KR100485603B1 - Preparation of activated carbon fibers using nano fibers - Google Patents

Preparation of activated carbon fibers using nano fibers Download PDF

Info

Publication number
KR100485603B1
KR100485603B1 KR10-2002-0033235A KR20020033235A KR100485603B1 KR 100485603 B1 KR100485603 B1 KR 100485603B1 KR 20020033235 A KR20020033235 A KR 20020033235A KR 100485603 B1 KR100485603 B1 KR 100485603B1
Authority
KR
South Korea
Prior art keywords
nanofibers
activated carbon
carbon fibers
atmosphere
fibers
Prior art date
Application number
KR10-2002-0033235A
Other languages
Korean (ko)
Other versions
KR20030095694A (en
Inventor
박수진
이재락
정우영
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2002-0033235A priority Critical patent/KR100485603B1/en
Publication of KR20030095694A publication Critical patent/KR20030095694A/en
Application granted granted Critical
Publication of KR100485603B1 publication Critical patent/KR100485603B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment

Abstract

본 발명은 전기방사기술로 제조된 나노섬유를 이용한 활성탄소섬유의 제조방법에 관한 것으로서, 전기방사기술(electrospinning)을 이용하여 폴리아크릴로나이트릴, 핏치, 레이온, 셀룰로오스 및 페놀수지와 같은 고분자 전구체 물질로부터 수∼수백 나노미터 (nm)의 직경을 갖도록 제조된 나노섬유를 공기 혹은 산소 분위기 하에서 안정화 또는 산화(stabilization or oxidation)시키고, 안정화된 혹은 산화된 나노섬유를 600℃이상의 고온의 불활성 분위기 하에서 탄화시킨 후 고온에서 수증기/이산화탄소 혹은 이산화탄소의 분위기로 활성화시키는 것을 포함하는 본 발명의 방법에 따라 제조되는 활성탄소섬유는 제조공정이 간단할 뿐만 아니라 종래 방법에 의해 제조된 활성탄소섬유에 비해 비표면적이 우수하고, 미세기공이 잘 발달되어 있어 흡착제, 연료전지, 가스 분리/저장, 전지전극 등으로 유용하게 사용될 수 있다.The present invention relates to a method for producing activated carbon fibers using nanofibers prepared by electrospinning technology, and polymer precursors such as polyacrylonitrile, pitch, rayon, cellulose and phenolic resins using electrospinning. Stabilization or oxidation of nanofibers made from a material with a diameter of several hundreds to hundreds of nanometers (nm) is carried out in an air or oxygen atmosphere, and the stabilized or oxidized nanofibers are subjected to a high temperature inert atmosphere of 600 ° C or higher. Activated carbon fibers prepared according to the method of the present invention, including carbonization and activating with an atmosphere of water vapor / carbon dioxide or carbon dioxide at high temperature, not only have a simple manufacturing process but also have a specific surface area compared to the activated carbon fibers produced by conventional methods. It has excellent and fine pores, so it has adsorbents, fuel cells, A switch separate / storage, battery electrodes, etc. can be effectively used.

Description

나노섬유를 이용한 활성탄소섬유의 제조방법{PREPARATION OF ACTIVATED CARBON FIBERS USING NANO FIBERS} Manufacture method of activated carbon fiber using nano fiber {PREPARATION OF ACTIVATED CARBON FIBERS USING NANO FIBERS}

본 발명은 나노섬유를 이용한 활성탄소 섬유의 제조방법에 관한 것으로서, 구체적으로는 전기방사에 의해 제조된 나노섬유를 일정 조건하에서 안정화(산화), 탄화 및 활성화시켜 흡착제, 연료전지, 가스 분리/저장, 전지전극 등으로 유용하게 사용되는 활성탄소섬유를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing activated carbon fibers using nanofibers, and specifically, to stabilize (oxidize), carbonize, and activate nanofibers prepared by electrospinning under certain conditions, adsorbents, fuel cells, and gas separation / storage. It relates to a method for producing activated carbon fibers usefully used as battery electrodes.

일반적으로 활성탄소섬유는 주로 미세기공이 표면에 잘 발달되어 있어 흡착 및 탈착 속도가 빠르고 우수한 비표면적을 가질 뿐만 아니라 섬유상의 형태를 가지고 있어 편포나 부직포 등으로 상품화되어 취급이 용이하고 기공구조가 균일한 장점을 가지고 있다. In general, activated carbon fibers are well developed on the surface of micropores, so they have fast adsorption and desorption rates, have excellent specific surface areas, and have a fibrous form, making them easy to handle and uniform in pore structure. It has one advantage.

종래의 활성탄소섬유는 핏치계, 폴리아크릴로나이트릴계, 페놀수지계, 셀룰로오스계와 같은 고분자 전구체로부터 얻어진 탄소섬유를 산화제 등을 이용하여 활성화시킴으로써 제조하거나 상기의 전구체를 산화 분위기 하에서 장력을 가하면서 일정 온도에서 산화를 통해 안정화시키는 단계로부터 출발하여 활성탄소섬유를 제조하는 것을 특징으로 한다. 보다 구체적으로, 미국특허 제4,285,831호는 탄소섬유의 결정화를 야기하는 연신력을 어느 한계까지 주어 기계적 강도가 향상된 폴리아크리로나이트릴계 활성탄소섬유를 제조하는 방법을 제시하였으나 이 방법은 섬유내 산소 함량의 변화를 기준으로 하여 연신력의 한계를 결정하기 때문에 보편성이 제한된다. 또한 이 종래 방법은 고온에서 열처리하므로써 섬유의 표면에 반응을 일으킬 관능기가 적어 활성화가 잘 일어나지 않는 결점때문에 비표면적이 낮은 활성탄소섬유가 얻어진다는 단점을 가지고 있다. Conventional activated carbon fibers are prepared by activating carbon fibers obtained from polymer precursors such as pitch-based, polyacrylonitrile-based, phenolic resin-based, and cellulose-based compounds using an oxidizing agent or by applying tension to the precursor under an oxidizing atmosphere. Starting from the step of stabilizing through oxidation at temperature is characterized in that for producing an activated carbon fiber. More specifically, U.S. Patent No. 4,285,831 proposes a method for producing polyacrylonitrile-based activated carbon fibers having improved mechanical strength by giving an extension force that causes crystallization of carbon fibers to a certain limit. The universality is limited because the limit of the stretching force is determined based on the change of. In addition, this conventional method has a disadvantage in that an activated carbon fiber having a low specific surface area is obtained due to a defect in that activation is not performed due to a small amount of functional groups that react on the surface of the fiber by heat treatment at a high temperature.

일본특허 평4-126826호는 핏치계 재료를 사용하여 750∼1100℃에서 활성화시켜 활성탄소섬유를 제조하는 방법을 제안하였고 이의 경우 우수한 비표면적이 얻어졌으나 섬유로서의 강도가 약하여 취급이 용이하지 못하다는 단점을 가지고 있다. Japanese Patent No. Hei 4-126826 proposed a method for producing activated carbon fibers by using a pitch-based material at 750 to 1100 ° C. In this case, an excellent specific surface area was obtained, but the strength as a fiber was not easy to handle. It has a disadvantage.

한편, 국내의 경우 핏치계, 폴리아크릴로나이트릴계 등 여러 출발물질을 이용한 활성탄소섬유 제조방법이 제안되었으나(대한민국 특허 공개 제96-23331호, 제97-11056호, 제99-52869호, 제99-71036호, 제2001-81219호 및 제2000-38842호 참조), 이들 역시 상기와 유사한 단점을 가지고 있으며, 특히 국내외적으로 전기방사기술로 제조된 나노섬유로부터 활성탄소섬유의 제조에 관한 제안은 아직까지 보고된 바가 없다.On the other hand, in Korea, a method of manufacturing activated carbon fibers using various starting materials such as pitch and polyacrylonitrile has been proposed (Korean Patent Publication Nos. 96-23331, 97-11056, 99-52869, 99-71036, 2001-81219, and 2000-38842), which also have similar drawbacks, and in particular, proposals for the production of activated carbon fibers from nanofibers produced by electrospinning techniques at home and abroad. Has not been reported yet.

따라서, 본 발명의 목적은 비표면적이 우수하고 기계적 물성이 우수한 활성탄소섬유를 간단하게 제조할 수 있는 방법을 제공하기 위한 것으로, 고분자 전구체 물질로부터 수∼수백 나노미터 규모의 직경을 갖는 나노섬유를 전기방사 (electrospinning)에 의해 제조한 다음 이를 안정화, 탄화 처리한 후 활성화시킴으로써 그러한 목적을 달성할 수 있음을 알고 본 발명을 완성하게 되었다. Accordingly, an object of the present invention is to provide a method for simply manufacturing an activated carbon fiber having a high specific surface area and excellent mechanical properties. The present invention relates to a nanofiber having a diameter of several to several hundred nanometers from a polymer precursor material. The present invention has been accomplished by knowing that such an object can be achieved by electrospinning and then stabilizing, carbonizing and activating the same.

따라서, 본 발명은 전기방사에 의해 나노섬유를 제조하고, 이를 안정화 또는 산화(stabilization or oxidation), 탄화 및 활성화시키는 것을 포함하는, 활성탄소섬유의 제조방법을 제공한다. Accordingly, the present invention provides a method for producing activated carbon fibers, including preparing nanofibers by electrospinning, stabilizing or oxidation, carbonizing and activating them.

또한, 본 발명은 상기 방법에 의해 제조된 활성탄소섬유를 제공한다.The present invention also provides an activated carbon fiber produced by the above method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 방법의 특징은 전기방사(electrospinning) 기술로 제조된 나노섬유를 사용하여 비표면적이 우수하면서도 물성이 우수한 활성탄소섬유를 간단하게 제조하는데 있다.The feature of the method of the present invention is to easily prepare activated carbon fibers having excellent specific surface area and excellent physical properties using nanofibers prepared by electrospinning technology.

본 발명에서 나노섬유 제조에 사용되는 출발물질로서는 통상 당업계에서 사용되는 고분자 전구체 물질이 모두 가능하며, 특히 폴리아크릴로니트릴, 핏치, 레이온, 셀룰로오스로 및 페놀수지 등이, 열경화성 및 열가소성 고분자 물질로서 안정화 단계에서 산소가 분자 내에 도입됨에 따라 환상 또는 사다리형의 가교된 열경화성 화합물인 불용, 불융의 내열 섬유로 쉽게 전환될 뿐만 아니라 탄화 및 활성화 단계의 불활성 분위기 및 고온에서 섬유의 분자구조 방향성이 그대로 유지되는 장점을 가지고 있기 때문에, 바람직하게 사용될 수 있다.In the present invention, the starting materials used for preparing the nanofibers may be all polymer precursor materials generally used in the art, and in particular, polyacrylonitrile, pitch, rayon, cellulose furnace, and phenol resin may be used as thermosetting and thermoplastic polymer materials. As oxygen is introduced into the molecule in the stabilization step, it is easily converted into insoluble and insoluble heat-resistant fibers, which are cyclic or ladder-shaped crosslinked thermosetting compounds, while maintaining the molecular orientation of the fibers in the inert atmosphere of the carbonization and activation step and at high temperatures. Since it has an advantage, it can be preferably used.

본 발명에 따른 전기방사기술에 의한 나노섬유의 제조는 통상의 방법에 의해 예를 들면 도 1과 같은 전기방사장치를 이용하여 수행할 수 있다.Preparation of the nanofibers by the electrospinning technique according to the present invention can be carried out by using an electrospinning device as shown in Figure 1 by a conventional method.

본 발명에 따라 전기방사기술로 제조된 나노 섬유의 직경은 수 내지 수백 나노미터(nm), 바람직하게는 1 내지 500 nm 범위이다.The diameter of the nanofibers produced by the electrospinning technique according to the invention ranges from several to several hundred nanometers (nm), preferably from 1 to 500 nm.

상기 나노섬유를 안정화 또는 산화시키는 단계는 산소 혹은 공기 분위기 하에 200℃ 내지 350℃ 범위의 온도에서 나노섬유를 처리함으로써 수행하는 것이 바람직하다. 200℃ 이하의 온도에서는 안정화가 불충분하게 이루어지며, 350℃ 이상에서는 산화 분위기 하에서 안정화된 열경화성 화합물인 내열 섬유로 전환과 함께 기화가 수반되어 수율이 떨어지는 단점을 가지고 있다.Stabilizing or oxidizing the nanofibers is preferably carried out by treating the nanofibers at a temperature in the range of 200 ℃ to 350 ℃ under oxygen or air atmosphere. At temperatures below 200 ° C., stabilization is insufficient, and at 350 ° C. or higher, yield is reduced due to vaporization along with conversion to heat-resistant fibers that are stabilized under an oxidizing atmosphere.

상기의 안정화 단계에서, 안정화 시간은 30분 내지 9시간인 것이 바람직하다. 30분 이내에 행하는 안정화는 나노섬유에 충분한 내열성을 부여하지 못하고 9시간을 초과하여 행하는 안정화는 나노섬유의 유연성을 저해하는 단점을 가지고 있다.In the stabilization step, the stabilization time is preferably 30 minutes to 9 hours. Stabilization performed within 30 minutes does not impart sufficient heat resistance to the nanofibers, and stabilization performed for more than 9 hours has a disadvantage of inhibiting the flexibility of the nanofibers.

이어서, 상기 안정화된 또는 산화된 나노섬유를 탄화시키는 단계는 불활성 분위기 하의 600 내지 1100℃의 고온 범위에서 수행하는 것이 바람직하다. 600℃ 이하의 온도에서는 충분한 탄화가 이루어지지 못하고 1100℃ 이상의 온도에서는 탄소수율이 떨어지고 에너지 비용이 증가하는 단점을 가지고 있다. Subsequently, carbonizing the stabilized or oxidized nanofibers is preferably performed at a high temperature range of 600 to 1100 ° C. under an inert atmosphere. At temperatures below 600 ° C, sufficient carbonization is not achieved, and at temperatures above 1100 ° C, the carbon yield falls and energy costs increase.

상기의 탄화 단계에서, 탄화 시간은 30분 내지 5시간인 것이 바람직하다. 30분 이내에 행하는 경우 충분한 탄화가 이루어지지 않으며 5시간을 초과하여 행하는 경우 탄소수율을 떨어뜨리는 단점을 가지고 있다.In the carbonization step, the carbonization time is preferably 30 minutes to 5 hours. If the carbonization is performed within 30 minutes, sufficient carbonization is not achieved, and if it is performed for more than 5 hours, the carbon yield is reduced.

상기의 탄화된 나노섬유는 활성화단계를 통해 최종적인 활성탄소섬유로 전환되는데, 이때 활성화는 500 내지 1100℃ 범위의 고온에서 수증기/이산화탄소 또는 이산화탄소 분위기 하에 수행되는 것이 바람직하다. 활성화 온도가 500℃ 이하인 경우에는 나노섬유의 열분해 메카니즘에 의해 완전한 활성화가 이루어지지 못하고, 1100℃ 이상인 경우에는 에너지 비용이 증가할 뿐만 아니라 탄소 수율이 떨어지는 단점을 갖는다.The carbonized nanofibers are converted to the final activated carbon fiber through an activation step, wherein the activation is preferably performed under steam / carbon dioxide or carbon dioxide atmosphere at a high temperature in the range of 500 to 1100 ° C. If the activation temperature is 500 ℃ or less is not fully activated by the pyrolysis mechanism of the nanofibers, when the temperature is more than 1100 ℃ not only increases the energy cost but also has the disadvantage of low carbon yield.

상기 활성화 단계에서, 활성화 시간은 10분 내지 10시간인 것이 바람직하다. 10분 이하일 경우 활성화가 일어나기 어려우며 10시간을 초과하는 경우에는 물성 증진 효과가 없고 경제성을 고려할 때 바람직하지 못하다.In the activation step, the activation time is preferably 10 minutes to 10 hours. If it is less than 10 minutes, activation is difficult to occur, and if it exceeds 10 hours, there is no physical property enhancing effect and it is not preferable in consideration of economics.

본 발명의 방법에 따르면, 수∼수백 나노미터 (nm)의 직경을 갖도록 제조된 나노섬유로부터 활성탄소섬유가 제조되기 때문에 많은 미세기공이 발달될 뿐만 아니라 우수한 비표면적을 가지게 되어 흡착제, 연료전지, 가스 분리/저장, 전지전극 등 유용하게 사용될 수 있다. According to the method of the present invention, since activated carbon fibers are manufactured from nanofibers manufactured to have diameters of several to several hundred nanometers (nm), not only many micropores are developed but also have an excellent specific surface area, such as adsorbents, fuel cells, Gas separation / storage, battery electrode and the like can be usefully used.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다. The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예 1Example 1

도 1에 도시한 전기방사장치를 이용하여 섬유 직경이 약 35 nm정도로 제조된 폴리아크릴로니트릴 나노섬유를 출발물질로 사용하였다. 구체적으로, 먼저 폴리아크릴로니트릴 25 g에 100 ml의 N,N-dimethylforamide (DMF) 용매를 가한 후 60℃에서 24시간 동안 녹인 다음 용해된 용액을 도 1에서 보여주듯이 자동공급장치(2)를 이용하여 수지저장조(3)으로부터 방사구(4)에 공급하였다. 이때 용액에는 양극을 접촉시키고 나노섬유가 모아지는 집속회전판에는 음극을 연결한 후 고전압발생장치(1)를 이용하여 20 kV의 고전압을 공급하여 폴리아크릴로니트릴 나노섬유를 제조하였다.The polyacrylonitrile nanofibers having a fiber diameter of about 35 nm were used as starting materials using the electrospinning device shown in FIG. 1. Specifically, first, 100 ml of N , N- dimethylforamide (DMF) solvent was added to 25 g of polyacrylonitrile, and then dissolved at 60 ° C. for 24 hours. Was supplied to the spinneret 4 from the resin reservoir 3. At this time, the positive electrode was brought into contact with the solution, and the negative electrode was connected to the focusing rotating plate where the nanofibers were collected.

제조된 35 nm의 섬유 직경을 갖는 폴리아크릴로니트릴 나노섬유를 출발물질로 사용하여, 이를 튜브형 노(furnace)안에 놓은 다음 산소 분위기 하의 상온에서 230℃까지 2 ℃/min의 속도로 승온시킨 후 1시간 동안 안정화시켰으며 안정화 후 수율은 97.8%였다.Using the prepared polyacrylonitrile nanofiber having a fiber diameter of 35 nm as a starting material, it was placed in a tubular furnace (furnace) and then heated up at a rate of 2 ℃ / min from room temperature to 230 ℃ under oxygen atmosphere 1 It stabilized for an hour and the yield after stabilization was 97.8%.

이렇게 수득된 안정화된 폴리아크릴로니트릴 나노섬유를 탄화시키기 위하여 질소 분위기로 노안을 충전시킨 후 800℃까지 5 ℃/min의 승온속도로 승온시킨 후 1시간 동안 불활성 분위기를 유지하며 탄화시켰으며 탄화 후 수율은 58.9%였다. 이렇게 수득된 탄화된 폴리아크릴로니트릴 나노섬유를 활성화시키기 위해 질소 분위기를 계속 유지하면서 10 ℃/min의 승온속도로 900℃까지 승온시킨 다음 곧 바로 질소 분위기를 수증기/이산화탄소 분위기로 교체한 후 3시간 동안 활성화시킨 후 다시 불활성 분위기로 전환시킨 다음 상온으로 냉각시켰으며 활성화 후 최종 수율은 46.9%였다.In order to carbonize the stabilized polyacrylonitrile nanofibers thus obtained, the presbyopia was filled with nitrogen atmosphere and then heated to a temperature increase rate of 5 ° C./min up to 800 ° C., followed by carbonization with an inert atmosphere for 1 hour. The yield was 58.9%. In order to activate the carbonized polyacrylonitrile nanofibers thus obtained, the temperature was raised to 900 ° C. at a heating rate of 10 ° C./min while maintaining a nitrogen atmosphere, and immediately after replacing the nitrogen atmosphere with a water vapor / carbon dioxide atmosphere for 3 hours. After activation, the mixture was converted to an inert atmosphere and then cooled to room temperature. The final yield after activation was 46.9%.

이렇게 수득된 활성탄소섬유로부터 잔류 유기물 등을 제거하기 위하여, 활성탄소섬유를 0.5N HCl 수용액으로 85℃에서 1시간 동안 세척한 다음 증류수를 이용하여 수 회 세척하고 100℃의 건조기에서 24시간 동안 건조시켜 최종 활성탄소섬유를 제조하였다. In order to remove residual organic substances from the activated carbon fibers thus obtained, the activated carbon fibers were washed with 0.5 N HCl aqueous solution at 85 ° C. for 1 hour, and then washed several times with distilled water and dried at 100 ° C. for 24 hours. The final activated carbon fiber was prepared.

실시예 2 내지 20Examples 2-20

출발물질과 안정화 조건, 탄화조건 및 활성화조건을 하기 표 1에 기재된 것과 같이 변경시켜 실시한 것을 제외하고는, 실시예 1과 동일한 절차에 의해 최종 활성탄소를 제조하였다. The final activated carbon was prepared by the same procedure as in Example 1, except that the starting materials, the stabilization conditions, the carbonization conditions, and the activation conditions were changed as shown in Table 1 below.

출발물질의종류Type of starting material 안정화 단계Stabilization stage 탄화 단계Carbonization stage 활성화 단계Activation step 온도(℃)Temperature (℃) 승온속도(℃/min)Temperature increase rate (℃ / min) 시간(h)Hours (h) 온도(℃)Temperature (℃) 승온속도(℃/min)Temperature increase rate (℃ / min) 시간(h)Hours (h) 온도(℃)Temperature (℃) 승온속도(℃/min)Temperature increase rate (℃ / min) 시간(h)Hours (h) 활성화기체Activation gas 실시예Example 22 폴리아크릴로니트릴Polyacrylonitrile 260260 1010 33 600600 55 22 500500 4040 44 CO2 CO 2 33 290290 2020 66 900900 2020 33 700700 8080 66 CO2/H2OCO 2 / H 2 O 44 320320 3030 99 11001100 4545 44 11001100 120120 88 CO2 CO 2 55 핏치Pitch 200200 55 1One 650650 1One 0.50.5 600600 1One 0.10.1 CO2/H2OCO 2 / H 2 O 66 250250 1515 22 850850 3030 1One 700700 2020 1One CO2 CO 2 77 300300 3535 33 950950 4040 22 800800 4040 33 CO2/H2OCO 2 / H 2 O 88 350350 5050 44 10501050 5050 33 900900 6060 55 CO2 CO 2 99 레이온Rayon 210210 1One 55 700700 55 22 550550 55 1One CO2/H2OCO 2 / H 2 O 1010 240240 1515 66 800800 1515 33 750750 2525 22 CO2 CO 2 1111 270270 3030 77 900900 2525 44 950950 5050 33 CO2/H2OCO 2 / H 2 O 1212 300300 4545 88 10001000 4545 55 10501050 7070 44 CO2 CO 2 1313 셀룰로오스cellulose 250250 55 22 750750 1010 0.50.5 650650 55 33 CO2/H2OCO 2 / H 2 O 1414 290290 1515 55 950950 2020 22 850850 1010 77 CO2 CO 2 1515 310310 3535 77 10501050 3030 33 950950 1515 99 CO2/H2OCO 2 / H 2 O 1616 340340 5050 99 11001100 4040 44 11001100 2020 55 CO2 CO 2 1717 페놀수지Phenolic Resin 220220 33 0.50.5 600600 2020 22 500500 3030 0.50.5 CO2/H2OCO 2 / H 2 O 1818 260260 1717 44 700700 3030 33 600600 6060 33 CO2 CO 2 1919 300300 3232 66 800800 4040 44 700700 9090 77 CO2/H2OCO 2 / H 2 O 2020 350350 4747 99 900900 5050 55 800800 120120 1010 CO2 CO 2

비교실시예Comparative Example

비교예로서, 안정화된 폴리아크릴로니트릴 섬유를 불활성 분위기 하에서 5 ℃/min의 승온속도로 승온시킨 다음 800℃에서 3시간 동안 탄화시켰다. 이렇게 수득된 탄화 폴리아크릴로니트릴 섬유는 같은 온도의 이산화탄소 분위기 하에서 1시간 동안 활성화를 시켜 최종적으로 활성탄소섬유를 제조하였다.As a comparative example, stabilized polyacrylonitrile fibers were heated at an elevated rate of 5 ° C./min under inert atmosphere and then carbonized at 800 ° C. for 3 hours. The carbonized polyacrylonitrile fiber thus obtained was activated for 1 hour in a carbon dioxide atmosphere at the same temperature to finally produce an activated carbon fiber.

상기 실시예 1 내지 20 및 비교실시예와 같이 제조된 활성탄소섬유의 비표면적, 총 기공부피 및 탄소 수율을 각각 다음과 같이 측정하였으며, 그 결과를 각 측정값의 평균치로서 표 2에 나타내었다.Specific surface area, total pore volume, and carbon yield of the activated carbon fibers prepared as in Examples 1 to 20 and Comparative Examples were measured as follows, and the results are shown in Table 2 as the average of each measured value.

BET 비표면적(m2/g)BET specific surface area (m 2 / g) 세공부피(cc/g)Pore volume (cc / g) 탄소 수율(%)Carbon yield (%) 실시예 1Example 1 680680 0.270.27 46.546.5 실시예 2Example 2 11251125 0.440.44 42.242.2 실시예 3Example 3 15991599 0.980.98 39.939.9 실시예 4Example 4 20122012 1.741.74 38.338.3 실시예 5Example 5 580580 0.220.22 45.345.3 실시예 6Example 6 730730 0.300.30 42.942.9 실시예 7Example 7 10661066 0.410.41 41.741.7 실시예 8Example 8 14771477 0.750.75 39.139.1 실시예 9Example 9 672672 0.290.29 40.040.0 실시예 10Example 10 784784 0.330.33 38.938.9 실시예 11Example 11 874874 0.370.37 37.237.2 실시예 12Example 12 937937 0.410.41 36.736.7 실시예 13Example 13 980980 0.370.37 42.342.3 실시예 14Example 14 17121712 0.840.84 35.435.4 실시예 15Example 15 19861986 1.431.43 37.837.8 실시예 16Example 16 15401540 0.680.68 38.938.9 실시예 17Example 17 480480 0.150.15 52.952.9 실시예 18Example 18 11621162 0.410.41 40.340.3 실시예 19Example 19 22502250 1.211.21 31.131.1 실시예 20Example 20 30153015 1.981.98 27.827.8 비교실시예Comparative Example 480480 0.180.18 40.240.2

상기 표 2에서 보는 바와 같이, 실시예 1 내지 20에서 제조된 활성탄소섬유는, 나노섬유가 아닌 일반 섬유로 제조된 비교실시예 1의 활성탄소섬유에 비해 우수한 기공특성(비표면적 및 세공부피)을 가지고 있음을 알 수 있다.As shown in Table 2, the activated carbon fibers prepared in Examples 1 to 20, excellent porosity characteristics (specific surface area and pore volume) compared to the activated carbon fibers of Comparative Example 1 made of ordinary fibers, not nanofibers It can be seen that it has.

본 발명에 따라, 전기방사기술로 제조된 나노섬유로부터 활성탄소섬유를 제조하는 경우, 기존의 제조공정 흐름도를 유지하면서도 나노섬유가 갖는 무게당 표면적의 증가에 기인하여 활성탄소섬유 제조공정의 변수에 따라 나노섬유에 우수한 기공특성을 부여할 수 있다.According to the present invention, in the case of manufacturing activated carbon fibers from the nanofibers produced by electrospinning technology, due to the increase in the surface area per weight of the nanofibers while maintaining the existing manufacturing flow chart, Therefore, excellent pore characteristics can be imparted to the nanofibers.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

도 1은 본 발명에 사용된 전기방사장치의 개략도이다.1 is a schematic diagram of an electrospinning apparatus used in the present invention.

※ 도면 중 주요부분에 대한 부호설명※ Explanation of code of main part of drawing

1: 고전압 발생장치 (High voltage power supply)1: high voltage power supply

2: 수지자동공급장치(Metering pump) 2: Automatic metering pump

3: 수지저장조 (Solution tank) 3: Solution tank

4: 방사구 (Spinneret, 내경: 1 mm) 4: spinneret (inner diameter: 1 mm)

5: 집속회전판 (Rotating screen) 5: Rotating screen

6: 높이조절용 잭 (Jack)6: Jack for height adjustment

Claims (7)

전기방사에 의해 나노섬유를 제조하고, 이를 안정화(stabilization or oxidation), 탄화 및 활성화시키는 것을 포함하며, 상기 안정화 및 탄화 단계에서의 승온속도가 10 내지 50 ℃/분의 범위인 것을 특징으로 하는, 활성탄소섬유의 제조방법.Preparing nanofibers by electrospinning, stabilizing or oxidation, carbonizing and activating them, wherein the temperature increase rate in the stabilization and carbonization step is in the range of 10 to 50 ° C./min, Method for producing activated carbon fiber. 제 1 항에 있어서, The method of claim 1, 나노섬유가 1 내지 500 nm의 직경을 갖는 것임을 특징으로 하는 방법. The nanofibers have a diameter of 1 to 500 nm. 제 1 항에 있어서, The method of claim 1, 나노섬유 제조용 출발물질이 폴리아크릴로니트릴, 레이온, 핏치, 셀룰로오스 및 페놀수지계 중에서 선택됨을 특징으로 하는 방법.Starting material for producing nanofibers is selected from polyacrylonitrile, rayon, pitch, cellulose and phenolic resin system. 제 1 항에 있어서, The method of claim 1, 나노섬유의 안정화가, 산소 혹은 공기 분위기 하에 200 내지 350℃ 범위의 온도에서 수행되는 것을 특징으로 하는 방법.Stabilization of the nanofibers is carried out at a temperature in the range of 200 to 350 ° C. under an oxygen or air atmosphere. 제 1 항에 있어서, The method of claim 1, 나노섬유의 탄화가, 불활성 분위기 하에 600 내지 1100℃ 범위의 온도에서 수행되어 탄소섬유를 제조하는 것을 특징으로 하는 방법.Carbonization of the nanofibers is carried out under an inert atmosphere at a temperature in the range of 600 to 1100 ° C. to produce carbon fibers. 제 1 항에 있어서, The method of claim 1, 나노섬유의 활성화가, 이산화탄소 혹은 이산화탄소/수증기 분위기 하에 500 내지 1100℃ 범위의 온도에서 수행되는 것을 특징으로 하는 방법.Activation of the nanofibers is carried out at a temperature in the range of 500 to 1100 ° C. under a carbon dioxide or carbon dioxide / water vapor atmosphere. 제 1 항 내지 제 6 항 중의 어느 한 항의 방법에 따라 제조된 활성 탄소 섬유.Activated carbon fiber prepared according to the method of any one of claims 1 to 6.
KR10-2002-0033235A 2002-06-14 2002-06-14 Preparation of activated carbon fibers using nano fibers KR100485603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0033235A KR100485603B1 (en) 2002-06-14 2002-06-14 Preparation of activated carbon fibers using nano fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0033235A KR100485603B1 (en) 2002-06-14 2002-06-14 Preparation of activated carbon fibers using nano fibers

Publications (2)

Publication Number Publication Date
KR20030095694A KR20030095694A (en) 2003-12-24
KR100485603B1 true KR100485603B1 (en) 2005-04-27

Family

ID=32387000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0033235A KR100485603B1 (en) 2002-06-14 2002-06-14 Preparation of activated carbon fibers using nano fibers

Country Status (1)

Country Link
KR (1) KR100485603B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675923B1 (en) * 2005-12-01 2007-01-30 전남대학교산학협력단 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same
KR100715155B1 (en) 2005-05-03 2007-05-10 주식회사 아모메디 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
KR100783490B1 (en) 2006-07-27 2007-12-11 전남대학교산학협력단 Preparation method of c-type carbon nanofibers by electrospinning
EP2105406A1 (en) 2008-03-25 2009-09-30 Korea Institute of Energy Research Carbon material having graphite nanolayer and synthesis method thereof
KR100952945B1 (en) * 2008-03-06 2010-04-15 전남대학교산학협력단 Fibrous Adsorbent and manufacturing method for VOC absorbent
KR100967622B1 (en) * 2008-03-06 2010-07-05 전남대학교산학협력단 Manufacturing method of Fibrous Adsorbent by blend electrospinning for VOC absorbent
KR101030738B1 (en) 2008-08-01 2011-04-26 주식회사 아모그린텍 Carbon molded body prepared with carbon nanofibers web channel and method of preparing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509965B1 (en) * 2002-11-29 2005-08-25 (주)대동 에이씨 Mass manufacturing method of activated carbon fiber from phenol resin fiber
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
KR100578981B1 (en) 2004-09-08 2006-05-12 삼성에스디아이 주식회사 Electrode for fuel cell and the fuel cell system comprising the same
KR100658675B1 (en) 2004-11-26 2006-12-15 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme
KR100684797B1 (en) 2005-07-29 2007-02-20 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
US7537695B2 (en) 2005-10-07 2009-05-26 Pur Water Purification Products, Inc. Water filter incorporating activated carbon particles with surface-grown carbon nanofilaments
KR100763548B1 (en) * 2006-01-16 2007-10-04 주식회사 아모메디 preparation method of diffusion layer of fuel cell
KR100744832B1 (en) * 2006-05-02 2007-08-01 인하대학교 산학협력단 Preparation of porous carbon nanofibers containing mesopores
KR100819900B1 (en) * 2006-06-12 2008-04-08 한국생산기술연구원 Super capacitor using graphite type material comprising nano sized activated carbon fiber
KR100759103B1 (en) * 2006-06-19 2007-09-19 주식회사 나노테크닉스 Method of preparing for pan/phenolic-resin-based carbon nanofibers and activated carbon nanofibers by electrospinning
KR20100011644A (en) * 2008-07-25 2010-02-03 주식회사 아모메디 Fuel cell electrode being unified catalyst layer and gas diffusion layer with carbon nanofibers web and method of preparing the same and fuel cell using the same
KR101118186B1 (en) * 2008-08-13 2012-03-16 주식회사 아모그린텍 Electrode Material for Supercapacitor, Electrode for Supercapacitor using the Electrode Material and Method for Manufacturing the Same
KR101315112B1 (en) * 2011-04-28 2013-10-08 고등기술연구원연구조합 Methode for preparing nano pore on carbon matrix
KR101396035B1 (en) * 2011-12-23 2014-05-19 한국생산기술연구원 Method for manufacturing activated carbon fibers using electro spinning and manufacturing
KR101383127B1 (en) * 2012-03-29 2014-04-09 고등기술연구원연구조합 Methode for preparing nano pore on carbon matrix using surface treatment and surface activation
WO2017003106A1 (en) * 2015-06-30 2017-01-05 코오롱인더스트리(주) Method for preparing activated carbon fiber
KR102220003B1 (en) * 2018-12-14 2021-02-24 재단법인 한국탄소융합기술원 Activated carbon fiber for VOC abatement and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900010089A (en) * 1988-12-31 1990-07-06 한일시멘트 공업 주식회사 Method for manufacturing activated carbon fiber
KR20010081219A (en) * 2000-02-11 2001-08-29 김용민 An activated carbon fiber and a process of preparing for the same
KR20020008227A (en) * 2002-01-03 2002-01-29 양갑승 Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications
US6382526B1 (en) * 1998-10-01 2002-05-07 The University Of Akron Process and apparatus for the production of nanofibers
KR20020040645A (en) * 2000-11-24 2002-05-30 김동철 Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them
KR20030003925A (en) * 2001-07-04 2003-01-14 주식회사 라이지오케미칼코리아 An eletronic spinning aparatus, and a process of preparing nonwoven fabric using the thereof
KR20030008049A (en) * 2001-07-12 2003-01-24 주식회사 라이지오케미칼코리아 A process of coating nano fiber on the textile materials continuously

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900010089A (en) * 1988-12-31 1990-07-06 한일시멘트 공업 주식회사 Method for manufacturing activated carbon fiber
US6382526B1 (en) * 1998-10-01 2002-05-07 The University Of Akron Process and apparatus for the production of nanofibers
KR20010081219A (en) * 2000-02-11 2001-08-29 김용민 An activated carbon fiber and a process of preparing for the same
KR20020040645A (en) * 2000-11-24 2002-05-30 김동철 Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them
KR20030003925A (en) * 2001-07-04 2003-01-14 주식회사 라이지오케미칼코리아 An eletronic spinning aparatus, and a process of preparing nonwoven fabric using the thereof
KR20030008049A (en) * 2001-07-12 2003-01-24 주식회사 라이지오케미칼코리아 A process of coating nano fiber on the textile materials continuously
KR20020008227A (en) * 2002-01-03 2002-01-29 양갑승 Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715155B1 (en) 2005-05-03 2007-05-10 주식회사 아모메디 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
KR100675923B1 (en) * 2005-12-01 2007-01-30 전남대학교산학협력단 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same
KR100783490B1 (en) 2006-07-27 2007-12-11 전남대학교산학협력단 Preparation method of c-type carbon nanofibers by electrospinning
KR100952945B1 (en) * 2008-03-06 2010-04-15 전남대학교산학협력단 Fibrous Adsorbent and manufacturing method for VOC absorbent
KR100967622B1 (en) * 2008-03-06 2010-07-05 전남대학교산학협력단 Manufacturing method of Fibrous Adsorbent by blend electrospinning for VOC absorbent
EP2105406A1 (en) 2008-03-25 2009-09-30 Korea Institute of Energy Research Carbon material having graphite nanolayer and synthesis method thereof
KR101030738B1 (en) 2008-08-01 2011-04-26 주식회사 아모그린텍 Carbon molded body prepared with carbon nanofibers web channel and method of preparing the same

Also Published As

Publication number Publication date
KR20030095694A (en) 2003-12-24

Similar Documents

Publication Publication Date Title
KR100485603B1 (en) Preparation of activated carbon fibers using nano fibers
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
KR100988032B1 (en) Carbon nano-fiber with skin-core structure, method for producing the same and products comprising the same
KR100605006B1 (en) Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
JP4456600B2 (en) Method for producing porous carbon nanofiber using camphor and carbon nanofiber produced by this method
Yue et al. Carbonization and activation for production of activated carbon fibers
US8845950B2 (en) Method for manufacturing polyimide-based carbon nanofiber electrode
KR100623881B1 (en) Preparation method of polyacrylonitrilePAN/polyimidePI composite nano-fibers by electrospinning, and carbon fibers, activated carbon fibers therefrom
JPH0617321A (en) Pitch-based activated carbon fiber
KR101327972B1 (en) Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method
CN106521715A (en) Preparing method of microporous carbon fiber with high specific surface area
KR100607370B1 (en) Preparation of pitch-based nano carbon fiber web and nano activated carbon fiber web by electrostatic spinning
US5888928A (en) Process for producing activated carbon fiber molding and activated carbon fiber molding
Zhang et al. Carbon fiber spinning
KR100603022B1 (en) Porous carbon nanofiber prepared using halogenated polymers and preparation method thereof
KR101221615B1 (en) Preparation method of carbon nano-fiber using electrospinning
CN109081338B (en) Preparation method of high-ortho boron modified thermosetting phenolic aldehyde-based hollow nano gradient activated carbon fiber membrane
KR100874459B1 (en) Carbonaceous material having high surface area and conductivity
KR102206860B1 (en) Hybrid activated carbon fiber and method of manufacturing the same
KR20200133520A (en) Method for manufacturing isotropic pitch from low-grade coal and ashfreechol and method for application of manufacturing low-cost high-strength isotropic carbon fiber using the same
JPS58120818A (en) Production of porous carbon fiber
KR20160141499A (en) Method of manufacturing activated carbon fiber
KR100351131B1 (en) High dense activated carbon fiber disk for capacitor's electrode of ultra high capacity and its production method
KR100623004B1 (en) Electrospinning of Pitch Solution Dissolved in Mixed Solvents and Preparation of Ultrafine Carbon Fiber Web and Ultraactive Carbon Fiber Web
CN108950875B (en) Preparation method of epoxy modified high-ortho thermosetting phenolic aldehyde based hollow nano gradient activated carbon fiber membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20120111

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee