약제 조성물.
  18. Nek2/Hec1 복합물을, Nek2/Hec1 결합을 붕괴시키기에 유효한 양의 제 1항에 따른 화합물과 접촉시킴을 포함하여, Nek2/Hec1 상호작용을 붕괴시키는 방법.
  19. 제 18항에 있어서, Nek2/Hec1 복합물을 접촉시키는 단계가 포유동물의 생체 내에서 수행되며, 화합물이 경구로, 국소로 또는 비경구적으로 투여되는 방법.
  20. 제 18항에 있어서, 미세소관 형성 또는 분해를 방해하는 제제를 동시 투여하는 단계를 추가로 포함하는 방법.
KR1020127027026A 2010-03-17 2011-03-15 Hec1 활성의 조절인자 및 이의 방법 KR101609856B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31479810P 2010-03-17 2010-03-17
US61/314,798 2010-03-17
PCT/US2011/028532 WO2011115998A2 (en) 2010-03-17 2011-03-15 Modulators of hec1 activity and methods therefor

Publications (2)

Publication Number Publication Date
KR20130076800A true KR20130076800A (ko) 2013-07-08
KR101609856B1 KR101609856B1 (ko) 2016-04-07

Family

ID=44647719

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127027026A KR101609856B1 (ko) 2010-03-17 2011-03-15 Hec1 활성의 조절인자 및 이의 방법

Country Status (16)

Country Link
US (2) US8946268B2 (ko)
EP (1) EP2547676B1 (ko)
JP (2) JP5825535B2 (ko)
KR (1) KR101609856B1 (ko)
CN (2) CN105906617B (ko)
AU (2) AU2011227398C1 (ko)
BR (1) BR112012023355A2 (ko)
CA (1) CA2793311C (ko)
ES (1) ES2557465T3 (ko)
HK (1) HK1176055A1 (ko)
MX (2) MX346395B (ko)
MY (1) MY192693A (ko)
NZ (1) NZ602121A (ko)
RU (1) RU2576036C2 (ko)
SG (1) SG183853A1 (ko)
WO (1) WO2011115998A2 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY192693A (en) * 2010-03-17 2022-09-01 Taivex Therapeutics Inc Modulators of hec1 activity and methods therefor
CN102336720B (zh) * 2011-03-02 2016-01-13 华中科技大学 2-氨基噻唑衍生物及制备方法和应用
DE102011083271A1 (de) * 2011-09-23 2013-03-28 Beiersdorf Ag Aromatische Amidothiazole, deren kosmetische oder dermatologische Verwendung sowie kosmetische oder dermatologische Zubereitungen mit einem Gehalt an solchen Aromatischen Amidothiazolen
CN103058949A (zh) * 2011-10-18 2013-04-24 华东理工大学 做为dhodh抑制剂的噻唑衍生物及其应用
US11071736B2 (en) * 2011-11-21 2021-07-27 Taivex Therapeutics Corporation Modulators of HEC1 activity and methods therefor
EP2783217B1 (en) * 2011-11-21 2019-04-24 Taivex Therapeutics Corporation Biomarkers for cancers responsive to modulators of hec1 activity
TWI640519B (zh) 2011-11-29 2018-11-11 泰緯生命科技股份有限公司 Hec1活性調控因子及其調節方法
AU2013214846B2 (en) * 2012-02-01 2017-09-07 City Of Hope Ribonucleotide reductase inhibitors and methods of use
US9422275B2 (en) * 2013-07-20 2016-08-23 The Regents Of The University Of California Small molecule modifiers of the HEC1-NEK2 interaction in G2/M
WO2017019772A1 (en) * 2015-07-27 2017-02-02 Sanford Burnham Prebys Medical Discovery Institute Modulators of myocyte lipid accumulation and insulin resistance and methods of use thereof
WO2019152437A1 (en) * 2018-01-30 2019-08-08 Foghorn Therapeutics Inc. Compounds and uses thereof
EP4096664A4 (en) 2020-01-29 2024-02-28 Foghorn Therapeutics Inc COMPOUNDS AND THEIR USES
WO2021255011A1 (en) * 2020-06-15 2021-12-23 Dsm Ip Assets B.V. Process for the manufacture of alkylamidothiazoles
CN111925377B (zh) * 2020-08-31 2022-05-31 上海应用技术大学 对位取代的二氢呋喃香豆素类神经氨酸酶抑制剂及其制备方法和应用

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011A (en) * 1847-03-13 V boring-machine
US6014A (en) * 1849-01-09 Stop-motion for drawing-frames
FR2677356B1 (fr) * 1991-06-05 1995-03-17 Sanofi Sa Derives heterocycliques d'acylamino-2 thiazoles-5 substitues, leur preparation et compositions pharmaceutiques en contenant.
FR2701708B1 (fr) * 1993-02-19 1995-05-19 Sanofi Elf Dérivés de 2-amido-4-phénylthiazoles polysubstitués, procédé de préparation, composition pharmaceutique et utilisation de ces dérivés pour la préparation d'un médicament.
CN100357283C (zh) * 2002-04-02 2007-12-26 中国科学院上海药物研究所 一类甲硫氨酰氨肽酶抑制剂
AU2003250831A1 (en) 2002-06-12 2003-12-31 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Use of hec1 antagonists in the treatment of proliferative disorders and cancer
AU2003299378A1 (en) * 2002-10-11 2004-05-04 Board Of Regents, The University Of Texas System Method and compounds for inhibiting hec1 activity for the treatment of proliferative diseases
FR2854158B1 (fr) * 2003-04-25 2006-11-17 Sanofi Synthelabo Derives de 2-acylamino-4-phenylethiazole, leur preparation et leur application en therapeutique
JP2007504255A (ja) * 2003-09-06 2007-03-01 バーテックス ファーマシューティカルズ インコーポレイテッド Atp結合カセットトランスポーターの調節因子
FR2872813B1 (fr) 2004-07-09 2007-01-19 Sanofi Synthelabo Derives de 2-carbamide-4-phenylthiazole, leur preparation et leur application en therapeutique
CN101048158A (zh) * 2004-08-13 2007-10-03 健泰科生物技术公司 利用atp的酶的噻唑-类抑制剂
UA92746C2 (en) 2005-05-09 2010-12-10 Акилайон Фармасьютикалз, Инк. Thiazole compounds and methods of use
JP4612487B2 (ja) * 2005-06-30 2011-01-12 キョーラク株式会社 容器のキャップ
WO2007004038A1 (en) * 2005-07-05 2007-01-11 Pfizer Products Inc. Aminothiazole derivatives as agonists of the thrombopoietin receptor
WO2007008541A2 (en) * 2005-07-08 2007-01-18 Kalypsys, Inc. Cellular cholesterol absorption modifiers
EP1928848A2 (en) * 2005-08-04 2008-06-11 Apogee Biothechnology Corporation Sphingosine kinase inhibitors and methods of their use
WO2007131071A2 (en) 2006-05-02 2007-11-15 Washington State University Mig-7 as a specific anticancer target
WO2008124000A2 (en) * 2007-04-02 2008-10-16 Ligand Pharmaceuticals Incorporated Thiazole derivatives as androgen receptor modulator compounds
JP4986749B2 (ja) * 2007-07-09 2012-07-25 富士フイルム株式会社 圧力測定用材料
WO2009014674A1 (en) * 2007-07-23 2009-01-29 Sirtris Pharmaceuticals, Inc. Heterocyclylamides as gut microsomal triglyceride transport protein inhibitors
CN102088973A (zh) * 2008-05-15 2011-06-08 杜克大学 与热休克转录因子激活化合物及其靶标有关的组合物和方法
US8324385B2 (en) 2008-10-30 2012-12-04 Madrigal Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
EP2309273B1 (en) 2009-09-16 2016-05-18 ZEILLINGER, Robert Novel tumor marker determination
MY192693A (en) 2010-03-17 2022-09-01 Taivex Therapeutics Inc Modulators of hec1 activity and methods therefor
EP2783217B1 (en) 2011-11-21 2019-04-24 Taivex Therapeutics Corporation Biomarkers for cancers responsive to modulators of hec1 activity

Also Published As

Publication number Publication date
BR112012023355A2 (pt) 2016-05-31
CA2793311C (en) 2019-01-15
JP6294277B2 (ja) 2018-03-14
EP2547676B1 (en) 2015-07-29
RU2012144022A (ru) 2014-04-27
AU2011227398B2 (en) 2014-06-12
JP2013522310A (ja) 2013-06-13
US20150057281A1 (en) 2015-02-26
AU2011227398C1 (en) 2014-11-27
CA2793311A1 (en) 2011-09-22
JP5825535B2 (ja) 2015-12-02
EP2547676A4 (en) 2013-08-14
MX346395B (es) 2017-03-17
AU2014210678A1 (en) 2014-08-28
JP2016040288A (ja) 2016-03-24
US8946268B2 (en) 2015-02-03
SG183853A1 (en) 2012-10-30
MY192693A (en) 2022-09-01
ES2557465T3 (es) 2016-01-26
RU2576036C2 (ru) 2016-02-27
AU2011227398A1 (en) 2012-09-20
WO2011115998A3 (en) 2012-01-05
HK1176055A1 (zh) 2013-07-19
NZ602121A (en) 2014-05-30
CN105906617B (zh) 2018-09-04
AU2014210678B2 (en) 2015-08-20
MX2012010664A (es) 2013-02-07
WO2011115998A2 (en) 2011-09-22
US9409902B2 (en) 2016-08-09
KR101609856B1 (ko) 2016-04-07
CN103038231A (zh) 2013-04-10
CN105906617A (zh) 2016-08-31
US20110230486A1 (en) 2011-09-22
EP2547676A2 (en) 2013-01-23
CN103038231B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
KR101609856B1 (ko) Hec1 활성의 조절인자 및 이의 방법
KR20210143803A (ko) Tead 전사인자의 신규한 소분자 저해제
KR102271794B1 (ko) 항암 활성을 나타내는 벤젠 설폰아미드 티아졸 화합물
BRPI0924126B1 (pt) Composto heterocíclico bicíclico, medicamento, inibidor de sns, composição farmacêutica e uso do referido composto
AU2016382372B2 (en) Sulfonamide derivative and preparation method and use thereof
TW201910329A (zh) 取代五元并六元雜環類化合物、其製備方法、藥物組合及其用途
EA028673B1 (ru) ПИРИМИДО[4,5-b]ХИНОЛИН-4,5(3H,10H)ДИОНЫ В КАЧЕСТВЕ СУПРЕССОРОВ НОНСЕНС МУТАЦИЙ
KR100915287B1 (ko) 티아디아졸린 유도체
CN112105602A (zh) 基于喹啉和异喹啉的hdac抑制剂及其使用方法
KR101983585B1 (ko) Hec1 활성의 개선된 조절인자 및 이를 위한 방법
WO2021012659A1 (zh) 具有降解雄激素受体活性的化合物
WO2013044845A1 (zh) 联芳基杂环取代的噁唑烷酮抗菌药
WO2016131192A1 (en) Compounds and methods for inducing browning of white adipose tissue
WO2022171088A1 (zh) 吡唑并[3,4-d]嘧啶-3-酮衍生物
KR102636651B1 (ko) 티아졸로피리딘 또는 이의 약학적으로 허용 가능한 염 및 이의 용도
KR20230123954A (ko) 소분자 화합물 및 조성물
KR101048748B1 (ko) 신규 갈바닉산 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 다약제내성 억제용 약학적 조성물
CN102807514B (zh) 取代的苯二胺类衍生物及其制备方法和用途

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 5