KR102639660B1 - 프로세스 키트 센터링을 측정하기 위한 방법 및 장치 - Google Patents

프로세스 키트 센터링을 측정하기 위한 방법 및 장치 Download PDF

Info

Publication number
KR102639660B1
KR102639660B1 KR1020217002770A KR20217002770A KR102639660B1 KR 102639660 B1 KR102639660 B1 KR 102639660B1 KR 1020217002770 A KR1020217002770 A KR 1020217002770A KR 20217002770 A KR20217002770 A KR 20217002770A KR 102639660 B1 KR102639660 B1 KR 102639660B1
Authority
KR
South Korea
Prior art keywords
sensor
process kit
wafer
center point
sensor wafer
Prior art date
Application number
KR1020217002770A
Other languages
English (en)
Other versions
KR20210013345A (ko
Inventor
찰스 쥐. 포터
엘리 모어
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Priority to KR1020247005474A priority Critical patent/KR20240028545A/ko
Publication of KR20210013345A publication Critical patent/KR20210013345A/ko
Application granted granted Critical
Publication of KR102639660B1 publication Critical patent/KR102639660B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/087Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/22Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2220/00Function indicators
    • B65H2220/03Function indicators indicating an entity which is measured, estimated, evaluated, calculated or determined but which does not constitute an entity which is adjusted or changed by the control process per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/13Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/16Irregularities, e.g. protuberances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/70Electrical or magnetic properties, e.g. electric power or current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

본원에서 개시된 실시예들은 센서 웨이퍼를 포함한다. 실시예에서, 센서 웨이퍼는 기판을 포함하고, 기판은 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면과 제2 표면 사이의 에지 표면을 포함한다. 실시예에서, 센서 웨이퍼는, 에지 표면을 따라 형성된 복수의 센서 구역들을 더 포함하고, 각각의 센서 구역은 셀프-레퍼런싱 용량성 센서를 포함한다.

Description

프로세스 키트 센터링을 측정하기 위한 방법 및 장치
본 출원은 2018년 9월 4일자로 출원된 미국 정규 출원 번호 제16/121,183호를 우선권으로 주장하며, 이로써 위의 출원의 전체 내용은 인용에 의해 본원에 포함된다.
실시예들은 반도체 제조 분야에 관한 것으로, 특히, 프로세스 키트 센터링(process kit centering)을 측정하기 위한 방법들 및 장치들에 관한 것이다.
반도체 웨이퍼들과 같은 기판들의 프로세싱에서, 기판은 프로세싱 챔버 내의 지지 표면(예컨대, ESC(electrostatic chuck)) 상에 배치된다. 통상적으로, 기판 프로세싱 동안 원하는 프로세싱 특성들을 제공하기 위해 프로세스 키트가 지지 표면 주위에 배치된다. 프로세스 키트들은, 프로세스 키트의 설치 또는 제거 동안 지지 표면도 프로세스 키트도 손상되지 않도록, 지지 표면 주위에 느슨하게 맞춰진다. 원하는 균일성을 제공하기 위하여, 프로세스 키트는 기판 및 지지 표면에 대하여 정확하게 센터링될 필요가 있다.
현재, 프로세스 키트들은 수동으로 설치된다. 따라서, 프로세스 키트의 센터링은 현재, 사람의 실수를 겪는다. 수동 설치 후에, 프로세스 키트가 적절하게 센터링되어 있음을 확인하기 위해 에칭 레이트 시험들 또는 입자 시험들과 같은 다양한 시험들이 구현될 수 있다. 그러나, 그러한 시험은 값비싸고, 완료하는 데 몇 시간이 걸릴 수 있다. 또한, 프로세스 키트가 중심에서 벗어난 것으로 발견되는 경우, 펌프-다운 직후에 센터링이 검증될 수 있는 경우보다 복구하기 위한 시간이 훨씬 더 길다.
본원에서 개시된 실시예들은 센서 웨이퍼를 포함한다. 실시예에서, 센서 웨이퍼는 기판을 포함하고, 기판은 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면과 제2 표면 사이의 에지 표면을 포함한다. 실시예에서, 센서 웨이퍼는, 에지 표면을 따라 형성된 복수의 센서 구역들을 더 포함하고, 각각의 센서 구역은 셀프-레퍼런싱 용량성 센서(self-referencing capacitive sensor)를 포함한다.
본원에서 개시된 실시예들은 또한, 챔버에서 프로세스 키트의 포지션을 결정하는 방법을 포함할 수 있다. 실시예에서, 방법은, 챔버 안으로 지지 표면 주위에 프로세스 키트를 배치하는 단계를 포함한다. 실시예에서, 방법은, 지지 표면 상에 센서 웨이퍼를 배치하는 단계를 더 포함할 수 있고, 센서 웨이퍼는 지지 표면에 의해 지지되는 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면을 제2 표면에 연결하는 에지 표면을 포함하며, 복수의 센서 구역들이 에지 표면 상에 형성된다. 실시예에서, 방법은, 복수의 센서 구역들의 각각의 센서 구역과 프로세스 키트의 표면 사이의 갭 거리를 결정하는 단계를 더 포함할 수 있다. 실시예에서, 방법은, 갭 거리들로부터 센서 웨이퍼의 중심점에 대한 프로세스 키트의 중심점의 중심점 오프셋을 결정하는 단계를 더 포함할 수 있다.
본원에서 개시된 실시예들은 또한, 챔버에서 프로세스 키트의 포지션을 결정하는 방법을 포함할 수 있다. 실시예에서, 방법은, 챔버 안으로 지지 표면 주위에 프로세스 키트를 배치하는 단계를 포함한다. 실시예에서, 방법은, 지지 표면 상에 센서 웨이퍼를 배치하는 단계를 더 포함하고, 센서 웨이퍼는 지지 표면에 의해 지지되는 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면을 제2 표면에 연결하는 에지 표면을 포함하며, 복수의 제1 센서 구역들이 에지 표면 상에 형성되고, 복수의 제2 센서 구역들이 제1 표면 상에 형성된다. 실시예에서, 방법은, 복수의 제1 센서 구역들의 각각의 센서 구역과 프로세스 키트의 표면 사이의 갭 거리를 결정하는 단계를 더 포함한다. 실시예에서, 방법은, 갭 거리들로부터 제1 중심점 오프셋을 결정하는 단계를 더 포함하고, 제1 중심점 오프셋은 센서 웨이퍼의 중심점에 대한 프로세스 키트의 중심점의 오프셋이다. 실시예에서, 방법은, 복수의 제2 센서 구역들을 이용하여 지지 표면의 복수의 에지 위치들을 결정하는 단계를 더 포함한다. 실시예에서, 방법은, 복수의 에지 위치들을 이용하여 제2 중심점 오프셋을 결정하는 단계를 더 포함하고, 제2 중심점 오프셋은 센서 웨이퍼의 중심점에 대한 지지 표면의 중심점의 오프셋이다.
도 1은 실시예에 따른, 프로세스 키트의 오프셋을 측정하기 위한 센서 웨이퍼를 갖는 프로세싱 툴의 개략적인 단면 예시이다.
도 2는 실시예에 따른, 에지 센서들을 갖는 센서 웨이퍼의 평면도 예시이다.
도 3은 실시예에 따른, 에지 센서들을 갖는 센서 웨이퍼의 사시도 예시이다.
도 4a는 실시예에 따른, 에지 센서를 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 4b는 실시예에 따른, 에지 센서 및 전기장 가드를 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 4c는 실시예에 따른, 에지 센서 및 최상부 표면 리세스를 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 5는 실시예에 따른, 지지 표면의 중심에 대한 프로세스 키트의 오프셋을 측정하기 위한 센서 웨이퍼를 갖는 프로세싱 툴의 개략적인 단면 예시이다.
도 6a는 실시예에 따른, 지지 표면의 중심에 대한 센서 웨이퍼의 포지션을 측정하기 위한 센서 구역들 및 프로세스 키트의 포지션을 측정하기 위한 에지 센서 구역들을 갖는 센서 웨이퍼의 최하부 표면의 평면도 예시이다.
도 6b는 실시예에 따른, 최하부 센서 구역을 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 7은 실시예에 따른, 지지 표면의 중심에 대한 프로세스 키트의 오프셋을 결정하기 위한 배치 제어기 및 프로세싱 툴의 개략도이다.
도 8은 실시예에 따른, 센서 웨이퍼에 대한 프로세스 키트의 오프셋을 결정하기 위한 프로세스의 흐름도이다.
도 9는 실시예에 따른, 지지 표면의 중심에 대한 프로세스 키트의 오프셋을 결정하기 위한 프로세스의 흐름도이다.
도 10은 실시예에 따른, 지지 표면의 중심에 대한 프로세스 키트의 오프셋을 결정하는 것을 포함하는 프로세스들과 함께 사용될 수 있는 예시적인 컴퓨터 시스템의 블록도를 예시한다.
에지 센서들을 갖는 센서 웨이퍼들을 포함하는 시스템들, 및 프로세스 키트 센터링을 측정하기 위해 그러한 센서 웨이퍼들을 사용하는 방법들이 다양한 실시예들에 따라 설명된다. 다음의 상세한 설명에서는, 실시예들의 완전한 이해를 제공하기 위하여 많은 특정 세부사항들이 제시된다. 이들 특정 세부사항들 없이, 실시예들이 실시될 수 있다는 것이 당업자에게 자명할 것이다. 다른 사례들에서, 실시예들을 불필요하게 모호하게 하지 않기 위하여, 잘 알려진 양상들은 상세히 설명되지 않는다. 또한, 첨부된 도면들에 도시된 다양한 실시예들은 예시적인 표현들이며 반드시 실척대로 그려지지는 않는다는 것이 이해되어야 한다.
위에서 주목된 바와 같이, 프로세스 키트들은 현재, 수동으로 프로세싱 툴에 설치되어 센터링된다. 프로세스 키트가 적절하게 센터링되어 있음을 확인하기 위하여, 에칭 레이트들을 모니터링하기 위해 그리고/또는 입자 시험들을 실행하기 위해 프로세싱 툴에서 복수의 기판들이 프로세싱된다. 많은 기판들이 프로세싱된 후에만, 프로세스 키트가 적절하게 센터링되어 있음을 확인하는 것이 가능할 것이다. 이 프로세스는 프로세싱 툴에 대한 몇 시간의 다운 타임(down time)을 필요로 하고, 비용이 많이 든다.
이에 따라서, 본원에서 개시된 실시예들은, 프로세스 키트의 오프셋을 직접적으로 측정할 수 있는 센서 웨이퍼를 포함한다. 따라서, 프로세스 키트가 원하는 공차 내에서 센터링되어 있음을 확인하기 위하여, 프로세싱 툴의 펌프-다운 후에 단일 시험 절차가 구현될 수 있다. 프로세스 키트 배치가 원하는 공차를 벗어난 것으로 발견되는 경우, 광범위한 시험에 대한 필요 없이, 프로세스 키트는 조정될 수 있다. 그러므로, 본원에서 개시된 실시예들은, 프로세스 키트의 센터링 공차가 개선될 수 있기 때문에, 프로세싱 툴들의 감소된 다운 타임을 제공하고 프로세싱 툴에 의해 구현되는 프로세스들의 균일성을 개선시킨다.
이제 도 1을 참조하면, 실시예에 따라, 프로세싱 툴(100)의 개략적인 단면 예시가 도시된다. 실시예에서, 프로세싱 툴(100)은 프로세싱 툴(100)에서 프로세싱되는 기판들을 지지하기 위한 지지 표면(105)을 포함할 수 있다. 지지 표면(105)은 ESC(electrostatic chuck) 등과 같은 임의의 적절한 지지 표면(105)일 수 있다. 실시예에서, 프로세스 키트(125)가 지지 표면(105) 주위에 포지셔닝될 수 있다. 예컨대, 프로세스 키트(125)는 지지 표면(105)을 완전히 둘러싸는 링일 수 있다.
프로세스 키트(125)는 지지 표면(105) 주위에 느슨하게 맞춰질 수 있다. 도시된 바와 같이, 프로세스 키트(125)의 가장 안쪽 표면(123)이 지지 표면(105)의 가장 바깥쪽 표면(103)의 직경보다 더 큰 직경을 가질 수 있다. 표면(103)과 표면(123)이 서로 직접적으로 접촉하지 않기 때문에, 프로세스 키트(125)가 지지 표면(105)으로부터 중심에서 벗어날 수 있는 공간이 있다.
도 1에 도시된 바와 같이, 프로세스 키트(125)가 중심에서 벗어나 있는지 여부를 측정하기 위해, 센서 웨이퍼(110)가 사용될 수 있다. 실시예에서, 센서 웨이퍼(110)는 생산 웨이퍼와 실질적으로 동일한 치수들을 가질 수 있다. 예컨대, 센서 웨이퍼(110)는 표준 웨이퍼 직경(예컨대, 300 mm 등)인 직경을 가질 수 있다. 도 1에서, 센서 웨이퍼(110)는 프로세스 키트(125)에 대하여 불-균일하게 이격된 에지를 갖는다. 예컨대, 도 1의 좌측의 갭(G1)이 도 1의 우측의 갭(G2)보다 더 작다. 불-균일한 갭들(G1 및 G2)은, 프로세스 키트(125)의 중심선(120)이 센서 웨이퍼(110)의 중심선(115)으로부터 거리(D)만큼 오프셋되게 한다. 도 1에서, 센서 웨이퍼의 중심선(115)은 지지 표면(105)의 중심과 정렬되지만, 실시예들은 그러한 구성들로 제한되지 않는다. 아래에서 설명되는 도 5는, 센서 웨이퍼의 중심선(115)이 지지 표면(105)의 중심과 정렬되지 않은 상황들을 설명한다.
실시예에서, 오프셋 거리(D)는, 복수의 위치들에서 센서 웨이퍼(110)의 에지와 프로세스 키트(125)의 표면 사이의 갭(G)을 측정함으로써 결정될 수 있다. 특정 실시예에서, 갭(G)은, 센서 웨이퍼(110)의 에지들 상에 형성된 복수의 센서 구역들을 이용하여 측정된다. 도 2-도 4c는 다양한 실시예들에 따라, 에지 센서 구역들을 갖는 센서 웨이퍼들(110)의 예시적인 예시들을 제공한다.
이제 도 2를 참조하면, 실시예에 따라, 복수의 에지 센서 구역들(2351-235n)을 갖는 센서 웨이퍼(210)의 평면도 예시가 도시된다. 실시예에서, 에지 센서 구역들(235)은 센서 웨이퍼(210)의 둘레 주위에 분포된다. 각각의 센서 구역(235)은, 센서 웨이퍼(210)의 에지와, 센서 웨이퍼(210)를 에워싸는 프로세스 키트(미도시) 사이의 갭을 측정하기 위해 사용되는 하나 이상의 센서들을 포함한다. 에지 센서 구역들(235)에 있는 하나 이상의 센서들은 용량성 센서들일 수 있다. 특정 실시예에서, 에지 센서 구역들(235)은 셀프-레퍼런싱 용량성 센서들을 포함할 수 있다.
예시된 실시예에서, 3 개의 에지 센서 구역들(235)이 도시된다. 그러나, 센서 웨이퍼(210)의 중심에 대한 프로세스 키트의 중심의 오프셋을 측정하기 위해 3 개 이상의 에지 센서 구역들(235)이 사용될 수 있다는 것이 인식되어야 한다. 당업자들은, 더 많은 에지 센서 구역들(235)을 제공하는 것이 더욱 정확한 측정들을 제공할 것임을 인식할 것이다.
실시예에서, 에지 센서 구역들(235) 각각은 트레이스들(237)을 이용하여 센서 웨이퍼(210) 상의 컴퓨팅 모듈(238)에 통신가능하게 커플링될 수 있다. 실시예에서, 컴퓨팅 모듈(238)은 전력원(232)(예컨대, 배터리), 프로세서/메모리(234)(예컨대, 에지 센서 구역들(235)을 이용하여 만들어지는 측정들을 구현 및/또는 저장하기 위한 회로, 메모리 등) 및 무선 통신 모듈(233)(예컨대, 블루투스, WiFi 등) 중 하나 이상을 포함할 수 있다. 실시예에서, 컴퓨팅 모듈(238)은 센서 웨이퍼(210)에 내장될 수 있다. 부가적으로, 컴퓨팅 모듈(238)이 센서 웨이퍼(210)의 중심에 도시되지만, 컴퓨팅 모듈(238)은 센서 웨이퍼(210)에서 임의의 편리한 위치에 위치될 수 있다는 것이 인식되어야 한다.
이제 도 3을 참조하면, 실시예에 따라, 예시적인 에지 센서 구역(335)의 세부사항들을 강조하는, 센서 웨이퍼(310)의 사시도 예시가 도시된다. 실시예에서, 센서 웨이퍼(310)는 제1 표면(311)(예컨대, 최상부 표면), 제2 표면(313)(예컨대, 최하부 표면), 및 제1 표면(311)을 제2 표면(313)에 연결하는 에지 표면(312)을 포함할 수 있다. 실시예에서, 에지 센서 구역(335)은 에지 표면(312)을 따라 형성될 수 있다.
특정 실시예에서, 에지 센서 구역(335)은 프로브(341)를 포함할 수 있다. 프로브들(341)(즉, 각각의 에지 센서 구역에 있는 프로브)은 셀프-레퍼런싱 용량성 프로브들일 수 있다. 즉, 제1 에지 센서 구역(335)에 있는 제1 프로브(341)에 공급되는 전류의 출력 위상은, 이웃하는 제2 에지 센서 구역(335)에 있는 제2 프로브(341)에 공급되는 전류의 출력 위상으로부터 180 도 오프셋될 수 있다. 따라서, 프로세스 키트가 접지될 필요 없이, 에지 표면(312)으로부터 프로세스 키트(미도시)의 표면까지의 거리 측정이 행해질 수 있다. 예시된 실시예에서, 에지 센서 구역(335)은 단일 프로브를 갖는 것으로서 도시된다. 그러나, 일부 실시예들에서, 각각의 에지 센서 구역(335)은 하나 초과의 프로브(341)를 포함할 수 있다. 본원에서 셀프-레퍼런싱 용량성 센서들에 대한 특정 참조가 행해지지만, 본원에서 개시된 실시예들이 임의의 적절한 센서 기술(예컨대, 레이저 센서들, 광학 센서들 등)을 포함한다는 것이 인식되어야 한다.
이제 도 4a-도 4c를 참조하면, 다양한 실시예들에 따라, 센서 웨이퍼들(410)의 예시적인 부분 단면 예시들이 도시된다. 도 4a에서, 부분 단면 예시는 에지 표면(412)과 실질적으로 동일 평면인 센서 구역(435)을 도시한다. 실시예에서, 센서 구역(435)은, 센서들이 에지 표면(412)과 프로세스 키트의 표면 사이의 갭을 측정할 수 있도록, 에지 표면(412)으로부터 전기장(449)을 방출한다.
이제 도 4b를 참조하면, 실시예에 따라, 전기장 가드(447)를 갖는 센서 웨이퍼(410)의 부분 단면 예시가 도시된다. 실시예에서, 전기장 가드(447)는 센서 웨이퍼(410)의 최하부 표면(413)과 에지 센서 구역(435) 사이에 형성된 전도성 층일 수 있다. 에지 센서 구역(435)의 전기장(449)은 전기장 가드(447)에 의해 변화될 수 있다. 특히, 전기장 가드(447)는, 에지 센서 구역(435)의 전기장(449)이 에지 표면(412)으로부터 프로세스 키트를 향해 측방향으로 연장되도록, 이러한 에지 센서 구역(435)의 전기장(449)을 변화시킬 수 있다. 이에 따라서, 전기장 가드(447)는, 에지 센서 구역(435)에 있는 센서들이 센서 웨이퍼(410) 아래의 객체들을 검출하는 것 ―이는 잘못된 판독들을 제공할 수 있음― 을 방지한다.
이제 도 4c를 참조하면, 실시예에 따라, 최상부 표면 리세스(448)를 갖는 센서 웨이퍼(410)의 부분 단면 예시가 도시된다. 실시예에서, 최상부 표면 리세스(448)는 센서 구역(435)에 바로 인접한 제1 표면(411) 안으로 형성될 수 있다. 최상부 표면 리세스(448)는, 센서 구역(435)의 센서들이 최상부 표면(411)을 감지하여 잘못된 판독들을 제공하는 것을 방지하기 위해 만들어질 수 있다. 실시예에서, 최상부 표면 리세스(448)는 거리(R)만큼 뒤로 연장될 수 있다. 예컨대, 거리(R)는 에지 감지 구역(435)의 최대 감지 거리와 거의 동일할 수 있다. 예컨대, 거리(R)는 2.0 mm 이하일 수 있다.
이제 도 5를 참조하면, 실시예에 따라, 프로세싱 툴(500)의 개략적인 단면 예시가 도시된다. 프로세싱 툴(500)은, 센서 웨이퍼(510)가 지지 표면(505)의 중심점(555)에 대한 프로세스 키트(525) 중심점(520)의 오프셋을 결정하는 능력을 제공한다는 점을 제외하고는, 도 1과 관련하여 위에서 설명된 프로세싱 툴(100)과 실질적으로 유사할 수 있다.
그러한 실시예에서, 센서 웨이퍼(510)는, 제1 오프셋(D1) 및 제2 오프셋(D2)을 측정하기 위해 사용될 수 있다. 제1 오프셋(D1)은 프로세스 키트(525)의 중심선(520)에 대한 센서 웨이퍼(510)의 중심선(515)의 오프셋이다. 제1 오프셋(D1)은, 에지 센서들을 이용하여 센서 웨이퍼(510)의 에지와 프로세스 키트(525)의 표면 사이의 갭들(예컨대, G1/G2)을 측정함으로써 결정될 수 있다. 제2 오프셋(D2)은, 지지 표면(505)의 중심선(555)에 대한 센서 웨이퍼(510)의 중심선(515)의 오프셋이다. 제2 오프셋(D2)은, 최하부들을 향해 있는 센서(bottoms facing sensor)들을 이용하여 지지 표면(505)의 에지 표면(503)의 에지 위치들(501)을 검출함으로써 결정될 수 있다. 실시예에서, 지지 표면(505)의 중심선에 대한 프로세스 키트(525)의 중심선의 총 오프셋(D3)을 계산하기 위해, 오프셋들(D1 및 D2)은 함께 더해질 수 있다.
이제 도 6a를 참조하면, 실시예에 따라, 에지 센서 구역들(6351-635n) 및 최하부 센서 구역들(6651-665n)을 갖는 센서 웨이퍼(610)의 최하부 표면의 평면도 예시가 도시된다. 센서 웨이퍼(210)와 유사하게, 센서 웨이퍼(610)는 전력원(632), 프로세서/메모리(634) 및 무선 통신 모듈(633) 중 하나 이상을 하우징하는 컴퓨팅 모듈(638)을 포함할 수 있다. 컴퓨팅 모듈(638)은 전도성 트레이스들(637)에 의해 에지 센서 구역들(635) 및 최하부 센서 구역들(665)에 통신가능하게 커플링될 수 있다.
실시예에서, 에지 센서 구역들(6351-635n)은 위에서 설명된 에지 센서 구역들(235)과 실질적으로 유사할 수 있다. 실시예에서, 최하부 센서 구역들(6651-n)은 각각, 지지 표면의 에지를 검출하도록 구성된 복수의 센서들(예컨대, 용량성 센서들)을 포함할 수 있다. 센서 웨이퍼(610)에 대한 복수의 위치들(예컨대, 3 개 이상의 위치들)에 지지 표면의 에지를 위치시킴으로써, 센서 웨이퍼(610)의 중심점에 대한 지지 표면의 중심점이 결정될 수 있다.
이제 도 6b를 참조하면, 실시예에 따라, 센서 웨이퍼(610), 및 지지 표면(605)의 일부분의 부분 단면 예시가 도시된다. 도시된 바와 같이, 최하부 센서 구역(665)은 지지 표면(605)을 향해 있는 제2 표면(613)의 리세스 부분 상에 형성될 수 있다. 실시예에서, 최하부 센서 구역(665)은, 지지 표면(605)과 센서 구역(665) 사이의 간격을 결정하는 센서들(예컨대, 포지션 센서들)의 어레이를 포함할 수 있다. 이에 따라서, 위치(601)에서, 최하부 센서 구역(665)에 있는 센서들의 어레이는, 센서 구역(665)에 의해 검출가능한 하부의(underlying) 표면이 없기 때문에, 지지 표면의 에지(603)가 존재한다는 것을 표시할 것이다. 위치(601)의 포지션은 센서 웨이퍼(610)의 중심에 대하여 알려져 있다. 따라서, 3 개 이상의 위치들(601)이 결정될 때, 센서 웨이퍼(610)의 중심점에 대한 지지 표면(605)의 중심점이 계산될 수 있다.
이제 도 7을 참조하면, 실시예에 따라, 프로세스 키트(725)의 포지셔닝을 측정하기 위한 프로세스를 구현하기 위한 배치 제어기(770)와 프로세싱 툴(790)의 개략적인 블록도가 도시된다. 실시예에서, 프로세스 키트(725)는 프로세싱 툴(790)에서 지지 표면(705) 주위에 포지셔닝될 수 있다. 예컨대, 프로세스 키트(725)는 프로세싱 툴(790) 내부에 수동으로 설치될 수 있다.
실시예에서, 배치 제어기(770)는, 프로세싱 툴(790)의 지지 표면(705) 상에 센서 웨이퍼(710)를 배치하도록 포지셔닝 로봇(776)에 명령들을 제공할 수 있다. 센서 웨이퍼(710)는 위에서 설명된 센서 웨이퍼들과 유사한 센서 웨이퍼일 수 있다. 예컨대, 센서 웨이퍼(710)는 센서 웨이퍼(710)의 에지와 프로세스 키트(725)의 에지 사이의 갭들(G1-Gn)을 측정하기 위한 복수의 에지 센서 구역들을 포함할 수 있다. 센서 웨이퍼(710)는 또한, 지지 표면(705)의 에지 위치들(7031-703n)을 결정하기 위한 복수의 최하부 센서 구역들을 포함할 수 있다.
실시예에서, 센서 웨이퍼(710)로부터의 센서 정보는 배치 제어기(770)의 센서 인터페이스(771)에 의해 획득될 수 있다. 예컨대, 센서 인터페이스(771)는 센서 웨이퍼(710)로부터 (예컨대, 무선 통신 모듈을 이용하여 무선으로) 센서 정보를 수신할 수 있다. 배치 제어기(790)는 지지 표면(705)의 중심점에 대한 센서 웨이퍼(710)의 중심점을 결정하기 위해 웨이퍼 중심점 모듈(772)에 있는 센서 정보(예컨대, 에지 위치들(7031-703n))를 활용할 수 있다. 배치 제어기(790)는 프로세스 키트(725)의 중심점에 대한 센서 웨이퍼(710)의 중심점을 결정하기 위해 프로세스 키트 중심점 모듈(773)에 있는 센서 정보(예컨대, 갭들(G1-Gn))를 활용할 수 있다. 배치 제어기(770)는 웨이퍼 중심점 모듈(772) 및 프로세스 키트 중심점 모듈(773)로부터의 결과들을 사용하여 오프셋 값(774)을 생성할 수 있고, 이 오프셋 값(774)은 데이터베이스(775)에 전달된다. 오프셋 값(774)은 지지 표면(705)에 대한 프로세스 키트(725)의 총 오프셋일 수 있다. 실시예에서, 총 오프셋 값(774)이 미리 결정된 임계치를 초과할 때, 프로세스 키트(725)의 포지셔닝이 재조정될 필요가 있음을 표시하는 경고가 생성될 수 있다. 예컨대, 미리 결정된 임계치는 200 미크론 이상, 또는 100 미크론 이상일 수 있다.
이제 도 8을 참조하면, 실시예에 따라, 센서 웨이퍼를 이용하여 프로세스 키트의 중심점을 결정하기 위한 프로세스(880)의 프로세스 흐름도가 도시된다.
실시예에서, 프로세스(880)는, 지지 표면 상에 복수의 에지 센서 구역들을 갖는 센서 웨이퍼를 배치하는 것을 포함하는 동작(881)으로 시작한다. 센서 웨이퍼는 본원에서 개시된 실시예들에 따라 설명된 임의의 센서 웨이퍼일 수 있다. 실시예에서, 도 7과 관련하여 설명된 실시예와 유사하게, 센서 웨이퍼는, 배치 제어기에 의해 제어되는 포지셔닝 로봇을 이용하여 지지 표면 상에 배치될 수 있다.
실시예에서, 프로세스(880)는, 복수의 에지 센서 구역들 각각을 이용하여 센서 웨이퍼의 에지와 프로세스 키트의 표면 사이의 갭 거리를 결정하는 것을 포함하는 동작(882)으로 계속될 수 있다. 예컨대, 에지 센서 구역들은 셀프-레퍼런싱 용량성 센서들을 포함할 수 있다. 에지 센서 구역들은 용량성 센서들의 전기장을 변화시키기 위해 이 에지 센서 구역들 아래에 전기장 가드들을 가질 수 있다. 부가적인 실시예들은, 센서 웨이퍼의 최상부 표면의 잘못된 측정들을 없애기 위해 에지 센서 구역들에 근접한 최상부 표면 리세스를 포함할 수 있다.
실시예에서, 프로세스(880)는, 복수의 에지 센서 구역들로부터의 갭 거리들을 사용하여 센서 웨이퍼 중심점에 대한 프로세스 키트 중심점의 중심점 오프셋을 결정하는 것을 포함하는 동작(883)으로 계속될 수 있다. 실시예에서, 중심점 오프셋은 포지셔닝 제어기에 의해 결정되고 데이터베이스에 저장될 수 있다. 일부 실시예들에서, 중심점 오프셋이 미리 결정된 임계치를 초과할 때, 프로세스 키트는 재배치될 수 있다.
이제 도 9를 참조하면, 실시예에 따라, 센서 웨이퍼를 이용하여 프로세스 키트의 중심점을 결정하기 위한 프로세스(980)의 프로세스 흐름도가 도시된다.
실시예에서, 프로세스(980)는, 지지 표면 상에 복수의 에지 센서 구역들 및 복수의 최하부 센서 구역들을 갖는 센서 웨이퍼를 배치하는 것을 포함하는 동작(981)으로 시작한다. 센서 웨이퍼는 본원에서 개시된 실시예들에 따라 설명된 임의의 센서 웨이퍼일 수 있다. 예컨대, 센서 웨이퍼는 도 6a에서 예시된 센서 웨이퍼(610)와 유사할 수 있다.
실시예에서, 프로세스(980)는, 복수의 최하부 센서 구역들을 사용하여 지지 표면의 복수의 에지 위치 측정들을 결정하는 것을 포함하는 동작(982)으로 계속된다.
실시예에서, 프로세스(980)는, 복수의 에지 위치 측정들을 사용하여 지지 표면의 중심에 대한 센서 웨이퍼의 중심의 제1 중심점 오프셋을 결정하는 것을 포함하는 동작(983)으로 계속될 수 있다.
실시예에서, 프로세스(980)는, 복수의 에지 센서 구역들 각각을 이용하여 센서 웨이퍼의 에지와 프로세스 키트의 표면 사이의 갭 거리를 결정하는 것을 포함하는 동작(984)으로 계속될 수 있다.
실시예에서, 프로세스(980)는, 복수의 에지 센서 구역들로부터의 갭 거리들을 사용하여 센서 웨이퍼 중심점에 대한 프로세스 키트 중심점의 제2 중심점 오프셋을 결정하는 것을 포함하는 동작(985)으로 계속될 수 있다.
이제 도 10을 참조하면, 실시예에 따라, 프로세싱 툴의 예시적인 컴퓨터 시스템(1060)의 블록도가 예시된다. 실시예에서, 컴퓨터 시스템(1060)은 배치 제어기로서 사용될 수 있다. 실시예에서, 컴퓨터 시스템(1060)은 프로세싱 툴에 커플링되어 프로세싱 툴에서의 프로세싱을 제어한다. 컴퓨터 시스템(1060)은 네트워크(1061)(예컨대, LAN(Local Area Network), 인트라넷, 엑스트라넷 또는 인터넷)에 있는 다른 머신들에 연결(예컨대, 네트워킹)될 수 있다. 컴퓨터 시스템(1060)은 클라이언트-서버 네트워크 환경에서 서버 또는 클라이언트 머신으로서, 또는 피어-투-피어(또는 분산) 네트워크 환경에서 피어 머신으로서 동작할 수 있다. 컴퓨터 시스템(1060)은 PC(personal computer), 태블릿 PC, STB(set-top box), PDA(Personal Digital Assistant), 셀룰러 전화, 웹 어플라이언스, 서버, 네트워크 라우터, 스위치 또는 브리지, 또는 자신이 행할 액션들을 특정하는 한 세트의 명령들을 (순차적으로 또는 다른 방식으로) 실행할 수 있는 임의의 머신일 수 있다. 추가로, 컴퓨터 시스템(1060)에 대해 단일 머신만이 예시되지만, "머신"이라는 용어는 또한, 본원에서 설명된 방법론들 중 임의의 하나 이상의 방법론을 수행하기 위한 한 세트(또는 다수의 세트들)의 명령들을 개별적으로 또는 공동으로 실행하는 머신들(예컨대, 컴퓨터들)의 임의의 집합을 포함하는 것으로 간주될 것이다.
컴퓨터 시스템(1060)은, 실시예들에 따른 프로세스를 수행하도록 컴퓨터 시스템(1060)(또는 다른 전자 디바이스들)을 프로그램하기 위해 사용될 수 있는 명령들이 저장되어 있는 비-일시적인 머신-판독가능 매체를 갖는, 컴퓨터 프로그램 제품 또는 소프트웨어(1022)를 포함할 수 있다. 머신-판독가능 매체는 머신(예컨대, 컴퓨터)에 의해 판독가능한 형태로 정보를 저장하거나 또는 송신하기 위한 임의의 메커니즘을 포함한다. 예컨대, 머신-판독가능(예컨대, 컴퓨터-판독가능) 매체는 머신(예컨대, 컴퓨터) 판독가능 저장 매체(예컨대, "ROM(read only memory)", "RAM(random access memory)", 자기 디스크 저장 매체, 광학 저장 매체, 플래시 메모리 디바이스들 등), 머신(예컨대, 컴퓨터) 판독가능 송신 매체(전기, 광학, 음향 또는 다른 형태의 전파 신호들(예컨대, 적외선 신호들, 디지털 신호들 등)) 등을 포함한다.
실시예에서, 컴퓨터 시스템(1060)은 버스(1030)를 통해 서로 통신하는, 시스템 프로세서(1002), 메인 메모리(1004)(예컨대, ROM(read-only memory), 플래시 메모리, DRAM(dynamic random access memory), 이를테면, SDRAM(synchronous DRAM) 또는 RDRAM(Rambus DRAM) 등), 정적 메모리(1006)(예컨대, 플래시 메모리, SRAM(static random access memory) 등) 및 보조 메모리(1018)(예컨대, 데이터 저장 디바이스)를 포함한다.
시스템 프로세서(1002)는 마이크로시스템 프로세서, 중앙 프로세싱 유닛 등과 같은 하나 이상의 범용 프로세싱 디바이스들을 표현한다. 더욱 구체적으로, 시스템 프로세서는 CISC(complex instruction set computing) 마이크로시스템 프로세서, RISC(reduced instruction set computing) 마이크로시스템 프로세서, VLIW(very long instruction word) 마이크로시스템 프로세서, 다른 명령 세트들을 구현하는 시스템 프로세서, 또는 명령 세트들의 조합을 구현하는 시스템 프로세서들일 수 있다. 시스템 프로세서(1002)는 또한, ASIC(application specific integrated circuit), FPGA(field programmable gate array), DSP(digital signal system processor), 네트워크 시스템 프로세서 등과 같은 하나 이상의 특수-목적 프로세싱 디바이스들일 수 있다. 시스템 프로세서(1002)는, 본원에서 설명된 동작들을 수행하기 위한 프로세싱 로직(1026)을 실행하도록 구성된다.
컴퓨터 시스템(1060)은 다른 디바이스들 또는 머신들과 통신하기 위한 시스템 네트워크 인터페이스 디바이스(1008)를 더 포함할 수 있다. 컴퓨터 시스템(1060)은 또한, 비디오 디스플레이 유닛(1010)(예컨대, LCD(liquid crystal display), LED(light emitting diode display) 또는 CRT(cathode ray tube)), 영숫자 입력 디바이스(1012)(예컨대, 키보드), 커서 제어 디바이스(1014)(예컨대, 마우스) 및 신호 생성 디바이스(1016)(예컨대, 스피커)를 포함할 수 있다.
보조 메모리(1018)는 본원에서 설명된 방법론들 또는 기능들 중 임의의 하나 이상을 구현하는 하나 이상의 세트들의 명령들(예컨대, 소프트웨어(1022))이 저장된 머신-액세스가능 저장 매체(1031)(또는 더욱 구체적으로는, 컴퓨터-판독가능 저장 매체)를 포함할 수 있다. 소프트웨어(1022)는 또한, 컴퓨터 시스템(1060)에 의한 그 소프트웨어(1022)의 실행 동안 시스템 프로세서(1002) 내에 그리고/또는 메인 메모리(1004) 내에 완전히 또는 적어도 부분적으로 상주할 수 있으며, 메인 메모리(1004) 및 시스템 프로세서(1002)는 머신-판독가능 저장 매체를 또한 구성한다. 소프트웨어(1022)는 추가로, 시스템 네트워크 인터페이스 디바이스(1008)를 통해 네트워크(1061)를 통하여 송신되거나 또는 수신될 수 있다.
머신-액세스가능 저장 매체(1031)가 예시적인 실시예에서 단일 매체인 것으로 도시되지만, "머신-판독가능 저장 매체"란 용어는 하나 이상의 세트들의 명령들을 저장하는, 단일 매체 또는 다중 매체(예컨대, 중앙집중 또는 분산 데이터베이스, 및/또는 연관된 캐시들 및 서버들)를 포함하는 것으로 간주되어야 한다. "머신-판독가능 저장 매체"란 용어는 또한, 머신에 의한 실행을 위한 한 세트의 명령들을 저장하거나 또는 인코딩할 수 있고 머신으로 하여금 방법론들 중 임의의 하나 이상의 방법론들을 수행하게 하는 임의의 매체를 포함하는 것으로 간주될 것이다. 이에 따라서, "머신-판독가능 저장 매체"란 용어는 솔리드-스테이트 메모리들 그리고 광학 및 자기 매체를 포함(그러나, 이에 제한되지 않음)하는 것으로 간주될 것이다.
전술된 명세서에서는, 특정 예시적인 실시예들이 설명되었다. 다음의 청구항들의 범위를 벗어나지 않고, 다양한 수정들이 이러한 실시예들에 대해 행해질 수 있다는 것이 자명할 것이다. 이에 따라서, 본 명세서 및 도면들은 제한적인 의미가 아닌 예시적인 의미로 간주되어야 한다.

Claims (15)

  1. 기판 ―상기 기판은 제1 표면, 상기 제1 표면에 대향하는 제2 표면, 및 상기 제1 표면과 상기 제2 표면 사이의 에지 표면을 포함함―; 및
    상기 제1 표면에 인접한 상기 에지 표면을 따라 형성된 복수의 센서 구역들
    을 포함하고,
    각각의 센서 구역은 셀프-레퍼런싱 용량성 센서(self-referencing capacitive sensor)를 포함하고,
    리세스가 상기 각각의 센서 구역에 바로 인접하여 상기 기판의 제1 표면 안으로 형성되고, 상기 각각의 센서 구역으로부터 적어도 상기 센서 구역의 최대 감지 거리만큼 뒤로 연장되는,
    센서 웨이퍼.
  2. 제1항에 있어서,
    상기 복수의 센서 구역들은 적어도 3 개의 센서 구역들을 포함하는,
    센서 웨이퍼.
  3. 제1항에 있어서,
    상기 셀프-레퍼런싱 용량성 센서는 제1 프로브 및 제2 프로브를 포함하고, 상기 제1 프로브의 출력 위상은 상기 제2 프로브의 출력 위상으로부터 180 도 오프셋되는,
    센서 웨이퍼.
  4. 삭제
  5. 제1항에 있어서,
    상기 리세스는 상기 센서 구역으로부터 뒤로 적어도 1.0 mm만큼 연장되는,
    센서 웨이퍼.
  6. 제1항에 있어서,
    상기 기판의 상기 제2 표면 상의 복수의 제2 센서 구역들을 더 포함하는,
    센서 웨이퍼.
  7. 제6항에 있어서,
    상기 제2 센서 구역들은 상기 제2 표면으로부터 리세스되는,
    센서 웨이퍼.
  8. 제1항에 있어서,
    상기 복수의 센서 구역들의 각각의 센서 구역 아래의 전기장 가드를 더 포함하는,
    센서 웨이퍼.
  9. 제1항에 있어서,
    컴퓨팅 모듈을 더 포함하고, 상기 컴퓨팅 모듈은 상기 복수의 센서 구역들에 통신가능하게 커플링되는,
    센서 웨이퍼.
  10. 챔버에서 프로세스 키트의 포지션을 결정하는 방법으로서,
    챔버 안으로 지지 표면 주위에 프로세스 키트를 배치하는 단계;
    상기 지지 표면 상에 센서 웨이퍼를 배치하는 단계 ―상기 센서 웨이퍼는 상기 지지 표면에 의해 지지되는 제1 표면, 상기 제1 표면에 대향하는 제2 표면, 및 상기 제1 표면을 상기 제2 표면에 연결하는 에지 표면을 포함하고, 복수의 센서 구역들이 상기 제1 표면에 인접한 상기 에지 표면 상에 형성되고, 그리고 리세스가 각각의 센서 구역에 바로 인접하여 상기 센서 웨이퍼의 제1 표면 안으로 형성되고 상기 각각의 센서 구역으로부터 적어도 상기 센서 구역의 최대 감지 거리만큼 뒤로 연장됨―;
    상기 복수의 센서 구역들의 각각의 센서 구역과 상기 프로세스 키트의 표면 사이의 갭 거리를 결정하는 단계; 및
    갭 거리들로부터 상기 센서 웨이퍼의 중심점에 대한 상기 프로세스 키트의 중심점의 중심점 오프셋을 결정하는 단계
    를 포함하는,
    챔버에서 프로세스 키트의 포지션을 결정하는 방법.
  11. 제10항에 있어서,
    상기 복수의 센서 구역들은 셀프-레퍼런싱 용량성 센서들을 포함하는,
    챔버에서 프로세스 키트의 포지션을 결정하는 방법.
  12. 제11항에 있어서,
    상기 셀프-레퍼런싱 용량성 센서들은 제1 프로브 및 제2 프로브를 포함하고, 상기 제1 프로브의 출력 위상은 상기 제2 프로브의 출력 위상으로부터 180 도 오프셋되는,
    챔버에서 프로세스 키트의 포지션을 결정하는 방법.
  13. 제10항에 있어서,
    제2 중심점 오프셋을 결정하는 단계를 더 포함하고, 상기 제2 중심점 오프셋은 상기 지지 표면의 중심점에 대한 상기 센서 웨이퍼의 중심점의 오프셋인,
    챔버에서 프로세스 키트의 포지션을 결정하는 방법.
  14. 제13항에 있어서,
    상기 제2 중심점 오프셋을 결정하기 위해 상기 센서 웨이퍼의 상기 제1 표면 상의 제2 센서 구역들이 사용되는,
    챔버에서 프로세스 키트의 포지션을 결정하는 방법.
  15. 제14항에 있어서,
    총 오프셋을 결정하는 단계를 더 포함하고, 상기 총 오프셋은, 제1 중심점 오프셋을 상기 제2 중심점 오프셋에 더함으로써 결정되는,
    챔버에서 프로세스 키트의 포지션을 결정하는 방법.
KR1020217002770A 2018-09-04 2019-07-31 프로세스 키트 센터링을 측정하기 위한 방법 및 장치 KR102639660B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247005474A KR20240028545A (ko) 2018-09-04 2019-07-31 프로세스 키트 센터링을 측정하기 위한 방법 및 장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/121,183 2018-09-04
US16/121,183 US10847393B2 (en) 2018-09-04 2018-09-04 Method and apparatus for measuring process kit centering
PCT/US2019/044524 WO2020050926A1 (en) 2018-09-04 2019-07-31 Method and apparatus for measuring process kit centering

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247005474A Division KR20240028545A (ko) 2018-09-04 2019-07-31 프로세스 키트 센터링을 측정하기 위한 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20210013345A KR20210013345A (ko) 2021-02-03
KR102639660B1 true KR102639660B1 (ko) 2024-02-21

Family

ID=69640053

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217002770A KR102639660B1 (ko) 2018-09-04 2019-07-31 프로세스 키트 센터링을 측정하기 위한 방법 및 장치
KR1020247005474A KR20240028545A (ko) 2018-09-04 2019-07-31 프로세스 키트 센터링을 측정하기 위한 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020247005474A KR20240028545A (ko) 2018-09-04 2019-07-31 프로세스 키트 센터링을 측정하기 위한 방법 및 장치

Country Status (6)

Country Link
US (2) US10847393B2 (ko)
JP (2) JP7286754B2 (ko)
KR (2) KR102639660B1 (ko)
CN (1) CN112470262B (ko)
TW (2) TWI789094B (ko)
WO (1) WO2020050926A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235153B2 (ja) * 2017-12-29 2023-03-08 株式会社三洋物産 遊技機
JP7235154B2 (ja) * 2018-02-15 2023-03-08 株式会社三洋物産 遊技機
JP7231076B2 (ja) * 2018-03-08 2023-03-01 株式会社三洋物産 遊技機
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
US11404296B2 (en) * 2018-09-04 2022-08-02 Applied Materials, Inc. Method and apparatus for measuring placement of a substrate on a heater pedestal
US11688617B2 (en) * 2018-12-11 2023-06-27 Rorze Corporation Electrostatic capacitance sensor
JP2020103418A (ja) * 2018-12-26 2020-07-09 株式会社三洋物産 遊技機
JP2021186294A (ja) * 2020-05-29 2021-12-13 株式会社三洋物産 遊技機
JP2023053387A (ja) * 2022-02-04 2023-04-12 株式会社三洋物産 遊技機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279081A (ja) * 2003-03-13 2004-10-07 Canon Inc 静電容量センサ式計測装置
JP2006173607A (ja) * 2004-12-10 2006-06-29 Asml Netherlands Bv 液浸リソグラフィにおける基板の配置
JP2017003557A (ja) * 2015-06-11 2017-01-05 東京エレクトロン株式会社 静電容量測定用のセンサチップ及び同センサチップを備えた測定器
JP2017228754A (ja) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 静電容量測定用の測定器、及び、測定器を用いて処理システムにおける搬送位置データを較正する方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468056B2 (ja) 1997-09-23 2003-11-17 東京エレクトロン株式会社 基板検出装置
US6965432B2 (en) * 2002-06-07 2005-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. Non-invasive wafer transfer position diagnosis and calibration
US7135852B2 (en) 2002-12-03 2006-11-14 Sensarray Corporation Integrated process condition sensing wafer and data analysis system
KR20050073154A (ko) * 2004-01-09 2005-07-13 삼성전자주식회사 반도체 기판 가공 장치
US7893697B2 (en) 2006-02-21 2011-02-22 Cyberoptics Semiconductor, Inc. Capacitive distance sensing in semiconductor processing tools
CN101410690B (zh) 2006-02-21 2011-11-23 赛博光学半导体公司 半导体加工工具中的电容性距离感测
US7521915B2 (en) * 2006-04-25 2009-04-21 Sokudo Co., Ltd. Wafer bevel particle detection
US8104342B2 (en) 2007-02-23 2012-01-31 Kla-Tencor Corporation Process condition measuring device
US7778793B2 (en) 2007-03-12 2010-08-17 Cyberoptics Semiconductor, Inc. Wireless sensor for semiconductor processing systems
US20080246493A1 (en) 2007-04-05 2008-10-09 Gardner Delrae H Semiconductor Processing System With Integrated Showerhead Distance Measuring Device
US7737567B2 (en) * 2007-06-22 2010-06-15 Crossing Automation, Inc. Method and apparatus for wafer marking
JP4956328B2 (ja) 2007-08-24 2012-06-20 東京エレクトロン株式会社 搬送アームの移動位置の調整方法及び位置検出用治具
KR20090122694A (ko) * 2008-05-26 2009-12-01 주식회사 하이닉스반도체 화학 기상 증착 장치
US20110074341A1 (en) 2009-09-25 2011-03-31 Kla- Tencor Corporation Non-contact interface system
US8638109B2 (en) 2009-12-31 2014-01-28 Mapper Lithography Ip B.V. Capacitive sensing system with differential pairs
US8889021B2 (en) 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
US20110192573A1 (en) 2010-02-08 2011-08-11 Harmel Defretin System and method for moving a first fluid using a second fluid
HUE059711T2 (hu) 2010-05-08 2022-12-28 Univ California Készülék fekély korai érzékelésére szubepidermális nedvesség szkennelésével
US9023667B2 (en) * 2011-04-27 2015-05-05 Applied Materials, Inc. High sensitivity eddy current monitoring system
US9245786B2 (en) 2011-06-02 2016-01-26 Applied Materials, Inc. Apparatus and methods for positioning a substrate using capacitive sensors
WO2013162842A1 (en) * 2012-04-25 2013-10-31 Applied Materials, Inc. Wafer edge measurement and control
US10099245B2 (en) * 2013-03-14 2018-10-16 Applied Materials, Inc. Process kit for deposition and etching
JP6224428B2 (ja) * 2013-11-19 2017-11-01 東京エレクトロン株式会社 載置台にフォーカスリングを吸着する方法
US9685362B2 (en) 2014-02-19 2017-06-20 International Business Machines Corporation Apparatus and method for centering substrates on a chuck
US10522380B2 (en) * 2014-06-20 2019-12-31 Applied Materials, Inc. Method and apparatus for determining substrate placement in a process chamber
US10196741B2 (en) * 2014-06-27 2019-02-05 Applied Materials, Inc. Wafer placement and gap control optimization through in situ feedback
JP6383647B2 (ja) * 2014-11-19 2018-08-29 東京エレクトロン株式会社 測定システムおよび測定方法
US10658222B2 (en) 2015-01-16 2020-05-19 Lam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
US10304900B2 (en) * 2015-04-02 2019-05-28 Microsoft Technology Licensing, Llc Bending semiconductor chip in molds having radially varying curvature
JP6512954B2 (ja) * 2015-06-11 2019-05-15 東京エレクトロン株式会社 フォーカスリングを検査するためのシステム、及びフォーカスリングを検査する方法
KR102307737B1 (ko) 2015-06-11 2021-10-01 도쿄엘렉트론가부시키가이샤 정전 용량 측정용의 센서 칩 및 센서 칩을 구비한 측정기
KR20170014384A (ko) 2015-07-30 2017-02-08 삼성전자주식회사 건식 식각장치
JP6502232B2 (ja) * 2015-10-23 2019-04-17 東京エレクトロン株式会社 フォーカスリング及びセンサチップ
US10067070B2 (en) 2015-11-06 2018-09-04 Applied Materials, Inc. Particle monitoring device
KR101841607B1 (ko) 2017-02-03 2018-03-26 (주)제이디 전원제어기능을 가지는 회로 임베디드 웨이퍼
US11342210B2 (en) * 2018-09-04 2022-05-24 Applied Materials, Inc. Method and apparatus for measuring wafer movement and placement using vibration data
US11521872B2 (en) * 2018-09-04 2022-12-06 Applied Materials, Inc. Method and apparatus for measuring erosion and calibrating position for a moving process kit
US11404296B2 (en) * 2018-09-04 2022-08-02 Applied Materials, Inc. Method and apparatus for measuring placement of a substrate on a heater pedestal
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
US10790237B2 (en) 2018-09-14 2020-09-29 Lam Research Corporation Fiducial-filtering automatic wafer centering process and associated system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279081A (ja) * 2003-03-13 2004-10-07 Canon Inc 静電容量センサ式計測装置
JP2006173607A (ja) * 2004-12-10 2006-06-29 Asml Netherlands Bv 液浸リソグラフィにおける基板の配置
JP2017003557A (ja) * 2015-06-11 2017-01-05 東京エレクトロン株式会社 静電容量測定用のセンサチップ及び同センサチップを備えた測定器
JP2017228754A (ja) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 静電容量測定用の測定器、及び、測定器を用いて処理システムにおける搬送位置データを較正する方法

Also Published As

Publication number Publication date
JP2023120199A (ja) 2023-08-29
KR20240028545A (ko) 2024-03-05
US11387122B2 (en) 2022-07-12
US20200075368A1 (en) 2020-03-05
US10847393B2 (en) 2020-11-24
TWI748232B (zh) 2021-12-01
TW202209526A (zh) 2022-03-01
WO2020050926A1 (en) 2020-03-12
US20210035832A1 (en) 2021-02-04
JP2021536120A (ja) 2021-12-23
TW202025324A (zh) 2020-07-01
TWI789094B (zh) 2023-01-01
JP7286754B2 (ja) 2023-06-05
KR20210013345A (ko) 2021-02-03
CN112470262B (zh) 2024-06-11
CN112470262A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
KR102639660B1 (ko) 프로세스 키트 센터링을 측정하기 위한 방법 및 장치
US11908724B2 (en) Method and apparatus for measuring placement of a substrate on a heater pedestal
US11978647B2 (en) Method and apparatus for measuring erosion and calibrating position for a moving process kit
US11342210B2 (en) Method and apparatus for measuring wafer movement and placement using vibration data

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant