KR102308691B1 - Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same - Google Patents

Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same Download PDF

Info

Publication number
KR102308691B1
KR102308691B1 KR1020140038283A KR20140038283A KR102308691B1 KR 102308691 B1 KR102308691 B1 KR 102308691B1 KR 1020140038283 A KR1020140038283 A KR 1020140038283A KR 20140038283 A KR20140038283 A KR 20140038283A KR 102308691 B1 KR102308691 B1 KR 102308691B1
Authority
KR
South Korea
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
aqueous electrolyte
carbon
Prior art date
Application number
KR1020140038283A
Other languages
Korean (ko)
Other versions
KR20150113771A (en
KR102308691B9 (en
Inventor
차우병
임보라미
김갑수
김성수
오성민
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to KR1020140038283A priority Critical patent/KR102308691B1/en
Publication of KR20150113771A publication Critical patent/KR20150113771A/en
Application granted granted Critical
Publication of KR102308691B1 publication Critical patent/KR102308691B1/en
Publication of KR102308691B9 publication Critical patent/KR102308691B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것으로서, 더욱 상세하게는 카본 나노 파이버 및 탄소를 포함하는 SiOMg복합체를 이용한 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것이다.
본 발명에 의한 비수전해질 이차 전지용 음극재는 음극활물질의 부피 변화를 억제하고, 음극 전극내 음극활물질간의 부착성 및 전기전도성을 향상시켜 주어 음극산화 규소의 높은 전지 용량을 유지하면서도 첫회 충방전 효율이 높고, 사이클 특성이 뛰어난 효과를 나타낸다.
The present invention relates to a negative electrode material for a nonaqueous electrolyte secondary battery, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery comprising the same, and more particularly, to a negative electrode material for a nonaqueous electrolyte secondary battery using a SiOMg composite containing carbon nanofibers and carbon, and manufacturing the same It relates to a method and a non-aqueous electrolyte secondary battery comprising the same.
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention suppresses the volume change of the negative electrode active material and improves the adhesion and electrical conductivity between the negative electrode active materials in the negative electrode, so that the high battery capacity of the anode silicon oxide is maintained while the first charge/discharge efficiency is high , shows the effect of excellent cycle characteristics.

Description

비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지{NEGATIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND RECHARGEABLE BATTERY INCLUDING THE SAME}Anode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery comprising same

본 발명은 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것으로서, 더욱 상세하게는 카본 나노 파이버 및 탄소를 포함하는 SiOMg 복합체를 이용한 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것이다.
The present invention relates to a negative electrode material for a nonaqueous electrolyte secondary battery, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery comprising the same, and more particularly, to a negative electrode material for a nonaqueous electrolyte secondary battery using a SiOMg composite containing carbon nanofibers and carbon, and manufacturing the same It relates to a method and a non-aqueous electrolyte secondary battery comprising the same.

최근, 휴대형의 전자기기, 통신 기기 등의 현저한 발전에 수반하여, 경제성과 기기의 소형화 및 경량화의 관점에서, 고에너지 밀도의 이차 전지의 개발이 강하게 요망되고 있다. 현재, 고에너지 밀도의 이차 전지로서, 니켈카드뮴 전지, 니켈수소 전지, 리튬 이온 이차 전지 및 폴리머 전지 등이 있다. 이 중, 리튬 이온 이차 전지는, 니켈카드뮴 전지나 니켈수소 전지에 비해 현격히 고수명이며 또한 고용량이기 때문에, 그 수요는 전원 시장에 있어서 높은 성장을 나타내고 있다.BACKGROUND ART In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, development of a secondary battery having a high energy density is strongly desired from the viewpoints of economy and device miniaturization and weight reduction. Currently, as a secondary battery having a high energy density, there are a nickel cadmium battery, a nickel hydride battery, a lithium ion secondary battery, a polymer battery, and the like. Among these, since a lithium ion secondary battery has a significantly longer life and a high capacity compared with a nickel-cadmium battery and a nickel-hydrogen battery, the demand has shown high growth in the power supply market.

종래, 리튬 이온 이차 전지의 음극 활물질로서는, 카본계 재료가 이용되고 있다. 종래의 것보다 리튬 이온 이차 전지를 고용량으로 하는 신규 음극 활물질로서, 리튬과 붕소의 복합 산화물, 리튬과 천이 금속(V, Fe, Cr, Mo, Ni 등)의 복합 산화물, Si, Ge 또는 Sn과 N 및 O를 포함하는 화합물, 화학 증착에 의해 표면을 탄소층으로 피복한 Si입자 등이 제안되어 있다.Conventionally, as a negative electrode active material of a lithium ion secondary battery, a carbon-type material is used. As a novel negative electrode active material with a lithium ion secondary battery having a higher capacity than the conventional one, a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.), Si, Ge or Sn A compound containing N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.

그러나, 이들 음극 활물질은 모두, 충방전 용량을 향상시켜, 에너지 밀도를 높일 수 있지만, 리튬 이온의 흡장, 방출 시의 팽창이나 수축이 커진다. 그 때문에, 이들 음극 활물질을 이용한 리튬 이온 이차 전지는, 충방전의 반복에 의한 방전 용량의 유지성(이하, 「사이클 특성」이라고 한다)이 불충분하다.However, although all of these negative electrode active materials can improve charge/discharge capacity and increase energy density, expansion and contraction at the time of occlusion and release of lithium ions become large. Therefore, the lithium ion secondary battery using these negative electrode active materials is insufficient in the maintainability of the discharge capacity by repeated charge/discharge (henceforth "cycle characteristic").

이에 반해, 음극 활물질로서, SiO 등, SiOx(0<x≤2)로 표시되는 산화규소의 분말을 이용하는 것이, 종래부터 시도되고 있다.On the other hand, as a negative electrode active material, it has conventionally been tried to use the powder of silicon oxide represented by SiOx (0<x≤2), such as SiO.

산화규소는 SiOx (단, x는 O/Si의 mole비, 이론치의 1보다 조금 크다)라고 표기할 수 있지만, 투과전자현미경에 의한 분석에서는 비정질에서부터 수십 nm까지의결정질규소가 규소 산화물 안에 미분산하고 있는 구조를 나타낸다. 이 때문에, 전지 용량은 규소와 비교해 작지만 탄소와 비교하면 5~6배로 높고, 또 체적 팽창도 작고, 음극활물질로서 사용하기 쉽다고 생각되고 있었다. 그렇지만, 산화규소는 비가역용량이 크고, 초기 효율이 70% 정도로 매우 낮기 때문에 실제로 전지를 제작한 경우에서는 양극의 전지 용량을 과잉으로 필요로 하고, 활물질당 5~6배의 용량 증가분에 알맞을 만한 전지 용량의 증가를 기대할 수 없다는 문제점이 있다.Silicon oxide can be expressed as SiOx (however, x is the mole ratio of O/Si, which is slightly larger than 1 of the theoretical value), but in the analysis by transmission electron microscopy, crystalline silicon from amorphous to several tens of nm is finely dispersed in silicon oxide, represents the structure. For this reason, although the battery capacity is small compared with silicon, compared with carbon, it is 5 to 6 times higher, and the volume expansion is also small, and it was thought that it was easy to use as a negative electrode active material. However, since silicon oxide has a large irreversible capacity and a very low initial efficiency of about 70%, when a battery is actually manufactured, the battery capacity of the positive electrode is required excessively, and a battery suitable for a capacity increase of 5 to 6 times per active material There is a problem that an increase in capacity cannot be expected.

특허 문헌 1에서는 산화 규소에 탄소피막을 코팅하고 수소화 마그네슘 및 수소화 칼슘을 도핑하여 음극재와폴리이미드 바인더와의 화학반응을 억제하고 음극 페이스트의 안정성을 높이고 싸이클 내구성도 양호하다고 기재되었으나, 그 효과가 뚜렷하지 않고 초기 효율을 높이는 데에는 한계가 있다.In Patent Document 1, it is described that silicon oxide is coated with a carbon film and doped with magnesium hydride and calcium hydride to suppress the chemical reaction between the negative electrode material and the polyimide binder, increase the stability of the negative electrode paste, and have good cycle durability. It is not clear and there is a limit to increasing the initial efficiency.

특허 문헌 2에서는 산화 규소 입자 표면에 금속 산화물을 코팅하여 이차전지에 사용할 경우, 충전 용량 및 방전 용량은 거의 감소 없이 전해액의 분해로 인한 가스 발생량을 적게 하였으나 구체적인 사이클 특성 개선효과가 기재되지 않았다.In Patent Document 2, when a metal oxide is coated on the surface of a silicon oxide particle and used in a secondary battery, the amount of gas generated due to the decomposition of the electrolyte is reduced with little decrease in the charge capacity and the discharge capacity, but the specific effect of improving cycle characteristics is not described.

특허 문헌 3에서는 산화 규소와 Si 입자의 복합입자 중에서 탄소 나노튜브, 탄소 나노 섬유 또는 탄소 섬유로 코팅 된 Si 입자로만 한정하고 있다.
Patent Document 3 is limited to carbon nanotubes, carbon nanofibers, or Si particles coated with carbon fibers among composite particles of silicon oxide and Si particles.

[특허 문헌 1] 일본특허특개 2012-33317호 공보[Patent Document 1] Japanese Patent Laid-Open No. 2012-33317 [특허 문헌 2] 일본특허특개 2011-96455호 공보[Patent Document 2] Japanese Patent Laid-Open No. 2011-96455 [특허 문헌 3] 일본특허특개 2012-99341호 공보[Patent Document 3] Japanese Patent Laid-Open No. 2012-99341

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 규소, 규소산화물, 마그네슘 산화물, 카본 나노 파이버 및 탄소를 포함하는 SiOMg 복합체 및 이의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a SiOMg composite including silicon, silicon oxide, magnesium oxide, carbon nanofibers and carbon, and a method for manufacturing the same in order to solve the problems of the prior art.

본 발명은 또한, 본 발명에 의한 산화 규소 마그네슘 복합체를 이용한 비수전해질 이차전지용 음극 및 비수전해질 이차전지를 제공하는 것을 목적으로 한다.
Another object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the silicon-magnesium oxide composite according to the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 규소, 규소산화물, 마그네슘 산화물, 카본 나노 파이버 및 탄소를 포함하는 SiOMg 복합체인 비수전해질 이차전지용 음극재를 제공한다.The present invention provides a negative electrode material for a non-aqueous electrolyte secondary battery, which is a SiOMg composite including silicon, silicon oxide, magnesium oxide, carbon nanofibers and carbon in order to solve the above problems.

본 발명에 의한 비수전해질 이차전지용 음극재는 Si 함량이 30 내지 60 질량%, 산소 함량이 20 내지 40 질량%, Mg 함량은 0.1 내지 20 질량%, 카본 나노 파이버 및 탄소 함량이 1 내지 20 질량%인 것을 특징으로 한다. The negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention has a Si content of 30 to 60 mass%, an oxygen content of 20 to 40 mass%, a Mg content of 0.1 to 20 mass%, and a carbon nanofiber and carbon content of 1 to 20 mass% characterized in that

본 발명에 의한 비수전해질 이차전지용 음극재는 평균 입경이 0.1 내지 30 ㎛이고 BET 비표면적이 0.5 내지 50 m2/g 인 것을 특징으로 한다. The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the average particle diameter is 0.1 to 30 μm and the BET specific surface area is 0.5 to 50 m 2 /g.

본 발명에 의한 비수전해질 이차전지용 음극재에 있어서, 상기 카본 나노 파이버의 평균 직경이 10nm 내지 100 nm 이고, 길이가 0.1 내지 10 μm인 것을 특징으로 한다.In the negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention, the carbon nanofibers have an average diameter of 10 nm to 100 nm and a length of 0.1 to 10 μm.

본 발명은 또한, The present invention also

산화규소 및 규소의 미립자가 규소계 화합물에 분산한 SiOx로 표시되는 화합물을 준비하는 제 1 단계; A first step of preparing a compound represented by SiOx in which silicon oxide and fine particles of silicon are dispersed in a silicon-based compound;

상기 SiOx로 표시되는 화합물과 마스네슘 분말을 혼합하는 제 2 단계; a second step of mixing the compound represented by SiOx and magnesium powder;

상기 혼합물을 600 내지 1100℃ 에서 열처리하는 제 3 단계; 및a third step of heat-treating the mixture at 600 to 1100°C; and

600 내지 1100 ℃ 에서 CVD 에 의해 표면을 카본 나노파이버 및 탄소로 코팅하는 제 4 단계; 를 포함하는 본 발명에 의한 비수전해질 이차전지 음극재의 제조 방법을 제공한다.
a fourth step of coating the surface with carbon nanofibers and carbon by CVD at 600 to 1100°C; It provides a method of manufacturing a non-aqueous electrolyte secondary battery negative electrode material according to the present invention, comprising a.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, SiOMg 복합체는 산화 규소와 마그네슘을 반응시키는 것에 의해서 얻을 수 있다. 여기에서 산화 규소는 보통, 이산화규소(SiO2)와 규소와의 혼합물을 감압조건 하에서 1,300~1500 ℃의 범위에서 가열해 산화 규소 가스를 생성시키고 500 내지 900℃정도에서 냉각하여 석출해 얻어진 비정질규소 산화물이다. 산화 규소는 일반식SiOx로 나타내지며 석출물의 x의 범위는 N/O 분석(Nitrogen/Oxygen analysis)에 의해서 0.9<x<1.5인 것이 바람직하고 1.0≤x≤1.1인 것이 더욱 바람직하다. 이산화규소와 규소의 몰비는 대체로 1:1이다.In the method for manufacturing a negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention, the SiOMg composite can be obtained by reacting silicon oxide with magnesium. Here, silicon oxide is usually amorphous silicon obtained by heating a mixture of silicon dioxide (SiO 2 ) and silicon in the range of 1,300 to 1500 ° C under reduced pressure to generate silicon oxide gas and cooling it at about 500 to 900 ° C to precipitate. It is an oxide. Silicon oxide is represented by the general formula SiOx, and the range of x of the precipitate is preferably 0.9<x<1.5 and more preferably 1.0≤x≤1.1 by N/O analysis (Nitrogen/Oxygen analysis). The molar ratio of silicon dioxide to silicon is generally 1:1.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 상기의 산화 규소는 마그네슘(Magnesium)과의 환원 반응(reductive reaction)에 의해 하기 반응식에 같이, 규소와 마그네슘(Magnesium) 산화물을 생성한다. In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, the silicon oxide produces silicon and magnesium oxide by a reductive reaction with magnesium as shown in the following reaction formula.

3 SiO + 2 Mg → 3Si + MgO
3 SiO + 2 Mg → 3Si + MgO

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 상기 제 2 단계의 산화 규소의 평균 입경은 0.1 내지 30 ㎛ 이고, 마그네슘 분말의 입경은 1 내지 20 ㎛인 것을 특징으로 한다. In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, the average particle diameter of the silicon oxide in the second step is 0.1 to 30 μm, and the particle diameter of the magnesium powder is 1 to 20 μm.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 산화 규소의 입경이 상기 범위보다 작은 경우 비표면적이 커져서 이차전지의 전극용 슬러리 제조시 균일한 혼합이 어렵고 바인더 양의 소모가 많아져서 음극 제조시 어려운 점이 있다.In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, when the particle size of silicon oxide is smaller than the above range, the specific surface area becomes large, making it difficult to uniformly mix when preparing the slurry for the electrode of the secondary battery There are difficulties in manufacturing.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 마그네슘 분말이 1㎛이하이면 규소, 규소 산화물과의 혼합과정에서 대기 중 마그네슘 분말의 급격한 산화로 인한 산소 함량이 급격히 증가될 수 있으며 또한 분말취급에도 어려움이 있을 수 있다. 마그네슘(Magnesium) 분말이 20 ㎛이상이면 산화규소와의 반응에 의해 생성물인 산화 마그네슘(Magnesium)의 분포가 불균질하게 될 수 있어, 음극재의 품질을 떨어드릴 수 있다.In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, when the magnesium powder is 1 μm or less, the oxygen content due to the rapid oxidation of the magnesium powder in the atmosphere in the mixing process with silicon and silicon oxide may be sharply increased, and the powder Handling may also be difficult. If the magnesium powder is more than 20 μm, the distribution of magnesium oxide, which is a product, may become non-uniform by reaction with silicon oxide, which may degrade the quality of the anode material.

또한, 상기 마그네슘(Magnesium) 분말 취급에 있어서 발화의 위험성이 있으므로 산화규소와의 혼합시 건식 혼합보다는 액상 혼합이 바람직하다. In addition, since there is a risk of ignition in handling the magnesium powder, liquid mixing is preferable rather than dry mixing when mixing with silicon oxide.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 상기 혼합물을 600 내지 1100℃ 에서 열처리하는 것이 바람직하다. 열처리 온도가 600℃이하이면 마그네슘의 녹는점보다 낮아 마그네슘(Magnesium)과 규소산화물과의 반응이 일어나기 어렵고 이에 따라 미반응의 마그네슘(Magnesium) 입자가 잔존할 우려가 있으며, 1100℃ 이상이면 상기 산화규소와 마그네슘(Magnesium) 분말의 반응에 의해 마그네시아(MgO) 생성은 잘 이루어지나 산화규소의 불균일화가 심화되어 상분리된 Si의 입자의 결정성이 증대되어 음극재의 수명특성이 저하될 수 있다. In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, it is preferable to heat-treat the mixture at 600 to 1100°C. When the heat treatment temperature is 600° C. or less, it is lower than the melting point of magnesium, so the reaction between magnesium and silicon oxide is difficult to occur, and there is a risk that unreacted magnesium particles may remain. Magnesia (MgO) is well generated by the reaction of the magnesium powder with the silicon oxide, but the non-uniformity of the silicon oxide is deepened and the crystallinity of the phase-separated Si particles is increased, and the lifespan characteristics of the anode material may be reduced.

열처리 시간은 적당히 선정되어 반응기의 형상과 반응물의 질량에 따라 다양하지만, 대체로 1~10시간이 바람직하고, 2~7시간이 보다 바람직하다. The heat treatment time is appropriately selected and varies depending on the shape of the reactor and the mass of the reactant, but generally 1 to 10 hours is preferable, and 2 to 7 hours is more preferable.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 마그네슘 분말의 함량이 0.1% 이하이면 마그네슘 첨가에 의한 효과가 발생하지 않고 마그네슘 분말의 함량이 20%이상이면 SiOMg 음극재의 전기전도성을 저하시켜 음극재 개선 효과가 떨어질 수 있다.In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, when the content of magnesium powder is 0.1% or less, the effect due to the addition of magnesium does not occur, and when the content of magnesium powder is 20% or more, the electrical conductivity of the SiOMg negative electrode material is lowered. The effect of improving the anode material may be reduced.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 열처리 후의 산화규소와 Mg의 반응 생성물을 탄화수소(hydrocarbon)계 가스 또는 증기를 소정의 온도범위에서 화학 증착(chemical vapor deposition) 처리 또는 기계적인 혼합에 의해 카본 나노파이버 및 카본으로 표면 처리된 SiOMg복합체를 얻는 것이 바람직하고, 화학 증착 처리에 의해 SiOMg 복합체를 얻는 것이 보다 바람직하다.상기와 같이 SiOMg복합체에 표면 처리된 카본 물질은 카본 나노 파이버 및 카본으로 국한된 것이 아니라, 탄화 수소류의 종류, 열처리 온도 및 화학 증착 방법 등에 따라카본 나노튜브 등도 포함될 수 있다.In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, the reaction product of silicon oxide and Mg after heat treatment is subjected to a chemical vapor deposition treatment or mechanical treatment with a hydrocarbon-based gas or vapor in a predetermined temperature range. It is preferable to obtain a SiOMg composite surface-treated with carbon nanofibers and carbon by mixing, and more preferably to obtain a SiOMg composite by chemical vapor deposition. As described above, the carbon material surface-treated on the SiOMg composite includes carbon nanofibers and It is not limited to carbon, but may also include carbon nanotubes and the like depending on the type of hydrocarbons, heat treatment temperature, and chemical vapor deposition method.

본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 카본의 표면처리 방법으로서 SiO와 Mg의 생성물을 탄화수소(hydrocarbon)계 화합물 가스 또는 증기를 상압 또는 감압하에서 600~1,100℃로 하는 것이 바람직하고, 더욱 바람직하게는 700~1,000℃로 열화학증착 처리 등을 실시하는 것으로 입자 표면에 카본 나노 파이버를 포함하는 카본 피막을 형성할 수 있다. 또한, 처리 시간(disposition time)은 목적으로 하는 카본 피복량, 처리 온도 유기물 가스 농도(유속)나 도입 양 등에 의해서 적당히 선정되지만, 보통, 1~10시간, 특히 2~7시간 정도가 경제적으로도 효율적이다.In the method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, as a surface treatment method for carbon, the product of SiO and Mg is preferably a hydrocarbon compound gas or vapor at 600 to 1,100° C. under normal pressure or reduced pressure, , more preferably, a carbon film including carbon nanofibers can be formed on the particle surface by performing a thermochemical vapor deposition treatment at 700 to 1,000°C. In addition, the disposition time is appropriately selected depending on the target carbon coating amount, treatment temperature, organic gas concentration (flow rate), introduction amount, etc., but usually 1 to 10 hours, especially 2 to 7 hours, is economically also Efficient.

본 발명은 또한, 본 발명의 비수전해질 이차전지용 음극재를 포함하는 비수전해질 이차전지용 음극 및 이를 포함하는 비수전해질 이차전지를 제공한다.
The present invention also provides a negative electrode for a non-aqueous electrolyte secondary battery comprising the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention, and a non-aqueous electrolyte secondary battery including the same.

본 발명에 의한 비수전해질 이차 전지용 음극재는 음극활물질의 부피 변화를 억제하고, 음극 전극내 음극활물질간의 부착성 및 전기전도성을 향상시켜 주어 산화규소 음극의 높은 전지 용량을 유지하면서도 첫회 충방전 효율이 높고, 사이클 특성이 뛰어난 효과를 나타낸다.
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention suppresses the volume change of the negative electrode active material and improves the adhesion and electrical conductivity between the negative electrode active materials in the negative electrode, thereby maintaining the high battery capacity of the silicon oxide negative electrode and high first charge/discharge efficiency , shows the effect of excellent cycle characteristics.

도 1은 본 발명의 일 실시예에 의하여 제조된 시료 3에 대한 SiOMg 복합체 음극활물질의 SEM (Scanning Electron Microscope)사진을 측정한 결과를 나타내고 도 2는 시료 3에 대한 SiOMg 복합체 음극활물질의 TEM(Transmission Electron Microscope, JEM2100F/JEOL사)사진을 측정한 결과를 나타낸다.
도 3은 산화규소와 마그네슘(Magnesium) 분말을 질량 9:1 비율로 혼합 후 750℃에서 3시간 열처리한 시료 3의 XRD 측정 결과를 나타내고, 도 4는 산화규소와 마그네슘(Magnesium) 분말을 질량 9:1 비율로 혼합하여 750℃에서 3시간 열처리한 후 분말을 1000℃, 2시간의 조건에서 아르곤(Ar)과 메탄(CH4) 혼합가스 하에서 CVD 처리를 하여 얻은 시료 3인 SiOMg복합체의 XRD 측정 결과를 나타낸다.
1 is a SEM (Scanning Electron Microscope) photograph of the SiOMg composite anode active material for Sample 3 prepared according to an embodiment of the present invention, and FIG. 2 is a TEM (Transmission of the SiOMg composite anode active material for Sample 3). Electron Microscope, JEM2100F/JEOL) shows the measurement result.
3 shows the XRD measurement result of sample 3, which was heat-treated at 750° C. for 3 hours after mixing silicon oxide and magnesium powder in a mass ratio of 9:1, and FIG. 4 is silicon oxide and magnesium powder with mass 9 XRD measurement of the SiOMg composite, sample 3, obtained by mixing the mixture in a ratio of 1 and heat-treating it at 750°C for 3 hours, and then processing the powder under argon (Ar) and methane (CH 4 ) mixed gas at 1000°C for 2 hours. show the results.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of Examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 1> SiOMgSiOMg 음극활물질의negative active material 제작 produce

산화 규소 분말(BET 비표면적 10.5m2/g)과 마그네슘 분말 (mesh #20~230, Aldrich사)을 산화 규소/마그네슘(Magnesium)=95/5, 90/10의 조성으로 각각 혼합해 건조하여 시료 1, 2를 제조한 후 튜브로를 이용하여 아르곤(Ar) 가스하에서 700℃, 3시간의 조건에서 열처리를 실시하고, 이후 냉각해 흑갈색 분말을 회수했다. 회수 후의 혼합 분말은 응집이 거의 없었다. Silicon oxide powder (BET specific surface area 10.5 m 2 /g) and magnesium powder (mesh #20-230, Aldrich) were mixed and dried in a composition of silicon oxide/magnesium = 95/5, 90/10, respectively. After preparing Samples 1 and 2, heat treatment was performed under argon (Ar) gas at 700° C. for 3 hours using a tube furnace, and then cooled to recover black brown powder. The mixed powder after recovery had almost no agglomeration.

또, ICP 원소 분석의 결과 마그네슘(Magnesium)의 함유량은 그대로 각각 5, 10 질량%이었다.
In addition, as a result of ICP elemental analysis, the content of magnesium was 5 and 10 mass%, respectively, as it was.

<< 실시예Example 2> 2> 카본나노carbon nano 파이버코팅 fiber coating SiOMgSiOMg 음극활물질의negative active material 제작 produce

상기 실시예 1 에서 열처리 후 얻어진 시료 1과 시료 2를 튜브로에 넣고 1000℃, 2시간의 조건에서 아르곤(Ar)과 메탄(CH4) 혼합가스하에서 CVD처리를 하여 카본 나노 파이버 및 카본으로 코팅된 SiOMg 복합체를 얻을 수 있었다. 시료 1과 시료 2는 각각 카본 함량은 3.8 %, 3.7%이었으며 BET 비표면적은 각각 20.3m2/g, 19.3m2/g 이었다.
Samples 1 and 2 obtained after the heat treatment in Example 1 were put into a tube furnace, and CVD treatment was performed under a mixed gas of argon (Ar) and methane (CH4) at 1000°C for 2 hours, and coated with carbon nanofibers and carbon. A SiOMg composite was obtained. Sample 1 and sample 2 are each carbon content was 3.8%, 3.7% BET specific surface area was each 20.3m 2 / g, 19.3m 2 / g.

<< 실험예Experimental example > > SEMSEM 사진 측정 photo measurement

상기 실시예 2에서 얻어진 시료 2의 표면 코팅된 카본 나노파이버의 SEM 사진과 TEM사진을 측정하고 각각 도 1 및 도 2에 나타내었다.
The SEM and TEM images of the surface-coated carbon nanofibers of Sample 2 obtained in Example 2 were measured, and are shown in FIGS. 1 and 2, respectively.

<< 실험예Experimental example > > XRDXRD 측정 measurement

상기 시료 2에 대해 700℃ 3시간 열처리 후 산화규소와 마그네슘(Magnesium)이 완전히 반응하고 있는지 여부와 1000℃, 2시간의 조건으로 화학증착한 후 얻은 SiOMg복합체의 XRD 측정을 실시하여 각각 도 3과 도 4에 나타내었다.For Sample 2, XRD measurement of the SiOMg composite obtained after chemical vapor deposition at 1000° C. and 2 hours is performed to determine whether silicon oxide and magnesium are completely reacting after heat treatment at 700° C. for 3 hours, respectively, as shown in FIG. 3 4 is shown.

도 3 및 도 4에서 보는 바와 같이 열처리 후에마그네슘(Magnesium)에 대응하는 피크가이미 거의 사라지고 산화마그네슘 (MgO) 피크가 미약하게 나타나 으며, 화학증착 후에도 결정성 산화 마그네슘(MgO) 및 Si-O-Mg 피크가 약하게 혼재되어 나타났고 결정성 규소의 증가도 확인되었다.
3 and 4, after the heat treatment, the peak corresponding to magnesium almost disappears and the magnesium oxide (MgO) peak appears weakly, and even after chemical vapor deposition, crystalline magnesium oxide (MgO) and Si-O- The Mg peak appeared weakly mixed, and an increase in crystalline silicon was also confirmed.

<비교 예><Comparative example> 음극활물질anode active material 제작 produce

비교예로서, 마그네슘을 포함하지 않는 산화규소 분말(BET 비표면적 1.6m2/g)을 튜브로를 이용하여 1000℃, 2시간의 조건으로 아르곤(Ar)과 메탄(CH4) 혼합가스하에서 CVD 처리를 하여 3% 카본함량을 가진 SiO분말을 얻었고, BET 비표면적은 2.7 m2/g이었다.
As a comparative example, magnesium-free silicon oxide powder (BET specific surface area 1.6 m 2 /g) was treated by CVD under a mixed gas of argon (Ar) and methane (CH 4 ) at 1000° C. for 2 hours using a tube furnace. SiO powder with 3% carbon content was obtained, and the BET specific surface area was 2.7 m 2 /g.

<< 제조예manufacturing example >> 코인셀coin cell 제작 produce

상기 실시예 2 및 비교예에서 제조된 음극 활물질과, 도전재로써 Super-P black(TimcMg사), 바인더로써 PAA(Poly Acrylic acid, Mgdrich사)를 질량비가 80:10:10이 되도록 N-메틸피롤리돈과 혼합하여, 슬러리 상태 조성물을 조제하였다. N-methyl so that the mass ratio of the negative active material prepared in Example 2 and Comparative Example, Super-P black (TimcMg) as a conductive material and PAA (Poly Acrylic acid, Mgdrich) as a binder is 80:10:10 It mixed with pyrrolidone to prepare a slurry state composition.

이 조성물을 두께 18μm의 동박에 도포해서 건조시킴으로써, 그 동박의 편면에 두께 30μm의 활물질층을 형성하였다. 다음으로 직경 14Φ의 원형으로 펀칭해서 시험용 전극을 제작하였다. 반대극으로는 두께 0.3mm의 금속 리튬박을 사용하였다. 분리막으로는 두께 0.1mm의 다공질 폴리에틸렌 시트를 사용하였다. 전해액으로는 에틸렌 카보네이트(EC)와 디에틸카보네이트(DEC)의 체적비 1:1의 혼합 용매에, 리튬염으로써 LiPF6를 약 1몰/L의 농도로 용해시킨 것을 사용하였다. 이들 구성 요소를 스테인리스제 용기에 내장하고, 두께 2mm, 직경 32mm(소위 2032형)의 일반적 형상의 평가용 코인 셀을 구축하였다.
By apply|coating this composition to 18-micrometer-thick copper foil and drying, the 30-micrometer-thick active material layer was formed in the single side|surface of this copper foil. Next, it punched out in the circular shape of diameter 14(phi), and produced the electrode for a test. A metal lithium foil having a thickness of 0.3 mm was used as the opposite electrode. A porous polyethylene sheet having a thickness of 0.1 mm was used as the separator. As the electrolyte, LiPF 6 dissolved in a concentration of about 1 mol/L as a lithium salt in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1:1 was used. These components were incorporated in a stainless steel container, and a coin cell for evaluation of a general shape having a thickness of 2 mm and a diameter of 32 mm (so-called type 2032) was constructed.

<< 제조예manufacturing example > 전지 특성 평가 > Battery characteristics evaluation

상기 샘플마다 제작한 코인 셀을 0.05C의 정전류로 전압이 0.01V가 될 때까지 충전하고 0.05C의 정전류로 전압이 1.5V가 될 때까지 방전하여 방전 용량 및 초기 효율을 구하였으며, 이후 사이클 특성은 0.2C의 정전류로 위와 동일한 전압범위에서 실시하여 용량유지율 시험을 진행하고 그 결과를 표 1에 나타내었다. The coin cells prepared for each sample were charged with a constant current of 0.05C until the voltage became 0.01V, and discharged with a constant current of 0.05C until the voltage reached 1.5V to obtain the discharge capacity and initial efficiency, and then cycle characteristics was conducted in the same voltage range as above with a constant current of 0.2C, and the capacity retention rate test was performed, and the results are shown in Table 1.

아래 표 1에서 보는 바와 같이 본 발명의 실시예에 의한 시료 1과 시료 2의 음극활물질의 경우 초기효율과 용량 유지율이 비교예에 비하여 개선되는 것을 확인할 수 있다.As shown in Table 1 below, in the case of the negative active materials of Samples 1 and 2 according to Examples of the present invention, it can be seen that the initial efficiency and capacity retention rate are improved compared to Comparative Examples.

  초기효율 (%)
(방전용량/충전용량)
Initial efficiency (%)
(discharge capacity/charge capacity)
방전용량
(mAh/g)
discharge capacity
(mAh/g)
용량유지율(%)
(20 cycle)
Capacity retention rate (%)
(20 cycles)
실시예 1 (5%)Example 1 (5%) 7676 13201320 7474 실시예 2 (10%)Example 2 (10%) 8080 13001300 6060 비교예 1 (SiOx)Comparative Example 1 (SiOx) 7474 14501450 6060

Claims (8)

규소, 규소산화물, 마그네슘 산화물, 카본 나노 파이버 및 탄소를 포함하고,
상기 카본 나노 파이버는 평균 직경이 10nm 내지 100nm인,
SiOMg 복합체인 비수전해질 이차전지용 음극재.
containing silicon, silicon oxide, magnesium oxide, carbon nanofibers and carbon,
The carbon nanofibers have an average diameter of 10 nm to 100 nm,
Anode material for non-aqueous electrolyte secondary battery, which is a SiOMg composite.
제 1 항에 있어서,
상기 음극재는 Si 함량이 30 내지 60 질량%, 산소 함량이 20 내지 40 질량%, Mg 함량은 0.1 내지 20 질량%, 카본 나노 파이버 및 탄소 함량이 1 내지 20 질량%인 것을 특징으로 하는 비수전해질 이차전지용 음극재
The method of claim 1,
The negative electrode material has a Si content of 30 to 60 mass%, an oxygen content of 20 to 40 mass%, a Mg content of 0.1 to 20 mass%, and a carbon nanofiber and carbon content of 1 to 20 mass%. Anode material for battery
제 1 항에 있어서,
상기 음극재는 평균 입경이 0.1 내지 30 ㎛이고 BET 비표면적이 0.5 내지 50m2/g 인 것을 특징으로 하는 비수전해질 이차전지용 음극재
The method of claim 1,
The negative electrode material has an average particle diameter of 0.1 to 30 μm and a BET specific surface area of 0.5 to 50 m 2 /g.
제 1 항에 있어서,
상기 카본 나노 파이버의 길이는 0.1㎛ 내지 10㎛ 인 것을 특징으로 하는 비수전해질 이차전지용 음극재
The method of claim 1,
The anode material for a non-aqueous electrolyte secondary battery, characterized in that the carbon nanofiber has a length of 0.1 μm to 10 μm.
산화규소 및 규소의 미립자가 규소계 화합물에 분산한 SiOx로 표시되는 화합물을 준비하는 제 1 단계;
상기 SiOx로 표시되는 화합물과 마그네슘 분말을 혼합하는 제 2 단계;
상기 혼합물을 600 내지 1100℃ 에서 열처리하는 제 3 단계; 및
600 내지 1100 ℃ 에서 CVD 에 의해 표면을 카본 나노 파이버 및 탄소로 코팅하는 제 4 단계; 를 포함하는 제 1 항에 의한 비수전해질 이차전지용 음극재의 제조 방법
A first step of preparing a compound represented by SiOx in which silicon oxide and fine particles of silicon are dispersed in a silicon-based compound;
a second step of mixing the compound represented by SiOx and magnesium powder;
a third step of heat-treating the mixture at 600 to 1100°C; and
a fourth step of coating the surface with carbon nanofibers and carbon by CVD at 600 to 1100°C; A method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, comprising:
제 5 항에 있어서,
상기 제 2 단계의 마그네슘 분말의 입경은 1 내지 20μm인 것을 특징으로 하는 비수전해질 이차 전지용 음극재의 제조 방법.
6. The method of claim 5,
The method for manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery, characterized in that the particle diameter of the magnesium powder in the second step is 1 to 20 μm.
제 1 항 내지 제 4 항 중 어느 하나의 비수전해질 이차전지용 음극재를 포함하는 비수전해질 이차전지용 음극
A negative electrode for a non-aqueous electrolyte secondary battery comprising the negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4
제 7 항에 의한 비수전해질 이차전지용 음극을 포함하는 비수전해질 이차전지

A non-aqueous electrolyte secondary battery comprising the negative electrode for a non-aqueous electrolyte secondary battery according to claim 7

KR1020140038283A 2014-03-31 2014-03-31 Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same KR102308691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140038283A KR102308691B1 (en) 2014-03-31 2014-03-31 Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140038283A KR102308691B1 (en) 2014-03-31 2014-03-31 Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same

Publications (3)

Publication Number Publication Date
KR20150113771A KR20150113771A (en) 2015-10-08
KR102308691B1 true KR102308691B1 (en) 2021-10-05
KR102308691B9 KR102308691B9 (en) 2022-03-15

Family

ID=54346641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140038283A KR102308691B1 (en) 2014-03-31 2014-03-31 Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same

Country Status (1)

Country Link
KR (1) KR102308691B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102227309B1 (en) * 2017-06-02 2021-03-15 주식회사 엘지화학 Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR102278996B1 (en) * 2017-10-27 2021-07-20 주식회사 엘지에너지솔루션 Silicon-carbon composite, and lithium secondary battery comprising the same
WO2019108050A1 (en) * 2017-12-01 2019-06-06 대주전자재료 주식회사 Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same
US20210074995A1 (en) 2018-01-31 2021-03-11 Lg Chem, Ltd. Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
KR102590190B1 (en) 2020-11-16 2023-10-19 대주전자재료 주식회사 Porous silicon based composite, preparation method thereof, and negative electrode active material comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070825A (en) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery and lithium secondary battery
JP2010170943A (en) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd Negative electrode material for secondary battery, and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511781C (en) * 2004-12-22 2009-07-08 松下电器产业株式会社 Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
JP5215978B2 (en) 2009-10-28 2013-06-19 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP5500047B2 (en) 2010-11-02 2014-05-21 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
KR101154461B1 (en) 2012-02-03 2012-06-13 주식회사 엘지화학 Method for making vinyl chloride resin with enhanced stability in high temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070825A (en) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery and lithium secondary battery
JP2010170943A (en) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd Negative electrode material for secondary battery, and its manufacturing method

Also Published As

Publication number Publication date
KR20150113771A (en) 2015-10-08
KR102308691B9 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
KR101586816B1 (en) Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
CN108025925B (en) Composite hydroxide containing nickel and manganese and method for producing same
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
US20210184204A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery comprising silicon oxide composite and manufacturing method thereof
KR101513820B1 (en) Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
CN111433949A (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for preparing same
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2010225494A (en) Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
KR20160065028A (en) Anode active material for lithium secondary battery and lithium secondary battery including the same
KR102156796B1 (en) Methods of forming carbon coatings
CN112514116A (en) Silicon-based composite material, negative electrode comprising same, and lithium secondary battery
KR102308691B1 (en) Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same
KR101929413B1 (en) Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
KR20180072112A (en) Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
KR20130054347A (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
KR102287983B1 (en) Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same
JP2014086254A (en) Silicon oxide and process of manufacturing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor
US10084183B2 (en) Silicon oxide-carbon composite and method of manufacturing the same
KR101501804B1 (en) Silicon based negative active material and secondary battery comprising the same
KR20140076497A (en) Negative electrode active material for nonaqueous electrolytic secondary battery and method for producing the same
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
KR102318864B1 (en) Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same
KR20220087143A (en) Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same
CN116868366A (en) Negative electrode active material, negative electrode comprising same, secondary battery comprising same, and method for producing negative electrode active material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]