KR20020008227A - Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications - Google Patents

Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications Download PDF

Info

Publication number
KR20020008227A
KR20020008227A KR1020020000163A KR20020000163A KR20020008227A KR 20020008227 A KR20020008227 A KR 20020008227A KR 1020020000163 A KR1020020000163 A KR 1020020000163A KR 20020000163 A KR20020000163 A KR 20020000163A KR 20020008227 A KR20020008227 A KR 20020008227A
Authority
KR
South Korea
Prior art keywords
activated carbon
fibers
electrode
carbon nanofibers
electrospinning
Prior art date
Application number
KR1020020000163A
Other languages
Korean (ko)
Other versions
KR100517021B1 (en
Inventor
김찬
김종상
양갑승
Original Assignee
양갑승
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양갑승 filed Critical 양갑승
Priority to KR10-2002-0000163A priority Critical patent/KR100517021B1/en
Publication of KR20020008227A publication Critical patent/KR20020008227A/en
Application granted granted Critical
Publication of KR100517021B1 publication Critical patent/KR100517021B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE: A method is provided to fabricate a carbon nano fiber by fabricating, stabilizing, carbonizing and activating an ultra micro single fiber of nano meter scale using an electrospinning, and a method for fabricating an electric double layer capacitor(EDLC) electrode thereof is also provided. CONSTITUTION: According to the method, an ultra micro single fiber phase web of nanometer scale below 1 micrometer is made by applying a high voltage(about 30kV) to a polymer solution. Then, a carbon nano filer is fabricated stabilizing and carbonizing and activating the ultra micro single fiber web. The carbon nano fiber and an ACFs(Activated Carbon Fibers) are fabricated on the web and thus a binder is not necessary during an electrode fabrication, and thus they have a high electric conductivity and a high non-surface area and an appropriate handiworking.

Description

정전방사에 의한 카본나노파이버의 제조와 이의 전기이중층 캐퍼시터용 전극제조{Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications}Preparation of Carbon Nanofiber by Electrospinning and Fabrication of Electrode for Electron Double Layer Capacitors {Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications}

본 발명은 정전방사에 의한 카본 나노파이버의 제조와 활성탄소섬유의 제조 및 이의 전기이중층 캐퍼시터용 전극재료 제조에 관한 것으로, 더욱 상세하게는 고분자 용액에 고전압(∼50kV)을 가하여 직경 ∼1㎛ 이하의 나노미터(nano meter) 사이즈의 초극세 단섬유상 웹(web)을 만들어, 이를 안정화, 탄소화, 활성화하여 카본나노파이버의 제조와 초고비표면적 활성탄소 섬유의 제조 및 이의 전기이중층 캐퍼시터용 전극제조 방법에 관한 것이다.The present invention relates to the production of carbon nanofibers by electrospinning, to the production of activated carbon fibers, and to the production of electrode materials for electric double layer capacitors, and more particularly, to applying a high voltage (-50 kV) to a polymer solution to a diameter of 1 µm or less. To produce carbon nanofibers, ultra-high specific surface area activated carbon fibers, and electrode manufacturing methods for electric double layer capacitors by making nanometer-sized ultra-fine short fibrous webs, stabilizing, carbonizing and activating them. It is about.

일반적으로 전기 이중층 캐퍼시터용 전극으로는 활성탄(activated carbon) 및carbon alloy(carbon/metal composite), foamed(aerogel) carbon 등이 주로 이용되어져 왔으며, 최근에는 전도성 고분자와 탄소중간체적인 polyacenic semiconductor(PAS) 등의 새로운 형태의 탄소전극도 출현하고 있는 실정이다. 전기이중층은 전해액과 도체의 계면에서 생기는 1분자층의 박막으로써, EDLC의 용량 C는 전극면적 S, 전해질 용액의 유전율 ε, 이온반경 δ에 대하여 다음 식과 같이 나타낼 수 있다.Generally, activated carbon, carbon alloy (carbon / metal composite), and foamed (aerogel) carbon have been mainly used as electrodes for electric double layer capacitors. Recently, conductive polymers and carbonaceous polyacenic semiconductors (PAS) are used. A new form of carbon electrode is also emerging. The electric double layer is a thin film of one-molecule layer formed at the interface between the electrolyte solution and the conductor, and the capacity C of the EDLC can be expressed as follows for the electrode area S, the dielectric constant ε of the electrolyte solution, and the ion radius δ.

즉, 비표면적은 EDLC의 용량과 직접적인 관계가 있으며, 고비표면적, 높은 전기전도도, 뛰어난 내약품성을 지닌 활성탄 재료를 사용함으로써 고용량화를 실현할 수 있다. EDLC의 전극활물질로 가장 많이 이용되는 활성탄은 형태에 따라 분말상, 입상, 섬유상으로 제조되며, 주로 촉매담체나 용제회수장치 등의 고성능 흡착제나 전극재료로 이용되고 있다. 활성탄소섬유(Activated carbon fibers, ACFs)는 분말이나 입상탄에 비하여 이론상 비표면적이 약 ∼1000배 이상 많으며, 섬유상이므로 직물이나 펠트(Felt), 종이상 등으로 제조가 가능한 잇점을 지니고 있어 고성능 EDLC 및 전지의 상업적 응용 가능성은 매우 크며(대한민국 특허출원 10-2000-0064730), 현재 시장이 형성되어 있는 memory back-up용뿐만 아니라 향후 cellular phone을 비롯한 Mobile electronics 외에도 전기자동차가 도입되면 대용량의 EDLC로의 응용이 기대되고 있다. 현재 EDLC는 초소형부터 초대용량 까지 일본, 미국 등의 선진 몇몇 국가에서 개발 및 생산되고 있으며 첨단 기술이어서 기술이전이 어렵고 고가의 기술료를 지불하여야 한다. 또한 전 세계 EDLC 시장은 매년 20% 이상 성장하고 있으며, 국내에서는 대부분 수입에 의존하고 있다. 특히 세계 EDLC 시장의 90% 이상(수량 단위)이 소형 제품임을 인식하면 국내에서의 소형 제품에 대한 개발 및 생산기술 확보가 시급하며 향후 중형, 초대용량 개발의 기초가 될 수 있는 연구, 개발 기술력의 확보가 필수적이다.In other words, the specific surface area is directly related to the capacity of the EDLC, and high capacity can be realized by using an activated carbon material having a high specific surface area, high electrical conductivity, and excellent chemical resistance. Activated carbon, which is most commonly used as an electrode active material of EDLC, is produced in powder, granular, or fibrous form, and is mainly used as a high performance adsorbent or electrode material for catalyst carriers or solvent recovery devices. Activated carbon fibers (ACFs) are theoretically more than 1000 times more specific in surface area than powder or granular coal. And the commercial application of the battery is very large (Korean Patent Application No. 10-2000-0064730), and in addition to the memory back-up for which the market is currently formed, in addition to mobile electronics such as cellular phones in the future, the introduction of large-capacity EDLC Applications are expected. EDLC is currently being developed and produced in a few advanced countries such as Japan and the US, from ultra-small to super-capacity. As it is a cutting-edge technology, it is difficult to transfer technology and pay expensive fees. In addition, the global EDLC market is growing more than 20% annually, and most of the country relies on imports. In particular, if more than 90% (quantity unit) of the global EDLC market is recognized as a small product, it is urgent to develop small product in Korea and secure production technology. Securing is essential.

탄소섬유(carbon fiber)나 활성탄소섬유(activated carbon fibers, ACFs)는 주로 출발물질에 따라 polyacrylonitrile(PAN)계, 아크릴(acryl)계, 피치(pitch)계, 페놀(phenol)계 등으로 분류할 수 있으며 보통 용융방사(melt spinning)나 용융분사(melt-blown) 방법에 의해 섬유를 제조하고, 산화성 가스분위기하에서 안정화한 후 불활성 가스분위기하에서 탄소화하여 탄소섬유를 제조한다. 활성화 방법은 주로 안정화된 섬유나 탄소화된 탄소섬유를 수증기나 CO2, 공기 등을 이용하는 가스활성화법과 ZnCl2나 KOH, 인산 등의 탈수성 염류나, 산, 무기약품을 사용하는 약품활성화법으로 구분하여 제조되고 있다. 이와 같은 방법으로 제조되는 탄소섬유나 활성탄소섬유의 경우는 주로 직경 10∼15㎛ 내외의 것이 대부분이며, 형태에 따라 장섬유와 단섬유로 구분되고 있으며, 복합재료용 필러나 Li 2차 전지용 부극재료, 용제회수장치의 필터재료, 각종 전극재료 등에 이용되고 있다. 그러나 이와 같은 방법은 제조설비가 고가이며 원료수급에 있어서도 제약을 받는게 현실이다. 특히 이와 같은 방법으로는 직경 ∼1㎛ 미만의 초극세 탄소섬유나 활성탄소섬유를 만들기 힘들며, 전극에 응용시 chopping이나 milling 등의 2차 가공과 바인더 등의사용이 필수불가결한 상황이다.Carbon fibers or activated carbon fibers (ACFs) can be classified into polyacrylonitrile (PAN), acryl, pitch, and phenol based on the starting materials. Fibers are usually prepared by melt spinning or melt-blown methods, stabilized in an oxidizing gas atmosphere, and carbonized in an inert gas atmosphere to produce carbon fibers. Activation method mainly consists of stabilizing fibers and carbonized carbon fibers using gas activation method using water vapor, CO 2 , air, etc., and dehydrating salts such as ZnCl 2 , KOH, phosphoric acid, chemical activation methods using acid and inorganic chemicals. It is manufactured separately. Carbon fibers or activated carbon fibers manufactured by the above method are mostly 10 ~ 15 ㎛ in diameter, and are classified into long fibers and short fibers depending on the shape, and the filler for composite materials and the negative electrode for Li secondary batteries It is used for materials, filter materials for solvent recovery devices, various electrode materials, and the like. However, this method is a reality that manufacturing facilities are expensive and are limited in the supply and demand of raw materials. In particular, in such a method, it is difficult to make ultra-fine carbon fibers or activated carbon fibers having a diameter of less than 1 μm, and secondary applications such as chopping or milling and use of binders are indispensable when applied to electrodes.

한편, 정전방사 방법에 의한 단섬유 제조공정은 고분자용액을 고전압의 전계(電界) 내로 도입하여 단섬유를 제조하는 방법으로 구체적으로 +(-) 전극을 갖는 방사노즐을 통해 고분자용액을 방사(분사)한 다음, 이를 -(+) 전극을 갖는 셕선콜렉터(suction collector)로 포집하여 초극세 단섬유를 제조하는 방법이다. 일본 공개특허 공보 평3-161502호 및 미국특허(US Patent) 4,323,525호 등에서는 정전방사 방법으로 초극세 단섬유를 제조하는 방법을 제안하고 있으며, 이와 같은 방법에 의해 제조되는 섬유의 직경은 ∼1㎛ 미만의 초극세사로써 의료용 봉합 부직포, 산업용 필터 등에 사용되고 있다. 정전방사 방법에 의해 제조된 웹상의 섬유를 산화성 가스 분위기에서 산화안정화한 후 탄소화, 활성화 과정을 거쳐 나노미터(nano meter) 사이즈의 카본나노파이버와 활성화 카본나노파이버 웹을 제조할 수 있다. 이와 같이 제조된 웹상의 탄소섬유 및 활성탄소섬유는 높은 전기전도성과 초고비표면적을 지니고 있어 전극제조시 2차 가공 및 바인더 등이 불필요하며 대용량 전기 이중층 캐퍼시터용 전극 등에 응용이 가능하다.On the other hand, the short fiber manufacturing process by the electrospinning method is to introduce the polymer solution into a high-voltage electric field (electron) to produce a short fiber, specifically the spinning (spraying the polymer solution through the spinning nozzle having a + (-) electrode Then, it is collected by an x-ray collector (suction collector) having a-(+) electrode to produce ultra-fine short fibers. Japanese Unexamined Patent Application Publication No. Hei 3-161502 and US Patent 4,323,525 propose a method of producing ultrafine short fibers by the electrospinning method, and the diameter of the fibers produced by such a method is ˜1 μm. Less than microfiber, it is used in medical sealant nonwoven fabric, industrial filter and so on. After oxidative stabilization of the fibers on the web produced by the electrospinning method in an oxidizing gas atmosphere, carbon nanofibers and activated carbon nanofiber webs of nanometer size may be manufactured through carbonization and activation processes. The carbon and activated carbon fibers on the web have high electrical conductivity and ultra-high specific surface area, which eliminates the need for secondary processing and binders during electrode manufacturing, and is applicable to electrodes for high capacity electric double layer capacitors.

본 발명의 목적은 나노미터 수준의 초극세 단섬유상 카본나노파이버의 제조와 초고비표면적을 갖는 활성화 카본나노파이버의 제조방법 및 이의 전극재료로의 응용방법을 제공하기 위한 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an ultra-fine short fibrous carbon nanofiber at a nanometer level, a method for producing an activated carbon nanofiber having an ultra high specific surface area, and an application method thereof.

본 발명은 정전방사 방법을 사용하여 나노미터 수준의 초극세 단섬유를 제조, 안정화, 탄소화, 활성화하여 카본나노파이버의 제조와 활성탄소섬유를 제조하는 방법을 제공하고자 한다. 또한 본 발명은 이와 같은 방법으로 제조된 카본나노파이버와 활성탄소섬유를 전기이중층 캐퍼시터용 전극재료로써 응용가능한 방법을 제공하고자 한다.The present invention provides a method for producing carbon nanofibers and producing activated carbon fibers by preparing, stabilizing, carbonizing, and activating ultrafine short fibers of nanometer level using an electrospinning method. In another aspect, the present invention is to provide a method that can be applied to the carbon nanofibers and activated carbon fibers prepared by the above method as an electrode material for an electric double layer capacitor.

도 1은 정전방사방법에 의한 카본나노파이버 및 활성탄소섬유의 제조공정도1 is a manufacturing process diagram of carbon nanofibers and activated carbon fibers by the electrospinning method

도 2은 본 발명의 실시예에 따라 제조된 탄소섬유의 전자현미경 사진2 is an electron micrograph of a carbon fiber prepared according to an embodiment of the present invention

도 3은 본 발명의 실시예에 따라 제조된 활성탄소섬유의 전자 현미경 사진3 is an electron micrograph of an activated carbon fiber prepared according to an embodiment of the present invention

도 4은 본 발명의 실시예에 따른 전기이중층 충방전 시스템의 개략도4 is a schematic diagram of an electric double layer charge and discharge system according to an embodiment of the present invention.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 먼저, 고분자를 용제에 용해하여 고분자용액을 제조한다. 고분자로는 폴리비닐알콜, 폴리비닐부틸렌, 폴리아크릴로니트릴, 폴리에틸렌테레프탈레이트, 폴리테트라플루오로에틸렌, 폴리우레탄, 폴리에스테르, 폴리아미드, 케블라, 폴리벤젠아미다졸, 폴리피롤, 폴리아세칠렌, 폴리에틸렌옥사이드, 폴리아닐린 등이 사용 될 수 있다. 용매는 고분자에 따라 해당 고분자를 용해 할 수 있는 용매로 적절하게 선택, 사용한다. 상기 고분자 용액에는 해당 고분자와 상용성이 있는 수지나 가소제, 자외선 안정제, 가교제, 경화제, 반응개시제 등의 첨가물을 혼합하여 사용할 수 있다. 용융상태의 고분자 용액을 방사노즐을 통해 전계(電界) 내로 방사한다. 상기 전계(電界)는 전압이 걸려있는 방사노즐과 콜렉터 사이에 형성되며 전계는 전압조절장치를 사용하여 조절한다. 방사노즐에는 +,(-) 전극을, 콜렉터에는 -, (+) 전극을 부여하며 전압은 ∼50kV로 조절하며, 방사노즐과 콜렉터에 서로 동일한 전압을 부여 할 수도 있고, 서로 다른 전압을 부여 할 수도 있다.In the present invention, first, a polymer is dissolved in a solvent to prepare a polymer solution. Polymers include polyvinyl alcohol, polyvinyl butylene, polyacrylonitrile, polyethylene terephthalate, polytetrafluoroethylene, polyurethane, polyester, polyamide, kevlar, polybenzeneamidazole, polypyrrole, polyaceylene, polyethylene Oxides, polyanilines and the like can be used. The solvent is appropriately selected and used as a solvent capable of dissolving the polymer depending on the polymer. The polymer solution may be used by mixing additives such as a resin, a plasticizer, a UV stabilizer, a crosslinking agent, a curing agent, a reaction initiator, and the like which are compatible with the polymer. The molten polymer solution is spun into an electric field through the spinning nozzle. The electric field is formed between the radiating nozzle and the collector in which the voltage is applied, and the electric field is controlled using a voltage regulator. Provide +, (-) electrodes to the radiation nozzles,-and (+) electrodes to the collectors, and adjust the voltage to ˜50 kV.The same voltages can be applied to the radiation nozzles and the collectors. It may be.

이렇게 제조된 나노사이즈 섬유 웹은 산화성 가스분위기에서 약 200∼450℃의 온도에서 산화안정화 시킨다. 안정화된 섬유는 다시 불활성 가스분위기하에서 600∼1500℃의 온도범위에서 탄소화시켜 카본나노파이버를 제조한다. 제조된 카본나노파이버를 흑연화하여 흑연섬유를 제조할 수 도 있다. 또한, 안정화된 섬유나 탄소화된 섬유를 수증기나 공기, CO2등을 사용하여 600∼1200℃ 온도범위에서 활성화하여 초고비표면적의 활성탄소섬유를 제조한다.The nano-sized fibrous web thus prepared is oxidatively stabilized at a temperature of about 200 to 450 ° C. in an oxidizing gas atmosphere. The stabilized fibers are carbonized again at a temperature in the range of 600 to 1500 ° C. under an inert gas atmosphere to produce carbon nanofibers. Graphite fibers may be prepared by graphitizing the manufactured carbon nanofibers. In addition, the stabilized fibers or carbonized fibers are activated in the temperature range of 600 ~ 1200 ℃ using water vapor, air, CO 2 or the like to produce an ultra-high specific surface area of the activated carbon fibers.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited only to the following examples.

실시예 1Example 1

섬유성형용 폴리아크릴로나이트릴(Aldrich Chemical Co., Ltd.)을 PMMA(polymethylmethacrylate)에 용해하여 5∼20% 고분자용액을 제조한다. 상기 폴리머용액을 정전방사 방법에 의해 직경 ∼1㎛ 미만의 단섬유를 제조하였다.Fibrous polyacrylonitrile (Aldrich Chemical Co., Ltd.) is dissolved in polymethylmethacrylate (PMMA) to prepare a 5-20% polymer solution. The polymer solution was prepared by short electrostatic spinning of short fibers having a diameter of less than 1 µm.

제조시 방사노즐에는 15kV 전압을 콜렉터에는 10kV 전압을 각각 부여 하였으며, 방사구금과 콜렉터간의 거리는 10∼30㎝정도로 구성하였다. 이렇게 제조된 섬유는 열풍순환로를 사용하여 압축공기를 분당 5∼20㎖의 유속으로 공급하면서 승온속도 분당 1℃로하여 200∼300℃로 승온하면서 300℃에서 1시간유지하여 안정화하였다. 안정화된 섬유는 전기로를 사용하여 불활성분위기(N2, Ar gas)하에서 분당 1∼5℃의 승온속도로 700∼1000℃까지 승온시켜 1시간 유지하면서 탄소화 시켰다. 이때 만들어진 카본나노파이버의 평균직경은 300∼400㎚ 정도였다'도2'.At the time of manufacture, 15kV voltage was applied to the spinning nozzle and 10kV voltage to the collector, respectively, and the distance between the spinneret and the collector was about 10 to 30cm. The fiber thus prepared was stabilized by maintaining the temperature at 300 ° C. for 1 hour while increasing the temperature to 200 ° C. to 300 ° C. at 1 ° C. per minute while supplying compressed air at a flow rate of 5 to 20 ml per minute using a hot air circulation path. The stabilized fibers were carbonized under an inert atmosphere (N 2 , Ar gas) at an elevated temperature of 1-5 ° C. per minute to 700-1000 ° C. and maintained for 1 hour. At this time, the average diameter of the carbon nanofibers produced was about 300 to 400 nm.

실시예 2Example 2

섬유성형용 폴리아크릴로나이트릴(Aldrich Chemical Co., Ltd.)을 PMMA(polymethylmethacrylate)에 용해하여 5∼20% 고분자용액을 제조하여 실시예 1의 방법으로 섬유를 제조한후 압축공기를 사용하여 안정화 시켰다. 안정화된 섬유는 수증기와 질소가스를 사용하여 700∼1000℃사이에서 활성화 시켰다. 수증기와 질소가스 비율은 1∼0.1 volume %로 조절하면서 상기온도에서 10∼30분 활성화 반응시켰다. 이때 활성화 수율은 약 30∼50% 정도였으며, 비표면적은 1200∼3000m2/g 정도였으며, 평균직경은 300∼400nm 정도였다'도3'.Fibrous polyacrylonitrile (Aldrich Chemical Co., Ltd.) was dissolved in polymethylmethacrylate (PMMA) to prepare a 5-20% polymer solution, and the fibers were prepared by the method of Example 1, followed by using compressed air. Stabilized. Stabilized fibers were activated between 700 and 1000 ° C using water vapor and nitrogen gas. The water vapor and nitrogen gas ratios were activated at 10 to 30 minutes at the temperature while controlling the ratio to 1 to 0.1 volume%. The activation yield was about 30-50%, the specific surface area was about 1200-3000m2 / g, and the average diameter was about 300-400nm.

상기 실시예 1의 방법에 의해 제조된 탄소섬유를 활성화 온도 700∼1000℃ 사이의 온도범위에서 수증기 및 질소가스를 사용하여 활성화 하였다. 이때 활성화 수율은 50∼70% 정도였으며, 만들어진 활성화 카본나노파이버의 평균직경은 300∼400nm정도였다.The carbon fiber prepared by the method of Example 1 was activated using water vapor and nitrogen gas at a temperature range between 700 ° C and 1000 ° C. The activation yield was about 50-70%, and the average diameter of the activated carbon nanofibers produced was about 300-400 nm.

실시예 3Example 3

상기 실시예 2의 방법으로 제조된 활성화 카본나노파이버를 '도 4'의 방법을 사용해 전기 이중층 캐퍼시터 측정을 하였다. 전극면적 1.5×1.5cm로 만든 후 전해질로는 7.5M KOH를 사용하였다. 사용전압은 0∼0.9V사이였으며, 충방전 전류는 1mA/cm2였다. 임피던스 측정은 주파수 범위 1mHz∼100kHz 였으며, 활성화 온도가 증가할수록 시료의 저항특성은 감소하는 경향을 나타내었다. 이때 충방전 용량은 약 80∼120F/g을 나타내었다.The activated carbon nanofibers prepared by the method of Example 2 were measured for electric double layer capacitors using the method of FIG. 4. 7.5M KOH was used as an electrolyte after making the electrode area 1.5 × 1.5cm. The operating voltage was between 0 and 0.9V and the charge and discharge current was 1mA / cm2. The impedance measurement ranged from 1mHz to 100kHz, and the resistance of the sample decreased with increasing activation temperature. In this case, the charge and discharge capacity was about 80 to 120 F / g.

본 발명은 탄소섬유 및 활성탄소섬유를 나노미터 수준으로 제조할 수 있으며, 전극제조시 2차 가공이나 바인더 등의 사용이 필요없는 고효율의 전극을 제조할 수 있다.The present invention can produce carbon fibers and activated carbon fibers at the nanometer level, and can produce highly efficient electrodes that do not require the use of secondary processing or binders during electrode production.

Claims (4)

고분자 용액을 정전방사방법을 통해 카본나노파이버와 활성화 카본나노파이버의 제조 및 이의 전기 이중층 캐퍼시터용 전극의 제조에 관한 방법Method for the production of carbon nanofibers and activated carbon nanofibers and the electrode for electric double layer capacitors thereof by electrospinning the polymer solution 1항에 있어서, 정전방사 방법에 의해 제조된 섬유의 안정화 방법과 탄소화방법에 의한 카본나노파이버의 제조방법.The method of producing carbon nanofibers according to claim 1, wherein the fiber is stabilized by an electrospinning method and the carbonization method is used. 1항에 있어서, 정전방사 방법에 의해 제조된 섬유의 안정화 후 활성화 및 탄소화 후 활성화 방법에 의해 활성화 카본나노파이버의 제조방법.The method of producing activated carbon nanofibers according to claim 1, wherein the activated carbon nanofibers are prepared by stabilizing and activating after carbonization. 1항에 있어서, 제조된 카본나노파이버 및 활성화 카본나노파이버의 전기이중층 캐퍼시터용 전극 제조방법The method of manufacturing an electrode for an electric double layer capacitor according to claim 1, wherein the carbon nanofibers and the activated carbon nanofibers are manufactured.
KR10-2002-0000163A 2002-01-03 2002-01-03 Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications KR100517021B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0000163A KR100517021B1 (en) 2002-01-03 2002-01-03 Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0000163A KR100517021B1 (en) 2002-01-03 2002-01-03 Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications

Publications (2)

Publication Number Publication Date
KR20020008227A true KR20020008227A (en) 2002-01-29
KR100517021B1 KR100517021B1 (en) 2005-09-26

Family

ID=19718115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0000163A KR100517021B1 (en) 2002-01-03 2002-01-03 Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications

Country Status (1)

Country Link
KR (1) KR100517021B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100489800B1 (en) * 2002-11-26 2005-05-16 한국전자통신연구원 Capacitor and method for manufacturing the same
WO2005095684A1 (en) * 2004-03-25 2005-10-13 Massachusetts Institute Of Technology Production of submicron diameter fibers by two-fluid electrospinning process
US7229944B2 (en) 2004-07-23 2007-06-12 Massachusetts Institute Of Technology Fiber structures including catalysts and methods associated with the same
WO2011099677A1 (en) 2010-02-11 2011-08-18 전남대학교산학협력단 Method for preparing porous carbon nanofibers containing a metal oxide, porous carbon nanofibers prepared using the method, and carbon nanofiber products including same
CN102936764A (en) * 2012-11-27 2013-02-20 天津工业大学 Preparation method of polyacrylonitrile-based carbon nanofibers
JP2016188159A (en) * 2015-03-30 2016-11-04 国立大学法人信州大学 Production method of carbon nanofiber nonwoven fabric, carbon nanofiber nonwoven fabric, and carbon nanofiber
KR102264667B1 (en) 2020-02-10 2021-06-14 대구대학교 산학협력단 Method for Preparing Metal Oxide/Carbon Nanofiber Composite, Metal Oxide/Carbon Nanofiber Composite Produced by the Method, and Use of the Composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209847B1 (en) 2010-05-14 2012-12-07 주식회사 아모그린텍 Fibrous Current Collector Comprising Carbon Nano Fiber, Electrode Using the Same, and Method of Manufacturing the Same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321482A (en) * 1997-05-22 1998-12-04 Casio Comput Co Ltd Electrical double layer capacitor
EP1118090B1 (en) * 1998-09-28 2005-11-23 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US6198623B1 (en) * 1999-01-29 2001-03-06 Telcordia Technologies, Inc. Carbon fabric supercapacitor structure
KR100351131B1 (en) * 2000-11-01 2002-09-05 한국에너지기술연구원 High dense activated carbon fiber disk for capacitor's electrode of ultra high capacity and its production method
KR20020063020A (en) * 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100489800B1 (en) * 2002-11-26 2005-05-16 한국전자통신연구원 Capacitor and method for manufacturing the same
WO2005095684A1 (en) * 2004-03-25 2005-10-13 Massachusetts Institute Of Technology Production of submicron diameter fibers by two-fluid electrospinning process
US7229944B2 (en) 2004-07-23 2007-06-12 Massachusetts Institute Of Technology Fiber structures including catalysts and methods associated with the same
WO2011099677A1 (en) 2010-02-11 2011-08-18 전남대학교산학협력단 Method for preparing porous carbon nanofibers containing a metal oxide, porous carbon nanofibers prepared using the method, and carbon nanofiber products including same
CN102936764A (en) * 2012-11-27 2013-02-20 天津工业大学 Preparation method of polyacrylonitrile-based carbon nanofibers
JP2016188159A (en) * 2015-03-30 2016-11-04 国立大学法人信州大学 Production method of carbon nanofiber nonwoven fabric, carbon nanofiber nonwoven fabric, and carbon nanofiber
KR102264667B1 (en) 2020-02-10 2021-06-14 대구대학교 산학협력단 Method for Preparing Metal Oxide/Carbon Nanofiber Composite, Metal Oxide/Carbon Nanofiber Composite Produced by the Method, and Use of the Composite

Also Published As

Publication number Publication date
KR100517021B1 (en) 2005-09-26

Similar Documents

Publication Publication Date Title
KR100675923B1 (en) Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same
Li et al. Electrospun porous nanofibers for electrochemical energy storage
Mao et al. A review of electrospun carbon fibers as electrode materials for energy storage
Tebyetekerwa et al. Unveiling polyindole: freestanding As-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors
Yu et al. Recent advances in design of flexible electrodes for miniaturized supercapacitors
KR101477782B1 (en) Electrode for lithum-sulphur secondary battery using composite of polymer nanofiber, aluminum thin film, carbon nanotube and sulphur, and fabricating method thereof
KR100701627B1 (en) Manufacturing method of nano sized activated carbon fiber comprising metal oxide and electrode for super capacitor using the same nano sized activated carbon fiber manufactured thereby
Huang et al. Fabrication of vanadium oxide, with different valences of vanadium,-embedded carbon fibers and their electrochemical performance for supercapacitor
KR100564774B1 (en) Nano-composite fiber its preparation and use
Zhao et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors
WO2015084945A1 (en) Electrospun composite nanofiber comprising graphene nanoribbon or graphene oxide nanoribbon, methods for producing same, and applications of same
CN108315834A (en) A kind of preparation method of array magnetizing reduction graphene oxide-carbon nanofibers
US10910630B2 (en) Electrode for all solid type battery and method for manufacturing the same
KR101610354B1 (en) Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same
Huang et al. High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co 3 O 4/MnO 2 hybrid electrodes
Zhang et al. Preparation of inflorescence-like ACNF/PANI/NiO composite with three-dimension nanostructure for high performance supercapacitors
JP2012001865A (en) Fibrous composite material and method for producing the same, and fiber member and functional device which include fibrous composite material
Tan et al. Effect of structural orientation on the performance of supercapacitor electrodes from electrospun coal-derived carbon nanofibers (CCNFs)
Chen et al. Electrospinning technology for applications in supercapacitors
KR100517021B1 (en) Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications
Wang et al. Advances of electrospun Mo-based nanocomposite fibers as anode materials for supercapacitors
Lee et al. Electrospun carbon nanofibers as a functional composite platform: A review of highly tunable microstructures and morphologies for versatile applications
KR101308736B1 (en) Tin oxide embedded carbon nanofiber and method of manufacturing the same, and lithium secondary battery using the same
KR102481903B1 (en) Carbon nanofiber composite for energy storage device, electrode including the same, and manufacturing method thereof
Shi et al. Continuous carbon nanofiber bundles with tunable pore structures and functions for weavable fibrous supercapacitors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120702

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140905

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150826

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee