KR20020021689A - Method for forming metal line - Google Patents

Method for forming metal line Download PDF

Info

Publication number
KR20020021689A
KR20020021689A KR1020000054376A KR20000054376A KR20020021689A KR 20020021689 A KR20020021689 A KR 20020021689A KR 1020000054376 A KR1020000054376 A KR 1020000054376A KR 20000054376 A KR20000054376 A KR 20000054376A KR 20020021689 A KR20020021689 A KR 20020021689A
Authority
KR
South Korea
Prior art keywords
plasma
metal layer
metal
forming
etching
Prior art date
Application number
KR1020000054376A
Other languages
Korean (ko)
Inventor
최창주
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000054376A priority Critical patent/KR20020021689A/en
Publication of KR20020021689A publication Critical patent/KR20020021689A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE: A method for forming a metal interconnection is provided to prevent an electron shading phenomenon and to improve the profile of the metal interconnection, by etching a metal layer for forming the metal interconnection by a pulse plasma etch method so that negative ions of the pulse plasma are actively generated. CONSTITUTION: The metal layer is formed on a lower structure(31). The metal layer is selectively etched to form a metal interconnection layer(32). The metal layer is selectively etched by a pulse plasma etch method using a frequency region where the density of negative ions and neutral radicals in the plasma increases.

Description

금속 배선 형성 방법{Method for forming metal line}Method for forming metal line

본 발명은 금속 배선 형성 방법에 관한 것으로, 특히 금속 배선 형성용 금속층을 펄스 플라즈마(Pulse Plasma) 식각 방법에 의해 식각하여 소자의 전기적 특성, 수율 및 신뢰성을 향상시키는 금속 배선 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming metal wirings, and more particularly, to a method of forming metal wirings by etching a metal layer for forming metal wirings by a pulse plasma etching method to improve electrical characteristics, yield and reliability of devices.

종래의 금속 배선 형성 방법은 도 1a에서와 같이, 하부 구조물(11)상에 금속층(12a)과 감광막(13)을 순차적으로 형성한다.In the conventional metal wire forming method, as shown in FIG. 1A, the metal layer 12a and the photosensitive film 13 are sequentially formed on the lower structure 11.

도 1b에서와 같이, 상기 감광막(13)을 금속 배선이 형성될 부위에서만 남도록 선택적으로 노광 및 현상한다.As shown in FIG. 1B, the photosensitive film 13 is selectively exposed and developed so that only the portion where the metal wiring is to be formed remains.

그리고, 상기 선택적으로 노광 및 현상된 감광막(13)을 마스크로 상기 금속층(12a)을 연속 플라즈마 식각 방법에 의해 식각하여 금속 배선층(12)을 형성하고, 후 공정에 의해 상기 감광막(13)을 제거한다.Then, the metal layer 12a is etched by a continuous plasma etching method using the selectively exposed and developed photoresist film 13 as a mask to form a metal wiring layer 12, and the photoresist film 13 is removed by a subsequent process. do.

여기서, 상기 연속 플라즈마 식각 방법에 의한 상기 금속층(12a)의 식각 공정 시 상기 감광막(13) 상부 부위에 도 2에서와 같은 각 분배 특성을 갖는 전자(21)가 축적되기 때문에 상기 플라즈마 중 도 2에서와 같은 각 분배 특성을 갖는 양이온(22)은 상기 식각 공정에 투입되지만 도 2에서와 같은 각 분배 특성을 갖는 상당수의 음이온(23)은 상기 전자(21)와의 척력에 의해 반사되는 일렉트론 새딩(Electron shading) 현상이 발생되어 게이트 절연막의 열화 등 하부 소자의 전기적 특성 열화(24)를 초래한다.Here, in the plasma of FIG. 2, electrons 21 having respective distribution characteristics as shown in FIG. 2 are accumulated in the upper portion of the photoresist layer 13 during the etching process of the metal layer 12a by the continuous plasma etching method. The cation 22 having the respective distribution characteristics as shown in FIG. 2 is introduced into the etching process, but a large number of negative ions 23 having the respective distribution characteristics as shown in FIG. 2 are reflected by the repulsive force with the electrons 21. A shading phenomenon is generated, resulting in deterioration of the electrical characteristics of the lower element 24 such as deterioration of the gate insulating film.

그러나 종래의 금속 배선 형성 방법은 금속 배선 형성용 금속층을 연속 플라즈마 식각 방법에 의해 선택 식각하기 때문에 일렉트론 새딩 현상이 발생되어 하부 소자의 전기적 특성 열화를 초래하므로 소자의 전기적 특성, 수율 및 신뢰성이 저하되는 문제점이 있었다.However, in the conventional metal wire forming method, since the metal layer for forming metal wires is selectively etched by a continuous plasma etching method, electrocarding phenomenon occurs, resulting in deterioration of the electrical properties of the lower device, thereby reducing the electrical properties, yield and reliability of the device. There was a problem.

본 발명은 상기의 문제점을 해결하기 위해 안출한 것으로 금속 배선 형성용 금속층을 펄스 플라즈마 식각 방법에 의해 식각하여 일렉트론 새딩 현상의 발생을 방지하는 금속 배선 형성 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for forming a metal wiring by etching the metal layer for forming a metal wiring by a pulsed plasma etching method to prevent the occurrence of an electron sadding phenomenon.

도 1a와 도 1b는 종래의 금속 배선 형성 방법을 나타낸 공정 단면도1A and 1B are cross-sectional views illustrating a conventional metal wiring forming method.

도 2는 전자와 이온 각각의 각 분배 특성을 나타낸 도면2 is a diagram showing distribution characteristics of electrons and ions, respectively.

도 3a와 도 3b는 본 발명의 실시 예에 따른 금속 배선 형성 방법을 나타낸 공정 단면도3A and 3B are cross-sectional views illustrating a method of forming a metal wiring according to an embodiment of the present invention.

도 4는 각각의 펄스 플라즈마 식각 방법과 연속 플라즈마 식각 방법의 에너지에 따른 전자 밀도 함수를 나타낸 비교 그래프4 is a comparative graph showing the electron density function according to the energy of each pulsed plasma etching method and continuous plasma etching method.

도 5는 각각의 펄스 플라즈마 식각 방법과 연속 플라즈마 식각 방법의 변조 주파수에 따른 중성 라디칼의 상대적 농도 비를 나타낸 비교 그래프5 is a comparative graph showing the relative concentration ratio of neutral radicals according to the modulation frequency of each pulsed plasma etching method and continuous plasma etching method

도 6은 각각의 펄스 플라즈마 식각 방법과 연속 플라즈마 식각 방법의 변조 주파수에 따른 양이온의 밀도를 나타낸 비교 그래프6 is a comparative graph showing the density of cations according to the modulation frequency of each pulsed plasma etching method and continuous plasma etching method

도 7은 각각의 펄스 플라즈마 식각 방법과 연속 플라즈마 식각 방법의 변조 주파수에 따른 음이온의 농도를 나타낸 비교 그래프7 is a comparative graph showing the concentration of anions according to the modulation frequency of each pulsed plasma etching method and continuous plasma etching method

도 8은 각각의 펄스 플라즈마 식각 방법과 연속 플라즈마 식각 방법의 변조 주파수에 따른 식각률을 나타낸 비교 그래프8 is a comparison graph showing the etching rate according to the modulation frequency of each pulsed plasma etching method and continuous plasma etching method

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

31 : 하부 구조물 32a : 금속층31: lower structure 32a: metal layer

32 : 금속 배선층 33 : 감광막32 metal wiring layer 33 photosensitive film

본 발명의 금속 배선 형성 방법은 하부 구조물상에 금속층을 형성하는 단계와, 상기 금속층을 선택 식각하여 금속 배선층을 형성하되, 상기 금속층을 플라즈마 내의 음이온 및 중성 라디칼 밀도가 증가되는 주파수 영역을 사용한 펄스 플라즈마 식각 방법에 의해 선택 식각하는 단계를 포함하여 이루어짐을 특징으로 한다.The metal wiring forming method of the present invention comprises the steps of forming a metal layer on the lower structure, and selectively etching the metal layer to form a metal wiring layer, the metal layer is a plasma using a frequency region in which anion and neutral radical density in the plasma increases It characterized in that it comprises a step of selectively etching by the etching method.

상기와 같은 본 발명에 따른 금속 배선 형성 방법의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings a preferred embodiment of the metal wiring forming method according to the present invention as follows.

본 발명의 실시 예에 따른 금속 배선 형성 방법은 도 3a에서와 같이, 하부 구조물(31)상에 금속층(32a)과 감광막(33)을 순차적으로 형성한다.In the method for forming metal lines according to the embodiment of the present invention, as shown in FIG. 3A, the metal layer 32a and the photoresist layer 33 are sequentially formed on the lower structure 31.

도 3b에서와 같이, 상기 감광막(33)을 금속 배선이 형성될 부위에서만 남도록 선택적으로 노광 및 현상한다.As shown in FIG. 3B, the photosensitive film 33 is selectively exposed and developed so that only the portion where the metal wiring is to be formed remains.

그리고, 상기 선택적으로 노광 및 현상된 감광막(33)을 마스크로 상기 금속층(32a)을 펄스 플라즈마 식각 방법에 의해 식각하여 금속 배선층(32)을 형성하고, 후 공정에 의해 상기 감광막(33)을 제거한다.Then, the metal layer 32a is etched by a pulsed plasma etching method using the selectively exposed and developed photoresist layer 33 as a mask to form a metal wiring layer 32, and the photoresist layer 33 is removed by a subsequent process. do.

여기서, 상기 펄스 플라즈마 식각 방법은 플라즈마를 사용하는 식각용기 내에서 Cl2와 BCl 등의 염소계 가스를 인가하고 상기 염소계 가스와 아르곤(Ar), 질소(N2) 및 산소(O2) 등의 첨가 가스를 사용하여 펄스형 플라즈마내 전자의 밀도를 균일하게 유지하며 1 ∼ 50 mTorr의 공정 압력, 200 ∼ 2000W의 초기 라디오 주파수 소스(Source) 전압, 13 ∼ 14 ㎒의 초기 라디오 주파수 소스 전압의 주파수 및 100 ∼ 1000W의 라디오 주파수 바이어스(Bias) 전압의 공정 조건으로 진행한다.In the pulsed plasma etching method, a chlorine-based gas such as Cl 2 and BCl is applied in an etching vessel using plasma, and the chlorine-based gas and argon (Ar), nitrogen (N 2 ) and oxygen (O 2 ) are added. Gas to maintain a uniform density of electrons in the pulsed plasma, with a process pressure of 1 to 50 mTorr, an initial radio frequency source voltage of 200 to 2000 W, an initial radio frequency source voltage of 13 to 14 MHz, and Proceed to the process conditions of a radio frequency bias voltage of 100 ~ 1000W.

상기 펄스 플라즈마 식각 방법은 상기 연속 플라즈마 발생 용기에 사용되는 라디오 주파수 전압 발생기에 펄스 발생기를 결합시킨 것이다.The pulsed plasma etching method combines a pulse generator with a radio frequency voltage generator used in the continuous plasma generating vessel.

즉, 상기 펄스 발생기의 펄스로 트리거(Trigger)시켜 원하는 펄스의 시간만큼만 상기 라디오 주파수 전압을 변조시킨다.That is, the radio frequency voltage is modulated only by the time of a desired pulse by triggering the pulse of the pulse generator.

이때, 상기 펄스 발생기의 변조 주파수는 100㎑ ∼ 1㎒이며 변조 시 듀티(Duty) 비는 30 ∼ 700%로 한다.At this time, the modulation frequency of the pulse generator is 100 kHz ~ 1MHz and the duty ratio (modulation) during the modulation (30) to 700%.

또한, 상기 변조된 라디오 주파수 전압을 유도결합형 플라즈마 식각 용기에 가하되 반사되는 전압의 최소화를 위하여 매칭 네트워크(Matching network)를 결합시켜 인가한다.In addition, the modulated radio frequency voltage is applied to the inductively coupled plasma etching vessel, and a matching network is applied to minimize the reflected voltage.

상술한 본 발명의 펄스 플라즈마 식각 방법을 연속 플라즈마 식각 방법과 비교 설명하면 먼저 도 4에서와 같이, 연속 플라즈마(B) 식각 방법 시 광범위한 에너지로 퍼져있던 전자의 에너지 분포 곡선이 펄스 플라즈마(A) 식각 방법인 경우 작은 에너지 영역으로 응축됨으로써 평균 에너지가 크게 감소한다.When comparing the above-described pulsed plasma etching method of the present invention with the continuous plasma etching method, first, as shown in FIG. 4, the energy distribution curve of electrons spread with a wide range of energy in the continuous plasma (B) etching method is pulsed plasma (A) etching. In the process, the average energy is greatly reduced by condensation into small energy regions.

그리고 도 5에서와 같이, 펄스 플라즈마(A)의 변조 주파수를 감소시킴에 따라 중성 라디칼(Radical)의 상대적인 농도비는 연속 플라즈마(B)에 비해 크게 바뀌지 않는다.As shown in FIG. 5, as the modulation frequency of the pulsed plasma A is decreased, the relative concentration ratio of the neutral radicals does not change significantly compared to the continuous plasma B.

이어 도 6에서와 같이, 펄스 플라즈마(A) 식각 방식의 40 ∼ 60%의 듀티 비 효과로 800W의 펄스 플라즈마(A)와 400W의 연속 플라즈마(B)와의 양이온 농도가 비슷하지만 도 7에서와 같이, 음이온 발생에 있어서 변조 주파수에 대해 펄스 플라즈마(A)가 연속 플라즈마(B)보다 민감하여 저 주파수 대역에서 펄스 플라즈마(A)가 연속 플라즈마(B)보다 음이온의 생성이 활발하다.Subsequently, as shown in FIG. 6, the concentration of cations between the 800W pulsed plasma A and the 400W continuous plasma B is similar due to the duty ratio effect of 40 to 60% of the pulsed plasma etching method. In the negative ion generation, the pulse plasma A is more sensitive to the modulation frequency than the continuous plasma B, and thus, in the low frequency band, the pulse plasma A is more active than the continuous plasma B.

상기와 같이 펄스 플라즈마(A)가 연속 플라즈마(B)보다 음이온의 생성이 활발하므로 도 4에서와 같이 연속 플라즈마(B)보다 펄스 플라즈마(A)의 전자 밀도 감소 현상의 원인이며 연속 플라즈마(B) 식각 방법에서 발생된 일렉트론 새딩 현상을 방지한다.As described above, since the generation of negative ions is more active than the continuous plasma B, the pulsed plasma A is a cause of the electron density reduction phenomenon of the pulsed plasma A than the continuous plasma B as shown in FIG. It prevents the electrocarding phenomenon caused by the etching method.

또한, 도 8에서와 같이, 1㎑의 낮은 주파수에서의 펄스 플라즈마(A) 식각 방법에 의한 TiN과 알루미늄(Al)과 같은 금속 배선 물질 및 감광막의 식각 속도가 크게 증가하며 또한 연속 플라즈마(B)보다 펄스 플라즈마(A)의 식각 선택비가 향상된다.In addition, as shown in FIG. 8, the etching rate of the metal wiring material such as TiN and aluminum (Al) and the photosensitive film by the pulsed plasma A etching method at a low frequency of 1 GHz is greatly increased, and the continuous plasma B is also increased. The etching selectivity of the pulsed plasma A is further improved.

본 발명의 금속 배선 형성 방법은 금속 배선 형성용 금속층을 펄스 플라즈마 식각 방법에 의해 식각하므로, 펄스 플라즈마가 종래의 연속 플라즈마보다 음이온의 생성이 활발함에 따라 일렉트론 새딩 현상의 발생을 방지하여 노칭(Notching) 등의 금속 배선 프로파일(Profile)을 개선시켜 소자의 전기적 특성, 수율 및 신뢰성을 향상시키는 효과가 있으며 또한 저손상 식각을 위한 펄스형 플라즈마 식각 시 저대역 주파수를 사용하므로, 음이온 및 중성 라디칼에 의한 식각을 증가시켜 플라즈마 차아지-업(Charge-up)에 의한 소자의 전기적 특성 열화 현상을 감소시키고 펄스형 플라즈마로 저손상 식각 시 발생하는 식각 속도 저하 현상을 방지하는 효과가 있다.In the metal wiring forming method of the present invention, the metal layer for forming metal wiring is etched by a pulsed plasma etching method, so that the generation of negative ions due to the generation of negative ions is more active than the conventional continuous plasma. It improves the electrical characteristics, yield and reliability of the device by improving the metal wiring profile of the metal and the like, and also uses the low band frequency in pulsed plasma etching for low damage etching. In this case, the deterioration of the electrical characteristics of the device due to the plasma charge-up may be reduced, and the etching rate may be prevented from occurring during the low damage etching with the pulsed plasma.

Claims (2)

하부 구조물상에 금속층을 형성하는 단계;Forming a metal layer on the underlying structure; 상기 금속층을 선택 식각하여 금속 배선층을 형성하되, 상기 금속층을 플라즈마 내의 음이온 및 중성 라디칼 밀도가 증가되는 주파수 영역을 사용한 펄스 플라즈마 식각 방법에 의해 선택 식각하는 단계를 포함하여 이루어짐을 특징으로 하는 금속 배선 형성 방법.Forming a metal wiring layer by selectively etching the metal layer, wherein the metal layer is selectively etched by a pulse plasma etching method using a frequency region in which anion and neutral radical density in plasma are increased. Way. 제 1 항에 있어서,The method of claim 1, 상기 펄스 플라즈마 식각은 플라즈마를 사용하는 식각용기 내에서 Cl2와 BCl 등의 염소계 가스를 인가하고 상기 염소계 가스와 아르곤(Ar), 질소(N2) 및 산소(O2) 등의 첨가 가스를 사용하여 펄스형 플라즈마내 전자의 밀도를 균일하게 유지하며 1 ∼ 50 mTorr의 공정 압력, 200 ∼ 2000W의 초기 라디오 주파수 소스 전압, 13 ∼ 14 ㎒의 초기 라디오 주파수 소스 전압의 주파수 및 100 ∼ 1000W의 라디오 주파수 바이어스 전압의 공정 조건으로 진행함을 특징으로 하는 금속 배선 형성 방법.In the pulsed plasma etching, chlorine-based gases such as Cl 2 and BCl are applied in an etching vessel using plasma, and the chlorine-based gas and additive gases such as argon (Ar), nitrogen (N 2 ) and oxygen (O 2 ) are used. To maintain a uniform density of electrons in the pulsed plasma, with a process pressure of 1 to 50 mTorr, an initial radio frequency source voltage of 200 to 2000 W, an initial radio frequency source voltage of 13 to 14 MHz, and a radio frequency of 100 to 1000 W. A metal wiring forming method, characterized by advancing to process conditions of bias voltage.
KR1020000054376A 2000-09-16 2000-09-16 Method for forming metal line KR20020021689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000054376A KR20020021689A (en) 2000-09-16 2000-09-16 Method for forming metal line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000054376A KR20020021689A (en) 2000-09-16 2000-09-16 Method for forming metal line

Publications (1)

Publication Number Publication Date
KR20020021689A true KR20020021689A (en) 2002-03-22

Family

ID=19688905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000054376A KR20020021689A (en) 2000-09-16 2000-09-16 Method for forming metal line

Country Status (1)

Country Link
KR (1) KR20020021689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001867A (en) * 2002-06-29 2004-01-07 주식회사 하이닉스반도체 Method for fabricating sem1conductor device with improved protection of attack by plasma

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189540A (en) * 1996-12-24 1998-07-21 Sony Corp Plasma etching apparatus
JPH10284297A (en) * 1998-04-01 1998-10-23 Nec Corp Plasma processing method and device
JPH1116892A (en) * 1997-06-24 1999-01-22 Nec Corp Plasma treatment method
JP2000150482A (en) * 1998-11-12 2000-05-30 Sony Corp Dry etching method
KR20000044561A (en) * 1998-12-30 2000-07-15 김영환 Pulse type plasma etching method with improved etching speed
KR20000046078A (en) * 1998-12-31 2000-07-25 김영환 Method for forming contact hole of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189540A (en) * 1996-12-24 1998-07-21 Sony Corp Plasma etching apparatus
JPH1116892A (en) * 1997-06-24 1999-01-22 Nec Corp Plasma treatment method
JPH10284297A (en) * 1998-04-01 1998-10-23 Nec Corp Plasma processing method and device
JP2000150482A (en) * 1998-11-12 2000-05-30 Sony Corp Dry etching method
KR20000044561A (en) * 1998-12-30 2000-07-15 김영환 Pulse type plasma etching method with improved etching speed
KR20000046078A (en) * 1998-12-31 2000-07-25 김영환 Method for forming contact hole of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001867A (en) * 2002-06-29 2004-01-07 주식회사 하이닉스반도체 Method for fabricating sem1conductor device with improved protection of attack by plasma

Similar Documents

Publication Publication Date Title
JP3271359B2 (en) Dry etching method
US5605601A (en) Method of manufacturing semiconductor device
US5416048A (en) Method to slope conductor profile prior to dielectric deposition to improve dielectric step-coverage
TW201403752A (en) Method for forming semiconductor structure
TW201403704A (en) Method for forming semiconductor structure
KR20190107159A (en) Dielectric Contact Etching
KR20010009811A (en) Method for enhancing etching selectivity of metal silicide film/polysilicon film and method for etching stacked film of metal silicide film and polysilicon film using the same
KR20040070812A (en) Method for forming gate of semiconductor element
TW201403753A (en) Semiconductor structure formation method
KR20020021689A (en) Method for forming metal line
KR100927410B1 (en) Method for forming fine pattern in semiconductor device
JP3271373B2 (en) Dry etching method
US20080160742A1 (en) Method for fabricating semiconductor device with recess gate
KR100559031B1 (en) Contact hole formation method of semiconductor device_
KR20000044561A (en) Pulse type plasma etching method with improved etching speed
JPH0485928A (en) Dry etching method
JP4360065B2 (en) Plasma processing method
KR100324606B1 (en) Method for etching Aluminum alloy layer
KR20020044001A (en) Method of manufacturing insulating layer filling gap between small patterns for semiconductor device
KR100382312B1 (en) Method for forming a conductor pattern of semiconductor device
KR100906642B1 (en) Method for fabricating gate electrode in semiconductor device
KR100274345B1 (en) Method for forming metalization of semiconductor device
JP3440599B2 (en) Via hole formation method
KR19980021003A (en) Manufacturing Method of Semiconductor Device
KR100376255B1 (en) Method of manufacturing a gate electrode in a semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application