KR20070082141A - Process for preparing catalyst for synthesis of carbon nanotubes - Google Patents

Process for preparing catalyst for synthesis of carbon nanotubes Download PDF

Info

Publication number
KR20070082141A
KR20070082141A KR1020060014550A KR20060014550A KR20070082141A KR 20070082141 A KR20070082141 A KR 20070082141A KR 1020060014550 A KR1020060014550 A KR 1020060014550A KR 20060014550 A KR20060014550 A KR 20060014550A KR 20070082141 A KR20070082141 A KR 20070082141A
Authority
KR
South Korea
Prior art keywords
transition metal
metal precursor
catalyst
carrier
solid oxide
Prior art date
Application number
KR1020060014550A
Other languages
Korean (ko)
Inventor
전관구
이진호
최준호
정준희
Original Assignee
삼성코닝 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝 주식회사 filed Critical 삼성코닝 주식회사
Priority to KR1020060014550A priority Critical patent/KR20070082141A/en
Publication of KR20070082141A publication Critical patent/KR20070082141A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

A method for manufacturing a catalyst is provided to make it possible to mass-produce fine catalyst metal of 100 nm or less, which is unobtainable by an exiting process for manufacturing spray pyrolysis catalyst metal, thereby realizing mass-production of the carbon nanotubes. A transition metal precursor is dissolved in a solvent to prepare a transition metal precursor solution. The transition metal precursor contained in the transition metal precursor solution is adsorbed on a surface of a solid oxide carrier to generate a complex solution. The complex solution is treated through spray pyrolysis to support transition metal on the surface of the carrier. The transition metal precursor is metal salt selected from iron, nickel, cobalt, molybdenum, palladium, tungsten, chrome, iridium, and a mixture thereof.

Description

탄소나노튜브 합성용 촉매의 제조방법{PROCESS FOR PREPARING CATALYST FOR SYNTHESIS OF CARBON NANOTUBES}Process for producing carbon nanotube synthesis catalyst {PROCESS FOR PREPARING CATALYST FOR SYNTHESIS OF CARBON NANOTUBES}

도 1은 본 발명에 따른 촉매금속 제조공정에 사용되는 분무열분해 장치의 개략도이고,1 is a schematic view of the spray pyrolysis apparatus used in the catalytic metal production process according to the present invention,

도 2는 본 발명에 따른 촉매금속 제조공정에 사용되는 연속형 분무열분해 장치의 개략도이고,2 is a schematic diagram of a continuous spray pyrolysis apparatus used in the catalytic metal production process according to the present invention,

도 3은 실시예 1에서 얻어진 담체 표면에 고착된 촉매입자의 주사전자현미경 사진이고,3 is a scanning electron micrograph of the catalyst particles fixed on the surface of the carrier obtained in Example 1,

도 4는 실시예 1에서 얻어진 담체 표면에 고착된 촉매입자의 투과전자현미경 사진이다.4 is a transmission electron micrograph of the catalyst particles fixed on the surface of the carrier obtained in Example 1.

<도면의 부호에 대한 간단한 설명><Short description of the symbols in the drawings>

1: 전기히터, 2: 반응챔버, 3: 필터, 4: 생성물, 5: 가스 배기구, 6: 촉매액 주입구, 7: 질소가스 주입구, 8: 스프레이 노즐, 9: 촉매지지체 슬러리, 10: 전이금속 용액, 11: 유량조절기, 12: 균질화기DESCRIPTION OF SYMBOLS 1: Electric heater, 2: Reaction chamber, 3: Filter, 4: Product, 5: Gas exhaust port, 6: Catalyst liquid inlet, 7: Nitrogen gas inlet, 8: Spray nozzle, 9: Catalyst support slurry, 10: Transition metal Solution, 11: flow regulator, 12: homogenizer

본 발명은 탄소나노튜브 합성용 촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for synthesizing carbon nanotubes.

탄소나노튜브는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연면이 나노크기의 직경으로 둥글게 말린 형태를 갖고 있으며, 크기나 형태에 따라 독특한 물리적 성질을 갖는 거대 분자이다. 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철강에 못지 않다. 원통형을 이루는 결합 구조에 따라 일부러 불순물을 넣지 않아도 튜브와 튜브가 상호 작용하면서 도체에서 반도체로 변한다. 말려진 형태에 따라서 단층벽 나노튜브(single walled nanotube, SWNT), 다중벽 나노튜브(multi-walled nanotube, MWNT), 다발형 나노튜브(rope nanotube)로 구분되기도 한다. Carbon nanotubes are hexagonal honeycomb graphite surfaces, in which one carbon atom is bonded to three other carbon atoms, which are rounded to a nano-sized diameter, and are large molecules having unique physical properties according to their size and shape. It is hollow, lightweight and has good electrical conductivity as copper, thermal conductivity as good as diamond and tensile strength as steel. According to the cylindrical coupling structure, the tube and the tube interact with each other and change from conductor to semiconductor without intentionally adding impurities. Depending on the shape of the roll, it may be divided into single walled nanotubes (SWNTs), multi-walled nanotubes (MWNTs), and rope nanotubes.

이러한 탄소나노튜브는 일반적으로 전기방전법, 레이저 증착법, 플라즈마 화학기상증착법, 열화학증착법, 기상합성법 및 전기분해법 등의 방법으로 제조될 수 있으며, 이중 기상합성법의 경우 기판을 사용하지 않고 반응로 안에 탄소를 함유하고 있는 가스와 촉매금속을 직접 공급하여 반응시켜 탄소나노튜브의 증착물을 형성하기 때문에 고순도의 탄소나노튜브를 대량으로 합성할 수 있으면서도 경제성이 뛰어나 가장 각광받고 있다.Such carbon nanotubes may be generally manufactured by an electric discharge method, a laser deposition method, a plasma chemical vapor deposition method, a thermochemical vapor deposition method, a gas phase synthesis method, and an electrolysis method, and in the case of the double gas phase synthesis method, carbon in a reactor without using a substrate is used. Since it forms a deposit of carbon nanotubes by directly supplying and reacting a gas containing a catalyst metal with a catalyst metal, it is possible to synthesize a large amount of high purity carbon nanotubes, but it is also very economical and is attracting the most attention.

따라서, 기상합성법에서는 촉매금속의 사용이 필수적이며, 이중 Ni, Co 또는 Fe 등이 가장 많이 쓰이고 있으며, 각각의 촉매금속 입자는 하나의 씨드(seed)로 작용하여 탄소나노튜브가 형성되기 때문에, 촉매금속을 수 나노부터 수십 나노 크기의 입자로 형상화하는 것이 탄소나노튜브 합성의 핵심 기술이라 할 수 있다. 따라서, 탄소나노튜브 합성에 필수적인 촉매금속의 제조방법에 대한 여러 연구가 진행되고 있다.Therefore, in the gas phase synthesis method, the use of a catalyst metal is essential. Among them, Ni, Co, or Fe is most frequently used, and each catalyst metal particle acts as a seed to form carbon nanotubes. Shaping metal from particles of several nanometers to several tens of nanometers in size is the core technology of carbon nanotube synthesis. Therefore, various studies on the preparation method of the catalytic metal which is essential for the synthesis of carbon nanotubes have been conducted.

지금까지 보고된 촉매금속의 제조방법으로는, 예를 들면 촉매제 담체 및 촉매금속 또는 금속 조합을 용액 상태에서 pH, 온도 및/또는 조성물을 변화시켜 공침시킨 후 침전물을 분리하여 공기 또는 다른 가스 환경에서 가열 처리하는 방법, 미립자 담체물질과 촉매 금속을 함유하는 현탁액을 건조 또는 증발시키는 초기 함침법, 제올라이트와 같은 양이온 미립자 담체물질을 촉매 금속염과 혼합하여 이온화 시킨 후 수소 또는 다른 환원수단을 이용하여 고온에서 금속입자로 환원하는 방법, 촉매금속과 마그네시아, 알루미나, 실리카 등의 고체 산화물 담체물질을 혼합된 상태에서 연소시키는 방법, 및 촉매금속 전구체 용액을 분무/미세화하여 연소시키는 방법 등이 보고되고 있으나(대한민국 특허공개 제2003-91016호, 제2003-8842호, 제2005-72056호, 제2001-79867호, 제2002-84087호, 제2004-31714호 및 제2004-82950호; 및 미국특허공개 제2004/0162216 A1호), 대부분 제조된 촉매의 평균입경이 0.1 내지 수 ㎛로 미세화에 한계가 있거나, 촉매의 대량생산이 곤란하거나 경제성이 떨어지는 등 문제가 있었다. As a method for producing a catalyst metal reported so far, for example, the catalyst carrier and the catalyst metal or metal combination are co-precipitated by changing the pH, temperature and / or composition in a solution state, and then the precipitate is separated to provide an air or other gas environment. Method of heat treatment, initial impregnation method of drying or evaporating suspension containing particulate carrier material and catalyst metal, cationic particulate carrier material such as zeolite is mixed with catalyst metal salt and ionized, followed by hydrogen or other reducing means at high temperature. Reduction of metal particles, combustion of catalytic metals and solid oxide carrier materials such as magnesia, alumina, and silica in a mixed state, and combustion of the catalyst metal precursor solution by spraying / micronizing have been reported. Patent Publication Nos. 2003-91016, 2003-8842, 2005-72056, 2001-79867, Nos. 2002-84087, 2004-31714 and 2004-82950; and US Patent Publication No. 2004/0162216 A1), most of the catalysts produced have an average particle diameter of 0.1 to a few micrometers and have a limited micronization, or There was a problem such as difficult to mass-produce or low economic feasibility.

이에, 본 발명의 목적은 평균입경이 100 nm 이하인, 탄소나노튜브 합성용 금 속촉매를 대량으로 제조할 수 있는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing a large amount of metal catalyst for synthesizing carbon nanotubes having an average particle diameter of 100 nm or less.

상기 목적에 따라, 본 발명에서는 1) 전이금속 전구체를 용매에 용해시켜 전이금속 전구체 용액을 제조하는 단계; 2) 단계 1) 에서 얻어진 전이금속 전구체 용액 내 전이금속 전구체를 고체 산화물 담체 표면에 흡착시키는 단계; 및 3) 단계 2) 에서 생성된 복합체 용액을 분무 열분해시켜 전이금속을 담체 표면에 고착시키는 단계를 포함하는, 탄소나노튜브 합성용 금속촉매의 제조방법을 제공한다. According to the above object, in the present invention 1) preparing a transition metal precursor solution by dissolving the transition metal precursor in a solvent; 2) adsorbing the transition metal precursor in the transition metal precursor solution obtained in step 1) to the surface of the solid oxide carrier; And 3) spray pyrolyzing the complex solution produced in step 2) to fix the transition metal on the surface of the carrier.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 제조방법은, 기존 분무 열분해를 이용한 탄소나노튜브 합성용 촉매 제조방법에서 단순히 전이금속 전구체 용액만을 사용하던 것과는 달리, 분무 열분해 공정 중 열에 의한 전이금속 입자의 응집을 방지하기 위해 고체산화물 담체 표면에 전이금속 전구체를 흡착시킨 복합체 용액 상태로 분무 열분해를 수행하여 전이금속을 담체 표면에 고착시켜 100 ㎚ 이하의 평균입경을 갖는 금속촉매를 대량으로 생산할 수 있다는 것을 특징으로 한다.Unlike the conventional method of preparing a catalyst for synthesizing carbon nanotubes using spray pyrolysis, the manufacturing method of the present invention uses a solid oxide carrier to prevent aggregation of transition metal particles by heat during spray pyrolysis. Spray pyrolysis is carried out in a complex solution state in which a transition metal precursor is adsorbed on a surface, thereby adhering the transition metal to a carrier surface, thereby producing a large amount of a metal catalyst having an average particle diameter of 100 nm or less.

상기 단계 1에서는 전이금속 전구체를 용매에 용해시켜 전이금속 전구체 용액을 제조하게 되는데, 이때 전이금속 전구체로는 철, 니켈, 코발트, 몰리브덴, 팔라듐, 텅스텐, 크롬, 이리듐 및 이들의 혼합물 등에서 선택된 금속의 염이 사용될 수 있으며, 바람직하게는 질산철(iron nitrate), 철카보닐(iron carbonyl), 질산니 켈(nickel nitrate), 질산코발트(cobalt nitrate) 및 몰리브덴산(molybdic acid) 등이 사용될 수 있다. 또한, 용매로는 물, 에탄올, 아세톤, 벤젠 및 신나 등을 사용할 수 있다. 또한, 전이금속 전구체는 용액 내 5 내지 40 중량%, 바람직하게는 20 내지 30 중량%로 포함될 수 있다.In step 1, the transition metal precursor is dissolved in a solvent to prepare a transition metal precursor solution, wherein the transition metal precursor includes a metal selected from iron, nickel, cobalt, molybdenum, palladium, tungsten, chromium, iridium and mixtures thereof. Salts may be used, preferably iron nitrate, iron carbonyl, nickel nitrate, cobalt nitrate and molybdic acid may be used. . As the solvent, water, ethanol, acetone, benzene, thinner and the like can be used. In addition, the transition metal precursor may be included in 5 to 40% by weight, preferably 20 to 30% by weight in the solution.

단계 2에서 사용되는 고체산화물 담체는 분무 열분해 공정 중 전이금속 입자들 간의 응집을 방지하여 촉매 입경이 커지는 것을 저해하는 역할을 하며, 이러한 담체로는 제올라이트, 실리카, 마그네시아, 지르코니아 및 이들의 혼합물 중에서 선택된 것을 사용할 수 있다.The solid oxide carrier used in step 2 prevents agglomeration between transition metal particles during the spray pyrolysis process and inhibits the increase of the catalyst particle diameter, and the carrier is selected from zeolite, silica, magnesia, zirconia and mixtures thereof. Can be used.

단계 2에서 고체 산화물 담체에 전이금속 전구체를 흡착시키는 방법으로는, 예를 들면 단계 1)에서 얻어진 전이금속 전구체 용액에 담체를 첨가시켜 수행될 수 있으며, 이때 고체산화물 담체와 전이금속 전구체의 혼합 중량비는 1:0.5 내지 4, 바람직하게는 1:1 내지 2 범위일 수 있다. 또한, 단계 2에서 얻어진 복합체 용액 중 고체산화물 담체의 농도는 2 내지 20중량%, 바람직하게는 5 내지 10중량% 범위일 수 있으며, 이러한 복합체 용액 중에는 담체 입자 표면에 금속 전구체가 상당량 흡착되어 형성된 복합체와 함께 일부 흡착되지 않은 금속 전구체가 잔존할 수 있다.As a method of adsorbing the transition metal precursor to the solid oxide carrier in step 2, for example, it may be carried out by adding the carrier to the transition metal precursor solution obtained in step 1), wherein the mixed weight ratio of the solid oxide carrier and the transition metal precursor May range from 1: 0.5 to 4, preferably from 1: 1 to 2. In addition, the concentration of the solid oxide carrier in the complex solution obtained in step 2 may be in the range of 2 to 20% by weight, preferably 5 to 10% by weight, and in the complex solution, a complex formed by adsorbing a substantial amount of metal precursor on the surface of the carrier particles. With some unabsorbed metal precursor may remain.

또한, 본 발명의 단계 2에서는, 흡착효과를 더욱 향상시키기 위해 얻어진 복합체 용액을 균질화기로 고르게 혼합하는 공정을 추가로 포함할 수 있으며, 이때 균질화기로는 초음파 균질화기 또는 회전식 균질화기를 사용하는 것이 적절하다.In addition, in step 2 of the present invention, in order to further improve the adsorption effect, it may further include a step of evenly mixing the obtained complex solution with a homogenizer, wherein it is appropriate to use an ultrasonic homogenizer or a rotary homogenizer as the homogenizer. .

단계 3에서는 단계 2에서 생성된 복합체 용액을 분무 열분해하는 공정이 수 행되는데, 예를 들면 도 1에 나타낸 바와 같이, 복합체 용액을 촉매액 주입구(6)로, 질소가스를 질소가스 주입구(7)로 주입하여 스프레이 노즐(8)을 통해 전기히터(1)를 장착한 고온의 반응챔버(2) 내로 촉매용액을 분사시키게 되며, 분사로 인해 미세화된 촉매 용액들이 반응챔버를 통과하는 동안 소결되어 담체에 금속이 담지된 형태의 촉매 입자가 생성물(4)로서 수거되며 질소가스는 필터(3)를 통해 가스배기구(5)로 배출되게 된다. 이러한 분무 열분해 공정 중에는 분사된 복합체 용액의 용매가 기화되고 전이금속 전구체의 금속과 유기물의 결합이 끊어지면서 담체 표면에서 금속의 결정화가 이루어져 담체와 촉매금속이 안정된 결합을 형성하게 된다. 이때, 분무 열분해 공정은 120 내지 1200℃, 바람직하게는 300 내지 700℃에서 수행될 수 있으며, 1200℃ 초과인 경우에는 금속의 기화가 발생하여 결과물의 조성이 불균일해질 수 있다. 단계 3에서 얻어진 안정된 상의 촉매금속은 표면 금속 중 80% 이상이 열분해된 전이금속으로 이루어진다.In step 3, a process of spray pyrolysis of the complex solution produced in step 2 is performed. For example, as shown in FIG. 1, the complex solution is used as the catalyst solution inlet 6, and nitrogen gas is supplied to the nitrogen gas inlet 7. The catalyst solution is injected into the high temperature reaction chamber 2 equipped with the electric heater 1 through the spray nozzle 8, and the catalyst solution refined by the sintering is sintered while passing through the reaction chamber to support the carrier. The catalyst particles in the form of the metal supported thereon are collected as the product 4 and nitrogen gas is discharged to the gas exhaust port 5 through the filter 3. During the spray pyrolysis process, the solvent of the sprayed complex solution is vaporized and the metal of the transition metal precursor is disconnected from the organic material, and crystallization of the metal is performed on the surface of the carrier to form a stable bond between the carrier and the catalyst metal. In this case, the spray pyrolysis process may be performed at 120 to 1200 ° C., preferably 300 to 700 ° C., and when the temperature exceeds 1200 ° C., vaporization of the metal may occur, resulting in uneven composition of the resultant product. The catalytic metal of the stable phase obtained in step 3 consists of a transition metal in which at least 80% of the surface metals are pyrolyzed.

본 발명의 제조방법에서, 단계 2와 단계 3의 공정은 각각 분리되어 수행될 수 있으나, 도 2에 나타낸 바와 같이 연속적으로도 수행될 수 있다. 구체적으로, 담체 분말 또는 담체 분말의 슬러리(9)와 전이금속 전구체 용액(10)을 유량조절기(11)가 장착되어있는 노즐을 따라 균질화기(12) 내로 주입하여 단계 2의 균질화 공정을 수행한 후, 바로 상기에서 설명한 단계 3의 분무 열분해 공정을 도 1에 나타낸 바와 같이 수행할 수 있다.In the manufacturing method of the present invention, the process of step 2 and step 3 may be performed separately, but may also be performed continuously as shown in FIG. Specifically, the carrier powder or the slurry 9 of the carrier powder and the transition metal precursor solution 10 are injected into the homogenizer 12 along the nozzle equipped with the flow regulator 11 to perform the homogenization process of step 2. Thereafter, the spray pyrolysis process of step 3 described above can be carried out as shown in FIG.

이러한 본 발명의 제조방법에 의하면, 도 3 및 도 4에서 볼 수 있는 바와 같이, 담체 표면에 고착된 상태로 평균입경 100 ㎚ 이하의 금속촉매 입자를 대량으로 생산할 수 있으므로, 탄소나노튜브의 대량생산 등에 유용하게 활용될 수 있다.According to the manufacturing method of the present invention, as can be seen in Figures 3 and 4, it is possible to produce a large amount of metal catalyst particles having an average particle diameter of 100 nm or less in a fixed state on the surface of the carrier, mass production of carbon nanotubes This can be usefully used.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

실시예 1 Example 1

에탄올 10 L에 MgO 500 g을 첨가한 후 초음파 균질화기로 분산시켜 평균입경 14 ㎛의 판상입자를 갖는 MgO 분산용액을 얻었다. Fe(NO3)3·9H2O 859 g을 에탄올 5 L에 녹인 후, 여기에 86% 몰리브덴(Mo)산 분말 10.83 g을 물 700 ml에 녹인 것을 첨가하여 1 시간 동안 교반하였다. 여기에 상기에서 얻어진 MgO 분산용액을 첨가한 후 초음파 균질화기로 1 시간 동안 분산시켰으며, 얻어진 분산액을 도 1에 나타낸 바와 같은 분무 열분해기의 노즐에 주입한 후, 500℃ 가열 조건하에 스프레이 분사시켜 본 발명에 따른 촉매금속을 제조하였다. 이때, 노즐의 구멍사이즈는 500 ㎛이고, 가스는 질소가스를 사용하여 20 L 용량으로 균일 분사시켰다. 제조된 촉매금속은 주사전자현미경 및 투과전자현미경을 사용하여 관찰하였다. 500 g of MgO was added to 10 L of ethanol and dispersed by an ultrasonic homogenizer to obtain a MgO dispersion solution having platelets having an average particle diameter of 14 μm. After dissolving 859 g of Fe (NO 3 ) 3 .9H 2 O in 5 L of ethanol, 10.83 g of 86% molybdenum (Mo) acid powder was dissolved in 700 ml of water, followed by stirring for 1 hour. The MgO dispersion solution obtained above was added thereto, and then dispersed by an ultrasonic homogenizer for 1 hour. The obtained dispersion solution was injected into the nozzle of the spray pyrolysis machine as shown in FIG. A catalyst metal according to the invention was prepared. At this time, the hole size of the nozzle was 500 µm, and the gas was uniformly sprayed at a capacity of 20 L using nitrogen gas. The prepared catalyst metal was observed using a scanning electron microscope and a transmission electron microscope.

그 결과, 입자사이즈 분석기를 통한 크기 측정은 불가능하였으나, 도 3 및 도 4에 나타낸 바와 같이, 촉매 담체 표면에 고착된 20 내지 50 ㎚ 범위의 입경을 갖는 금속촉매 입자들을 관찰할 수 있었다.As a result, size measurement through a particle size analyzer was not possible, but as shown in FIGS. 3 and 4, metal catalyst particles having a particle size in the range of 20 to 50 nm fixed to the surface of the catalyst carrier were observed.

본 발명에 따른 탄소나노튜브 합성용 촉매금속의 제조방법은 기존 분무열분해 촉매금속 제조공정에서 얻을 수 없었던 100 nm 이하의 미세화된 촉매금속을 대량으로 생산할 수 있으므로, 탄소나노튜브의 대량생산 등에 유용하게 활용될 수 있다.The method for preparing a catalyst metal for synthesizing carbon nanotubes according to the present invention can produce a large amount of micronized catalyst metal of 100 nm or less, which could not be obtained in the conventional spray pyrolysis catalyst metal manufacturing process, and thus is useful for mass production of carbon nanotubes. Can be utilized.

Claims (10)

1) 전이금속 전구체를 용매에 용해시켜 전이금속 전구체 용액을 제조하는 단계; 1) dissolving the transition metal precursor in a solvent to prepare a transition metal precursor solution; 2) 단계 1) 에서 얻어진 전이금속 전구체 용액 내 전이금속 전구체를 고체 산화물 담체 표면에 흡착시키는 단계; 및 2) adsorbing the transition metal precursor in the transition metal precursor solution obtained in step 1) to the surface of the solid oxide carrier; And 3) 단계 2) 에서 생성된 복합체 용액을 분무 열분해시켜 전이금속을 담체 표면에 고착시키는 단계를 포함하는, 탄소나노튜브 합성용 금속촉매의 제조방법.3) A method of producing a metal catalyst for synthesizing carbon nanotubes, comprising the step of fixing the transition metal on the surface of the carrier by spray pyrolysis of the complex solution produced in step 2). 제 1 항에 있어서,The method of claim 1, 단계 1)의 전이금속 전구체가 철, 니켈, 코발트, 몰리브덴, 팔라듐, 텅스텐, 크롬, 텅스텐, 이리듐 및 이들의 혼합물 중에서 선택된 금속의 염임을 특징으로 하는 방법.The transition metal precursor of step 1) is a salt of a metal selected from iron, nickel, cobalt, molybdenum, palladium, tungsten, chromium, tungsten, iridium and mixtures thereof. 제 2 항에 있어서,The method of claim 2, 금속의 염이 질산철(iron nitrate), 철카보닐(iron carbonyl), 질산니켈(nickel nitrate), 질산코발트(cobalt nitrate), 몰리브덴산(molybdic acid) 및 이들의 혼합물 중에서 선택된 것임을 특징으로 하는 방법.The salt of the metal is selected from iron nitrate, iron carbonyl, nickel nitrate, cobalt nitrate, molybdic acid and mixtures thereof . 제 1 항에 있어서,The method of claim 1, 단계 1)의 용매가 물, 에탄올, 아세톤, 벤젠, 신나 및 이들의 혼합물 중에서 선택 된 것임을 특징으로 하는 방법. The solvent of step 1) is selected from water, ethanol, acetone, benzene, thinner and mixtures thereof. 제 1 항에 있어서,The method of claim 1, 단계 2)의 고체산화물 담체가 제올라이트, 실리카, 마그네시아, 지르코니아 및 이들의 혼합물 중에서 선택된 것임을 특징으로 하는 방법.Characterized in that the solid oxide carrier of step 2) is selected from zeolite, silica, magnesia, zirconia and mixtures thereof. 제 1 항에 있어서,The method of claim 1, 단계 2)에서 고체산화물 담체와 전이금속 전구체의 혼합 중량비가 1:0.5 내지 4 범위임을 특징으로 하는 방법.Characterized in that the mixing weight ratio of the solid oxide carrier and the transition metal precursor in step 2) is in the range of 1: 0.5 to 4. 제 1 항에 있어서,The method of claim 1, 단계 2)의 흡착공정이 단계 1)에서 얻어진 전이금속 전구체 용액에 고체산화물 담체를 첨가하여 혼합함으로써 수행됨을 특징으로 하는 방법.Adsorption process of step 2) is carried out by adding and mixing a solid oxide carrier to the transition metal precursor solution obtained in step 1). 제 1 항에 있어서,The method of claim 1, 단계 2)의 공정 후, 생성된 복합체 용액을 균질화하는 공정을 추가로 포함함을 특징으로 하는 방법. After the process of step 2), further comprising homogenizing the resulting composite solution. 제 8 항에 있어서,The method of claim 8, 균질화 공정이 초음파 균질화기 또는 회전식 균질화기를 사용하여 수행됨을 특징으 로 하는 방법.Wherein the homogenization process is performed using an ultrasonic homogenizer or a rotary homogenizer. 제 1 항에 있어서,The method of claim 1, 단계 3)의 분무 열분해 공정이 120 내지 1200℃에서 수행됨을 특징으로 하는 방법.Spray pyrolysis process of step 3) is carried out at 120 to 1200 ℃.
KR1020060014550A 2006-02-15 2006-02-15 Process for preparing catalyst for synthesis of carbon nanotubes KR20070082141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060014550A KR20070082141A (en) 2006-02-15 2006-02-15 Process for preparing catalyst for synthesis of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060014550A KR20070082141A (en) 2006-02-15 2006-02-15 Process for preparing catalyst for synthesis of carbon nanotubes

Publications (1)

Publication Number Publication Date
KR20070082141A true KR20070082141A (en) 2007-08-21

Family

ID=38611868

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060014550A KR20070082141A (en) 2006-02-15 2006-02-15 Process for preparing catalyst for synthesis of carbon nanotubes

Country Status (1)

Country Link
KR (1) KR20070082141A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892753B1 (en) * 2007-10-10 2009-04-15 세메스 주식회사 Apparatus and method for preparing catalyst for systhesis of carbon-nano-tube
KR100913369B1 (en) * 2007-12-24 2009-08-20 엠파워(주) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
KR100956421B1 (en) * 2007-12-24 2010-05-06 엠파워(주) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
KR101357628B1 (en) * 2008-12-10 2014-02-06 제일모직주식회사 Metal Nano Catalyst, Method for Preparing thereof and Carbon Nanotube Synthesized Using the Same
WO2014046471A1 (en) * 2012-09-18 2014-03-27 Hanwha Chemical Corporation. Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
KR101401368B1 (en) * 2012-09-28 2014-05-30 한국기계연구원 Fabrication method of catalyst-carrier composite powder
US9006132B2 (en) 2010-08-10 2015-04-14 Korea Kumho Petrochemical Co., Ltd Process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method
KR20200141772A (en) 2019-06-11 2020-12-21 전남대학교산학협력단 Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892753B1 (en) * 2007-10-10 2009-04-15 세메스 주식회사 Apparatus and method for preparing catalyst for systhesis of carbon-nano-tube
KR100913369B1 (en) * 2007-12-24 2009-08-20 엠파워(주) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
KR100956421B1 (en) * 2007-12-24 2010-05-06 엠파워(주) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
KR101357628B1 (en) * 2008-12-10 2014-02-06 제일모직주식회사 Metal Nano Catalyst, Method for Preparing thereof and Carbon Nanotube Synthesized Using the Same
US9006132B2 (en) 2010-08-10 2015-04-14 Korea Kumho Petrochemical Co., Ltd Process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method
WO2014046471A1 (en) * 2012-09-18 2014-03-27 Hanwha Chemical Corporation. Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
KR101446116B1 (en) * 2012-09-18 2014-10-06 한화케미칼 주식회사 Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
KR101401368B1 (en) * 2012-09-28 2014-05-30 한국기계연구원 Fabrication method of catalyst-carrier composite powder
KR20200141772A (en) 2019-06-11 2020-12-21 전남대학교산학협력단 Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same

Similar Documents

Publication Publication Date Title
Awasthi et al. Synthesis of carbon nanotubes
KR100976174B1 (en) A catalyst composition for the synthesis of thin multi-walled carbon nanotubes and its manufacturing method
Lobiak et al. Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes
KR101292489B1 (en) Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst
Pham-Huu et al. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst
JP5102633B2 (en) Method for growing long carbon single-walled nanotubes
KR101241034B1 (en) Process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
KR20070082141A (en) Process for preparing catalyst for synthesis of carbon nanotubes
KR101350690B1 (en) Highly conductive carbon nanotube having bundle moieties with ultra-low bulk density and its manufacturing method
Mhlanga et al. The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts
CN104995134B (en) Produce carbon nano-structured method and device
KR20100100890A (en) Method for producing nitrogen-doped carbon nanotubes
Popovska et al. Catalytic growth of carbon nanotubes on zeolite supported iron, ruthenium and iron/ruthenium nanoparticles by chemical vapor deposition in a fluidized bed reactor
Lv et al. Formation of carbon nanofibers/nanotubes by chemical vapor deposition using Al2O3/KOH
US20100016148A1 (en) Process for preparing catalyst for synthesis of carbon nanotubes using spray pyrolysis
Yamada et al. Synthesis and diameter control of multi-walled carbon nanotubes over gold nanoparticle catalysts
KR100962171B1 (en) Metal Nano Catalyst for Synthesizing Carbon Nanotube and Method for Preparing Carbon Nanotubes Using thereof
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
KR100913369B1 (en) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
He et al. Fabrication of carbon nanomaterials by chemical vapor deposition
Dziike et al. Synthesis of carbon nanofibers over lanthanum supported on radially aligned nanorutile: A parametric study
Liu et al. Controlled growth of Ni particles on carbon nanotubes for fabrication of carbon nanotubes
RU2389550C1 (en) Method for production of applied catalyst and method for production of carbon nanotubes

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid