KR20090009053A - Composite anode material, and anode and lithium battery using the same - Google Patents

Composite anode material, and anode and lithium battery using the same Download PDF

Info

Publication number
KR20090009053A
KR20090009053A KR1020070072489A KR20070072489A KR20090009053A KR 20090009053 A KR20090009053 A KR 20090009053A KR 1020070072489 A KR1020070072489 A KR 1020070072489A KR 20070072489 A KR20070072489 A KR 20070072489A KR 20090009053 A KR20090009053 A KR 20090009053A
Authority
KR
South Korea
Prior art keywords
active material
negative electrode
electrode active
composite
metal
Prior art date
Application number
KR1020070072489A
Other languages
Korean (ko)
Other versions
KR101386163B1 (en
Inventor
황승식
김한수
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020070072489A priority Critical patent/KR101386163B1/en
Priority to US12/120,262 priority patent/US8906554B2/en
Priority to CN2008101319540A priority patent/CN101621124B/en
Priority to JP2008185201A priority patent/JP5673988B2/en
Publication of KR20090009053A publication Critical patent/KR20090009053A/en
Application granted granted Critical
Publication of KR101386163B1 publication Critical patent/KR101386163B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A composite anode active material, an anode and lithium battery employing the same are provided to improve high-capacity, initial efficiency and lifetime property by increasing the conductivity of an active material. A composite anode active material comprises carbon-based anode active material, metalic organic anode active material and a composite of polymer particles. The average particle diameter of the polymer particles is 20nm - 20mum. The polymer particles have elasticity.

Description

복합 음극활물질, 이를 채용한 음극 및 리튬 전지 {Composite anode material, and anode and lithium battery using the same}Composite anode material, and anode and lithium battery using the same

본 발명은 복합 음극 활물질, 이를 채용한 음극 및 리튬전지에 관한 것으로서, 더욱 상세하게는 활물질의 전도도를 높여 고용량 및 초기 효율 특성과 수명 특성이 개선된 복합 음극 활물질, 이를 채용한 음극 및 리튬 전지에 관한 것이다.The present invention relates to a composite negative electrode active material, a negative electrode and a lithium battery employing the same, and more particularly, to a composite negative electrode active material having improved high capacity and initial efficiency characteristics and lifetime characteristics by increasing the conductivity of the active material, a negative electrode and a lithium battery using the same It is about.

종래 리튬 전지의 음극 활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용할 경우 덴드라이트(dendrite) 형성으로 인한 전지 단락이 발생하여 폭발의 위험성이 있으므로 리튬 금속 대신 탄소계 물질이 음극 활물질로서 많이 사용되고 있다.Lithium metal is used as a negative electrode active material of a conventional lithium battery. However, when a lithium metal is used, a carbon-based material is used as a negative electrode active material instead of lithium metal because a short circuit of the battery occurs due to dendrite formation. .

상기 탄소계 활물질로서는, 그래파이트 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본(soft carbon) 및 하드 카본(hard carbon)과 같은 비정질계 탄소가 있다. 그러나 상기 비정질계 탄소는 용량이 크지만, 충방전 과정에서 비가역성이 크다는 문제점이 있다. 결정질계 탄소로는 그래파이트가 대표적으로 사용되며, 이론 한계 용량이 372㎃h/g으로서 용량이 높아 음극 활물질로 이용되고 있다. 그러나 이러한 그래파이트나 카본계 활물질은 이론 용량이 다소 높다고 하여도 380 mAh/g 정도에 불과하여, 향후 고용량 리튬 전지의 개발시 상술한 음극을 사용할 수 없게 되는 문제점이 있다.Examples of the carbon-based active material include crystalline carbon such as graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon. However, although the amorphous carbon has a large capacity, there is a problem in that irreversibility is large in the charging and discharging process. Graphite is typically used as the crystalline carbon, and has a theoretical limit capacity of 372 mAh / g, which has a high capacity, and is used as a negative electrode active material. However, even if the graphite or carbon-based active material has a rather high theoretical capacity, it is only about 380 mAh / g, and there is a problem in that the above-described negative electrode cannot be used in the development of a high capacity lithium battery in the future.

이와 같은 문제점을 개선하기 위하여 현재 활발히 연구되고 있는 물질이 금속계 또는 금속간 화합물(intermetallic compounds)계의 음극 활물질이다. 예를 들어 알루미늄, 게르마늄, 실리콘, 주석, 아연, 납 등의 금속 또는 반금속을 음극 활물질로서 활용한 리튬 전지가 연구되고 있다. 이러한 재료는 고용량이면서 고에너지 밀도를 가지며, 탄소계 재료를 이용한 음극 활물질보다 많은 리튬이온을 흡장, 방출할 수 있어 고용량 및 고에너지 밀도를 갖는 전지를 제조할 수 있다고 여겨지고 있다. 예를 들어 순수한 실리콘은 4017mAh/g의 높은 이론 용량을 갖는 것으로 알려져 있다.In order to improve such a problem, a material that is currently being actively researched is a negative electrode active material based on metals or intermetallic compounds. For example, lithium batteries using metals or semimetals such as aluminum, germanium, silicon, tin, zinc, and lead as negative electrode active materials have been studied. It is believed that such a material has a high energy density and high energy density, and can absorb and release more lithium ions than a negative electrode active material using a carbon-based material, thereby producing a battery having a high capacity and a high energy density. Pure silicon, for example, is known to have a high theoretical capacity of 4017 mAh / g.

그러나 탄소계 재료와 비교하여 사이클 특성이 저하되므로 아직 실용화에 걸림돌이 되고 있으며, 그 이유는 음극 활물질로서 상기 실리콘이나 주석과 같은 무기질 입자를 그대로 리튬 흡장 및 방출 물질로서 사용한 경우, 충방전 과정에서 부피 변화로 인해 활물질 사이의 도전성이 저하되거나, 음극 집전체로부터 음극 활물질이 박리되는 현상이 발생하기 때문이다. 즉 음극 활물질에 포함된 상기 실리콘이나 주석과 같은 무기질 입자는 충전에 의하여 리튬을 흡장하여 그 부피가 약 300 내지 400%에 이를 정도로 팽창한다. 그리고 방전에 의하여 리튬이 방출되면 상기 무기질 입자는 수축하게 되며, 이와 같은 충방전 사이클을 반복하게 되면 무기질 입자와 활물질 사이에 발생하는 빈 공간으로 인해 전기적 절연이 발생할 수 있어 수명이 급격히 저하되는 특성을 갖게 되므로, 리튬 전지에 사용하기에 심각한 문제 점을 가지고 있다.However, the cycle characteristics are lowered compared to the carbon-based material, which is still an obstacle to practical use. The reason is that when the inorganic particles such as silicon and tin are used as lithium occlusion and release materials as they are, the volume during charge and discharge This is because the change in conductivity between the active materials or the phenomenon in which the negative electrode active material peels from the negative electrode current collector occurs due to the change. That is, the inorganic particles such as silicon or tin included in the negative electrode active material occlude lithium by charging and expand to about 300 to 400% in volume. In addition, when lithium is discharged by discharge, the inorganic particles contract, and when the charge and discharge cycles are repeated, electrical insulation may occur due to the empty space generated between the inorganic particles and the active material, and thus the life may be rapidly decreased. As a result, they have serious problems for use in lithium batteries.

이를 개선하기 위해 일본 특허공개 1994-318454호에서 리튬의 흡장 및 탈리가 가능한 탄소계 활물질과 금속 또는 합금 입자를 단순 혼합하여 제조된 음극을 사용한 예가 기재되어 있으나, 이 경우에는 충방전 중의 금속계 음극 활물질의 과도한 부피 팽창 및 수축으로 인하여 금속계 활물질이 파쇄되어 미분화되고, 미분화된 입자가 집전체와 탈리되어 수명 특성이 급격히 열화되는 현상을 보인다. 또한 일본 특허공개 2006-147316호에서 표면에 구멍이 형성되어 있는 집전체 내에 흑연보다 고용량을 가지는 금속계 활물질 입자와 도전성의 탄소계 재료 또는 고무 모양 재료의 입자를 포함한 활물질층을 형성한 음극이 기재되어 있으나, 이 경우에는 고무 모양의 입자를 전극 내에 단순히 혼합함으로써 바인더와 같은 역할을 하여 충방전 중의 음극의 변형을 방지하고자 한 것에 불과하며, 그 제조 공정이 복잡하고, 고용량, 효율 특성 및 수명 특성의 개선이 미흡하다는 문제가 있다.In order to improve this, Japanese Patent Laid-Open Publication No. 1994-318454 describes an example using a negative electrode prepared by simply mixing a carbon-based active material capable of occluding and desorbing lithium with metal or alloy particles, but in this case, a metal-based negative electrode active material during charge and discharge. Due to excessive volume expansion and contraction, the metal-based active material is crushed and micronized, and the micronized particles are detached from the current collector to rapidly deteriorate the life characteristics. In addition, Japanese Patent Application Laid-Open No. 2006-147316 discloses a negative electrode having an active material layer including metal-based active material particles having a higher capacity than graphite and particles of conductive carbon-based material or rubber-like material in a current collector with holes formed on its surface. In this case, however, the rubber particles are simply mixed in the electrode to serve as a binder to prevent deformation of the negative electrode during charging and discharging. The manufacturing process is complicated, and the high capacity, efficiency characteristics and life characteristics There is a problem that the improvement is insufficient.

본 발명이 이루고자 하는 제1 기술적 과제는 고용량, 초기 효율특성 및 수명특성이 개선된 복합 음극 활물질을 제공하는 것이다.The first technical problem to be achieved by the present invention is to provide a composite anode active material having improved high capacity, initial efficiency characteristics and lifespan characteristics.

본 발명이 이루고자 하는 제2 기술적 과제는 상기 복합 음극활물질을 구비한 음극을 제공하는 것이다.The second technical problem to be achieved by the present invention is to provide a negative electrode having the composite negative electrode active material.

본 발명이 이루고자 하는 제3 기술적 과제는 상기 음극을 채용한 리튬 전지를 제공하는 것이다.The third technical problem to be achieved by the present invention is to provide a lithium battery employing the negative electrode.

상기 제1 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the first technical problem,

탄소계 음극 활물질, 금속계 음극 활물질 및 고분자 입자의 복합물을 포함하는 복합 음극 활물질을 제공한다.Provided is a composite negative electrode active material including a composite of a carbon-based negative electrode active material, a metal-based negative electrode active material, and a polymer particle.

본 발명의 일구현예에 따르면, 상기 복합물은 금속 입자를 더 포함한다.According to one embodiment of the invention, the composite further comprises metal particles.

본 발명의 일구현예에 따르면, 상기 탄소계 음극 활물질은 그래파이트 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본 및 하드 카본과 같은 비정질계 탄소를 포함한다.According to one embodiment of the present invention, the carbonaceous anode active material includes crystalline carbon such as graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon.

본 발명의 일구현예에 따르면, 상기 금속계 음극 활물질은 Si, Sn, Al, Ge, Pb, Zn, Ag 및 Au로 이루어진 군으로부터 선택된 하나 이상의 금속 혹은 이들의 합금을 포함한다.According to one embodiment of the present invention, the metal-based negative electrode active material includes at least one metal selected from the group consisting of Si, Sn, Al, Ge, Pb, Zn, Ag and Au or alloys thereof.

본 발명의 일구현예에 따르면, 상기 금속계 음극 활물질은 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 100중량부의 함량으로 사용할 수 있다.According to one embodiment of the present invention, the metal-based negative electrode active material may be used in an amount of 1 to 100 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material.

본 발명의 일구현예에 따르면, 상기 고분자 입자는 평균 입경이 20nm 내지 20㎛인 것이 바람직하다.According to one embodiment of the present invention, the polymer particles preferably have an average particle diameter of 20nm to 20㎛.

본 발명의 일구현예에 따르면, 상기 고분자 입자는 탄성 입자인 것이 바람직하다.According to one embodiment of the present invention, the polymer particles are preferably elastic particles.

본 발명의 일구현예에 따르면, 상기 고분자 입자는 비닐계 고분자가 바람직하다.According to one embodiment of the present invention, the polymer particles are preferably a vinyl polymer.

본 발명의 일구현예에 따르면, 상기 고분자 입자는 폴리스티렌계 고분자, 폴리(메타)아크릴레이트계 고분자, 스티렌-부타디엔계 공중합체, 폴리우레탄계 고분자, 폴리비닐알콜계 및 폴리올레핀 고분자로 이루어지는 군으로부터 선택된 하나 이상 또는 이들로부터 선택된 2종 이상의 공중합체 또는 가교체를 포함한다.According to one embodiment of the present invention, the polymer particles are selected from the group consisting of polystyrene-based polymers, poly (meth) acrylate-based polymers, styrene-butadiene-based copolymers, polyurethane-based polymers, polyvinyl alcohol-based and polyolefin polymers. Or two or more copolymers or crosslinked materials selected from them.

본 발명의 일구현예에 따르면, 상기 고분자 입자는 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 30중량부의 함량으로 사용할 수 있다.According to one embodiment of the present invention, the polymer particles may be used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material.

본 발명의 일구현예에 따르면, 상기 금속 입자는 Ni, Cu, Co, Ag 및 Au로 이루어진 군에서 선택된 하나 이상이거나, 이들의 합금이 바람직하다.According to one embodiment of the present invention, the metal particles are at least one selected from the group consisting of Ni, Cu, Co, Ag and Au, or an alloy thereof.

본 발명의 일구현예에 따르면, 상기 금속 입자는 평균 입경이 20nm 내지 10㎛인 것이 바람직하다.According to one embodiment of the present invention, the metal particles preferably have an average particle diameter of 20 nm to 10 μm.

본 발명의 일구현예에 따르면, 상기 금속입자는 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 30중량부의 함량으로 사용할 수 있다.According to one embodiment of the present invention, the metal particles may be used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material.

상기 제2 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the second technical problem,

음극 집전체 및 상기 음극 집전체 상에 도포된 음극 활물질을 구비하며,A negative electrode current collector and a negative electrode active material coated on the negative electrode current collector,

상기 음극 활물질이 상술한 복합 음극 활물질인 음극을 제공한다.The negative electrode active material provides a negative electrode which is the composite negative electrode active material described above.

상기 제3 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the third technical problem,

음극, 양극 및 전해액을 구비하며,Having a cathode, an anode, and an electrolyte solution,

상기 음극이 상술한 복합 음극활물질을 구비한 음극인 리튬전지를 제공한다.The negative electrode provides a lithium battery which is a negative electrode having the composite negative electrode active material described above.

이하에서 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 복합 음극활물질은 탄소계 음극 활물질, 금속계 음극 활물질 및 고분자 입자의 복합물을 포함한다. 이와 같은 본 발명에 따른 복합 음극 활물질은 도 1에 나타낸 바와 같이 탄소계 음극 활물질 및 금속계 음극 활물질이 갖는 장점을 유지하면서, 고분자 입자를 음극 활물질 내에 도입함으로써 충방전 중의 활물질의 부피 변화에 대한 응력을 완화시키는 완충제 역할을 할 뿐만 아니라, 복합화된 음극 활물질을 견고하게 유지시켜 주는 역할을 수행하게 된다.The composite negative electrode active material according to the present invention includes a composite of a carbon-based negative electrode active material, a metal-based negative electrode active material, and a polymer particle. As shown in FIG. 1, the composite negative electrode active material according to the present invention maintains the advantages of the carbon-based negative electrode active material and the metal-based negative electrode active material, while introducing polymer particles into the negative electrode active material, thereby improving stress on the volume change of the active material during charge and discharge. Not only acts as a buffer to alleviate, but also serves to firmly maintain the composite negative electrode active material.

상기 복합 음극 활물질에 사용되는 탄소계 음극 활물질은 당업계에서 사용되는 것이라면 아무 제한없이 사용할 수 있으며, 예를 들어 그래파이트, 천연 흑연, 또는 인조 흑연과 같은 결정질계 탄소와 소프트 카본 및 하드 카본과 같은 비정질계 탄소를 포함할 수 있다.The carbon-based negative electrode active material used in the composite negative electrode active material can be used without limitation as long as it is used in the art, for example, crystalline carbon such as graphite, natural graphite, or artificial graphite, and amorphous carbon such as soft carbon and hard carbon. It may include a system carbon.

상기 복합 음극 활물질에 사용되는 금속계 음극 활물질은 당업계에서 사용되는 것이라면 아무 제한없이 사용할 수 있으며, 예를 들어 Si, Sn, Al, Ge, Pb, Zn, Ag 및 Au로 이루어진 군으로부터 선택된 하나 이상의 금속 혹은 이들의 합금을 포함한다. 이들 금속계 음극 활물질은 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 100중량부, 바람직하게는 200 내지 80중량부의 비율로 사용될 수 있다. 상기 금속계 음극 활물질의 함량이 1중량부 미만이면 고용량화를 달성하기 곤란한 문제가 있고, 100중량부를 초과하면 충방전 중 금속계 활물질의 과도한 부피 팽창 및 수축에 의한 수명특성의 현격한 저하가 발생할 우려가 있어 바람직하지 않다.The metal-based anode active material used in the composite anode active material may be used without limitation as long as it is used in the art, for example, at least one metal selected from the group consisting of Si, Sn, Al, Ge, Pb, Zn, Ag, and Au. Or alloys thereof. These metal negative electrode active materials may be used in a ratio of 1 to 100 parts by weight, preferably 200 to 80 parts by weight, based on 100 parts by weight of the carbon-based negative electrode active material. When the content of the metal-based negative electrode active material is less than 1 part by weight, it is difficult to achieve high capacity. When the content of the metal-based negative active material exceeds 100 parts by weight, there is a possibility that a significant decrease in life characteristics due to excessive volume expansion and contraction of the metal-based active material occurs during charging and discharging. Not desirable

상기 탄소계 음극 활물질 및 금속계 음극 활물질과 함께 사용되는 고분자 입자는 상술한 바와 같이 활물질의 완충 및 지지체 역할을 수행하며, 탄성을 갖는 고분자 입자를 사용하는 것이 바람직하다. 이와 같은 탄성 고분자 입자로서는 비닐계 입자를 대표적으로 예를 들 수 있으나, 이에 한정되는 것은 아니다.The polymer particles used together with the carbon-based negative electrode active material and the metal-based negative electrode active material serve as a buffer and a support of the active material as described above, and it is preferable to use polymer particles having elasticity. Such elastic polymer particles may be exemplified as vinyl-based particles, but are not limited thereto.

본 발명에 사용가능한 고분자 입자의 예로서는 폴리스티렌계 고분자, 폴리(메타)아크릴레이트계 고분자, 스티렌-부타디엔계 공중합체, 폴리우레탄계 고분자, 폴리비닐알콜계 및 폴리올레핀 고분자로 이루어지는 군으로부터 선택된 하나 이상 또는 이들로부터 선택된 2종 이상의 공중합체 또는 가교체를 사용할 수 있다.Examples of the polymer particles usable in the present invention include at least one selected from the group consisting of polystyrene polymers, poly (meth) acrylate polymers, styrene-butadiene copolymers, polyurethane polymers, polyvinyl alcohol polymers and polyolefin polymers. Two or more selected copolymers or crosslinkers can be used.

이와 같은 고분자 입자는 그 평균 입경이 소정 크기를 갖는 것이 바람직하며, 예를 들어 20nm 내지 20㎛의 평균 입경을 갖는 것이 좋다. 상기 고분자 입자의 평균입경이 20nm 미만이면 고분자 입자가 활물질 내에 고르게 분산이 되기 어려운 문제가 있고, 20㎛를 초과하면 활물질 전체의 입자 크기가 커져 고밀도 전극 형성이 어려운 문제가 있어 바람직하지 않다.It is preferable that the average particle diameter of such a polymer particle has a predetermined size, for example, it is good to have an average particle diameter of 20 nm-20 micrometers. If the average particle diameter of the polymer particles is less than 20 nm, the polymer particles are difficult to be evenly dispersed in the active material. If the average particle diameter is more than 20 μm, the particle size of the entire active material is large, which makes it difficult to form a high density electrode.

상술한 고분자 입자는 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 30중량부, 바람직하게는 3 내지 20중량부의 함량으로 사용될 수 있으며, 상기 함량이 1중량부 미만이면 활물질의 부피 변화에 따른 응력을 효율적으로 제거할 수 없 고 지지체로서의 작용이 충분하지 않은 문제가 있으며, 30중량부를 초과하는 경우 활물질의 전도성 등이 저하되어 바람직하지 않다.The polymer particles described above may be used in an amount of 1 to 30 parts by weight, preferably 3 to 20 parts by weight, based on 100 parts by weight of the carbon-based negative electrode active material. There is a problem that can not be removed efficiently and the action as a support is not sufficient, and if it exceeds 30 parts by weight, the conductivity of the active material is lowered, which is not preferable.

상기 본 발명에 따른 복합 음극 활물질은 도 2에 나타낸 바와 같이 금속 입자를 더 포함할 수 있으며, 이와 같은 금속 입자는 상기 복합 음극 활물질 내에서 고르게 분산되어 활물질의 전도도를 높여 고용량 및 초기 효율 특성, 고율특성과 수명 특성을 향상시키게 된다.The composite anode active material according to the present invention may further include metal particles as shown in Figure 2, such metal particles are evenly dispersed in the composite anode active material to increase the conductivity of the active material, high capacity and initial efficiency characteristics, high rate It will improve the characteristics and life characteristics.

이와 같은 금속입자로서는 Ni, Cu, Co, Ag 및 Au로 이루어진 군에서 선택된 하나 이상이거나, 이들의 합금이 바람직하며, 상기 금속 입자는 평균 입경이 20nm 내지 10㎛인 것이 바람직하다. 상기 금속입자의 평균입경이 20nm 미만이면 금속입자간의 응집이 발생하여 활물질 내에 고르게 분산이 되기 어려운 문제가 있고, 10㎛를 초과하면 단위 무게당 금속입자의 수가 적어 그 효과를 나타내기 어려운 문제가 있어 바람직하지 않다.As such metal particles, one or more selected from the group consisting of Ni, Cu, Co, Ag, and Au, or alloys thereof are preferable, and the metal particles preferably have an average particle diameter of 20 nm to 10 μm. If the average particle diameter of the metal particles is less than 20nm, there is a problem that agglomeration between the metal particles occurs and it is difficult to be uniformly dispersed in the active material. Not desirable

상기 금속입자는 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 30중량부의 함량으로 사용될 수 있으며, 상기 금속입자의 함량이 1중량부 미만이면 전도성 개선 효과가 미미하며, 30중량부를 초과하는 경우 활물질의 고용량화가 어려운 문제가 있어 바람직하지 않다.The metal particles may be used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material. When the content of the metal particles is less than 1 part by weight, the effect of improving conductivity is insignificant. It is not preferable because there is a problem that the high capacity of is difficult.

상기 금속입자는 분말 형태로 상기 탄소계 음극 활물질, 금속계 음극 활물질 및 고분자 입자 등과 혼합되어 사용될 수 있으나, 보다 효율적인 분산처리를 위해서는 상기 고분자 입자의 표면 상에 코팅한 후 이를 혼합할 경우 보다 효과적인 분산처리를 얻을 수 있어 바람직하다. 이와 같은 코팅층은 단층 혹은 2층 이상의 복 수층으로 구성될 수 있다. 상기 고분자 입자에 대한 금속입자의 코팅처리는 무전해 도금, 증착 등의 방법으로 수행할 수 있다.The metal particles may be used in a powder form to be mixed with the carbon-based negative electrode active material, the metal-based negative electrode active material and the polymer particles, etc., but in order to more efficiently disperse the coating on the surface of the polymer particles and then more effective dispersion treatment It is preferable to obtain. Such a coating layer may be composed of a single layer or multiple layers of two or more layers. Coating of the metal particles on the polymer particles may be performed by electroless plating, vapor deposition, or the like.

상술한 바와 같은 본 발명에 따른 복합 음극 활물질의 구성 성분들은 서로 혼합한 후, 이를 기계적 처리, 예를 들어 볼밀링 등의 방법으로 혼합함으로써 복합화시킬 수 있다. 또는 분산제와 함께 용매 내에서 교반 또는 초음파 처리 등으로 분산시킨 후, 건조시켜 복합화시키는 것도 가능하다.The components of the composite anode active material according to the present invention as described above may be compounded by mixing with each other and then mixing them by mechanical treatment, for example, ball milling. Alternatively, the mixture may be dispersed by stirring or sonication in a solvent together with a dispersing agent, and then dried and complexed.

상술한 바와 같이 얻어진 본 발명에 따른 복합 음극 활물질은 음극 및 이를채용한 리튬전지에 유용하게 사용될 수 있는 바, 본 발명에 따른 음극 및 리튬 전지는 다음과 같이 제조할 수 있다.The composite negative electrode active material according to the present invention obtained as described above may be usefully used in a negative electrode and a lithium battery employing the same, and the negative electrode and the lithium battery according to the present invention may be prepared as follows.

상기 본 발명에 따른 음극 활물질, 도전제, 결합제 및 용매를 혼합하여 음극 활물질 조성물을 제조하며, 이를 구리 집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 음극 활물질 필름을 구리 집전체에 라미네이션하여 음극 극판을 얻는다. 상기 음극 활물질로는 상술한 바와 같은 본 발명에 따른 복합 음극 활물질을 사용한다. 도전제로는 카본 블랙을 사용하며, 결합제로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물, 스티렌 부타디엔 고무계 폴리머를 사용하며, 용매로는 N-메틸피롤리돈, 아세톤, 물 등을 사용한다. 이 때 양극 활물질, 도전제, 결합제 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다.The negative electrode active material, the conductive agent, the binder, and the solvent according to the present invention are mixed to prepare a negative electrode active material composition, which is directly coated on a copper current collector, or cast on a separate support, and the negative electrode active material film peeled from the support is copper Lamination is carried out to an electrical power collector, and a negative electrode plate is obtained. As the negative electrode active material, a composite negative electrode active material according to the present invention as described above is used. Carbon black is used as the conductive agent, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, polytetrafluoroethylene and mixtures thereof, Styrene butadiene rubber-based polymer is used, and N-methylpyrrolidone, acetone, water and the like are used as the solvent. At this time, the content of the positive electrode active material, the conductive agent, the binder, and the solvent is at a level commonly used in lithium batteries.

상기 음극 극판과 마찬가지로, 양극 활물질, 도전제, 결합제 및 용매를 혼합하 여 양극 활물질 조성물을 준비한다. 상기 양극 활물질 조성물을 알루미늄 집전체상에 직접 코팅 및 건조하여 양극 극판을 준비한 후, 이어서 상기 양극 활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 알루미늄 집전체 상에 라미네이션하여 양극 극판을 제조하는 것도 가능하다.Similar to the negative electrode plate, a positive electrode active material composition is prepared by mixing a positive electrode active material, a conductive agent, a binder, and a solvent. The positive electrode active material composition was directly coated and dried on an aluminum current collector to prepare a positive electrode plate, and then the positive electrode active material composition was cast on a separate support, and then the film obtained by peeling from the support was deposited on the aluminum current collector. It is also possible to produce a positive electrode plate by lamination.

상기 양극 활물질로는 리튬 함유 금속 산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용가능하며, 예컨대, LiCoO2, LiMnxO2x, LiNix -1MnxO2x(x=1, 2), LiNi1 -x- yCoxMnyO2(0≤x≤0.5, 0≤y≤0.5) 등을 들 수 있다. 상기 양극 활물질 조성물에서 도전제, 결합제 및 용매는 음극의 경우와 동일한 것을 사용한다. 이 때 양극 활물질, 도전제, 결합제 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다.The positive electrode active material may be any lithium-containing metal oxide, any one of those conventionally used in the art, without limitation, for example, LiCoO 2 , LiMn x O 2x , LiNi x −1 Mn x O 2x (x = 1, 2 ), LiNi 1- x- y Co x Mn y O 2 (0 ≦ x ≦ 0.5, 0 y ≦ 0.5), and the like. In the positive electrode active material composition, the same conductive agent, binder, and solvent may be used as in the case of the negative electrode. At this time, the content of the positive electrode active material, the conductive agent, the binder, and the solvent is at a level commonly used in lithium batteries.

경우에 따라서는 상기 양극 전극 활물질 조성물 및 음극 전극 활물질 조성물에 가소제를 더 부가하여 전극판 내부에 기공을 형성하기도 한다.In some cases, a plasticizer may be further added to the cathode electrode active material composition and the anode electrode active material composition to form pores inside the electrode plate.

세퍼레이터로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능하다. 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE), 그 조합물중에서 선택된 재질로서, 부직포 또는 직포 형태이여도 무방하다. 이를 보다 상세하게 설명하면 리튬 이온 전지의 경우에는 폴리에틸렌, 폴리프로필렌 등과 같은 재료로 된 권취가능한 세퍼레이터를 사용하며, 리튬 이온 폴리머 전지의 경우에는 유기전해액 함침 능력이 우수 한 세퍼레이터를 사용하는데, 이러한 세퍼레이터는 하기 방법에 따라 제조가능하다.As the separator, any one commonly used in lithium batteries can be used. In particular, it is preferable that it is low resistance with respect to the ion migration of electrolyte, and is excellent in electrolyte-moisture capability. For example, a material selected from glass fiber, polyester, teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and combinations thereof may be in the form of nonwoven or woven fabric. In more detail, a lithium ion battery uses a rollable separator made of a material such as polyethylene or polypropylene, and a lithium ion polymer battery uses a separator having excellent organic electrolyte impregnation capability. It can manufacture according to the following method.

즉, 고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물을 준비한 다음, 상기 세퍼레이터 조성물을 전극 상부에 직접 코팅 및 건조하여 세퍼레이터 필름을 형성하거나, 또는 상기 세퍼레이터 조성물을 지지체 상에 캐스팅 및 건조한 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름을 전극 상부에 라미네이션하여 형성할 수 있다.That is, a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and the separator composition is directly coated and dried on an electrode to form a separator film, or the separator composition is cast and dried on a support, and then the support The separator film peeled off can be laminated on the electrode and formed.

상기 고분자 수지는 특별히 한정되지는 않으며, 전극판의 결합제에 사용되는 물질들이 모두 사용가능하다. 예를 들면 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 그 혼합물을 사용할 수 있다. 특히, 헥사플루오로프로필렌 함량이 8 내지 25중량%인 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머를 사용하는 것이 바람직하다.The polymer resin is not particularly limited, and any material used for the binder of the electrode plate may be used. For example, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate and mixtures thereof can be used. In particular, it is preferable to use vinylidene fluoride / hexafluoropropylene copolymer having a hexafluoropropylene content of 8 to 25% by weight.

상술한 바와 같은 양극 극판과 음극 극판 사이에 세퍼레이터를 배치하여 전지 구조체를 형성한다. 이러한 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스나 또는 각형 전지 케이스에 넣은 다음, 유기 전해액을 주입하면 리튬 이온 전지가 완성된다. 또는 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 유기 전해액에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 리튬 이온 폴리머 전지가 완성된다. The separator is disposed between the positive electrode plate and the negative electrode plate as described above to form a battery structure. The battery structure is wound or folded, placed in a cylindrical battery case or a square battery case, and then injected with an organic electrolyte to complete a lithium ion battery. Alternatively, the battery structure is stacked in a bi-cell structure, and then impregnated in the organic electrolyte, and the resultant is placed in a pouch and sealed to complete a lithium ion polymer battery.

상기 유기 전해액은 리튬염, 및 고유전율 용매와 저비점 용매로 이루어진 혼 합 유기용매를 포함하며, 필요에 따라 과충전 방지제와 같은 다양한 첨가제를 더 포함할 수 있다.The organic electrolyte solution includes a lithium salt and a mixed organic solvent consisting of a high dielectric constant solvent and a low boiling point solvent, and may further include various additives such as an overcharge preventing agent as necessary.

상기 유기 전해액에 사용되는 고유전율 용매로는 당업계에서 통상적으로 사용되는 것이면 특별히 제한되지 않으며, 예컨대, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트와 같은 환상형 카보네이트 또는 감마-부티로락톤 등을 사용할 수 있다.The high dielectric constant solvent used in the organic electrolyte is not particularly limited as long as it is commonly used in the art, and for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate or gamma-butyrolactone may be used. have.

또한, 저비점 용매 역시 당업계에 통상적으로 사용되는 것으로서, 디메틸 카보네이트, 에틸메틸 카보네이트. 디에틸 카보네이트, 디프로필 카보네이트와 같은 사슬형 카보네이트, 디메톡시에탄, 디에톡시에탄 또는 지방산 에스테르 유도체 등을 사용할 수 있으며, 특별히 제한되지는 않는다.In addition, low boiling point solvents are also commonly used in the art, such as dimethyl carbonate and ethylmethyl carbonate. Diethyl carbonate, chain carbonates such as dipropyl carbonate, dimethoxyethane, diethoxyethane or fatty acid ester derivatives can be used, and the like is not particularly limited.

상기 고유전율 용매 및 저비점 용매에 존재하는 하나 이상의 수소원자는 할로겐원자로 치환될 수 있으며, 상기 할로겐원자로서는 불소가 바람직하다.At least one hydrogen atom present in the high dielectric constant solvent and the low boiling point solvent may be substituted with a halogen atom, and the halogen atom is preferably fluorine.

상기 고유전율 용매와 저비점 용매의 혼합 부피비는 1:1 내지 1:9인 것이 바람직하며, 상기 범위를 벗어나는 때에는 방전용량 및 충방전수명 측면에서 바람직하지 못하다.It is preferable that the mixing volume ratio of the high dielectric constant solvent and the low boiling point solvent is 1: 1 to 1: 9, and it is not preferable in terms of discharge capacity and charge and discharge life when it is out of the range.

또한 상기 유기 전해액에 사용되는 리튬염은 리튬 전지에서 통상적으로 사용되는 것이라면 모두 다 사용가능하며, LiClO4, LiCF3SO2, LiPF6, LiN(CF3SO2)2, LiBF4, LiC(CF3SO2)3, 및 LiN(C2F5SO2)2로 이루어진 군으로부터 선택된 하나 이상의 화합물이 바람직하다. In addition, any lithium salt used in the organic electrolyte may be used as long as it is commonly used in lithium batteries, LiClO 4 , LiCF 3 SO 2 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiC (CF Preference is given to at least one compound selected from the group consisting of 3 SO 2 ) 3 , and LiN (C 2 F 5 SO 2 ) 2 .

유기 전해액중 상기 리튬염의 농도는 0.5 내지 2M 정도인 것이 바람직한데, 리튬염의 농도가 0.5M 미만이며 전해액의 전도도가 낮아져서 전해액 성능이 떨어지고, 2.0M을 초과하는 때에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있어 바람직하지 않다.The concentration of the lithium salt in the organic electrolyte is preferably about 0.5 to 2M, the concentration of the lithium salt is less than 0.5M and the conductivity of the electrolyte is lowered, the performance of the electrolyte is lowered, when it exceeds 2.0M, the viscosity of the electrolyte increases to increase the lithium ion There is a problem that mobility is reduced, which is undesirable.

본 발명에 따른 탄소계 음극 활물질, 금속계 음극 활물질과 고분자 입자를 복합화하여 제조된 음극 활물질 또는 탄소계 음극 활물질, 금속계 음극 활물질, 고분자 입자와 금속 입자를 복합화하여 제조된 음극 활물질은 고분자 입자가 음극 활물질 내에 도입됨으로써 충방전 중의 활물질의 부피 변화에 대한 응력을 완화시키는 완충제 역할을 할 뿐만 아니라, 복합화된 음극 활물질을 견고하게 유지시켜 주며, 또한 추가적인 금속 입자가 활물질 내에서 고르게 분산되어 활물질의 전도도를 높여 고용량 및 초기 효율 특성, 고율특성과 수명 특성을 향상시키는 효과가 있다.In the negative electrode active material prepared by complexing the carbon-based negative electrode active material, the metal-based negative electrode active material and the polymer particles according to the present invention, the negative electrode active material prepared by complexing the carbon-based negative electrode active material, the metal-based negative electrode active material, the polymer particles and the metal particles has a negative electrode active material. In addition, it acts as a buffer to relieve the stress of the volume change of the active material during charging and discharging, and also maintains the complex negative electrode active material firmly, and further metal particles are evenly dispersed in the active material to increase the conductivity of the active material. It has the effect of improving the high capacity and initial efficiency characteristics, high rate characteristics and life characteristics.

이하에서 본 발명을 실시예를 들어 보다 상세히 설명하나 이들이 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but these are not intended to limit the invention.

<음극 활물질 및 음극의 제조><Production of Anode Active Material and Anode>

실시예 1Example 1

흑연계 음극 활물질 18.2g, Si의 금속계 활물질 10g과 평균 입경이 4㎛인 폴리스티렌 가교체로 이루어진 고분자 입자 1.8g을 하이에너지 볼밀링 기계를 이용하여 혼합시킴으로써 복합 활물질을 제조하였다.A composite active material was prepared by mixing 18.2 g of graphite-based negative active material, 10 g of a metal-based active material of Si, and 1.8 g of polymer particles composed of a polystyrene crosslinked body having an average particle diameter of 4 μm using a high energy ball milling machine.

상기 복합 활물질 15g, 흑연 2g, 도전제(Timcal사의 흑연계 도전재, SFG6) 2 g을 혼합한 뒤, 1중량%의 카르복시 메틸 셀룰로오스 나트륨염 수용액 60g을 첨가하여 혼합하고, 다시 20중량% 수분산 폴리아크릴레이트 바인더 2g을 첨가한 후 잘 혼합하여 슬러리를 제조하였다. 이 슬러리를 닥터 블레이드(doctor blade)를 사용하여 15㎛의 구리(Cu) 집전체 위에 약 75㎛가 되도록 도포하였다. 이렇게 제조된 전극을 약 100℃의 열풍건조기에서 2시간 동안 건조한 후, 다시 한 번 약 120℃에서 2시간 동안 진공 건조하여 수분을 완전히 제거한 음극을 제조하였다. 제조된 음극을 압연기를 통하여 활물질층의 최종 두께가 약 40㎛이 되도록 압연을 실시하여 최종 음극을 제조하였다.After mixing 15 g of the composite active material, 2 g of graphite, and 2 g of a conductive agent (Timcal's graphite-based conductive material, SFG6), 60 g of a 1% by weight aqueous solution of carboxymethyl cellulose sodium salt was added and mixed, followed by 20% by weight aqueous dispersion. 2 g of polyacrylate binder was added and then mixed well to prepare a slurry. This slurry was applied onto a 15 μm copper (Cu) current collector using a doctor blade so as to be about 75 μm. The electrode thus prepared was dried in a hot air dryer at about 100 ° C. for 2 hours, and once again vacuum dried at about 120 ° C. for 2 hours to prepare a cathode from which moisture was completely removed. The prepared negative electrode was rolled through a rolling mill so that the final thickness of the active material layer was about 40 μm to prepare a final negative electrode.

실시예 2Example 2

흑연계 음극 활물질 16.85g, Si의 금속계 활물질 10g과 Ni 1.46g이 코팅된 평균 입경이 4㎛인 폴리스티렌 가교체로 이루어진 고분자 입자 3.15g을 하이에너지 볼밀링 기계를 이용하여 혼합시킴으로써 복합 활물질을 제조하였다.A composite active material was prepared by mixing 16.85 g of a graphite-based negative active material, 10 g of a metal-based active material of Si, and 3.15 g of a polystyrene crosslinked body having an average particle diameter of 4 μm coated with 1.46 g of Ni using a high energy ball milling machine.

여기서 얻어진 복합 활물질을 사용한 것을 제외하고는 상기 실시예 6의 방법과 동일하게 수행하여 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 6 except for using the obtained composite active material.

실시예 3Example 3

흑연계 음극 활물질 15.5g, Si의 금속계 활물질 10g과 제1층에 Ni 1.44g, 제2층에 Au 1.395g 이 코팅된 평균 입경이 4㎛인 폴리스티렌 가교체로 이루어진 고분자 입자 4.5g을 하이에너지 볼밀링 기계를 이용하여 혼합시킴으로써 복합 활물질을 제조하였다.High-energy ball milling of 15.5 g of graphite-based negative electrode active material, 4.5 g of polymer particles composed of 10 g of a metal-based active material of Si, and polystyrene crosslinked particles having an average particle diameter of 4 μm coated with 1.44 g of Ni on the first layer and 1.395 g of Au on the second layer The composite active material was prepared by mixing using a machine.

여기서 얻어진 복합 활물질을 사용한 것을 제외하고는 상기 실시예 6의 방법과 동일하게 수행하여 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 6 except for using the obtained composite active material.

실시예 4Example 4

흑연계 음극 활물질 17g, Si의 금속계 활물질 10g과 제1층에 Ni 0.96g, 제2층에 Au 0.93g이 코팅된 평균 입경이 4㎛인 폴리스티렌 가교체로 이루어진 고분자 입자 3g을 하이에너지 볼밀링 기계를 이용하여 혼합시킴으로써 복합 활물질을 제조하였다.A high-energy ball milling machine was used for a high-energy ball milling machine comprising 17 g of a graphite-based negative active material, 10 g of a metal-based active material of Si, and a polystyrene crosslinked body having an average particle diameter of 4 μm coated with 0.96 g of Ni on the first layer and 0.93 g of Au on the second layer. The composite active material was prepared by mixing.

여기서 얻어진 복합 활물질을 사용한 것을 제외하고는 상기 실시예 6의 방법과 동일하게 수행하여 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 6 except for using the obtained composite active material.

실시예 5Example 5

흑연계 음극 활물질 18.5g, Si의 금속계 활물질 10g과 제1층에 Ni 0.48g, 제2층에 Au 0.465g이 코팅된 고분자 입자 1.5g을 하이에너지 볼밀링 기계를 이용하여 복합 활물질을 제조하였다.A composite active material was manufactured by using a high energy ball milling machine of 18.5 g of a graphite-based negative active material, 10 g of a metal-based active material of Si, and 1.5 g of polymer particles coated with 0.48 g of Ni on the first layer and 0.465 g of Au on the second layer.

여기서 얻어진 복합 활물질을 사용한 것을 제외하고는 상기 실시예 6의 방법과 동일하게 수행하여 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 6 except for using the obtained composite active material.

비교예 1Comparative Example 1

흑연계 음극 활물질 20g, Si의 금속계 활물질 10g을 하이에너지 볼밀링 기계를 이용하여 혼합시킴으로써 복합 활물질을 제조하였다.A composite active material was prepared by mixing 20 g of a graphite negative electrode active material and 10 g of a metal active material of Si using a high energy ball milling machine.

여기서 얻어진 복합 활물질을 사용한 것을 제외하고는 상기 실시예 6의 방법과 동일하게 수행하여 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 6 except for using the obtained composite active material.

<리튬 전지의 제조><Production of Lithium Battery>

상기 실시예 1 내지 5 및 비교예 1에서 제조한 상기 음극과 리튬 금속을 상대전극으로 하고, PE 격리막(separator)과 1.3 M LiPF6가 EC(에틸렌 카보네이트)/DEC(디에틸 카보네이트)/FEC(불화 에틸렌 카보네이트)(2/6/2)에 녹아 있는 용액을 전해질로 하여 전지를 제조하였다.The negative electrode and the lithium metal prepared in Examples 1 to 5 and Comparative Example 1 were used as counter electrodes, and a PE separator and 1.3 M LiPF 6 were EC (ethylene carbonate) / DEC (diethyl carbonate) / FEC ( A battery was prepared using a solution dissolved in ethylene fluoride carbonate (2/6/2) as an electrolyte.

실험예: 충방전 실험Experimental Example: Charge / Discharge Experiment

상기 제조한 전지를 100mA/g의 전류로 0.001V에 도달할 때까지 정전류 방전을 실시하였다. 방전이 완료된 셀은 약 10분간의 휴지기간을 거친 후, 100mA/g의 전류로 전압이 1.5V에 이를 때까지 정전류 충전하였다. 이를 50회 반복 실시하여 수명 특성을 평가하여 하기 표 1에 도시하였다.The battery produced above was subjected to constant current discharge until it reached 0.001V at a current of 100 mA / g. After the discharge was completed, the cell was subjected to a rest period of about 10 minutes, and then charged with constant current until the voltage reached 1.5V at a current of 100 mA / g. This was repeated 50 times to evaluate the life characteristics are shown in Table 1 below.

[표 1] TABLE 1

구분division 초기 효율 (%)Initial Efficiency (%) 초기 용량 (mAh/g)Initial capacity (mAh / g) 수명 (%) @ 50싸이클Lifespan (%) @ 50 cycles 실시예 1Example 1 74.274.2 10501050 74.074.0 실시예 2Example 2 76.476.4 12681268 73.773.7 실시예 3Example 3 76.376.3 11161116 75.675.6 실시예 4Example 4 73.073.0 10891089 82.982.9 실시예 5Example 5 74.174.1 10921092 85.285.2 비교예 1Comparative Example 1 69.269.2 11301130 67.567.5

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 복합 음극 활물질을 포함하는 음극을 채용한 리튬전지의 경우, 초기 용량을 유지하면서도 초기 효율이 높고 수명 특성이 개선되었음을 알 수 있다.As shown in Table 1, in the case of a lithium battery employing a negative electrode including a composite negative electrode active material according to the present invention, it can be seen that the initial efficiency is high and life characteristics are improved while maintaining the initial capacity.

도 1 및 도 2는 본 발명의 일예에 따라 제조된 활물질의 형상을 나타내는 도면이다.1 and 2 are views showing the shape of the active material prepared according to an embodiment of the present invention.

Claims (15)

탄소계 음극 활물질, 금속계 음극 활물질 및 고분자 입자의 복합물을 포함하는 복합 음극 활물질.Composite negative electrode active material comprising a composite of a carbon-based negative electrode active material, a metal-based negative electrode active material and polymer particles. 제1항에 있어서,The method of claim 1, 상기 고분자 입자의 평균 입경이 20nm 내지 20㎛인 것을 특징으로 하는 복합 음극 활물질.Composite negative active material, characterized in that the average particle diameter of the polymer particles is 20nm to 20㎛. 제1항에 있어서,The method of claim 1, 상기 고분자 입자가 탄성을 갖는 것을 특징으로 하는 복합 음극 활물질.Composite negative active material, characterized in that the polymer particles have elasticity. 제1항에 있어서,The method of claim 1, 상기 고분자 입자가 비닐계 고분자인 것을 특징으로 하는 복합 음극 활물질.Composite negative electrode active material, characterized in that the polymer particles are vinyl polymer. 제1항에 있어서,The method of claim 1, 상기 고분자 입자가 폴리스티렌계 고분자, 폴리(메타)아크릴레이트계 고분자, 스티렌-부타디엔계 공중합체, 폴리우레탄계 고분자, 폴리비닐알콜계 및 폴리올레핀 고분자로 이루어지는 군으로부터 선택된 하나 이상 또는 이들로부터 선택된 2종 이상의 공중합체 또는 가교체를 포함하는 것을 특징으로 하는 복합 음극 활물 질.The polymer particles are at least one selected from the group consisting of polystyrene-based polymers, poly (meth) acrylate-based polymers, styrene-butadiene-based copolymers, polyurethane-based polymers, polyvinyl alcohol-based and polyolefin polymers, or at least two kinds of air selected from them. A composite anode active material comprising a coalescing or crosslinking material. 제1항에 있어서,The method of claim 1, 상기 고분자 입자의 함량이 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 30중량부인 것을 특징으로 하는 복합 음극 활물질.The composite negative electrode active material, characterized in that the content of the polymer particles is 1 to 30 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material. 제1항에 있어서,The method of claim 1, 상기 탄소계 음극 활물질이 그래파이트, 천연흑연, 인조 흑연, 소프트 카본 및 하드 카본으로 이루어지는 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 복합 음극 활물질.The composite negative electrode active material is at least one selected from the group consisting of graphite, natural graphite, artificial graphite, soft carbon, and hard carbon. 제1항에 있어서,The method of claim 1, 상기 금속계 음극 활물질이 Si, Sn, Al, Ge, Pb, Zn, Ag 및 Au로 이루어진 군으로부터 선택된 하나 이상의 금속 혹은 이들의 합금을 포함하는 것을 특징으로 하는 복합 음극 활물질.The composite negative electrode active material of claim 1, wherein the metal-based negative active material comprises at least one metal selected from the group consisting of Si, Sn, Al, Ge, Pb, Zn, Ag, and Au or an alloy thereof. 제1항에 있어서,The method of claim 1, 상기 금속계 음극 활물질의 함량이 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 100중량부인 것을 특징으로 하는 복합 음극 활물질.The content of the metal-based negative electrode active material is a composite negative electrode active material, characterized in that 1 to 100 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material. 제1항에 있어서,The method of claim 1, 상기 복합물이 금속 입자를 더 포함하는 것을 특징으로 하는 복합 음극 활물질.The composite anode active material, characterized in that the composite further comprises metal particles. 제10항에 있어서,The method of claim 10, 상기 금속 입자가 Ni, Cu, Co, Ag 및 Au로 이루어진 군에서 선택된 하나 이상또는 이들의 합금을 포함하는 것을 특징으로 하는 복합 음극 활물질.Composite anode active material, characterized in that the metal particles comprise at least one selected from the group consisting of Ni, Cu, Co, Ag and Au or alloys thereof. 제10항에 있어서, 상기 금속 입자의 평균 입경이 20nm 내지 10㎛인 것을 특징으로 하는 복합 음극 활물질.The composite anode active material according to claim 10, wherein an average particle diameter of the metal particles is 20 nm to 10 μm. 제1항에 있어서,The method of claim 1, 상기 금속입자의 함량이 상기 탄소계 음극 활물질 100중량부에 대하여 1 내지 30중량부인 것을 특징으로 하는 복합 음극 활물질.The composite negative electrode active material, characterized in that the content of the metal particles is 1 to 30 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material. 음극 집전체 및 상기 음극 집전체 상에 도포된 음극 활물질을 구비하며,A negative electrode current collector and a negative electrode active material coated on the negative electrode current collector, 상기 음극 활물질이 상기 제1항 내지 제12항 중 어느 한 항에 따른 복합 음극 활물질인 음극.The negative electrode active material is a composite negative electrode active material according to any one of claims 1 to 12. 음극, 양극 및 전해액을 구비하며,Having a cathode, an anode, and an electrolyte solution, 상기 음극이 상기 제14항에 따른 음극인 리튬전지.The lithium battery, wherein the negative electrode is a negative electrode according to claim 14.
KR1020070072489A 2007-07-19 2007-07-19 Composite anode material, and anode and lithium battery using the same KR101386163B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070072489A KR101386163B1 (en) 2007-07-19 2007-07-19 Composite anode material, and anode and lithium battery using the same
US12/120,262 US8906554B2 (en) 2007-07-19 2008-05-14 Composite anode active material, anode including the same and lithium battery using the anode
CN2008101319540A CN101621124B (en) 2007-07-19 2008-07-02 Composite anode active material, anode including the same and lithium battery using the anode
JP2008185201A JP5673988B2 (en) 2007-07-19 2008-07-16 Composite negative electrode active material, negative electrode and lithium battery employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070072489A KR101386163B1 (en) 2007-07-19 2007-07-19 Composite anode material, and anode and lithium battery using the same

Publications (2)

Publication Number Publication Date
KR20090009053A true KR20090009053A (en) 2009-01-22
KR101386163B1 KR101386163B1 (en) 2014-04-17

Family

ID=40265097

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070072489A KR101386163B1 (en) 2007-07-19 2007-07-19 Composite anode material, and anode and lithium battery using the same

Country Status (4)

Country Link
US (1) US8906554B2 (en)
JP (1) JP5673988B2 (en)
KR (1) KR101386163B1 (en)
CN (1) CN101621124B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066256B1 (en) * 2009-02-05 2011-09-20 삼성에스디아이 주식회사 Electrode Assembly and Secondary Battery having the Same
KR101235519B1 (en) * 2009-06-08 2013-02-20 가부시키가이샤 고베 세이코쇼 Anode material for lithium ion secondary battery, producing method thereof, and lithium ion secondary battery
US8697282B2 (en) 2011-04-21 2014-04-15 Samsung Sdi Co., Ltd. Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US8697280B2 (en) 2011-04-08 2014-04-15 Samsung Electronics Co., Ltd. Electrode active material, method of preparing electrode active material, electrode including electrode active material, and lithium secondary battery including electrode
KR20160124220A (en) * 2014-02-25 2016-10-26 신닛테츠스미킨 카부시키카이샤 Negative electrode active substance material, negative electrode, and cell
KR20170024573A (en) * 2015-08-25 2017-03-07 주식회사 엘지화학 Anode for secondary battery and secondary battery comprising the same
WO2017155312A1 (en) * 2016-03-08 2017-09-14 주식회사 엘지화학 Silicon-based active material-polymer composite and preparation method therefor
WO2018013340A1 (en) * 2016-07-11 2018-01-18 SiNode Systems, Inc. Optimized electrode design for graphene based anodes
WO2019050203A3 (en) * 2017-09-08 2019-05-02 주식회사 엘지화학 Anode for lithium secondary battery, and lithium secondary battery comprising same
KR20200073263A (en) * 2017-10-16 2020-06-23 유미코아 battery
US10763493B2 (en) 2016-03-08 2020-09-01 Lg Chem, Ltd. Silicon-based active material-polymer composite and method for preparing same
GB2594319A (en) * 2020-04-23 2021-10-27 Daly John Beverage can opening mechanism with optional venting hole

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658062B2 (en) * 2008-09-26 2014-02-25 University of Pittsburgh—of the Commonwealth System of Higher Education Nanoscale silicon-based compositions and methods of preparation
MY152442A (en) * 2008-12-26 2014-09-30 Sekisui Chemical Co Ltd Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
FR2941875B1 (en) * 2009-02-11 2011-09-23 Commissariat Energie Atomique PROCESS FOR PREPARING A MIXTURE OF A POWDER OF AN ELECTRODE ACTIVE COMPOUND AND A POWDER OF AN ELECTRONIC CONDUCTING COMPOUND, MIXTURE OBTAINED THEREBY, ELECTRODE, CELL AND ACCUMULATOR
CN102246342A (en) * 2009-08-28 2011-11-16 松下电器产业株式会社 Lithium secondary battery and method for manufacturing same
WO2011056847A2 (en) * 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
PL2526581T3 (en) * 2010-01-18 2019-05-31 Enevate Corp Composite materials for electrochemical storage
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
KR101252932B1 (en) 2010-03-11 2013-04-09 주식회사 엘지화학 Particulate polymer-silicon composites for an anode of lithium secondary batteries and the method of preparation of the same
DE102010039416A1 (en) * 2010-08-17 2012-02-23 Varta Micro Innovation Gmbh Flexible battery electrodes and their manufacture
KR101223624B1 (en) * 2010-09-17 2013-01-17 삼성에스디아이 주식회사 Binder composition for rechargeable lithium battery, composition for forming negative active material layer and rechargeable lithium battery including the same
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
JP5779452B2 (en) * 2011-08-31 2015-09-16 三井金属鉱業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6047342B2 (en) 2011-08-31 2016-12-21 株式会社半導体エネルギー研究所 Negative electrode for power storage device
US9139441B2 (en) 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction
JP5887168B2 (en) * 2012-03-08 2016-03-16 株式会社日立製作所 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, lithium ion secondary battery module, and production method thereof
FR2988225B1 (en) * 2012-03-13 2014-03-28 Hutchinson ANODE FOR LITHIUM-ION BATTERY CELL, METHOD FOR MANUFACTURING SAME, AND BATTERY INCORPORATING SAME
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
JP2013235682A (en) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary batteries and its manufacturing method, and lithium ion secondary battery arranged by use thereof
CN103794766B (en) * 2012-11-02 2016-01-20 华为技术有限公司 Negative electrode of lithium ionic secondary battery and preparation method thereof, cathode pole piece of lithium ion secondary battery and lithium rechargeable battery
KR20140075836A (en) * 2012-11-27 2014-06-20 삼성전기주식회사 Electrode structure and method for manufacturing the electrode structure, and apparatus for storaging energy with the electrode structure
US9590238B2 (en) 2012-11-30 2017-03-07 Lg Chem, Ltd. Composite for anode active material and method of preparing the same
US9806335B2 (en) * 2012-11-30 2017-10-31 Lg Chem, Ltd. Composite including conductive material and binder on surface of (semi) metal oxide and method of preparing anode slurry including the same
DE102013201254A1 (en) 2013-01-28 2014-07-31 Robert Bosch Gmbh Battery and method of making the same
KR101739298B1 (en) 2013-02-20 2017-05-24 삼성에스디아이 주식회사 Composite binder for battery, anode and lithium battery containing the binder
KR20140104268A (en) * 2013-02-20 2014-08-28 삼성에스디아이 주식회사 Composite binder for battery, anode and lithium battery containing the binder
KR101814736B1 (en) 2013-03-13 2018-01-30 삼성에스디아이 주식회사 Composite binder composition for secondary battery, anode and lithium battery containing the binder
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
CN103456928B (en) * 2013-09-02 2016-10-26 东莞新能源科技有限公司 composite anode material for lithium ion battery and preparation method thereof
JP6084301B2 (en) * 2013-10-07 2017-02-22 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode material, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same
KR101783567B1 (en) * 2013-10-07 2017-09-29 닛산 지도우샤 가부시키가이샤 Electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using same
JP2015079621A (en) * 2013-10-16 2015-04-23 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrodes, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
EP3108522A1 (en) * 2014-02-19 2016-12-28 Hutchinson Method for preparing an electrode composition or a composition having magnetic properties, mixture and composition obtained by said method, and said electrode
US10454111B2 (en) 2014-06-10 2019-10-22 Toagosei Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery
CN105098186A (en) * 2014-11-11 2015-11-25 中国科学院物理研究所 Pyrolysis amorphous carbon material and preparation method and application thereof
KR102379564B1 (en) * 2014-12-31 2022-03-29 삼성전자주식회사 Composite anode active material, anode including the composite anode active material, and lithium secondary battery including the anode
KR102368307B1 (en) * 2015-09-16 2022-03-02 삼성전자주식회사 Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material
EP3490039B1 (en) 2017-03-22 2020-08-19 LG Chem, Ltd. Electrode for solid state battery and method for manufacturing the same
CN109659499B (en) * 2017-10-11 2021-12-10 湖南师范大学 Preparation method of silicon-copper lithium ion battery cathode
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
KR102561118B1 (en) 2017-12-07 2023-07-28 에네베이트 코포레이션 Composites containing silicon carbide and carbon particles
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
US11919593B2 (en) 2020-02-21 2024-03-05 Honda Motor Co., Ltd. Saddle-ride type vehicle
CN112201788B (en) * 2020-09-23 2022-03-01 深圳大学 Lithium ion battery negative plate with high-capacity negative electrode bonding system and battery
US20230163309A1 (en) 2021-11-22 2023-05-25 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342710A (en) * 1993-03-30 1994-08-30 Valence Technology, Inc. Lakyer for stabilization of lithium anode
JPH06318454A (en) 1993-05-07 1994-11-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6268081B1 (en) * 1996-07-02 2001-07-31 Ensci Inc Battery element containing efficiency improving additives
US6224003B1 (en) * 1996-07-02 2001-05-01 Ensci Inc Process for reducing the particle size of porous organic polymers and products produced therefrom
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JP4177529B2 (en) 1999-08-30 2008-11-05 松下電器産業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3103357B1 (en) 1999-09-28 2000-10-30 株式会社サムスン横浜研究所 Method for producing negative electrode material for lithium secondary battery
JP4137350B2 (en) * 2000-06-16 2008-08-20 三星エスディアイ株式会社 Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
JP3619174B2 (en) * 2000-07-24 2005-02-09 キヤノン株式会社 Polymer liquid crystalline compounds, electrolytes containing them, and secondary batteries
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP3897709B2 (en) * 2002-02-07 2007-03-28 日立マクセル株式会社 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP3985143B2 (en) * 2002-03-11 2007-10-03 株式会社ジーエス・ユアサコーポレーション Electrode material and lithium battery using the same
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP3744462B2 (en) * 2002-05-08 2006-02-08 ソニー株式会社 Non-aqueous electrolyte battery
US8092940B2 (en) * 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP2004055505A (en) 2002-07-18 2004-02-19 Masayuki Yoshio Lithium secondary battery and negative electrode material therefor
JP2004220911A (en) 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
JP4204419B2 (en) 2003-08-29 2009-01-07 Tdk株式会社 Electrode, electrochemical element, electrode manufacturing method, and electrochemical element manufacturing method
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
JP4474184B2 (en) 2004-03-26 2010-06-02 トヨタ自動車株式会社 Method for producing active material for lithium secondary battery and method for producing lithium secondary battery
JP2006147316A (en) 2004-11-18 2006-06-08 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
KR100738054B1 (en) * 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2006196338A (en) 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006216277A (en) 2005-02-01 2006-08-17 Canon Inc Method of manufacturing electrode material for lithium secondary battery, electrode structure, and secondary battery
JP5098192B2 (en) 2005-06-29 2012-12-12 パナソニック株式会社 COMPOSITE PARTICLE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
KR100738057B1 (en) 2005-09-13 2007-07-10 삼성에스디아이 주식회사 Anode electride and lithium battery containing the material
KR100745733B1 (en) 2005-09-23 2007-08-02 삼성에스디아이 주식회사 Anode active material, producing method thereof and lithium battery using the same
JP5162825B2 (en) 2005-12-13 2013-03-13 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5104025B2 (en) 2007-05-18 2012-12-19 パナソニック株式会社 Non-aqueous electrolyte battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066256B1 (en) * 2009-02-05 2011-09-20 삼성에스디아이 주식회사 Electrode Assembly and Secondary Battery having the Same
KR101235519B1 (en) * 2009-06-08 2013-02-20 가부시키가이샤 고베 세이코쇼 Anode material for lithium ion secondary battery, producing method thereof, and lithium ion secondary battery
US8697280B2 (en) 2011-04-08 2014-04-15 Samsung Electronics Co., Ltd. Electrode active material, method of preparing electrode active material, electrode including electrode active material, and lithium secondary battery including electrode
US8697282B2 (en) 2011-04-21 2014-04-15 Samsung Sdi Co., Ltd. Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US10128493B2 (en) 2014-02-25 2018-11-13 Nippon Steel & Sumitomo Metal Corporation Negative electrode active material, negative electrode and battery
KR20160124220A (en) * 2014-02-25 2016-10-26 신닛테츠스미킨 카부시키카이샤 Negative electrode active substance material, negative electrode, and cell
KR20170024573A (en) * 2015-08-25 2017-03-07 주식회사 엘지화학 Anode for secondary battery and secondary battery comprising the same
WO2017155312A1 (en) * 2016-03-08 2017-09-14 주식회사 엘지화학 Silicon-based active material-polymer composite and preparation method therefor
US10763493B2 (en) 2016-03-08 2020-09-01 Lg Chem, Ltd. Silicon-based active material-polymer composite and method for preparing same
WO2018013340A1 (en) * 2016-07-11 2018-01-18 SiNode Systems, Inc. Optimized electrode design for graphene based anodes
US11171325B2 (en) 2016-07-11 2021-11-09 Nanograf Corporation Optimized electrode design for graphene based anodes
WO2019050203A3 (en) * 2017-09-08 2019-05-02 주식회사 엘지화학 Anode for lithium secondary battery, and lithium secondary battery comprising same
KR20200073263A (en) * 2017-10-16 2020-06-23 유미코아 battery
GB2594319A (en) * 2020-04-23 2021-10-27 Daly John Beverage can opening mechanism with optional venting hole
GB2594319B (en) * 2020-04-23 2022-06-01 Daly John Beverage can opening mechanism with optional venting hole

Also Published As

Publication number Publication date
US20090023065A1 (en) 2009-01-22
US8906554B2 (en) 2014-12-09
KR101386163B1 (en) 2014-04-17
JP2009026760A (en) 2009-02-05
JP5673988B2 (en) 2015-02-18
CN101621124B (en) 2013-06-12
CN101621124A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
KR101386163B1 (en) Composite anode material, and anode and lithium battery using the same
USRE43794E1 (en) Anode active material, method of manufacturing the same, and lithium battery using the same
US8617746B2 (en) Si/C composite, anode active materials, and lithium battery including the same
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP5273931B2 (en) Negative electrode active material and method for producing the same
US9692049B2 (en) Anode containing composite anode active material including water-soluble polymer coating and lithium secondary battery including the same
US8563172B2 (en) Anode composition for lithium secondary battery and lithium secondary battery using the same
KR101502897B1 (en) Composite for anode active material, anode materials and lithium battery using the same
JP5385111B2 (en) Lithium secondary battery and manufacturing method thereof
KR101408038B1 (en) Surface treated anode and lithium battery using the same
JP2006210348A (en) Negative electrode active material, its manufacturing method, and negative electrode and lithium battery using it
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
KR20150061695A (en) Anode active materials and lithium secondary battery comprising the same
KR20070076686A (en) Anode active material and lithium battery using the same
TW201624819A (en) Li-ion battery and method of preparing a pre-lithiated anode for use in a Li-ion cell
KR102405902B1 (en) Negavive electrode for lithium secondary battery, and lithium secondary battery comprising the same
KR102094993B1 (en) Anode for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180320

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 6