KR20090103135A - Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode - Google Patents

Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode

Info

Publication number
KR20090103135A
KR20090103135A KR1020080028531A KR20080028531A KR20090103135A KR 20090103135 A KR20090103135 A KR 20090103135A KR 1020080028531 A KR1020080028531 A KR 1020080028531A KR 20080028531 A KR20080028531 A KR 20080028531A KR 20090103135 A KR20090103135 A KR 20090103135A
Authority
KR
South Korea
Prior art keywords
active material
negative electrode
lithium secondary
secondary battery
electrode active
Prior art date
Application number
KR1020080028531A
Other languages
Korean (ko)
Other versions
KR100991358B1 (en
Inventor
한정민
오정훈
김종성
염철
한경희
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to KR1020080028531A priority Critical patent/KR100991358B1/en
Publication of KR20090103135A publication Critical patent/KR20090103135A/en
Application granted granted Critical
Publication of KR100991358B1 publication Critical patent/KR100991358B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: An anode active material for lithium secondary battery and a preparation method thereof are provided to reduce the affects of organic electrolytic solution decomposition as a main cause of irreversible capacity by stabilizing the surface of the anode active material through mixing (NH4) 2SiF6 with an anode active material and performing heat treatment. CONSTITUTION: A method for preparing an anode active material for a lithium secondary battery comprises the steps of: (S100) adding (NH4)2SiF6 to an anode active material made of a carbon material; and (S200) heat-treating the anode active material mixed with (NH4)2SiF6 into the carbon material.

Description

리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지{Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode}Anode active material for lithium secondary battery and Method for preparing sugar and Lithium secondary battery containing the same for anode}

본 발명은 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지에 관한 것으로서, 보다 상세하게는 리튬 이차 전지의 충방전 효율 및 사이클 특성을 향상시킬 수 있는 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same as a negative electrode, and more particularly, to a negative electrode active material for a lithium secondary battery that can improve charge and discharge efficiency and cycle characteristics of a lithium secondary battery. It relates to a manufacturing method and a lithium secondary battery comprising the same as a negative electrode.

최근 PDA, 이동전화, 노트북 컴퓨터 등 정보통신을 위한 휴대용 전자 기기나 전기 자전거, 전기 자동차 등의 전원으로 충전과 방전을 거듭하며 사용하는 이차 전지의 수요가 급격하게 증가하고 있다. 특히, 휴대용 전자 기기나 전기 자동차와 같은 제품들의 성능은 핵심부품인 이차 전지에 의해 좌우되기 때문에 고성능 전지에 대한 요구는 대단히 크다. 이차 전지에 요구되는 특성은 충방전 특성, 수명, 고율특성과 고온에서의 안정성 등 여러 가지 측면이 있다. 리튬 이차 전지는 높은 전압과 높은 에너지 밀도를 가지고 있어 가장 주목받고 있는 전지이다.Recently, the demand for secondary batteries, which are repeatedly charged and discharged with power sources such as PDAs, mobile phones, notebook computers, and portable electronic devices for electric communication, electric bicycles, and electric vehicles, is rapidly increasing. In particular, since the performance of products such as portable electronic devices and electric vehicles depends on the secondary battery, which is a key component, the demand for a high performance battery is very large. The characteristics required for the secondary battery have various aspects such as charge and discharge characteristics, lifespan, high rate characteristics, and stability at high temperatures. Lithium secondary batteries have the highest voltage and high energy density and are the most attracting attention.

리튬 이차 전지는 리튬 이온의 삽입 및 탈리가 가능한 활물질로 이루어진 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.Lithium secondary batteries are powered by oxidation and reduction reactions when lithium ions are inserted / desorbed from the positive electrode and the negative electrode while an organic or polymer electrolyte is charged between the negative electrode and the positive electrode made of an active material capable of inserting and removing lithium ions. To produce energy.

리튬 이차 전지의 양극 활물질로는 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNi1 -xCoxO2(0<x<1) 등의 복합 금속 산화물이 사용되고 있다.As a cathode active material of a lithium secondary battery, a chalcogenide compound is used. Examples thereof include a complex metal oxide such as LiCoO 2 , LiMn 2 O 4 , or LiNi 1- x Co x O 2 (0 <x <1). It is used.

리튬 이차 전지의 음극 활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용할 경우 덴드라이트(dendrite) 형성으로 인한 전지 단락이 발생하여 폭발의 위험성이 있어 최근에는 리튬 금속 대신 탄소계 물질로 대체되어 가고 있다. 리튬 이차 전지의 음극 활물질로 사용되는 탄소계 활물질에는, 천연 흑연(graphite) 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본(soft carbon) 및 하드 카본(hard carbon)과 같은 비정질계 탄소가 사용되고 있다.Lithium metal is used as a negative electrode active material of a lithium secondary battery. However, when lithium metal is used, a short circuit occurs due to the formation of dendrite, which may cause an explosion. Recently, lithium metal has been replaced with a carbon-based material instead of lithium metal. . As the carbon-based active material used as the negative electrode active material of the lithium secondary battery, crystalline carbon such as natural graphite and artificial graphite and amorphous carbon such as soft carbon and hard carbon are used.

비정질계 탄소는 용량이 큰 장점이 있지만, 충방전 과정에서 비가역성이 크다는 문제점이 있다.Amorphous carbon has an advantage of large capacity, but has a problem of large irreversibility in charging and discharging.

결정질계 탄소는 천연 흑연이 대표적으로 사용되고 있으며, 천연 흑연은 초도 용량이 우수하고 이론 한계 용량이 372㎃h/g으로 비교적 높은 편이나, 수명 열화가 심하고 효율과 사이클 용량이 떨어지는 문제점이 있다. 이러한 문제는 고결정성의 천연 흑연 에지(edge) 부분에서의 전해액 분해반응에 기인하는 것으로 알려져 있다.As the crystalline carbon, natural graphite is typically used, and natural graphite has excellent initial capacity and a theoretical limit capacity of 372 mAh / g, which is relatively high, but has a problem of severe deterioration of life and low efficiency and cycle capacity. This problem is known to be due to the electrolyte decomposition reaction in the highly crystalline natural graphite edge portion.

이러한 문제점을 극복하기 위해, 천연 흑연에 저결정성 탄소를 표면처리(피복)하고 이를 1000℃ 이상에서 열처리하여 천연 흑연 표면에 결정성이 낮은 탄화물을 피복함으로써 초도 용량은 소량 감소하나 효율과 사이클 용량 특성이 개선된 음극 활물질을 얻을 수 있다. 특히, 초도 용량 감소를 줄이기 위해 피복재로 쓰이는 저결정성 탄소를 고온 열처리하여 인조 흑연화할 경우 초도 용량의 감소를 줄이면서 동시에 전해액 분해반응을 억제할 수 있다.In order to overcome this problem, the low-crystalline carbon is surface-treated (coated) on natural graphite and heat-treated at 1000 ° C or higher to coat low-crystalline carbide on the surface of natural graphite, thereby reducing the initial capacity by a small amount, but increasing efficiency and cycle capacity. A negative electrode active material having improved characteristics can be obtained. In particular, when artificial graphitization of low crystalline carbon, which is used as a cladding material, by high temperature heat treatment to reduce the initial capacity, it is possible to reduce the initial capacity and to suppress the electrolyte decomposition reaction.

또한, 대한민국 특허출원 제2004-0050876호에는 Si, Sn 및 Al로 이루어진 군에서 선택되는 1 종 이상의 금속 및 흑연을 포함하며, 금속의 부피 팽창을 음극 활물질 자체에서 흡수하여 극판의 부피 팽창을 억제할 수 있는 흑연에 대하여 개시하고 있다.In addition, Korean Patent Application No. 2004-0050876 includes one or more metals and graphite selected from the group consisting of Si, Sn and Al, and absorbs the volume expansion of the metal in the negative electrode active material itself to suppress the volume expansion of the electrode plate. Disclosed is a graphite that can be.

그런데, 현재까지 Ni, Al, Ag, Cu, Si, Sn 등 금속이나 금속 산화물을 포함하는 흑연에 대해서는 특허나 논문에서 언급하고 있으나, 본 발명과 같이 실리콘 플루오라이드계 화합물을 포함하는 흑연에 대한 기술에 대한 내용은 전무하였다.By the way, graphite, which includes metals and metal oxides such as Ni, Al, Ag, Cu, Si, Sn, and the like, has been mentioned in the patent or the paper so far, but the technology for graphite containing silicon fluoride compounds as in the present invention There was no information on.

따라서, 전술한 종래 기술의 문제점을 해결하기 위한 노력은 당업계에서 지속되어 왔으며, 이러한 기술적 배경하에서 본 발명이 창안되었다.Accordingly, efforts to solve the above-mentioned problems of the prior art have been continued in the art, and the present invention has been devised under such technical background.

본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 창안된 것으로서, 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 혼합하고 열처리함으로써, 리튬 이차 전지의 충방전 효율 및 사이클 특성을 향상시킬 수 있는 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지를 제공하는데 그 목적이 있다.The present invention was devised to solve the above-mentioned problems of the prior art, by mixing (NH 4 ) 2 SiF 6 in a negative electrode active material made of a carbon material and heat treatment, thereby improving the charge and discharge efficiency and cycle characteristics of the lithium secondary battery An object of the present invention is to provide a negative electrode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same as a negative electrode.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 구성의 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the embodiments of the invention. In addition, the objects and advantages of the present invention can be realized by the configuration and combination of configurations shown in the claims.

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지는 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 혼합하여 열처리한다.In order to achieve the above object, a negative electrode active material for a lithium secondary battery according to the present invention, a manufacturing method thereof, and a lithium secondary battery including the same as a negative electrode are heat treated by mixing (NH 4 ) 2 SiF 6 with a negative electrode active material made of a carbon material. .

즉, 본 발명에 따른 리튬 이차 전지용 음극 활물질은 리튬 이차 전지용 음극 활물질에 있어서, 상기 음극 활물질은 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 혼합하고 열처리하는 것을 특징으로 한다.That is, the negative electrode active material for a lithium secondary battery according to the present invention is a negative electrode active material for a lithium secondary battery, wherein the negative electrode active material is characterized by mixing (NH 4 ) 2 SiF 6 with a negative electrode active material made of a carbon material and heat treatment.

한편, 본 발명의 다른 측면에 따른 리튬 이차 전지용 음극 활물질의 제조방법은 리튬 이차 전지용 음극 활물질의 제조방법에 있어서, 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 첨가하여 혼합하는 혼합단계; 및 상기 탄소재료에 (NH4)2SiF6가 혼합된 음극 활물질을 열처리하는 열처리단계를 포함하는 것을 특징으로 한다.On the other hand, the manufacturing method of the negative electrode active material for a lithium secondary battery according to another aspect of the present invention, in the manufacturing method of the negative electrode active material for a lithium secondary battery, a mixing step of adding and mixing (NH 4 ) 2 SiF 6 to the negative electrode active material made of a carbon material ; And a heat treatment step of heat treating the anode active material in which (NH 4 ) 2 SiF 6 is mixed with the carbon material.

또한, 상기 (NH4)2SiF6는 상기 탄소재료 100 중량부에 대해 0.05 내지 15 중량부로 포함되는 것이 바람직하다.In addition, the (NH 4 ) 2 SiF 6 It is preferably included in 0.05 to 15 parts by weight based on 100 parts by weight of the carbon material.

아울러, 상기 탄소재료는 천연흑연 및 인조흑연으로 이루어진 군으로부터 선택된 단일물 또는 둘 이상의 혼합물인 것이 바람직하다.In addition, the carbon material is preferably a single substance or a mixture of two or more selected from the group consisting of natural graphite and artificial graphite.

더욱이, 상기 열처리단계는 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태하에서 수행되는 것이 바람직하며, 상기 열처리단계는 150 내지 700℃의 온도 범위에서 수행되는 것이 바람직하다.Further, the heat treatment step is preferably carried out under any one of an oxidizing atmosphere, a reducing atmosphere and a vacuum state, the heat treatment step is preferably carried out in a temperature range of 150 to 700 ℃.

한편, 본 발명의 또 다른 측면에 따르면 상기한 리튬 이차 전지용 음극 활물질을 포함하는 음극을 가지는 리튬 이차 전지를 제공한다.On the other hand, according to another aspect of the present invention provides a lithium secondary battery having a negative electrode containing the negative electrode active material for the lithium secondary battery.

본 발명에 따르면, 음극 활물질에 (NH4)2SiF6를 혼합하고 열처리함으로써, 음극 활물질의 표면을 안정화시켜 비가역 용량의 주요 원인인 유기전해액 분해반응의 영향을 줄이는 동시에 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시켜 리튬 이차 전지의 충방전 효율 및 사이클 특성을 향상시킬 수 있다.According to the present invention, by mixing (NH 4 ) 2 SiF 6 in the negative electrode active material and heat treatment, the surface of the negative electrode active material is stabilized to reduce the effects of organic electrolyte solution decomposition reaction, which is the main cause of irreversible capacity, and the electrolyte is oxidized during charge and discharge. By reducing the influence on the generated acid can improve the charge and discharge efficiency and cycle characteristics of the lithium secondary battery.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the detailed description of the present invention serve to further understand the technical idea of the present invention, the present invention includes the matters described in such drawings. It should not be construed as limited to.

도 1은 본 발명에 따른 리튬 이차 전지용 음극 활물질 제조방법의 개략적인 공정도이다.1 is a schematic process diagram of a method of manufacturing a negative active material for a lithium secondary battery according to the present invention.

이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

본 발명의 바람직한 실시예에 따른 이차 전지용 음극 활물질은, 충방전 효율 및 사이클 특성이 저하되는 현상을 방지하기 위해, 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 일정비율 혼합한 것이 특징이다.In the negative electrode active material for a secondary battery according to a preferred embodiment of the present invention, in order to prevent a phenomenon in which charge and discharge efficiency and cycle characteristics are deteriorated, a predetermined ratio of (NH 4 ) 2 SiF 6 is mixed with a negative electrode active material made of a carbon material. to be.

도 1은 본 발명에 따른 리튬 이차 전지용 음극 활물질 제조방법의 개략적인 공정도이다.1 is a schematic process diagram of a method of manufacturing a negative active material for a lithium secondary battery according to the present invention.

도 1을 참조하면, 본 발명에 따른 리튬 이차 전지용 음극 활물질은 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 일정비율 혼합(S100)한 뒤에 탄소재료와 (NH4)2SiF6가 균일하게 혼합된 혼합물을 150 내지 700℃의 온도 범위에서 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태하에서 열처리(S200)하여 제조한다.Referring to FIG. 1, a negative electrode active material for a lithium secondary battery according to the present invention is a mixture of (NH 4 ) 2 SiF 6 with a predetermined ratio (S100) in a negative electrode active material made of a carbon material and (NH 4 ) 2 SiF 6 The uniformly mixed mixture is prepared by heat treatment (S200) in any one of an oxidizing atmosphere, a reducing atmosphere, and a vacuum in a temperature range of 150 to 700 ° C.

여기서, 탄소재료는 저결정성 탄소재료로 피복하여 제조된 천연흑연, 인조흑연 및 이 둘의 혼합물이 될 수 있으며, (NH4)2SiF6는 탄소재료 100 중량부에 대해 0.05 내지 15 중량부로 포함된다.Here, the carbon material may be natural graphite, artificial graphite and a mixture of the two prepared by coating with a low crystalline carbon material, (NH 4 ) 2 SiF 6 is 0.05 to 15 parts by weight based on 100 parts by weight of the carbon material Included.

또한, 열처리 온도범위에 있어서, 상기 하한가 미만일 경우에는 불순물을 충분히 제거하지 못하기 때문에 바람직하지 않으며, 상기 상한가를 초과할 경우에는 (NH4)2SiF6 입자의 크기가 과도하게 성장하여 저항으로 작용하기 때문에 전지 성능의 저하를 가져올 수 있어 바람직하지 않다.In addition, in the heat treatment temperature range, if the lower limit is less than the impurity can not be sufficiently removed, if the upper limit is exceeded, the size of the (NH 4 ) 2 SiF 6 particles grow excessively to act as a resistance Therefore, the battery performance may be reduced, which is not preferable.

이와 같이, 음극 활물질 제조시 (NH4)2SiF6를 혼합하여 열처리하게 되면, 음극 활물질 표면과 구조를 안정화시키게 된다. 결국, 이러한 음극 활물질의 표면과 구조의 안정화는 유기전해액 분해반응의 영향을 줄이고, 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시킴으로써 충방전 효율 및 사이클 특성을 향상시킬 수 있다.As such, when the (NH 4 ) 2 SiF 6 is mixed and heat treated during preparation of the negative electrode active material, the surface and structure of the negative electrode active material are stabilized. As a result, the stabilization of the surface and the structure of the negative electrode active material can improve the charge and discharge efficiency and cycle characteristics by reducing the effect of the decomposition of the organic electrolyte solution, and by reducing the influence on the acid generated by the oxidation of the electrolyte during charge and discharge.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(1~5)와 이에 대비되는 비교예(1~2)를 통하여 보다 구체적으로 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어 져서는 아니된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples (1 to 5) and comparative examples (1 to 2) in contrast thereto. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

<실시예 1> < Example 1>

구상의 천연흑연에 10%의 피치를 고속으로 약 10분 건식 혼합하여 혼합물을 제조하고, 이 혼합물을 1000℃와 2200℃에서 각각 1시간 동안 1, 2차 소성하였다. 그리고 나서, 분급하고 미분을 제거하여 리튬 이차 전지용 음극 활물질인 천연흑연을 제조하였다.10% pitch was dry-mixed at high speed for about 10 minutes to spherical natural graphite, and the mixture was calcined for 1 hour at 1000 ° C and 2200 ° C for 1 hour, respectively. Then, it was classified and the fine powder was removed to prepare natural graphite which is a negative electrode active material for a lithium secondary battery.

상기 제조한 천연흑연 100 중량부에 대해 4 중량부의 (NH4)2SiF6를 혼합한 후 질소(N2)가스의 불활성 분위기에서 600℃ 5시간 하소하여 본 발명의 리튬 이차 전지용 음극 활물질을 제조하였다.4 parts by weight of (NH 4 ) 2 SiF 6 was mixed with 100 parts by weight of the natural graphite prepared above, followed by calcination at 600 ° C. for 5 hours in an inert atmosphere of nitrogen (N 2) to prepare a negative active material for a lithium secondary battery of the present invention. .

상기 제조한 음극 활물질 100g을 500㎖의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 Binder(PVDF)를 투입한 후 혼합기를 이용하여 슬러리를 제조하였다.100 g of the prepared negative active material was placed in a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and Binder (PVDF) were added thereto to prepare a slurry using a mixer.

상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하고, 제조한 전극을 압착한 뒤에 전극으로 사용하여 코인 셀(Coin Cell)을 제조하였다.The slurry was uniformly coated on a copper foil having a thickness of 12 μm, vacuum dried at 120 ° C. to prepare an electrode, and the prepared electrode was pressed and then used as an electrode to prepare a coin cell.

<실시예 2> < Example 2>

천연흑연 100 중량부에 대해 2 중량부의 (NH4)2SiF6를 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.A coin cell was manufactured in the same manner as in Example 1, except that 2 parts by weight of (NH 4 ) 2 SiF 6 was mixed with respect to 100 parts by weight of natural graphite.

<실시예 3> < Example 3>

천연흑연 100 중량부에 대해 0.5 중량부의 (NH4)2SiF6를 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.A coin cell was prepared in the same manner as in Example 1, except that 0.5 parts by weight of (NH 4 ) 2 SiF 6 was mixed with respect to 100 parts by weight of natural graphite.

<실시예 4> < Example 4>

코크스(Cokes)를 3000℃에서 24시간 동안 소성한 뒤에 분급하고 미분을 제거하여 리튬 이차 전지용 음극 활물질인 인조흑연을 제조하였다.Cokes were fired at 3000 ° C. for 24 hours, then classified and the fine powder was removed to prepare artificial graphite, which is a negative electrode active material for a lithium secondary battery.

상기 제조한 인조흑연 100 중량부에 대해 4 중량부의 (NH4)2SiF6를 혼합한 후 질소가스의 불활성 분위기에서 600℃에서 5시간 하소하여 본 발명의 리튬 이차 전지용 음극 활물질을 제조하였다.4 parts by weight of (NH 4 ) 2 SiF 6 was mixed with respect to 100 parts by weight of the artificial graphite prepared above, followed by calcining at 600 ° C. for 5 hours in an inert atmosphere of nitrogen gas to prepare a negative electrode active material for a lithium secondary battery of the present invention.

나머지는 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.The rest of the coin cell was prepared in the same manner as in Example 1.

<실시예 5> < Example 5>

인조흑연 100 중량부에 대해 2 중량부의 (NH4)2SiF6를 혼합한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 코인 셀을 제조하였다.A coin cell was manufactured in the same manner as in Example 3, except that 2 parts by weight of (NH 4 ) 2 SiF 6 was mixed with respect to 100 parts by weight of artificial graphite.

<비교예 1> < Comparative Example 1>

구상의 천연흑연에 10%의 피치를 고속으로 약 10분 건식 혼합하여 혼합물을 제조하고, 이 혼합물을 1000℃와 2200℃에서 각각 1시간 동안 1, 2차 소성하였다. 그리고 나서, 분급하고 미분을 제거하여 리튬 이차 전지용 음극 활물질을 제조하였다.10% pitch was dry-mixed at high speed for about 10 minutes to spherical natural graphite, and the mixture was calcined for 1 hour at 1000 ° C and 2200 ° C for 1 hour, respectively. Then, it was classified and the fine powder was removed to prepare a negative electrode active material for a lithium secondary battery.

상기 제조한 음극 활물질 100g을 500㎖의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 Binder(PVDF)를 투입한 후 혼합기를 이용하여 슬러리를 제조하였다.100 g of the prepared negative active material was placed in a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and Binder (PVDF) were added thereto to prepare a slurry using a mixer.

상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하고, 제조한 전극을 압착한 뒤에 전극으로 사용하여 코인 셀(Coin Cell)을 제조하였다.The slurry was uniformly coated on a copper foil having a thickness of 12 μm, vacuum dried at 120 ° C. to prepare an electrode, and the prepared electrode was pressed and then used as an electrode to prepare a coin cell.

<비교예 2> < Comparative Example 2>

코크스(Cokes)를 3000℃에서 24시간 동안 소성한 뒤에 분급하고 미분을 제거하여 리튬 이차 전지용 음극 활물질인 인조흑연을 제조하였다.Cokes were fired at 3000 ° C. for 24 hours, then classified and the fine powder was removed to prepare artificial graphite, which is a negative electrode active material for a lithium secondary battery.

나머지는 상기 비교예 1과 동일한 방법으로 코인 셀을 제조하였다.The remainder of the coin cell was prepared in the same manner as in Comparative Example 1.

상기 실시예(1~5)와 비교예(1~2) 따라 제조된 코인 셀(Coin Cell) 특성을 평가하기 위하여, 0.01~1.5V의 전위영역에서 충전전류를 0.5mA/㎠로 0.01V가 될 때까지 충전하고, 0.01V의 전압을 유지하며 충전전류가 0.02mA/㎠가 될 때까지 충전을 계속하였다. 그리고, 방전전류를 0.5mA/㎠로 1.5V까지 방전하여 충방전 시험을 하였다.In order to evaluate the characteristics of the coin cell (Coin Cell) manufactured according to the Examples (1 to 5) and Comparative Examples (1 to 2), in the potential region of 0.01 ~ 1.5V, the charging current is 0.5mA / ㎠ 0.01V Charging was continued until the charge current was maintained, and the charging was continued until the charging current became 0.02 mA / cm 2. Then, the discharge current was discharged to 1.5V at 0.5 mA / cm 2 to perform a charge and discharge test.

이러한 실험 결과를 하기 표 1에 나타내었으며, 표에서 충방전 효율은 충전한 전기용량에 대해 방전한 전기용량의 비율을 나타낸다.The experimental results are shown in Table 1 below, in which the charge and discharge efficiency indicates the ratio of the discharged capacity to the charged capacity.

(NH4)2SiF6첨가량(wt%)(NH 4 ) 2 SiF 6 Amount (wt%) 1st Cycle방전용량(mAh/g)1st Cycle Discharge Capacity (mAh / g) 1st Cycle효율(%)1st Cycle Efficiency (%) 50 Cycle용량 유지율(%)50 Cycle capacity retention rate (%) 실시예1Example 1 44 359.3359.3 94.194.1 95.895.8 실시예2Example 2 22 356.1356.1 93.793.7 95.195.1 실시예3Example 3 0.50.5 351.8351.8 93.593.5 94.794.7 실시예4Example 4 44 328.6328.6 93.793.7 94.994.9 실시예5Example 5 22 327.1327.1 93.493.4 94.394.3 비교예1Comparative Example 1 00 351.8351.8 90.290.2 86.386.3 비교예2Comparative Example 2 00 326.1326.1 90.790.7 87.587.5

상기 표 1로부터 알 수 있는 바와 같이, 전반적으로 본 발명에 따른 음극 활물질을 이용한 코인 셀이 종래의 음극 활물질을 이용한 비교예 1 및 비교예 2의 코인 셀에 비해 우수한 충방전 효율 및 사이클 특성을 나타내었다.As can be seen from Table 1, the coin cell using the negative electrode active material according to the present invention exhibits excellent charge and discharge efficiency and cycle characteristics as compared to the coin cells of Comparative Example 1 and Comparative Example 2 using the conventional negative electrode active material It was.

이와 같이, 상기 실시예(1~5)로부터 리튬 이차 전지용 음극 활물질 제조시 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 혼합하여 열처리하게 되면, 음극 활물질의 표면을 안정화시켜 비가역 용량의 주요 원인인 유기전해액 분해반응의 영향을 줄이는 동시에 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시켜 리튬 이차 전지의 충방전 효율 및 사이클 특성이 향상됨을 확인할 수 있다.As described above, when (NH 4 ) 2 SiF 6 is mixed with a negative electrode active material made of a carbon material and heat treated when the negative electrode active material for a lithium secondary battery is manufactured from Examples 1 to 5, the surface of the negative electrode active material is stabilized and It can be seen that the charging and discharging efficiency and cycle characteristics of the lithium secondary battery are improved by reducing the effect of the organic electrolyte solution decomposition reaction, which is a major cause, and reducing the influence on the acid generated by oxidation of the electrolyte during charge and discharge.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나,본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (7)

리튬 이차 전지용 음극 활물질에 있어서,In the negative electrode active material for lithium secondary batteries, 상기 음극 활물질은 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 혼합하고 열처리하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The negative electrode active material is a negative electrode active material for lithium secondary batteries, characterized in that the (NH 4 ) 2 SiF 6 mixed with the negative electrode active material made of a carbon material and heat treatment. 리튬 이차 전지용 음극 활물질의 제조방법에 있어서,In the manufacturing method of the negative electrode active material for lithium secondary batteries, 탄소재료로 이루어진 음극 활물질에 (NH4)2SiF6를 첨가하여 혼합하는 혼합단계; 및A mixing step of adding and mixing (NH 4 ) 2 SiF 6 with a negative electrode active material made of a carbon material; And 상기 탄소재료에 (NH4)2SiF6가 혼합된 음극 활물질을 열처리하는 열처리단계를 포함하는 것을 특징으로 하는 음극 활물질의 제조방법.And a heat treatment step of heat-treating the negative electrode active material mixed with (NH 4 ) 2 SiF 6 to the carbon material. 제 2항에 있어서,The method of claim 2, 상기 (NH4)2SiF6는 상기 탄소재료 100 중량부에 대해 0.05 내지 15 중량부로 포함되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질의 제조방법.The (NH 4 ) 2 SiF 6 is 0.05 to 15 parts by weight based on 100 parts by weight of the carbon material, the method of manufacturing a negative electrode active material for a lithium secondary battery. 제 2항에 있어서,The method of claim 2, 상기 탄소재료는 천연흑연 및 인조흑연으로 이루어진 군으로부터 선택된 단일물 또는 둘 이상의 혼합물인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질의 제조방법.The carbon material is a method for producing a negative electrode active material for a lithium secondary battery, characterized in that a single material or a mixture of two or more selected from the group consisting of natural graphite and artificial graphite. 제 2항에 있어서,The method of claim 2, 상기 열처리단계는 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태하에서 수행되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질의 제조방법.The heat treatment step is a method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that carried out under any one of an oxidizing atmosphere, a reducing atmosphere and a vacuum state. 제 5항에 있어서,The method of claim 5, 상기 열처리단계는 150 내지 700℃의 온도 범위에서 수행되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질의 제조방법.The heat treatment step is a method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that carried out in a temperature range of 150 to 700 ℃. 제 1항에 따른 음극 활물질을 포함하는 음극을 가지는 리튬 이차 전지.A lithium secondary battery having a negative electrode comprising the negative electrode active material according to claim 1.
KR1020080028531A 2008-03-27 2008-03-27 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode KR100991358B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080028531A KR100991358B1 (en) 2008-03-27 2008-03-27 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080028531A KR100991358B1 (en) 2008-03-27 2008-03-27 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode

Publications (2)

Publication Number Publication Date
KR20090103135A true KR20090103135A (en) 2009-10-01
KR100991358B1 KR100991358B1 (en) 2010-11-03

Family

ID=41532701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080028531A KR100991358B1 (en) 2008-03-27 2008-03-27 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode

Country Status (1)

Country Link
KR (1) KR100991358B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065248B1 (en) * 2010-03-04 2011-09-19 (주)포스코켐텍 Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
CN112142044A (en) * 2020-09-24 2020-12-29 中南大学 Treatment method of waste lithium ion battery carbon residue

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265710A (en) 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
JP2005011696A (en) 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
KR100853327B1 (en) 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065248B1 (en) * 2010-03-04 2011-09-19 (주)포스코켐텍 Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
CN112142044A (en) * 2020-09-24 2020-12-29 中南大学 Treatment method of waste lithium ion battery carbon residue

Also Published As

Publication number Publication date
KR100991358B1 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
KR101445692B1 (en) Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101031920B1 (en) Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
KR101972187B1 (en) Structurally stable active material for battery electrodes
JP4925690B2 (en) Nonaqueous electrolyte secondary battery
KR100269923B1 (en) Method for manufacturing active material for negative electrode of lithium series secondary battery
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
KR102590571B1 (en) Manufacturing methods of composite cathode material for lithium secondary batteries and composite cathode material manufactured by the method
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JPH10294099A (en) Non-aqueous electrolyte secondary cell
KR20190057571A (en) Anode Active Materails With Long Life Cycle For Li Secondary Battery And Manufacturing Methods Thereof
KR100991358B1 (en) Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
US20120070732A1 (en) Negative active material for secondary battery, and electrode and secondary battery including the same
KR101858933B1 (en) Heterogeneous metal nanowire electrode and preparing method thereof
KR101722960B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2007265915A (en) Reformed graphite for nonaqueous electrolyte secondary battery
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR100269918B1 (en) A negative active material for a lithium-based secondary cell and a method of preparing the same
KR101243941B1 (en) Cathode material for Li secondary battery, manufacturing method thereof and Li secondary battery using the same
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
KR20090103133A (en) Cathode active material for lithium secondary and method for preparing thereof and lithium secondary battery containing the same for cathode
KR102643130B1 (en) Manufacturing methods of electrode material for lithium secondary batteries and eletrode material manufactured by the method
KR102531848B1 (en) Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130906

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee