KR102307637B1 - Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same - Google Patents

Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same Download PDF

Info

Publication number
KR102307637B1
KR102307637B1 KR1020190068737A KR20190068737A KR102307637B1 KR 102307637 B1 KR102307637 B1 KR 102307637B1 KR 1020190068737 A KR1020190068737 A KR 1020190068737A KR 20190068737 A KR20190068737 A KR 20190068737A KR 102307637 B1 KR102307637 B1 KR 102307637B1
Authority
KR
South Korea
Prior art keywords
catalyst
carbon nanotube
nanotube bundle
catalyst particles
particles
Prior art date
Application number
KR1020190068737A
Other languages
Korean (ko)
Other versions
KR20200141772A (en
Inventor
한종훈
김수민
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020190068737A priority Critical patent/KR102307637B1/en
Publication of KR20200141772A publication Critical patent/KR20200141772A/en
Application granted granted Critical
Publication of KR102307637B1 publication Critical patent/KR102307637B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/023Catalysts characterised by dimensions, e.g. grain size
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Abstract

본 발명은 탄소나노튜브 합성용 촉매의 제조 방법 및 이를 이용한 탄소나노튜브 번들의 제조 방법에 관한 것으로서, 보다 상세하게는 탄소나노튜브 합성용 촉매 입자의 집합체를 얻는 단계; 및 상기 탄소나노튜브 합성용 촉매 입자의 표면에서 평균입경(D50)이 10㎛ 이하인 촉매 미립자를 제거하는 단계;를 포함함으로써, 배향성 및 균일성이 향상된 탄소나노튜브 번들을 제조할 수 있다.The present invention relates to a method for preparing a catalyst for carbon nanotube synthesis and a method for manufacturing a carbon nanotube bundle using the same, and more particularly, to a method for preparing a catalyst for carbon nanotube synthesis, comprising the steps of: obtaining an aggregate of catalyst particles for carbon nanotube synthesis; and removing catalyst particles having an average particle diameter (D 50 ) of 10 μm or less from the surface of the catalyst particles for carbon nanotube synthesis; by including, a carbon nanotube bundle with improved orientation and uniformity can be prepared.

Description

탄소나노튜브 번들 합성용 촉매의 제조 방법 및 이를 이용한 탄소나노튜브 번들의 제조 방법{MANUFACTURING METHOD OF CATALYST FOR SYNTHESIS OF CARBON NANOTUBE BUNDLE AND MANUFACTURING METHOD OF CARBON NANOTUBE BUNDLE USING THE SAME}A method for producing a catalyst for synthesizing a carbon nanotube bundle and a method for manufacturing a carbon nanotube bundle using the same

본 발명은 탄소나노튜브 번들 합성용 촉매의 제조 방법 및 이를 이용한 탄소나노튜브 번들의 제조 방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for synthesizing a carbon nanotube bundle and a method for manufacturing a carbon nanotube bundle using the same.

탄소나노튜브는 탄소 6개로 이루어진 육각형 모양이 서로 연결되어 관 모양을 이루고 있는 것으로, 관의 지름이 수 내지 수십 나노미터에 불과하여 탄소나노튜브라고 일컬어지게 되었다. 나노미터는 10억 분의 1m로 보통 머리카락의 10만 분의 1 굵기이다. 전기 전도도는 구리와 비슷하고, 열전도율은 자연계에서 가장 뛰어난 다이아몬드와 같으며, 강도는 철강보다 100배가량 뛰어나다. 탄소섬유는 1 %만 변형시켜도 끊어지는 반면 탄소나노튜브는 15 % 가 변형되어도 견딜 수 있다.Carbon nanotubes are hexagonal shapes made of six carbons that are connected to each other to form a tube, and the diameter of the tube is only a few to several tens of nanometers, so that it has come to be called a carbon nanotube. A nanometer is one billionth of a meter, or one-100,000th the thickness of a normal human hair. The electrical conductivity is similar to that of copper, the thermal conductivity is like diamond, the best in nature, and the strength is 100 times greater than that of steel. Carbon fibers break even when only 1% strain is deformed, whereas carbon nanotubes can withstand 15% strain.

탄소나노튜브 합성 방법으로는 레이저 증착법(Laser vaporization), 전기 방전법(Arc-discharge), 플라즈마 화학기상증착법(Plasma Enhanced Chemical Vapor Deposition, PECVD), 열화학기상 증착법(Thermal Chemical Vapor Depositon), 촉매화학기상 증착법(Catalytic Chemical Vapor Depositon, CCVD) 등이 알려져 있다.Carbon nanotube synthesis methods include laser vaporization, arc-discharge, plasma enhanced chemical vapor deposition (PECVD), thermal chemical vapor deposition, and catalytic chemical vapor deposition. A vapor deposition method (Catalytic Chemical Vapor Depositon, CCVD) is known.

이 중 촉매화학기상 증착법에 의해 탄소나노튜브를 합성하는 경우 촉매가 필요한데, 탄소나노튜브 합성용 촉매를 이용하여 탄소나노튜브 번들을 합성하는 경우 번들이 균일하지 않고 번들 간의 응집이 관찰될 수 있으며, 이러한 번들 간의 응집은, 탄소나노튜브 번들이 고분자, 금속, 필름 상의 복합소재로 사용될 시, 탄소나노튜브 번들의 분산에 필요한 에너지 증가 요인으로 작용하여 탄소나노튜브 번들의 분산성을 떨어뜨리고 최종 제품의 물성 저하 요인으로 작용한다.Among them, a catalyst is required when synthesizing carbon nanotubes by catalytic chemical vapor deposition. When synthesizing carbon nanotube bundles using a catalyst for synthesizing carbon nanotubes, the bundles are not uniform and aggregation between the bundles may be observed. The aggregation between these bundles acts as a factor for increasing the energy required for dispersing the carbon nanotube bundle when the carbon nanotube bundle is used as a composite material on a polymer, metal, or film, thereby lowering the dispersibility of the carbon nanotube bundle and reducing the dispersibility of the final product. Acts as a factor of deterioration of physical properties.

한국공개특허 제10-2007-0082141호는 탄소나노튜브 합성용 촉매의 제조 방법을 개시하고 있다.Korean Patent Application Laid-Open No. 10-2007-0082141 discloses a method for preparing a catalyst for synthesizing carbon nanotubes.

한국공개특허 제10-2007-0082141호Korean Patent Publication No. 10-2007-0082141

본 발명은 배향성이 우수한 탄소나노튜브 번들을 합성할 수 있는 촉매의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for preparing a catalyst capable of synthesizing a carbon nanotube bundle having excellent orientation.

또한, 본 발명은 상기 탄소나노튜브 합성용 촉매의 제조 방법을 이용한 탄소나노튜브 번들의 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for manufacturing a carbon nanotube bundle using the method for preparing a catalyst for synthesizing carbon nanotubes.

1. 판상형 지지체 및 상기 지지체 상에 산재된 촉매 미립자를 포함하는 촉매 입자의 집합체를 얻는 단계; 및1. obtaining an aggregate of catalyst particles including a plate-shaped support and catalyst fine particles dispersed on the support; and

상기 촉매 입자 중 평균입경(D50)이 10㎛ 이하인 것을 제거하는 단계;를 포함하는, 탄소나노튜브 번들 형성용 촉매의 제조 방법.A method for producing a catalyst for forming a carbon nanotube bundle, including; removing those having an average particle diameter (D 50 ) of 10 μm or less among the catalyst particles.

2. 위 1에 있어서, 상기 촉매 입자의 평균입경(D50)은 25㎛ 이상인, 탄소나노튜브 번들 합성용 촉매의 제조 방법.2. The method of 1 above, wherein the average particle diameter (D 50 ) of the catalyst particles is 25 μm or more, a method for producing a catalyst for synthesizing a carbon nanotube bundle.

3. 위 1에 있어서, 상기 촉매 입자를 제거하는 방법은 습식 체분리법, 건식 체분리법, 정전기 방지제법, 분산제법, 에어로 젯법 및 염석법으로 이루어진 군에서 선택된 방법인, 탄소나노튜브 번들 합성용 촉매의 제조 방법.3. The catalyst for synthesizing carbon nanotube bundles according to the above 1, wherein the method for removing the catalyst particles is a method selected from the group consisting of a wet sieving method, a dry sieving method, an antistatic method, a dispersing method, an air jet method, and a salting-out method manufacturing method.

4. 위 1에 있어서, 상기 촉매 입자를 제거하는 방법은,4. The method according to 1 above, wherein the method of removing the catalyst particles comprises:

제조된 상기 촉매 입자의 집합체를 분산매에 분산시킨 분산액을 체로 거르는 단계;sieving a dispersion in which the prepared aggregate of the catalyst particles is dispersed in a dispersion medium;

를 포함하는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.A method for producing a catalyst for carbon nanotube bundle synthesis, comprising a.

5. 위 4에 있어서, 상기 체로 거르는 단계에서 분산매와 동일한 용매를 같이 투입하는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.5. The method for preparing a catalyst for synthesizing carbon nanotube bundles according to the above 4, wherein the same solvent as the dispersion medium is added together in the sieving step.

6. 위 4에 있어서, 얻어진 상기 분산액을 초음파 처리하는 단계를 더 포함하는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.6. The method for preparing a catalyst for synthesizing carbon nanotube bundles according to the above 4, further comprising the step of sonicating the obtained dispersion.

7. 위 6에 있어서, 상기 초음파 처리는 100 내지 150W 강도로 5 내지 15분간 수행되는, 탄소나노튜브 번들 합성용 촉매의 제조 방법. 7. The method for preparing a catalyst for synthesizing carbon nanotube bundles according to the above 6, wherein the ultrasonic treatment is performed for 5 to 15 minutes at an intensity of 100 to 150 W.

8. 위 1 내지 7 중 어느 한 항의 제조 방법으로 제조된 촉매 상에 탄소나노튜브 번들을 성장시키는 단계를 포함하는, 탄소나노튜브 번들의 제조 방법. 8. A method of producing a carbon nanotube bundle, comprising growing a carbon nanotube bundle on the catalyst prepared by the method of any one of 1 to 7 above.

9. 위 8에 있어서, 상기 탄소나노튜브 번들은 화학기상증착법으로 합성되는, 탄소나노튜브 번들의 제조 방법.9. The method of manufacturing a carbon nanotube bundle according to 8 above, wherein the carbon nanotube bundle is synthesized by a chemical vapor deposition method.

본 발명의 탄소나노튜브 합성용 촉매의 제조 방법은, 본 발명의 탄소나노튜브 합성용 촉매의 제조 방법은, 배향성 및 균일성이 우수한 탄소나노튜브 번들을 제조할 수 있는 탄소나노튜브 합성용 촉매를 제조할 수 있다.In the method for producing a catalyst for carbon nanotube synthesis of the present invention, the method for producing a catalyst for carbon nanotube synthesis of the present invention includes a catalyst for carbon nanotube synthesis capable of producing a carbon nanotube bundle having excellent orientation and uniformity. can be manufactured.

본 발명의 일 실시예에 따른 탄소나노튜브 합성용 촉매의 제조 방법은, 비접촉식 분쇄를 사용함으로써, 별도의 접촉식 기계 분쇄 없이 탄소나노튜브 합성용 촉매를 제조할 수 있다. In the method for preparing a catalyst for synthesizing carbon nanotubes according to an embodiment of the present invention, by using non-contact pulverization, a catalyst for synthesizing carbon nanotubes can be prepared without separate catalytic mechanical pulverization.

본 발명의 탄소나노튜브 번들의 제조 방법은, 분산성이 향상된 탄소나노튜브 번들을 제조할 수 있다.The method of manufacturing a carbon nanotube bundle of the present invention can manufacture a carbon nanotube bundle with improved dispersibility.

본 발명의 탄소나노튜브 번들의 제조 방법은, 이에 따라 제조되는 탄소나노튜브 번들의 배향성 및 균일성을 향상시킬 수 있다.The method for manufacturing a carbon nanotube bundle of the present invention can improve the orientation and uniformity of the carbon nanotube bundle thus manufactured.

도 1은 탄소나노튜브 합성용 촉매 입자의 표면에 촉매 미립자가 존재함을 알 수 있는 입도분석 데이터 그래프이다.
도 2는 체에 걸러진 촉매 입자의 입도분석 데이터 그래프이다.
도 3은 본 발명의 실시예 1에 따른 탄소나노튜브 합성용 촉매의 표면을 나타낸 전자현미경 사진이다.
도 4는 비교예 1에 따른 탄소나노튜브 합성용 촉매의 표면을 나타낸 전자현미경 사진이다.
도 5는 본 발명의 실시예 1에 따라 제조된 탄소나노튜브 번들 합성용 촉매를 이용하여 합성한 탄소나노튜브 번들의 전자현미경 사진이다.
도 6은 비교예 1에 따라 제조된 탄소나노튜브 번들 합성용 촉매를 이용하여 합성한 탄소나노튜브 번들의 전자현미경 사진이다.
1 is a graph of particle size analysis data showing that catalyst fine particles are present on the surface of catalyst particles for carbon nanotube synthesis.
2 is a graph of particle size analysis data of catalyst particles filtered through a sieve.
3 is an electron micrograph showing the surface of the catalyst for synthesizing carbon nanotubes according to Example 1 of the present invention.
4 is an electron microscope photograph showing the surface of a catalyst for synthesizing carbon nanotubes according to Comparative Example 1. FIG.
5 is an electron micrograph of a carbon nanotube bundle synthesized using a catalyst for synthesis of a carbon nanotube bundle prepared according to Example 1 of the present invention.
6 is an electron micrograph of a carbon nanotube bundle synthesized using a catalyst for synthesis of a carbon nanotube bundle prepared according to Comparative Example 1. Referring to FIG.

본 발명의 일 실시형태는 판상형 지지체 및 상기 지지체 상에 산재된 촉매 미립자를 포함하는 촉매 입자의 집합체를 얻는 단계; 및 상기 촉매 입자 중 평균입경(D50)이 10㎛ 이하인 것을 제거하는 단계;를 포함함으로써, 배향성 및 균일성이 향상된 탄소나노튜브 번들을 제조할 수 있는 촉매의 제조 방법에 관한 것이다.One embodiment of the present invention comprises the steps of obtaining an aggregate of catalyst particles including a plate-shaped support and catalyst fine particles dispersed on the support; and removing those having an average particle diameter (D 50 ) of 10 μm or less among the catalyst particles, thereby providing a method for preparing a catalyst capable of producing a carbon nanotube bundle with improved orientation and uniformity.

이하, 본 발명의 구체적인 실시형태를 설명하기로 한다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, specific embodiments of the present invention will be described. However, this is merely an example and the present invention is not limited thereto.

<탄소나노튜브 번들 합성용 촉매의 제조 방법><Method for preparing catalyst for carbon nanotube bundle synthesis>

탄소나노튜브 번들은 복수의 탄소나노튜브가 나란히 배열된 형태로서 본 발명은 탄소나노튜브 번들 합성용 촉매의 제조 방법을 제공한다.A carbon nanotube bundle is a form in which a plurality of carbon nanotubes are arranged side by side, and the present invention provides a method for preparing a catalyst for synthesizing a carbon nanotube bundle.

본 발명의 방법에 따르면, 먼저, 탄소나노튜브 합성용 촉매 입자의 집합체를 얻는다.According to the method of the present invention, first, an aggregate of catalyst particles for synthesizing carbon nanotubes is obtained.

탄소나노튜브 합성용 촉매 입자를 제조하는 방법으로는 당 분야에 공지된 방법이 별다른 제한 없이 사용될 수 있으나, 예를 들면, 연소법, 공침법, 담지법, 졸겔법 등이 있다. As a method for preparing catalyst particles for carbon nanotube synthesis, methods known in the art may be used without particular limitation, but for example, a combustion method, a co-precipitation method, a supporting method, a sol-gel method, and the like.

연소법은 촉매 및 지지체 전구체와 연소연료(combustion fuel)로 사용하는 물질을 첨가하여, 용액에 녹인 후 고온에서 연소시켜 연소반응에 의한 고온조건에서 boiling과 foaming 과정을 거쳐 촉매가 지지체에 담지된 분말 형태로 얻는 방법이다. 공침법은 촉매와 지지체를 동시에 침전시켜 촉매를 제조하는 방법이며, 담지법은 미리 제조되어 있는 지지체에 촉매 및 조촉매를 담지하는 방법으로 고상의 지지체와 촉매 및 조촉매 전구체를 용매에 용해시키고 분산시켜 전구체가 지지체 위에 부착되게 한 후 필터, 건조 및 열처리를 통하여 촉매를 제조하는 방법이다. 졸겔법은 졸-겔 반응을 유도할 수 있는 지지체 전구체와 주촉매, 조촉매 전구체를 혼합하고 가수분해 반응을 일으켜 촉매의 금속이 지지체로 구성된 젤 네트워크 상에 균일하게 분산되도록 하여 촉매를 제조하는 방법이다.In the combustion method, a catalyst, a support precursor, and a material used as a combustion fuel are added, dissolved in a solution, and then burned at a high temperature to undergo boiling and foaming processes under high-temperature conditions by combustion reaction to form a powder in which the catalyst is supported on a support. way to get it with The co-precipitation method is a method of preparing a catalyst by simultaneously precipitating the catalyst and the support, and the supporting method is a method of supporting the catalyst and the co-catalyst on a previously prepared support. This is a method of preparing a catalyst through filter, drying and heat treatment after the precursor is attached to the support. The sol-gel method is a method of preparing a catalyst by mixing a support precursor capable of inducing a sol-gel reaction, a main catalyst, and a promoter precursor, and causing a hydrolysis reaction to uniformly disperse the metal of the catalyst on a gel network composed of a support am.

얻어지는 촉매 입자는 판상형 지지체 및 상기 지지체 상에 산재된 촉매 미립자를 포함한다. 이러한 촉매 입자의 집합체가 얻어지는 것으로서, 촉매 입자의 집합체는 복수개의 촉매 입자를 포함하는 분말 형태일 수 있다.The obtained catalyst particles include a plate-shaped support and catalyst fine particles interspersed on the support. As such an aggregate of catalyst particles is obtained, the aggregate of catalyst particles may be in the form of a powder including a plurality of catalyst particles.

촉매 입자에서 촉매 미립자가 판상형 지지체 상에 복수개가 산재되어 있는 것으로서, 탄소나노튜브는 지지체 상에 형성될 수 있다.In the catalyst particles, a plurality of catalyst fine particles are dispersed on a plate-shaped support, and carbon nanotubes may be formed on the support.

촉매 미립자는, 촉매화학기상 증착법에 의해 탄소나노튜브를 합성할 수 있도록 하는 촉매이면 당 분야에 공지된 촉매가 별다른 제한 없이 해당할 수 있으나, 예를 들어, 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 알루미늄(Al), 크롬(Cr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 적어도 하나의 금속 또는 둘 이상으로 형성된 합금일 수 있다.As long as the catalyst particles are catalysts capable of synthesizing carbon nanotubes by catalytic chemical vapor deposition, a catalyst known in the art may correspond without particular limitation, for example, nickel (Ni), cobalt (Co), Iron (Fe), platinum (Pt), gold (Au), aluminum (Al), chromium (Cr), copper (Cu), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), At least one metal selected from the group consisting of silicon (Si), tantalum (Ta), titanium (Ti), tungsten (W), uranium (U), vanadium (V), and zirconium (Zr) or an alloy formed of two or more can

다음으로, 본 발명은 촉매 입자 중 평균입경(D50)이 10㎛ 이하인 것을 제거한다.Next, the present invention removes catalyst particles having an average particle diameter (D 50 ) of 10 μm or less.

일반적으로 탄소나노튜브 합성용 촉매는 입자 형태를 갖는데, 특히, 판상형 입자(판상형 지지체+촉매 미립자)의 경우 큰 표면 에너지로 인해 큰 입자 표면에 작은 입자들이 응집되어 촉매의 활성을 떨어뜨리는 것으로 판단된다. 또한, 작은 입자가 응집되어 있는 촉매를 이용하여 탄소나노튜브 번들을 합성할 경우, 합성된 번들이 균일하지 않고 합성된 번들 간의 응집이 발생하는 것으로 판단되는데, 이러한 번들 간의 응집은 탄소나노튜브 번들이 고분자, 금속, 필름 상의 복합 소재로 사용될 시 탄소나노튜브 번들의 분산에 필요한 에너지 증가 요인으로 작용하여 탄소나노튜브 번들의 분산성을 떨어뜨리고 그에 따른 최종 제품의 물성 저하를 유발하는 것으로 판단된다. 도 4를 참고하면, 촉매 입자 표면에 보다 작은 입경의 촉매 입자가 다수 부착되어 있는 것을 확인할 수 있다.In general, catalysts for synthesizing carbon nanotubes have a particle form. In particular, in the case of plate-shaped particles (plate-shaped support + catalyst fine particles), small particles are aggregated on the surface of large particles due to large surface energy It is judged that the activity of the catalyst is reduced. . In addition, when a carbon nanotube bundle is synthesized using a catalyst in which small particles are aggregated, it is determined that the synthesized bundle is not uniform and aggregation between the synthesized bundles occurs. When used as a composite material on a polymer, metal, or film, it acts as a factor for increasing the energy required for the dispersion of the carbon nanotube bundle, thereby lowering the dispersibility of the carbon nanotube bundle and consequently, it is judged to cause deterioration of the physical properties of the final product. Referring to FIG. 4 , it can be seen that a large number of catalyst particles having a smaller particle diameter are attached to the surface of the catalyst particles.

이에 본 발명은 탄소나노튜브 합성용 촉매 입자 중 평균입경(D50)이 10㎛ 이하인 촉매 입자를 제거하여, 그에 따라 탄소나노튜브 합성 시 발생하는 탄소나노튜브 번들 간의 응집을 해소하며, 탄소나노튜브의 분산성을 향상시키고, 균일하고 고배향성을 갖는 탄소나노튜브 번들을 제조할 수 있게 한다.Accordingly, the present invention removes catalyst particles having an average particle diameter (D 50 ) of 10 μm or less among catalyst particles for carbon nanotube synthesis, thereby resolving aggregation between carbon nanotube bundles generated during carbon nanotube synthesis, and carbon nanotube It improves the dispersibility of carbon nanotubes and makes it possible to manufacture carbon nanotube bundles with uniform and highly oriented properties.

본 발명에 따른 제거 대상인 촉매 입자는 평균입경(D50)이 0㎛ 초과 10㎛ 이하인 것이다. 상기 범위를 만족하는 촉매 입자가 균일하고 고배향성을 갖는 탄소나노튜브 번들 제조 효과를 저해시킬 수 있고, 평균입경이 10㎛ 초과하는 촉매 입자는 전술한 촉매 활성을 떨어뜨리거나 번들 간의 응집 등을 유발하는 효과가 적기 때문이다.The catalyst particles to be removed according to the present invention have an average particle diameter (D 50 ) of greater than 0 μm and less than or equal to 10 μm. Catalyst particles satisfying the above range may inhibit the effect of producing a carbon nanotube bundle having uniform and high orientation, and catalyst particles having an average particle diameter of more than 10 μm may lower the above-mentioned catalytic activity or cause aggregation between bundles. because it has little effect.

본 발명에 따른 촉매 입자를 제거하는 방법은 평균입경(D50)이 10㎛ 이하인 촉매 입자를 제거할 수 있는 방법이면 당 분야에 공지된 방법이 제한 없이 사용될 수 있으나, 예를 들면, 습식 체분리법, 건식 체분리법, 정전기 방지제법, 분산제법, 에어로 젯법 및 염석법으로 이루어진 군에서 선택된 방법일 수 있으며, 바람직하게는 습식 체분리법일 수 있다.As the method for removing catalyst particles according to the present invention, any method known in the art may be used without limitation, as long as it is a method capable of removing catalyst particles having an average particle diameter (D 50 ) of 10 μm or less. For example, wet sieving method , may be a method selected from the group consisting of a dry sieving method, an antistatic agent method, a dispersing method, an air jet method, and a salting-out method, and preferably a wet sieving method.

이하에서는 습식 체분리법을 예시로 설명하나, 본 발명이 이에 한정되어서 해석되는 것은 아니다.Hereinafter, the wet sieving method will be described as an example, but the present invention is not limited thereto.

습식 체분리법은 제조된 상기 촉매 입자의 집합체를 분산매에 분산시킨 분산액을 체로 거름으로써 수행될 수 있다.The wet sieving method may be performed by sieving a dispersion in which the prepared aggregate of the catalyst particles is dispersed in a dispersion medium.

분산매를 사용함으로써 촉매 입자들 간의 분산, 특히 평균입경(D50)이 10㎛ 이하인 촉매 입자를 분리하는데 효과적일 수 있다.By using the dispersion medium, dispersion between the catalyst particles, in particular, the average particle diameter (D 50 ) may be effective in separating the catalyst particles having a particle size of 10 μm or less.

이 때, 사용되는 분산매는 촉매 입자를 분쇄할 수 있는 분산매이면 당 분야에 공지된 분산매가 별다른 제한 없이 사용될 수 있으나, 전술한 효과의 바람직한 측면에서 예를 들면 알코올계, 케톤계, 에테르계, 에스테르계 등일 수 있고, 보다 바람직하게는 알코올계일 수 있으며, 특히 에탄올일 수 있다.At this time, as long as the dispersion medium used is a dispersion medium capable of pulverizing the catalyst particles, any dispersion medium known in the art may be used without particular limitation. It may be a system, etc., more preferably, may be an alcohol-based system, and in particular may be ethanol.

평균입경(D50)이 10㎛ 이하인 것이 제거된 촉매 입자의 평균입경(D50)은 25㎛ 이상인 것이 바람직하다. 평균입경이 25㎛ 이상이 되어야 번들이 고배향성을 갖도록 형성될 수 있고, 평균입경(D50)의 상한은 탄소나노튜브 번들이 생성될 수 있기만 하면 되므로 특별히 제한하지는 않는다. 예를 들면 상한이 500㎛, 또는 1mm, 또는 1cm, 또는 10cm 일 수 있으나, 이에 한정되는 것은 아니다.The average particle diameter (D 50 ) of the catalyst particles from which the average particle diameter (D 50 ) is 10 μm or less is preferably 25 μm or more. When the average particle diameter is 25 μm or more, the bundle can be formed to have high orientation, and the upper limit of the average particle diameter (D 50 ) is not particularly limited, as long as the carbon nanotube bundle can be formed. For example, the upper limit may be 500 μm, or 1 mm, or 1 cm, or 10 cm, but is not limited thereto.

이러한 측면에서, 체의 체눈의 장축 길이는 10㎛ 이상일 수 있고, 체의 체눈의 장축 길이가 10㎛ 이상임으로써, 평균입경(D50)이 10㎛ 이하인 촉매 입자를 제거할 수 있다.In this aspect, the long axis length of the sieve of the sieve may be 10 μm or more, and since the long axis length of the sieve of the sieve is 10 μm or more, catalyst particles having an average particle diameter (D 50 ) of 10 μm or less can be removed.

필요에 따라, 습식 체분리법에 따라 얻어진 분산액에 대해 초음파 처리하는 단계를 더 포함할 수 있다.If necessary, the method may further include sonicating the dispersion obtained by the wet sieving method.

초음파 처리를 함으로써 촉매 입자들이 분산액 상에서 보다 더 분산이 잘 되도록 할 수 있다. 이는 후술할 평균입경(D50)이 10㎛ 이하인 촉매 입자를 제거 과정이 보다 효율적으로 수행될 수 있도록 할 수 있다.Sonication can make the catalyst particles more dispersed in the dispersion phase. This may enable a process of removing catalyst particles having an average particle diameter (D 50 ) of 10 μm or less, which will be described later, more efficiently.

초음파 처리는 당 분야에 공지된 방법이 사용될 수 있으며, 예를 들어 소니케이터(Sonicator)를 사용하는 방법이 사용될 수 있다.For the ultrasonic treatment, a method known in the art may be used, for example, a method using a sonicator may be used.

필요에 따라, 본 발명의 일 실시예에 따른 체로 거르는 단계는 분산매와 동일한 용매를 같이 투입하면서 수행될 수 있다.If necessary, the sieving step according to an embodiment of the present invention may be performed while adding the same solvent as the dispersion medium.

분산매와 동일한 용매를 같이 체에 통과시킴으로써, 촉매 입자 사이에 분산매를 침투시키는데 용이하여 보다 효율적으로 촉매 미립자를 분리할 수 있다.By passing the same solvent as the dispersion medium through a sieve, it is easy to permeate the dispersion medium between the catalyst particles, so that the catalyst fine particles can be separated more efficiently.

체로 거르는 단계는 체를 통과한 분산매를 육안으로 보았을 때 맑게 보이는 정도일 때까지 반복하여 수행할 수 있는데, 보다 구체적인 예를 들면, 분산액의 투과도가 98% 이상인 경우까지 수행될 수 있고, 투과도가 98% 이상인 경우 본 발명의 목적에 부합하는 탄소나노튜브 합성용 촉매를 얻을 수 있다.The sieving step can be repeated until the dispersion medium that has passed through the sieve is visible to the naked eye. In the above case, it is possible to obtain a catalyst for synthesizing carbon nanotubes meeting the object of the present invention.

필요에 따라, 체로 걸러져 촉매 미립자가 제거된 탄소나노튜브 합성용 촉매를 건조시킬 수 있다.If necessary, the catalyst for synthesizing carbon nanotubes from which catalyst fine particles are removed by sieving may be dried.

<탄소나노튜브 번들의 제조 방법><Manufacturing method of carbon nanotube bundle>

본 발명의 탄소나노튜브 번들의 제조는 전술한 제조 방법으로 제조된 촉매 상에 탄소나노튜브 번들을 성장시키는 방법이라면 당 분야에 알려진 방법이 특별한 제한 없이 적용될 수 있다. 예를 들면 화학기상증착법을 사용할 수 있다.For the preparation of the carbon nanotube bundle of the present invention, any method known in the art may be applied without any particular limitation as long as it is a method of growing the carbon nanotube bundle on the catalyst prepared by the above-described manufacturing method. For example, a chemical vapor deposition method can be used.

본 발명이 전술한 제조 방법을 통해 제조된 촉매를 이용함으로써 분산성이 향상된 탄소나노튜브 번들을 제조할 수 있다. The present invention can prepare a carbon nanotube bundle with improved dispersibility by using the catalyst prepared through the above-described manufacturing method.

전술한 본 발명에 따른 촉매 표면에 촉매 미립자가 응집되지 않은 촉매를 이용하여 탄소나노튜브 번들을 합성하면, 합성된 번들이 분산성이 높아 탄소나노튜브 번들 간의 응집이 적어, 배향성 및 균일성이 높을 수 있다. 아울러, 이러한 탄소나노튜브 번들을 이용해 제조되는 복합소재는 전기 전도도, 열전도율, 강도 등의 물성이 보다 우수할 수 있다.When carbon nanotube bundles are synthesized using the catalyst in which catalyst fine particles are not agglomerated on the catalyst surface according to the present invention, the synthesized bundle has high dispersibility, so the aggregation between the carbon nanotube bundles is small, so that the orientation and uniformity are high. can In addition, the composite material manufactured using such a carbon nanotube bundle may have better physical properties, such as electrical conductivity, thermal conductivity, and strength.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to help the understanding of the present invention, but these examples are merely illustrative of the present invention and do not limit the appended claims, and are within the scope and spirit of the present invention. It is obvious to those skilled in the art that various changes and modifications are possible, and it is natural that such variations and modifications fall within the scope of the appended claims.

실시예 및 비교예Examples and Comparative Examples

실시예 1Example 1

탄소나노튜브 합성용 촉매는 연소법에 의해 제조한다. 철촉매 전구체인 질산철(Iron(III) Nitrate nonahydrate, Fe(NO3)3·9H2O) 1.5g, 알루미나 지지체 전구체인 질산알루미늄(Aluminum Nitrate nonahydrate, Al(NO3)3·9H2O) 5.58g, 연소 및 발포제인 구연산(Citric acid) 4.28 g을 D.I water 20 ml에 용해시켰다. 30% 암모니아 수용액(30%)을 이용하여 pH를 7 이상으로 적정 후 건조하였다. 건조 후 200℃ 가열로에서 2시간 가열하여 발포과정을 거쳤다. 이를 알루미나 트레이에 옮겨 담고 750℃ 가열로에서 4시간 30분가량 열처리를 진행하여 촉매 입자 집합체를 얻었다.A catalyst for synthesizing carbon nanotubes is prepared by a combustion method. Iron(III) Nitrate nonahydrate, Fe(NO 3 ) 3 9H 2 O) 1.5 g, an iron catalyst precursor, Aluminum Nitrate nonahydrate, Al(NO 3 ) 3 9H 2 O) 5.58 g and 4.28 g of citric acid, a combustion and foaming agent, were dissolved in 20 ml of DI water. The pH was adjusted to 7 or higher using a 30% aqueous ammonia solution (30%) and then dried. After drying, it was heated in a heating furnace at 200° C. for 2 hours to undergo a foaming process. This was transferred to an alumina tray and heat-treated in a furnace at 750° C. for about 4 hours and 30 minutes to obtain a catalyst particle aggregate.

도 1에 탄소나노튜브 합성용 촉매 입자의 표면에 보다 작은 입경의 촉매 입자가 존재함을 알 수 있는 입도분석 데이터 그래프를 나타내었다.1 shows a graph of particle size analysis data showing that catalyst particles having a smaller particle diameter exist on the surface of the catalyst particles for carbon nanotube synthesis.

제조된 촉매 입자 집합체를 에탄올 500 ml에 넣고 분산시켰다. 수조형 초음파 처리기에서 135W 강도로 10분간 초음파 처리하였다. 분산된 분산액은 체의 체눈의 장축 길이가 90, 63, 45, 25 ㎛인 체를 이용하여 순차적으로 걸러주었다. 이 때 체망에 붙은 촉매 입자를 걸러주기 위하여 에탄올을 계속해서 함께 부어 주었고, 각각의 체를 최종적으로 통과한 분산액의 투과도는 99%이었다.The prepared catalyst particle aggregate was put into 500 ml of ethanol and dispersed. It was sonicated for 10 minutes at 135 W intensity in a water bath sonicator. The dispersed dispersion was sequentially filtered using a sieve having a sieve length of 90, 63, 45, and 25 μm. At this time, ethanol was continuously poured together to filter the catalyst particles adhering to the sieve, and the permeability of the dispersion that finally passed through each sieve was 99%.

이후 건조하여 탄소나노튜브 합성용 촉매를 체의 체눈의 장축 길이가 63, 45, 25 ㎛인 체에서 각각 0.3, 0.6, 1g을 얻었다.After drying, 0.3, 0.6, and 1 g of the catalyst for carbon nanotube synthesis were obtained from sieves having long axis lengths of 63, 45, and 25 μm, respectively.

25㎛ 체를 통과한 촉매 입자의 평균입경(D50)은 9.8㎛이었다. The average particle diameter (D 50 ) of the catalyst particles passing through the 25 μm sieve was 9.8 μm.

도 2에 체눈의 장축 길이가 25㎛인 체에 걸러진 촉매 입자의 입도분석 데이터, 체눈의 장축 길이가 45㎛인 체에 걸러진 촉매 입자의 입도분석 데이터, 체눈의 장축 길이가 63㎛인 체에 걸러진 촉매 입자의 입도분석 데이터를 각각 순서대로 나타내었다.Fig. 2 shows the particle size analysis data of catalyst particles filtered through a sieve with a major axis length of 25 μm, particle size analysis data of catalyst particles filtered through a sieve with a major axis length of 45 μm, and a sieve with a major axis length of 63 μm. The particle size analysis data of the catalyst particles are shown in sequence.

실시예 1에 따라 제조된 탄소나노튜브 번들 합성용 촉매의 표면의 전자현미경 사진을 도 3에 나타내었다.An electron micrograph of the surface of the catalyst for synthesizing a carbon nanotube bundle prepared according to Example 1 is shown in FIG. 3 .

비교예 1Comparative Example 1

체로 거르지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 번들 합성용 촉매를 제조하였다.A catalyst for synthesizing a carbon nanotube bundle was prepared in the same manner as in Example 1, except that it was not filtered through a sieve.

비교예 1에 따라 제조된 탄소나노튜브 번들 합성용 촉매의 표면의 전자현미경 사진을 도 4에 나타내었다.An electron micrograph of the surface of the catalyst for synthesizing a carbon nanotube bundle prepared according to Comparative Example 1 is shown in FIG. 4 .

도 4를 참고하면, 촉매 입자 표면에 작은 입경의 촉매 입자가 다수 부착되어 있는 것을 확인할 수 있다.Referring to FIG. 4 , it can be seen that a large number of catalyst particles having a small particle diameter are attached to the surface of the catalyst particles.

실험예Experimental example

실시예 1 및 비교예 1에 따라 제조된 탄소나노튜브 번들 합성용 촉매를 이용해 촉매화학기상 증착법에 의해 탄소나노튜브 번들을 합성하였다.Carbon nanotube bundles were synthesized by catalytic chemical vapor deposition using the catalyst for synthesizing carbon nanotube bundles prepared according to Example 1 and Comparative Example 1.

구체적으로, 알루미나 트레이 위에 탄소나노튜브 합성용 촉매 입자 10 mg을 도포하고 합성로 중앙에 위치시킨 후 아르곤 가스를 500 sccm으로 30분간 공급하여 아르곤 분위기를 만든 후 750℃에서 수소 가스와 아세틸렌 가스를 각각 100 sccm으로 30분동안 공급하여 탄소나노튜브 번들 126.8 mg을 합성하였다.Specifically, 10 mg of catalyst particles for carbon nanotube synthesis were applied on an alumina tray, placed in the center of the synthesis furnace, and argon gas was supplied at 500 sccm for 30 minutes to create an argon atmosphere, and then hydrogen gas and acetylene gas were respectively applied at 750 ° C. 126.8 mg of a carbon nanotube bundle was synthesized by supplying 100 sccm for 30 minutes.

실시예 1 및 비교예 1에 따라 제조된 탄소나노튜브 번들 합성용 촉매를 이용하여 합성한 탄소나노튜브 번들의 전자현미경 사진을 각각 도 5 및 도 6에 나타내었다.Electron micrographs of carbon nanotube bundles synthesized using the catalyst for synthesis of carbon nanotube bundles prepared according to Example 1 and Comparative Example 1 are shown in FIGS. 5 and 6, respectively.

도 5는 작은 입경의 촉매 입자를 제거한 탄소나노튜브 번들 합성용 촉매를 이용하여 합성한 탄소나노튜브 번들의 SEM 사진이다.5 is an SEM photograph of a carbon nanotube bundle synthesized using a catalyst for synthesizing a carbon nanotube bundle from which catalyst particles having a small particle diameter are removed.

도 6은 작은 입경의 촉매 입자를 제거하지 않은 탄소나노튜브 번들 합성용 촉매를 이용하여 합성한 탄소나노튜브 번들의 SEM 사진이다.6 is an SEM photograph of a carbon nanotube bundle synthesized using a catalyst for synthesizing a carbon nanotube bundle without removing catalyst particles having a small particle size.

Claims (9)

판상형 지지체 및 상기 지지체 상에 산재된 촉매 미립자를 포함하는 촉매 입자의 집합체를 얻는 단계; 및
상기 촉매 입자 중 평균입경(D50)이 10㎛ 이하인 것을 제거하는 단계;를 포함하는, 탄소나노튜브 번들 형성용 촉매의 제조 방법.
obtaining an aggregate of catalyst particles including a plate-shaped support and catalyst fine particles interspersed on the support; and
A method for producing a catalyst for forming a carbon nanotube bundle, including; removing those having an average particle diameter (D 50 ) of 10 μm or less among the catalyst particles.
청구항 1에 있어서, 상기 촉매 입자의 평균입경(D50)은 25㎛ 이상인, 탄소나노튜브 번들 합성용 촉매의 제조 방법.
The method according to claim 1, wherein the average particle diameter (D 50 ) of the catalyst particles is 25 μm or more, the method for producing a catalyst for synthesizing carbon nanotube bundles.
청구항 1에 있어서, 상기 촉매 입자를 제거하는 방법은 습식 체분리법, 건식 체분리법, 정전기 방지제법, 분산제법, 에어로 젯법 및 염석법으로 이루어진 군에서 선택된 방법인, 탄소나노튜브 번들 합성용 촉매의 제조 방법.
The method according to claim 1, wherein the method for removing the catalyst particles is a method selected from the group consisting of a wet sieving method, a dry sieving method, an antistatic method, a dispersing method, an air jet method, and a salting-out method. Way.
청구항 1에 있어서, 상기 촉매 입자를 제거하는 방법은,
제조된 상기 촉매 입자의 집합체를 분산매에 분산시킨 분산액을 체로 거르는 단계;
를 포함하는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.
The method according to claim 1, wherein the method of removing the catalyst particles,
sieving a dispersion in which the prepared aggregate of the catalyst particles is dispersed in a dispersion medium;
A method for producing a catalyst for carbon nanotube bundle synthesis, comprising a.
청구항 4에 있어서, 상기 체로 거르는 단계에서 분산매와 동일한 용매를 같이 투입하는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.
The method according to claim 4, wherein in the sieving step, the same solvent as the dispersion medium is added together, the catalyst for carbon nanotube bundle synthesis.
청구항 4에 있어서, 얻어진 상기 분산액을 초음파 처리하는 단계를 더 포함하는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.
The method according to claim 4, further comprising the step of ultrasonically treating the obtained dispersion.
청구항 6에 있어서, 상기 초음파 처리는 100 내지 150W 강도로 5 내지 15분간 수행되는, 탄소나노튜브 번들 합성용 촉매의 제조 방법.
The method according to claim 6, wherein the ultrasonic treatment is performed at 100 to 150 W intensity for 5 to 15 minutes, the method for producing a catalyst for synthesizing carbon nanotube bundles.
청구항 1 내지 7 중 어느 한 항의 제조 방법으로 제조된 촉매 상에 탄소나노튜브 번들을 성장시키는 단계를 포함하는, 탄소나노튜브 번들의 제조 방법.
A method for producing a carbon nanotube bundle comprising the step of growing a carbon nanotube bundle on the catalyst prepared by any one of claims 1 to 7.
청구항 8에 있어서, 상기 탄소나노튜브 번들은 화학기상증착법으로 합성되는, 탄소나노튜브 번들의 제조 방법.The method according to claim 8, wherein the carbon nanotube bundle is synthesized by a chemical vapor deposition method.
KR1020190068737A 2019-06-11 2019-06-11 Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same KR102307637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190068737A KR102307637B1 (en) 2019-06-11 2019-06-11 Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190068737A KR102307637B1 (en) 2019-06-11 2019-06-11 Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same

Publications (2)

Publication Number Publication Date
KR20200141772A KR20200141772A (en) 2020-12-21
KR102307637B1 true KR102307637B1 (en) 2021-09-30

Family

ID=74090761

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190068737A KR102307637B1 (en) 2019-06-11 2019-06-11 Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same

Country Status (1)

Country Link
KR (1) KR102307637B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101662A (en) * 2021-12-06 2022-03-01 赵玉荣 Copper alloy carbon nanotube composite powder and preparation method and application thereof
EP4338836A1 (en) 2022-01-13 2024-03-20 LG Chem, Ltd. Catalyst for manufacturing carbon nanotubes
CN117561215A (en) 2022-01-13 2024-02-13 株式会社Lg化学 Bundle type carbon nano tube
KR20230109574A (en) 2022-01-13 2023-07-20 주식회사 엘지화학 Catalyst for Manufacturing Carbon Nanotubes
CN117500594A (en) 2022-01-13 2024-02-02 株式会社Lg化学 Method for preparing catalyst for producing carbon nano tube
KR20230109576A (en) 2022-01-13 2023-07-20 주식회사 엘지화학 Method for Preparing Catalyst for Manufacturing Carbon Nanotubes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531314A (en) 2013-07-10 2015-11-02 エルジー・ケム・リミテッド Supported catalyst, aggregate of carbon nanotubes and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082141A (en) 2006-02-15 2007-08-21 삼성코닝 주식회사 Process for preparing catalyst for synthesis of carbon nanotubes
KR100896253B1 (en) * 2007-07-09 2009-05-08 재단법인서울대학교산학협력재단 Purification Method of Carbon Nanotubes
KR101231761B1 (en) * 2010-12-29 2013-02-08 금호석유화학 주식회사 Highly conductive carbon nanotubes having vertical bundle moieties and highly conductive polymer nanocomposite using the same
KR101284161B1 (en) * 2011-05-26 2013-07-10 한국화학연구원 Preparing method of Catalysts for the Fischer-Tropsch synthesis
KR101440417B1 (en) * 2012-10-11 2014-09-15 주식회사 효성 Manufacturing method of catalyst for synthesis of carbon nanotubes using ultrasonic pyrolysis and carbon nanotubes using the same
KR101508101B1 (en) * 2013-09-30 2015-04-07 주식회사 엘지화학 Carbon nanotubes having high specific surface area and Process for preparing same
KR101756453B1 (en) * 2014-01-09 2017-07-10 주식회사 제이오 Catalyst for Synthesizing multi-walled Carbon Nanotube, and manufacturing method thereof, and multi-walled Carbon Nanotube synthesized by the catalyst
KR101825265B1 (en) * 2015-03-04 2018-02-02 주식회사 엘지화학 Catalyst prepared by hydrothermal co-precipitation and carbon nanotubes prepared by using same
KR101790845B1 (en) * 2015-08-25 2017-10-26 재단법인 한국탄소융합기술원 Method for manufacturing carbon nanotube oriented in one direction enabling length control
KR101876293B1 (en) * 2016-10-17 2018-07-09 금호석유화학 주식회사 Continuous process for mass production of multi walled carbon nanotube and the catalyst for preparing the carbon nanotube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531314A (en) 2013-07-10 2015-11-02 エルジー・ケム・リミテッド Supported catalyst, aggregate of carbon nanotubes and method for producing the same

Also Published As

Publication number Publication date
KR20200141772A (en) 2020-12-21

Similar Documents

Publication Publication Date Title
KR102307637B1 (en) Manufacturing method of catalyst for synthesis of carbon nanotube bundle and manufacturing method of carbon nanotube bundle using the same
US11801494B2 (en) Method for preparing single-atom catalyst supported on carbon support
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP7193212B2 (en) CARBON NANOTUBES, MANUFACTURING METHOD THEREOF, AND CARBON NANOTUBE DISPERSION
JP3850380B2 (en) Carbon nanotube matrix growth method
Vander Wal et al. Carbon nanotube synthesis upon stainless steel meshes
JP5447367B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
JP4004502B2 (en) Method for producing ultrafine fibrous nanocarbon
KR101867545B1 (en) Carbon nanostructures and networks produced by chemical vapor deposition
JP2012102012A (en) Carbon nanotube on carbon nanofiber substrate
CN103537293B (en) For the preparation of Catalysts and its preparation method and the application of chiral selectivity and the selective SWCN of electric conductivity
JP6890187B2 (en) Catalyst for mass production of multiwalled carbon nanotubes
Allaedini et al. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst
Golubtsov et al. Mono-, Bi-, and trimetallic catalysts for the synthesis of multiwalled carbon nanotubes based on iron subgroup metals
JP2023078128A (en) Fibrous carbon nanostructure, evaluation method of fibrous carbon nanostructure and production method of surface-modified fibrous carbon nanostructure
JP2005238142A (en) Catalytic structure and method for producing carbon nanotube by using the same
JP4020410B2 (en) Catalyst for carbon material production
KR101349670B1 (en) Highly conductive carbon nanotubes having vertical bundle moieties and highly conductive coating solution using the same
JP4567319B2 (en) Method for producing carbon nanotube
Popp et al. Porous carbon nanotube-reinforced metals and ceramics via a double templating approach
JP5854314B2 (en) Marimo carbon and method for producing the same
JP2016088763A (en) Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite
Ratković et al. Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts
Abdulkareem et al. Synthesis and Characterization of Carbon Nanotubes on Fe/Al Al2O3 Composite Catalyst by Chemical Vapour Deposition Method
Khiriya et al. Development of Fe/Ru Bimetallic Nanoparticles for Promising Application in the Selective Synthesis of SWNTs

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant