JPH06318454A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH06318454A
JPH06318454A JP5131369A JP13136993A JPH06318454A JP H06318454 A JPH06318454 A JP H06318454A JP 5131369 A JP5131369 A JP 5131369A JP 13136993 A JP13136993 A JP 13136993A JP H06318454 A JPH06318454 A JP H06318454A
Authority
JP
Japan
Prior art keywords
powder
electrode
metal
flakes
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5131369A
Other languages
Japanese (ja)
Inventor
Shuji Ito
修二 伊藤
Masaki Hasegawa
正樹 長谷川
Sukeyuki Murai
祐之 村井
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5131369A priority Critical patent/JPH06318454A/en
Publication of JPH06318454A publication Critical patent/JPH06318454A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve charge/discharge cycle characteristics by including in a negative electrode a mixture of flakes of metal or alloy powder, flakes of carbon powder, and binder, capable of reversibly storing/discharging lithium. CONSTITUTION:Flakes of metal powder or alloy powder, flakes of carbon powder, etc., capable of storing/discharging lithium are used, in a negative electrode, so that the metal or alloy powder and the carbon powder are laminated in parallel to an electrode surface in the case of composing the electrode. Therefor, even in the case of expansion/contraction of the electrode at the time of battery actuation, pressure is applied uniformly on the whole body of the electrode, and any poor collection inside the electrode generated by repetition of charge/ discharge cycles can be restricted. As an electrode manufacturing method, a mixture of the flakes of metal powder or alloy powder, flakes of carbon powder, and binder is formed as paste, it is applied, dried and rolled on a collector plate. As a result, the metal or alloy powder and the carbon powder are laminated in parallel to the electrode surface, thereby charge/discharge cycle characteristics can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池、
特にその負極に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to the negative electrode.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。これまで非水
電解質二次電池の正極活物質には、LiCoO2、V2
5、Cr25、MnO2、TiS2、MoS2などの遷移金
属の酸化物やカルコゲン化合物が知られている。これら
は層状もしくはトンネル構造を有し、リチウムイオンが
出入りできる結晶構造を持っている。一方、負極活物質
としては、金属リチウムが多く検討されてきた。しかし
ながら、充電時にリチウム表面に樹枝状にリチウムが析
出することから、充放電効率が低下したり正極と接して
内部短絡を生じたりする問題点を有していた。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted. Hitherto, LiCoO 2 , V 2 O have been used as positive electrode active materials for non-aqueous electrolyte secondary batteries.
Oxides of transition metals such as 5 , Cr 2 O 5 , MnO 2 , TiS 2 and MoS 2 and chalcogen compounds are known. These have a layered structure or a tunnel structure, and have a crystal structure that allows lithium ions to enter and exit. On the other hand, as a negative electrode active material, many metallic lithiums have been studied. However, since lithium is deposited on the surface of lithium in a dendritic manner during charging, there are problems that the charge / discharge efficiency is lowered and an internal short circuit occurs in contact with the positive electrode.

【0003】[0003]

【発明が解決しようとする課題】このような問題を解決
する手段として、リチウムの樹枝状成長を抑制し、リチ
ウムを吸蔵・放出することのできるリチウム−アルミニ
ウム合金などのリチウム合金板を負極を用いる検討がな
されている。しかしながら、リチウム合金板を用いた場
合、深い充放電を繰り返すと、電極の微細化が生じるの
で、サイクル特性に問題があった。そこで、リチウムを
吸蔵・放出することのできる金属粉末ならびに炭素材と
結着剤からなる混合物を負極とすることで、充放電を繰
り返すことにより生じる電極の崩れを抑制する方法が提
案されている。しかしながら、単にリチウムを吸蔵・放
出することのできる金属粉末ならびに炭素材と結着剤か
らなる混合物を負極に用いても、十分な特性改善がなさ
れていないのが現状である。
As a means for solving such a problem, a lithium alloy plate such as a lithium-aluminum alloy capable of suppressing dendritic growth of lithium and occluding / releasing lithium is used as a negative electrode. Consideration is being made. However, when a lithium alloy plate is used, repeated deep charging / discharging causes miniaturization of electrodes, which causes a problem in cycle characteristics. Therefore, a method has been proposed in which a mixture of a metal powder capable of inserting and extracting lithium and a carbon material and a binder is used as the negative electrode to suppress the collapse of the electrode caused by repeated charging and discharging. However, even if a mixture of a metal powder capable of occluding and releasing lithium and a mixture of a carbon material and a binder is used for the negative electrode, the characteristics are not sufficiently improved under the present circumstances.

【0004】本発明は、リチウムを吸蔵・放出する金属
もしくは合金の粉末を用いる負極における上記のような
問題を解決し、充放電サイクル特性に優れた非水電解質
二次電池を提供することを目的とする。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics by solving the above problems in a negative electrode using a metal or alloy powder that absorbs and releases lithium. And

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、充放電可能な正極と、非水電解質と、充
放電可能な負極を具備する非水電解質二次電池におい
て、前記負極が、リチウムを可逆的に吸蔵・放出できる
鱗片状の金属もしくは合金の粉末と鱗片状の炭素粉末と
結着剤の混合物を含むことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a non-aqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode. The negative electrode is characterized by containing a mixture of a flaky metal or alloy powder capable of reversibly occluding and releasing lithium, a flaky carbon powder, and a binder.

【0006】[0006]

【作用】負極にリチウムを吸蔵・放出することのできる
鱗片状の金属粉末あるいは合金粉末、ならびに鱗片状の
炭素粉末を用いることで、電極構成時、金属あるいは合
金粉末と炭素粉末が電極表面に対して平行に積み重な
る。従って、電池作動時の電極の膨張収縮に対しても、
電極全体に均一に圧力がかかり、充放電サイクルを繰り
返すことによって生じる電極内の集電不良を抑制するこ
とができる。電極作製法としては、鱗片状の金属粉末あ
るいは合金粉末、ならびに鱗片状の炭素粉末と結着剤の
混合物をペースト状とし、このペーストを集電板に塗着
し、乾燥後圧延する方法が最も好ましい。この方法を用
いると、鱗片状の金属粉末あるいは合金粉末と鱗片状の
炭素粉末は、電極表面に対してより平行に積み重なるよ
うになる。
[Function] By using a scale-like metal powder or alloy powder capable of inserting and extracting lithium in the negative electrode, and a scale-like carbon powder, the metal or alloy powder and the carbon powder are deposited on the electrode surface during electrode construction. And stack in parallel. Therefore, even if the electrode expands and contracts during battery operation,
It is possible to uniformly apply pressure to the entire electrode and suppress a current collection failure in the electrode caused by repeating the charge / discharge cycle. As the electrode preparation method, a method in which a scale-like metal powder or an alloy powder, and a mixture of scale-like carbon powder and a binder are made into a paste, and the paste is applied to a current collector, and dried and rolled are most suitable. preferable. When this method is used, the scale-like metal powder or alloy powder and the scale-like carbon powder are stacked more parallel to the electrode surface.

【0007】リチウムを吸蔵・放出することのできる金
属としては、リチウムを比較的簡単に吸蔵・放出するこ
とができるアルミニウム、シリコン、錫、鉛、インジウ
ム、ビスマスが好ましい。また、合金としては、上記元
素を少なくとも一種含む合金、さらには、この種分野で
よく知られている上記金属以外の金属をさらに含む合金
などが用いられる。鱗片状の金属粉末あるいは合金粉末
の粒径としては、15〜350μmの範囲が好ましい。
As the metal capable of absorbing and releasing lithium, aluminum, silicon, tin, lead, indium and bismuth capable of absorbing and releasing lithium relatively easily are preferable. Further, as the alloy, an alloy containing at least one of the above elements, and an alloy further containing a metal other than the above-mentioned metals well known in the field of this kind are used. The particle size of the scale-like metal powder or alloy powder is preferably in the range of 15 to 350 μm.

【0008】[0008]

【実施例】以下、本発明の実施例について詳細に説明す
る。 [実施例1]本実施例においては、リチウムを吸蔵・放
出することのできる鱗片状の金属粉末であるアルミニウ
ム粉末と鱗片状を有する人造黒鉛を用いた例について説
明する。鱗片状アルミニウム粉末は、粒径が30〜70
μmに分級したものを用いた。人造黒鉛粉末は、平均粒
径が10μmのものを用いた。電池を以下の手順により
作製した。
EXAMPLES Examples of the present invention will be described in detail below. Example 1 In this example, an example using aluminum powder, which is a scaly metal powder capable of occluding and releasing lithium, and artificial graphite having a scaly shape will be described. The scale-like aluminum powder has a particle size of 30 to 70.
What was classified to μm was used. The artificial graphite powder used had an average particle size of 10 μm. A battery was manufactured by the following procedure.

【0009】負極板は、鱗片状アルミニウム粉末60g
と鱗片状の人造黒鉛30gに対して結着剤としてポリフ
ッ化ビニリデン10gを加え、ジメチルホルムアミドを
用いてペースト状にし、これをニッケルの芯材に塗布、
乾燥し、圧延することで作製した。正極板は、正極活物
質100gに対して導電剤として炭素粉末を10g、結
着剤としてポリフッ化ビニリデンを5g加え、ジメチル
ホルムアミドを用いてペースト状にし、チタンの芯材に
塗布、乾燥し、圧延することで作製した。ここで正極活
物質には、LiMn24とLiCoO2を用いた。
The negative electrode plate is 60 g of scale-like aluminum powder.
And 10 g of polyvinylidene fluoride as a binder to 30 g of scale-like artificial graphite, and made into a paste using dimethylformamide, which was applied to a nickel core material,
It was made by drying and rolling. For the positive electrode plate, 10 g of carbon powder as a conductive agent and 5 g of polyvinylidene fluoride as a binder were added to 100 g of the positive electrode active material, and made into a paste using dimethylformamide, coated on a titanium core material, dried, and rolled. It was made by doing. Here, LiMn 2 O 4 and LiCoO 2 were used as the positive electrode active material.

【0010】本実施例で使用した電池の断面図を図1に
示す。電極体は、スポット溶接にて取り付けた芯材と同
材質の正極リード4を有する正極板1と、負極リード5
を有する負極板2とを、両極板間に両極板より幅の広い
帯状の多孔性ポリプロピレン製セパレータ3を介在し
て、全体を渦巻状に捲回して構成する。さらに、上記電
極体の上下それぞれにポリプロピレン製の絶縁板6、7
を配して電槽8に挿入し、電槽8の上部に段部を形成し
た後、エチレンカーボネートとジメトキシエタンの体積
比1:1の混合溶媒に1モル/lの過塩素酸リチウムを
溶解した非水電解液を注入し、正極端子10を設けた合
成樹脂製封口板9で密閉して電池とする。
A cross-sectional view of the battery used in this example is shown in FIG. The electrode body includes a positive electrode plate 1 having a positive electrode lead 4 made of the same material as the core material attached by spot welding, and a negative electrode lead 5.
And a negative electrode plate 2 having a strip-shaped porous polypropylene separator 3 which is wider than the both electrode plates and is interposed between the both electrode plates. Further, insulating plates 6 and 7 made of polypropylene are provided above and below the electrode body, respectively.
Is placed in the battery case 8 to form a step on the upper part of the battery case 8, and then 1 mol / l of lithium perchlorate is dissolved in a mixed solvent of ethylene carbonate and dimethoxyethane at a volume ratio of 1: 1. The non-aqueous electrolyte solution is injected and sealed with a synthetic resin sealing plate 9 provided with a positive electrode terminal 10 to obtain a battery.

【0011】上記に示した手順で、正極活物質としてL
iMn24用いた電池A、正極活物質にLiCoO2
用いた電池Bをそれぞれ作製した。また比較例として、
球状を有する粒径が30〜70μmのアルミニウム粉末
と球状を有する平均粒径10μmの黒鉛粉末からなる負
極板を用いた電池も、上記条件と同様の方法で作製し
た。正極活物質としてLiMn24を用いた電池をC、
正極活物質にLiCoO2を用いた電池をDとする。こ
れらの電池を0.5mA/cm2の電流密度で充放電し
た。但し、電圧範囲は、正極活物質にLiMn24を用
いた電池は、4.2〜3.0V、LiCoO2を用いた
電池は、4.0〜3.0Vとした。表1に放電容量が初
期放電容量の50%まで低下した時のサイクル数を示
す。
According to the procedure shown above, L was used as the positive electrode active material.
A battery A using iMn 2 O 4 and a battery B using LiCoO 2 as the positive electrode active material were produced. As a comparative example,
A battery using a negative electrode plate composed of an aluminum powder having a spherical shape and a particle diameter of 30 to 70 μm and a graphite powder having a spherical shape and an average particle diameter of 10 μm was also manufactured by the same method as the above conditions. The battery using LiMn 2 O 4 as the positive electrode active material is C,
A battery using LiCoO 2 as the positive electrode active material is designated as D. These batteries were charged and discharged at a current density of 0.5 mA / cm 2 . However, the voltage range was 4.2 to 3.0 V for the battery using LiMn 2 O 4 as the positive electrode active material and 4.0 to 3.0 V for the battery using LiCoO 2. Table 1 shows the number of cycles when the discharge capacity decreased to 50% of the initial discharge capacity.

【0012】[0012]

【表1】 [Table 1]

【0013】表1から明らかなように、本実施例の電池
A、Bは、比較例の電池C、Dと比べて充放電サイクル
性が大幅に改善されている。これは、鱗片状のアルミニ
ウム粉末と鱗片状の人造黒鉛粉末を用いることで、電極
構成時、金属粉末と炭素粉末が電極表面に対して平行に
積み重なり、その結果、充放電時の電極の膨張収縮に対
しても、電極全体に均一に圧力がかかり、サイクルを繰
り返すことによって生じる、電極内の集電不良を抑制で
きたことによるものと考えられる。以上のように、鱗片
状のアルミニウム粉末と鱗片状の人造黒鉛を用いて負極
を構成することにより、サイクル特性に優れた非水電解
質二次電池を作製できることが確認された。
As is apparent from Table 1, the batteries A and B of this example have significantly improved charge / discharge cycle characteristics as compared with the batteries C and D of the comparative example. This is because by using scale-like aluminum powder and scale-like artificial graphite powder, metal powder and carbon powder are piled up in parallel to the electrode surface during electrode configuration, and as a result, expansion and contraction of the electrode during charge and discharge. However, it is considered that the current is uniformly applied to the entire electrode and the current collection failure in the electrode caused by repeating the cycle can be suppressed. As described above, it was confirmed that a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be produced by forming a negative electrode using scaly aluminum powder and scaly artificial graphite.

【0014】[実施例2]本実施例では、鱗片状アルミ
ニウム粉末の粒径の検討を行なった。鱗片状アルミニウ
ム粉末の粒径として、5〜15μm、15〜30μm、
30〜70μm、70〜150μm、150〜250μ
m、250〜350μm、350〜500μmに分級し
た7種類の粒径について検討した。電池の作製は実施例
1と同様の方法で行なった。正極活物質にはLiMn2
4を用いた。また、評価方法も実施例1と同様とし
た。表2に放電容量が初期放電容量の50%まで低下し
た時のサイクル数を示す。
Example 2 In this example, the particle size of the scaly aluminum powder was examined. The particle size of the flaky aluminum powder is 5 to 15 μm, 15 to 30 μm,
30-70 μm, 70-150 μm, 150-250 μ
m, 250 to 350 μm, and 350 to 500 μm were classified into seven types of particle diameters. The battery was manufactured in the same manner as in Example 1. LiMn 2 is used as the positive electrode active material.
O 4 was used. The evaluation method was also the same as in Example 1. Table 2 shows the number of cycles when the discharge capacity decreased to 50% of the initial discharge capacity.

【0015】[0015]

【表2】 [Table 2]

【0016】本実施例では、5〜500μmの範囲の鱗
片状アルミニウム粉末について検討したが、いずれも前
記比較例の電池Cに比べてサイクル性は優れていた。中
でも、30〜70μmに分級したものが最も優れたサイ
クル性を示した。5〜15μm、350〜500μmに
分級したものに関しては、サイクル寿命が低い。この原
因は不明であるが、電極の作製時における、アルミニウ
ム粉末と人造黒鉛粉末の分散状態が他のものに比べて良
くないためと考えられる。以上の結果から、鱗片状のア
ルミニウムの粉末の粒径としては、15〜350μmの
範囲が好ましい。
In this example, the scale-like aluminum powder in the range of 5 to 500 μm was examined, but in all cases, the cycle property was superior to the battery C of the comparative example. Among them, the one classified into 30 to 70 μm showed the best cycleability. Cycle life is low for those classified to 5 to 15 μm and 350 to 500 μm. The cause of this is unknown, but it is considered that the dispersion state of the aluminum powder and the artificial graphite powder during the production of the electrode is not good as compared with the others. From the above results, the particle size of the scale-like aluminum powder is preferably in the range of 15 to 350 μm.

【0017】なお実施例では、鱗片状の金属粉末として
アルミニウムを用いたが、この他、リチウムを吸蔵・放
出しリチウムと合金形成することのできる鱗片状のシリ
コン、スズ、鉛、インジウム、ビスマス粉末ならびに、
上記元素を少なくとも一種含む合金粉末でも同様の効果
が得られることが確認された。なお、上記実施例では、
円筒型電池に適用した例について説明したが、本発明は
この構造に限定されるものではなく、コイン型、角型、
偏平型などの形状の二次電池においても同様の効果があ
ることは言うまでもない。
Although aluminum was used as the scale-like metal powder in the examples, scale-like silicon, tin, lead, indium and bismuth powders capable of absorbing and releasing lithium to form an alloy with lithium are also used. And
It was confirmed that the same effect can be obtained with alloy powder containing at least one of the above elements. In the above embodiment,
Although the example applied to the cylindrical battery has been described, the present invention is not limited to this structure, and a coin type, a square type,
It goes without saying that the same effect can be obtained in a flat type secondary battery.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、リチウ
ムを可逆的に吸蔵・放出できる鱗片状の金属もしくは合
金の粉末と鱗片状の炭素粉末と結着剤を含む混合物で構
成することにより、優れた充放電サイクル特性を有する
非水電解質二次電池を得ることができる。
As described above, according to the present invention, it is composed of a mixture containing a scale-like metal or alloy powder capable of reversibly occluding and releasing lithium, scale-like carbon powder, and a binder. Thus, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における非水電解質二次電池の
縦断面図である。
FIG. 1 is a vertical sectional view of a non-aqueous electrolyte secondary battery in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極リード板 5 負極リード板 6 上部絶縁板 7 下部絶縁板 8 電槽 9 封口板 10 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead plate 5 Negative electrode lead plate 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Sealing plate 10 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備する非水電解質二次電池におい
て、前記負極がリチウムを可逆的に吸蔵・放出できる鱗
片状の金属もしくは合金の粉末と鱗片状の炭素粉末と結
着剤の混合物を含むことを特徴とする非水電解質二次電
池。
1. A nonaqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the negative electrode is a scale-like metal or alloy capable of reversibly occluding and releasing lithium. A non-aqueous electrolyte secondary battery comprising a mixture of the above powder, scale-like carbon powder and a binder.
JP5131369A 1993-05-07 1993-05-07 Nonaqueous electrolyte secondary battery Pending JPH06318454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131369A JPH06318454A (en) 1993-05-07 1993-05-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131369A JPH06318454A (en) 1993-05-07 1993-05-07 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH06318454A true JPH06318454A (en) 1994-11-15

Family

ID=15056327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131369A Pending JPH06318454A (en) 1993-05-07 1993-05-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH06318454A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034372A1 (en) * 1997-12-26 1999-07-08 Kureha Chemical Ind Co Ltd Polymer electrolyte and nonaqueous battery containing the same
WO1999056332A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Lithium secondary cell
US6083645A (en) * 1995-02-02 2000-07-04 Hitachi, Ltd. Secondary battery using system and material for negative electrode of secondary battery
EP1042832A1 (en) * 1997-12-23 2000-10-11 Sri International Ion battery using high aspect ratio electrodes
JP2011065983A (en) * 2009-08-21 2011-03-31 Oike Ind Co Ltd Scale-like thin film fine powder dispersion liquid or scale-like thin film fine powder, and paste using the same, electrode for battery, and lithium secondary battery
US8029931B2 (en) 2004-12-18 2011-10-04 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US8048339B2 (en) 2006-12-19 2011-11-01 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
US8283070B2 (en) 2005-12-01 2012-10-09 Samsung Sdi Co., Ltd. Anode active material and lithium battery using the same
US8546017B2 (en) 2007-12-28 2013-10-01 Samsung Sdi Co., Ltd. Composite for anode material, anode materials and lithium battery using the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
KR20140100122A (en) 2013-02-05 2014-08-14 주식회사 케이씨씨 Continuous manufacturing method for silicon nanoparticles and anode active materials containing the same for lithium ion battery
US8906554B2 (en) 2007-07-19 2014-12-09 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same and lithium battery using the anode
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
US9077029B2 (en) 2010-02-23 2015-07-07 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR20160071926A (en) 2014-12-12 2016-06-22 한국지질자원연구원 Method for recovering of silicon particles, and manufacturing of cathode material for secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083645A (en) * 1995-02-02 2000-07-04 Hitachi, Ltd. Secondary battery using system and material for negative electrode of secondary battery
EP1042832A1 (en) * 1997-12-23 2000-10-11 Sri International Ion battery using high aspect ratio electrodes
EP1042832A4 (en) * 1997-12-23 2002-10-30 Stanford Res Inst Int Ion battery using high aspect ratio electrodes
US8043386B2 (en) 1997-12-26 2011-10-25 Kureha Corporation Process for producing polymer electrolyte
US8574770B2 (en) 1997-12-26 2013-11-05 Kureha Corporation Vinylidene fluoride copolymer-based polymer electrolyte for nonaqueous battery retaining large proportion of electrolytic solution
WO1999034372A1 (en) * 1997-12-26 1999-07-08 Kureha Chemical Ind Co Ltd Polymer electrolyte and nonaqueous battery containing the same
US6824927B1 (en) 1997-12-26 2004-11-30 Kureha Kagaku Kogyo Kabushiki Kaisha Polymer electrolyte containing a vinylidene fluoride copolymer and a nonaqueous electrolytic solution, and nonaqueous battery containing the polymer electrolyte
US7452387B2 (en) 1997-12-26 2008-11-18 Kureha Corporation Process for producing a polymer electrolyte of a vinylidene fluoride copolymer for a nonaqueous battery
KR100360359B1 (en) * 1998-04-24 2002-11-13 가부시끼가이샤 히다치 세이사꾸쇼 Lithium secondary cell
WO1999056332A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Lithium secondary cell
US9012082B2 (en) 2004-03-08 2015-04-21 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8029931B2 (en) 2004-12-18 2011-10-04 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US8283070B2 (en) 2005-12-01 2012-10-09 Samsung Sdi Co., Ltd. Anode active material and lithium battery using the same
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
US8048339B2 (en) 2006-12-19 2011-11-01 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US8906554B2 (en) 2007-07-19 2014-12-09 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same and lithium battery using the anode
US8546017B2 (en) 2007-12-28 2013-10-01 Samsung Sdi Co., Ltd. Composite for anode material, anode materials and lithium battery using the same
JP2011065983A (en) * 2009-08-21 2011-03-31 Oike Ind Co Ltd Scale-like thin film fine powder dispersion liquid or scale-like thin film fine powder, and paste using the same, electrode for battery, and lithium secondary battery
US9077029B2 (en) 2010-02-23 2015-07-07 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
KR20140100122A (en) 2013-02-05 2014-08-14 주식회사 케이씨씨 Continuous manufacturing method for silicon nanoparticles and anode active materials containing the same for lithium ion battery
KR20160071926A (en) 2014-12-12 2016-06-22 한국지질자원연구원 Method for recovering of silicon particles, and manufacturing of cathode material for secondary battery

Similar Documents

Publication Publication Date Title
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP2001015146A (en) Battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP3405418B2 (en) Non-aqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP3508411B2 (en) Lithium ion secondary battery
JPH10255766A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2529479B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JPH06275269A (en) Nonaqueous electrolyte secondary battery and its manufacture