JP2016088763A - Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite - Google Patents

Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite Download PDF

Info

Publication number
JP2016088763A
JP2016088763A JP2014221019A JP2014221019A JP2016088763A JP 2016088763 A JP2016088763 A JP 2016088763A JP 2014221019 A JP2014221019 A JP 2014221019A JP 2014221019 A JP2014221019 A JP 2014221019A JP 2016088763 A JP2016088763 A JP 2016088763A
Authority
JP
Japan
Prior art keywords
carbon
nanofiber
nanoparticle
catalyst
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014221019A
Other languages
Japanese (ja)
Inventor
済徳 金
Zumitoku Kin
済徳 金
文錫 全
Mun-Suk Jun
文錫 全
利鎮 吉
Li-Zhen Ji
利鎮 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014221019A priority Critical patent/JP2016088763A/en
Publication of JP2016088763A publication Critical patent/JP2016088763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To produce a carbon-based material that has a smaller number of primary pores than that of carbon black used as a carrier of a fuel battery electrode catalyst and has good dispersibility.SOLUTION: A composite produced by growing a carbon nanofiber from the surface of a carbon nanoparticle such as carbon black or the like fills a primary pore of the carbon nanoparticle surface with the carbon nanofiber and therefore, so that the deterioration of utilization efficiency of a catalyst caused by allowing a catalyst such as platinum to enter into the primary pore can be prevented. The composite is easily handled because it hardly causes the deterioration in dispersibility by entanglement of mutual fibers as the ordinary carbon black fiber material.SELECTED DRAWING: Figure 1

Description

本発明はカーボン系材料に関し、特にカーボンナノファイバー−カーボンナノ粒子複合体及びその製造方法に関する。本発明は更に当該複合体を触媒担体として使用した燃料電池用の触媒にも関する。   The present invention relates to a carbon-based material, and particularly to a carbon nanofiber-carbon nanoparticle composite and a method for producing the same. The present invention further relates to a catalyst for a fuel cell using the composite as a catalyst carrier.

カーボンは今、いろんな産業分野で重要な材料として使用されている。カーボン材料は現在多くの種類のものが広範に使用され、科学技術の発展により現在も新規なカーボン材料の開発が続いている(特許文献1〜5)。   Carbon is now used as an important material in various industrial fields. Many types of carbon materials are widely used at present, and new carbon materials are still being developed due to the development of science and technology (Patent Documents 1 to 5).

カーボン材料は形状によって異なる特徴を持ち、様々な産業分野で使用されている。その中で最も広く使用されているカーボン材料がカーボンブラックである。カーボンブラックは炭化水素を不完全燃焼あるいは熱分解することによって大量生産が可能な材料である。原料ガス、製造方法及び製造条件によってそれぞれのカーボンブラック特性が異なるため様々なカーボンブラックに分類されている。このカーボンブラックは黒色顔料(インク、コピートナーなど)やゴム製品への添加剤、石油の脱硫などの吸着剤、リチウム二次電池で負極材料の導電材及び燃料電池の電極触媒担体など幅広い用度に用いられている。特に低コスト性、優れた伝導性及び化学的安定性を有するとともに、大きな比表面積を有していて電極触媒である白金貴金属触媒を分撒させることができ、また触媒活性を向上することができるため、カーボンブラックは燃料電池電極触媒担体としても広く利用されている。   Carbon materials have different characteristics depending on their shapes, and are used in various industrial fields. Among them, the most widely used carbon material is carbon black. Carbon black is a material that can be mass-produced by incomplete combustion or thermal decomposition of hydrocarbons. Since the characteristics of each carbon black differ depending on the raw material gas, the production method and the production conditions, they are classified into various carbon blacks. This carbon black is widely used for black pigments (inks, copy toners, etc.), additives for rubber products, adsorbents for petroleum desulfurization, conductive materials for negative electrode materials in lithium secondary batteries, and electrode catalyst carriers for fuel cells. It is used for. In particular, it has low cost, excellent conductivity and chemical stability, has a large specific surface area, can separate the platinum noble metal catalyst which is an electrode catalyst, and can improve the catalytic activity. Therefore, carbon black is widely used as a fuel cell electrode catalyst carrier.

しかし、カーボンブラックは以下のような問題も有している。すなわち、カーボンブラックは多くの気孔を有するため、径が40nm以上の一次孔(primary pore)を持っている。白金が一次孔内部に担持された電極触媒を燃料電池等に使用した場合には、電極バインダーが一次孔内部の白金に接触しなくなり、これによって一次孔中の白金が触媒活性を発揮できなくなってしまうことがある。   However, carbon black also has the following problems. That is, since carbon black has many pores, it has primary pores with a diameter of 40 nm or more. When an electrode catalyst in which platinum is supported in the primary hole is used in a fuel cell or the like, the electrode binder does not come into contact with the platinum in the primary hole, which prevents the platinum in the primary hole from exhibiting catalytic activity. May end up.

燃料電池電極触媒担体としてのカーボンブラックの問題点を解消するため、カーボン材料としてカーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)などのカーボンナノ材料を使用することが検討されている(特許文献4、5)。カーボンナノ材料の形状はカーボンブラックとは異なり、線径が数nmから数十nm程度の繊維状であるため、カーボンブラックのような多くの気孔を持っていない。更に、これらのカーボンナノ材料は高い結晶性、高電気伝導性、高熱伝導性及び高い有効比表面積などの優れた性質を有している。しかし、合成したカーボンナノ材料は通常は互いに絡み合った凝集体として得られるため、この種のナノ材料は分散性が悪く、良好な性能を有する電極触媒を作製することは困難であるという問題がある。   In order to solve the problem of carbon black as a fuel cell electrode catalyst carrier, the use of carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanofibers (CNF) as carbon materials has been studied (Patent Document 4). 5). Unlike carbon black, the shape of the carbon nanomaterial is a fiber having a diameter of several nanometers to several tens of nanometers, and therefore does not have many pores like carbon black. Furthermore, these carbon nanomaterials have excellent properties such as high crystallinity, high electrical conductivity, high thermal conductivity, and high effective specific surface area. However, since synthesized carbon nanomaterials are usually obtained as aggregates intertwined with each other, this type of nanomaterial has poor dispersibility, and it is difficult to produce an electrocatalyst having good performance. .

本発明の課題は、カーボンブラックで代表されるカーボンナノ粒子を触媒単体として使用する際に問題を引き起こす一次孔が少なく、またカーボンナノ材料を使用する際に問題となる繊維の低分散性を改善したカーボン材料を提供することである。   The object of the present invention is to reduce the number of primary pores that cause problems when using carbon nanoparticles represented by carbon black as a single catalyst, and to improve the low dispersibility of fibers that are problematic when using carbon nanomaterials. Is to provide an improved carbon material.

本発明の一側面によれば、カーボンナノ粒子表面にカーボンナノファイバーが設けられている、カーボンナノファイバー−カーボンナノ粒子複合体が与えられる。
ここで、前記カーボンナノ粒子はカーボンブラックであってよい。
また、前記カーボンナノファイバーは前記カーボンナノ粒子表面上の一次孔の少なくとも一部を塞いでいてよい。
また、前記カーボンナノ粒子の直径は60nm〜120nmであり、前記カーボンナノファイバーの直径は10nmから100nm、長さは10nm〜10μmであってよい。
また、前記カーボンナノファイバーは前記カーボンナノ粒子から屈曲して伸びてよい。
本発明の他の側面によれば、表面に金属が担持されたカーボンナノ粒子に炭素源を含む原料ガスを供給して加熱することにより、カーボンナノ粒子表面にカーボンナノファイバーを成長させる、カーボンナノファイバー−カーボンナノ粒子複合体の製造方法が与えられる。
ここで、前記炭素源はエチレン、アセチレン及びメタンからなる群から選択された一または複数のガスであってよい。
また、前記金属はニッケル、鉄、銅、マグネシウム及びコバルトからなる群から選択された複数の金属の組み合わせであってよい。
また、金属塩が担持されたカーボンナノ粒子を還元性雰囲気中で加熱することにより前記表面に金属が担持されたカーボンナノ粒子を得てよい。
また、前記還元性雰囲気は水素を含んでよい。
また、前記加熱を610℃から1000℃の温度範囲で10分から2時間行ってよい。
本発明の更に他の側面によれば、上記何れかのカーボンナノ繊維−カーボンナノ粒子複合体に触媒活性を有する物質を担持させた触媒が与えられる。
ここで、前記触媒活性を有する物質は白金、パラジウム、イリジウム、金、銀、ニッケル、鉄、白金−ルテニウム合金、白金−パラジウム合金、白金−イリジウム合金、白金−コバルト合金、白金−コバルト−マンガン合金、白金−アンチモン合金、白金−アンチモン−酸化スズ合金、酸化ルテニウム、酸化イリジウム、酸化スズ、ジルコニア、チタニア、セリア、酸化タンタル及び酸化アルミニウムからなる群から選択されてよい。
本発明の更に他の側面によれば、上記何れかの触媒からなる燃料電池電極用触媒が与えられる。
According to one aspect of the present invention, a carbon nanofiber-carbon nanoparticle composite is provided in which carbon nanofibers are provided on the surface of the carbon nanoparticle.
Here, the carbon nanoparticles may be carbon black.
The carbon nanofibers may block at least a part of primary pores on the surface of the carbon nanoparticles.
The carbon nanoparticles may have a diameter of 60 nm to 120 nm, the carbon nanofibers may have a diameter of 10 nm to 100 nm, and a length of 10 nm to 10 μm.
The carbon nanofibers may be bent and extend from the carbon nanoparticles.
According to another aspect of the present invention, a carbon nanofiber is grown on the surface of a carbon nanoparticle by supplying a source gas containing a carbon source to the carbon nanoparticle having a metal supported on the surface and heating the carbon nanoparticle. A method for producing a fiber-carbon nanoparticle composite is provided.
Here, the carbon source may be one or more gases selected from the group consisting of ethylene, acetylene, and methane.
The metal may be a combination of a plurality of metals selected from the group consisting of nickel, iron, copper, magnesium and cobalt.
Moreover, the carbon nanoparticle carrying a metal salt may be obtained by heating the carbon nanoparticle carrying a metal salt in a reducing atmosphere.
The reducing atmosphere may contain hydrogen.
The heating may be performed at a temperature range of 610 ° C. to 1000 ° C. for 10 minutes to 2 hours.
According to still another aspect of the present invention, there is provided a catalyst in which a substance having catalytic activity is supported on any of the above carbon nanofiber-carbon nanoparticle composites.
Here, the substance having catalytic activity is platinum, palladium, iridium, gold, silver, nickel, iron, platinum-ruthenium alloy, platinum-palladium alloy, platinum-iridium alloy, platinum-cobalt alloy, platinum-cobalt-manganese alloy. , Platinum-antimony alloy, platinum-antimony-tin oxide alloy, ruthenium oxide, iridium oxide, tin oxide, zirconia, titania, ceria, tantalum oxide and aluminum oxide.
According to still another aspect of the present invention, a fuel cell electrode catalyst comprising any one of the above catalysts is provided.

本発明により、分散性が良好であり、また触媒をその活性を失わせることなく担持できるカーボンナノファイバー−カーボンナノ粒子複合体が与えられる。   The present invention provides a carbon nanofiber-carbon nanoparticle composite having good dispersibility and capable of supporting a catalyst without losing its activity.

本発明のカーボンナノファイバー(CNF)−カーボンナノ粒子複合体の製造過程及びその構造を概念的に示す図。The figure which shows notionally the manufacturing process of the carbon nanofiber (CNF) -carbon nanoparticle composite_body | complex of this invention, and its structure. (a)本発明の実施例で原料として使用したカーボンブラック(CB)のSEM像。(b)本発明の実施例で製造したCNF−CB複合体のSEM像。(A) SEM image of carbon black (CB) used as a raw material in the examples of the present invention. (B) SEM image of the CNF-CB composite produced in the example of the present invention. (a)本発明の実施例で原料として使用したCBのTEM像。(b)本発明の実施例で製造したCNF−CB複合体のTEM像。(A) TEM image of CB used as a raw material in the examples of the present invention. (B) TEM image of the CNF-CB composite produced in the example of the present invention. 本発明の実施例において、合成温度610℃及び640℃、合成時間10分、20分及び30分の6通りの組み合わせのそれぞれの場合についての合成結果のCNF−CB複合体のSEM像。In the Example of this invention, the synthesis | combination temperature 610 degreeC and 640 degreeC, the synthesis | combination time 10 minutes, 20 minutes, and the SEM image of the CNF-CB composite_body | complex of the synthesis | combination result about each case of 30 minutes. 本発明の実施例において、合成時間を10分、20分及び30分の3通りとした場合のCNF−CB複合体のBET測定による比表面積の変化を示すグラフ。In the Example of this invention, the graph which shows the change of the specific surface area by the BET measurement of a CNF-CB composite_body | complex when a synthesis time is made into three ways of 10 minutes, 20 minutes, and 30 minutes. 市販の20重量%Pt担持炭素触媒(20wt%Pt/C)、本発明の実施例で原料として使用したCBに20重量%のPtを担持させた触媒、及び本発明の実施例で製造したCNF−CB複合体に20重量%のPtを担持させた触媒のそれぞれを燃料電池触媒として使用した場合のI−V特性を示すグラフ。Commercially available 20 wt% Pt-supported carbon catalyst (20 wt% Pt / C), catalyst having 20 wt% Pt supported on CB used as a raw material in the examples of the present invention, and CNF produced in the examples of the present invention A graph showing IV characteristics when each of the catalysts in which 20% by weight of Pt is supported on a CB composite is used as a fuel cell catalyst.

本発明の材料であるCNFとCB等のカーボンナノ粒子との複合体(CNF−カーボンナノ粒子複合体)は、図1に示すように、CB等のカーボンナノ粒子の表面に繊維状のナノサイズのカーボンを結合させ、または成長させた構造を有する。このナノ繊維がCB等のカーボンナノ粒子表面の一次孔を覆うなどして塞ぐため、一次孔内に白金等が入りこむことによる触媒活性の低下が防止される。更に、カーボンナノ粒子表面に所要の金属を比較的一様に分布させてから、この金属を起点としてCNFの成長を開始させるため、CB表面上の特定の箇所で集中してCNFが成長あるいは結合する場合に比べてCNF同士の絡み合いの程度が小さくなる。更には、成長するCNFは、遠方に向かって直線状に伸びるよりは、図1に示すように屈曲しながら成長して成長開始点周囲を取り囲むようになる傾向が強いため、他のCB上のような遠方で成長を開始したCNFと接触して絡み合う確率が低くなる。これらの要因により、CNFだけからなる従来の材料に比べて、本発明の複合体はCNF相互の絡み合いが少なくなり、従って従来の材料に比べて分散性が向上する。また、CNFが屈曲してカーボンナノ粒子表面を覆うように伸びることにより、CNFが効率よく一次孔を塞ぐことができる。   As shown in FIG. 1, a composite of CNF and carbon nanoparticles such as CB (CNF-carbon nanoparticle composite), which is a material of the present invention, has a fibrous nanosize on the surface of carbon nanoparticles such as CB. It has a structure in which carbon is bonded or grown. Since the nanofibers cover and block the primary pores on the surface of the carbon nanoparticle such as CB, the catalytic activity is prevented from being lowered due to platinum or the like entering the primary pores. Furthermore, after a required metal is distributed relatively uniformly on the surface of the carbon nanoparticle, CNF growth starts from this metal as a starting point, so that CNF grows or binds at a specific location on the CB surface. The degree of entanglement between the CNFs is smaller than that in the case of doing so. Further, since the growing CNF tends to grow while bending as shown in FIG. 1 to surround the growth start point rather than linearly extending toward the far side, Thus, the probability of entanglement with the CNF that has started to grow at a far distance becomes low. Due to these factors, the composite of the present invention is less entangled with each other than the conventional material consisting only of CNF, and thus the dispersibility is improved as compared with the conventional material. In addition, CNF can bend and extend so as to cover the carbon nanoparticle surface, so that CNF can efficiently close the primary hole.

従来の燃料電池用電極触媒の製造方法の多くは、高温、長時間、製造プロセスが複雑なプロセスで構成されている(特許文献6〜10)。その結果、燃料電池用電極触媒のコストは高くなる。これに対して、本発明では低温、短時間かつ単純な製造プロセスにより燃料電池用電極触媒のコスト低減を達成する燃料電池用電極触媒等の触媒の製造方法が提供される。具体的には、本発明ではCNF−カーボンナノ粒子複合体を化学蒸着法により直接合成し、これを白金金属触媒等の触媒活性を有する物質の担体として利用する。触媒活性を有する物質としては、他にパラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、ニッケル(Ni)、鉄(Fe)、白金−ルテニウム(Pt−Ru)合金、白金−パラジウム(Pt−Pd)合金、白金−イリジウム(Pt−Ir)合金、白金−コバルト(Pt−Co)合金、白金−コバルト−マンガン(Pt−Co−Mn)合金、白金−アンチモン(Pt−Sb)合金、白金−アンチモン−酸化スズ(Pt−Sb−SnO)合金、酸化ルテニウム(RuO)、酸化イリジウム(IrO)、酸化スズ(SnO)、ジルコニア(ZrO)、チタニア(TiO)、セリア(CeO)、酸化タンタル(Ta)、酸化アルミニウム(Al)等を使用することができる。 Many of the conventional methods for producing an electrode catalyst for a fuel cell are composed of a high temperature, a long time, and a complicated production process (Patent Documents 6 to 10). As a result, the cost of the fuel cell electrode catalyst increases. In contrast, the present invention provides a method for producing a catalyst such as a fuel cell electrode catalyst that achieves cost reduction of the fuel cell electrode catalyst by a simple production process at a low temperature for a short time. Specifically, in the present invention, a CNF-carbon nanoparticle composite is directly synthesized by a chemical vapor deposition method and used as a carrier for a substance having catalytic activity such as a platinum metal catalyst. Other materials having catalytic activity include palladium (Pd), iridium (Ir), gold (Au), silver (Ag), nickel (Ni), iron (Fe), platinum-ruthenium (Pt-Ru) alloy, Platinum-palladium (Pt-Pd) alloy, platinum-iridium (Pt-Ir) alloy, platinum-cobalt (Pt-Co) alloy, platinum-cobalt-manganese (Pt-Co-Mn) alloy, platinum-antimony (Pt- Sb) alloy, platinum-antimony-tin oxide (Pt—Sb—SnO 2 ) alloy, ruthenium oxide (RuO 2 ), iridium oxide (IrO 2 ), tin oxide (SnO 2 ), zirconia (ZrO 2 ), titania (TiO 2 ) 2 ), ceria (CeO 2 ), tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), and the like can be used.

なお、本発明ではCBに限らず、カーボンナノ材料等のカーボン材料一般の上にカーボンナノ繊維を成長させることができるが、本願明細書ではカーボン材料の一例としてCBについて説明を行っていることに注意されたい。   In the present invention, carbon nanofibers can be grown not only on CB but on carbon materials such as carbon nanomaterials in general. In the present specification, CB is described as an example of a carbon material. Please be careful.

以下の実施例においては、カーボンナノ粒子としてCBを用い、本発明の単純な触媒製造方法を利用して燃料電池用電極触媒を製造し、分析及び評価を行なった。   In the following examples, CB was used as carbon nanoparticles, and an electrode catalyst for a fuel cell was produced using the simple catalyst production method of the present invention, and was analyzed and evaluated.

[二元金属をCBの表面に担持した触媒の製造]
CBとしてVulcan XC-72R(VC)を使用し、FeNi二元金属触媒の前駆体である二元金属塩としてNi(NO)6HO(Nacalai tesque社)及びFe(NO9HO(Aldrich社)を使用してCBの表面に当該二元金属塩を担持し、これを還元性雰囲気中で加熱することにより、CNF−CB複合体の合成に必要な触媒を製造した。製造方法としては、先ずエタノール(Wako社)100mlにFe及びNiを金属換算で1g(FeとNiとの重量比は2:8、上記金属塩の量としては、Fe塩を3.962g、Ni塩を0.769g)添加して1時間攪拌した。その後、CBを9g添加して24時間攪拌を行なった。攪拌終了後、蒸発装置を利用して80℃の温度で攪拌することによってエタノールを蒸発させ、Fe及びNiの塩(二元金属塩、FeNi塩とも称する)を担持したCBを得た。その後、FeNi塩を担持しているCB粉末を100℃の乾燥装置で24時間乾燥させた。なお、CBとしては、一次粒子サイズが60nm〜120nm、二次粒子サイズが500nm〜数μmのものが好適に使用できる。
[Production of catalyst with binary metal supported on CB surface]
Vulcan XC-72R (VC) is used as CB, and Ni (NO 3 ) 6 H 2 O (Nacalai tesque) and Fe (NO 3 ) 3 9H 2 are used as the binary metal salt that is the precursor of the FeNi bimetallic catalyst. The catalyst required for the synthesis | combination of a CNF-CB composite_body | complex was manufactured by carrying | supporting the said binary metal salt on the surface of CB using O (Aldrich), and heating this in reducing environment. As a production method, first, 1 g of Fe and Ni in terms of metal is added to 100 ml of ethanol (Wako) (Fe: Ni weight ratio is 2: 8, the amount of the metal salt is 3.962 g of Fe salt, Ni 0.769 g of salt) was added and stirred for 1 hour. Thereafter, 9 g of CB was added and stirred for 24 hours. After the completion of stirring, ethanol was evaporated by stirring at a temperature of 80 ° C. using an evaporator to obtain CB carrying Fe and Ni salts (also referred to as binary metal salt and FeNi salt). Thereafter, the CB powder carrying the FeNi salt was dried for 24 hours with a drying apparatus at 100 ° C. As CB, those having a primary particle size of 60 nm to 120 nm and a secondary particle size of 500 nm to several μm can be suitably used.

[CNF−CB複合体の合成]
上述の通り製造した、FeNiの二元金属塩を担持しているCBをCNF−CB複合体の種として使用し、気相成長法を利用して合成を行なった。この時、石英チューブ内部には圧力を掛けず、常圧の状態でCNF−CB複合体の合成を行なった。この合成の間に供給するガスにはヘリウム、水素及びエチレンガスの混合ガスを使用した。それぞれのガスの役割は、ヘリウムガスは不活性ガスとして使用し、水素ガスはこれを石英チューブ内部に導入することによって触媒表面から酸素又は水分を除去して、FeNi触媒を活性化させる還元ガスとして使用した。また、エチレンガスは還元されたFeNi触媒の表面で触媒と反応してCNFを成長させ、CNF−CB複合体を合成させる原料ガス(炭素源)として使用した。
[Synthesis of CNF-CB Complex]
Synthesis was carried out using the vapor phase growth method using CB carrying the FeNi binary metal salt produced as described above as the seed of the CNF-CB composite. At this time, the CNF-CB composite was synthesized under normal pressure without applying pressure to the inside of the quartz tube. As a gas supplied during the synthesis, a mixed gas of helium, hydrogen and ethylene gas was used. The role of each gas is that helium gas is used as an inert gas, and hydrogen gas is used as a reducing gas to activate the FeNi catalyst by removing oxygen or moisture from the catalyst surface by introducing it into the quartz tube. used. Further, ethylene gas was used as a source gas (carbon source) for reacting with the catalyst on the surface of the reduced FeNi catalyst to grow CNF and synthesize a CNF-CB composite.

CNF−CB複合体の合成に当たって、先ずFeNi/VC触媒を石英などの基板上に配置して加熱炉の石英チューブに接続した。次に、石英チューブにヘリウムガスを200ml/分の流量で30分間導入して、石英チューブ内部のガス雰囲気を、空気雰囲気からヘリウム雰囲気へ置換した。その後、610℃または640℃の温度まで4℃/分の速度で昇温しながらヘリウムガス(160ml/分)と水素ガス(40ml/分)との混合ガスを導入して、FeNi二元金属塩触媒を還元し、CBの表面上にNi及びFe金属(NiFe)を形成した。このようにしてCB表面上にNiFeからなる微粒子をほぼ一様に分布させた後、610℃、640℃の温度でそれぞれ10分、20分、30分間維持しながら水素(100ml/分)及びエチレンガス(100ml/分)を導入してCNF−CB複合体の合成を行った。   In synthesizing the CNF-CB composite, first, an FeNi / VC catalyst was placed on a substrate such as quartz and connected to a quartz tube of a heating furnace. Next, helium gas was introduced into the quartz tube at a flow rate of 200 ml / min for 30 minutes to replace the gas atmosphere inside the quartz tube from an air atmosphere to a helium atmosphere. Thereafter, a mixed gas of helium gas (160 ml / min) and hydrogen gas (40 ml / min) is introduced while raising the temperature to a temperature of 610 ° C. or 640 ° C. at a rate of 4 ° C./min. The catalyst was reduced to form Ni and Fe metal (NiFe) on the surface of CB. After NiFe fine particles were distributed almost uniformly on the CB surface in this way, hydrogen (100 ml / min) and ethylene were maintained at temperatures of 610 ° C. and 640 ° C. for 10 minutes, 20 minutes and 30 minutes, respectively. Gas (100 ml / min) was introduced to synthesize a CNF-CB complex.

[CNF−CB複合体の分析]
CNF−CB複合体の合成が行なわれたか否かに関しては日立電子社製走査電子顕微鏡(SEM;S−4800)を利用して観察し、確認した。CNF−CB複合体の繊維状ナノカーボンは日本電子社製透過型電子顕微鏡(TEM;JEM−2100F)を利用して観察し、確認した。合成されたCNF−CB複合体の比表面積はQuantachrome社のBET(ASIZM0002−4)を利用して測定を行なった。
[Analysis of CNF-CB Complex]
Whether or not the synthesis of the CNF-CB complex was performed was confirmed by observation using a scanning electron microscope (SEM; S-4800) manufactured by Hitachi Electronics. The fibrous nanocarbon of the CNF-CB composite was observed and confirmed using a transmission electron microscope (TEM; JEM-2100F) manufactured by JEOL. The specific surface area of the synthesized CNF-CB composite was measured using BET (ASIZM0002-4) manufactured by Quantachrome.

[CNF−CB複合体及びCBを用いた燃料電池電極触媒の製造]
燃料電池電極触媒は単純な方法で製造した。すなわち、上述のようにして合成した本発明のCNF−CB複合体及び比較対象としてのCB(CNF−CBの原料と同じCBを単独で使用)を燃料電池電極触媒の担体として利用し、PtCl9HO(Wako社)を金属触媒として利用した。ここで、NaBH(Wako社)を金属触媒の還元剤として用いた。これにより、20wt%Pt/CNF−CB及び20wt%Pt/CBの燃料電池電極触媒を製造した。更に、本発明の上記実施例の燃料電池電極触媒と比較するために、市販されているJohnson Matthey社の20wt%Pt/C(Hispec 1000)を使用した。
[Production of fuel cell electrode catalyst using CNF-CB composite and CB]
The fuel cell electrode catalyst was produced by a simple method. That is, the CNF-CB composite of the present invention synthesized as described above and CB as a comparison target (using the same CB as the raw material of CNF-CB alone) are used as a support for the fuel cell electrode catalyst, and PtCl 6 9H 2 O (Wako) was used as the metal catalyst. Here, NaBH 4 (Wako) was used as a reducing agent for the metal catalyst. As a result, 20 wt% Pt / CNF-CB and 20 wt% Pt / CB fuel cell electrode catalysts were produced. In addition, a commercially available 20 wt% Pt / C (Hispec 1000) from Johnson Matthey was used for comparison with the fuel cell electrocatalysts of the above examples of the present invention.

本発明のCNF−CBを利用した燃料電池電極触媒及び比較対象としての従来から使用されているCBを利用した燃料電池電極触媒を製造するに当たって、先ず脱イオン水(DI Water)100mlとエタノール(Wako社)20mlとの混合液にCNF−CB複合体またはCB(以下、カーボンと総称する)をそれぞれ0.5g添加して、超音波を5分間照射した。その後、温度を3〜10℃に設定した攪拌機で攪拌を行った。   In producing a fuel cell electrode catalyst using CNF-CB of the present invention and a fuel cell electrode catalyst using CB conventionally used as a comparison object, first, 100 ml of deionized water (DI Water) and ethanol (Wako) 0.5 g of a CNF-CB complex or CB (hereinafter collectively referred to as carbon) was added to a mixed solution of 20 ml and irradiated with ultrasonic waves for 5 minutes. Then, it stirred with the stirrer which set temperature to 3-10 degreeC.

その後、以下に示す手順により、燃料電池触媒となる貴金属(Pt)の担持を行った。先ず、カーボンに対して20wt%となる重量のPtCl9HO(Wako社)を脱イオン水100mlに添加することにより、PtCl9HO水溶液を調整した。次に、上述のようにして準備したところのカーボンが入っている脱イオン水100mlとエタノール20mlとの混合液中に、上記PtCl9HO水溶液をビューレットを用いて10分間で20ml滴下した。その後、NaBH(Wako社)還元剤の粉末を0.19gを投入した。このPtCl9HO水溶液20mlの滴下とその後のNaBH粉末0.19gの投入のサイクルを全部で5回繰り返した。その後、Ptへの還元が完全に行われるように、10分〜20分程度攪拌した。このようにしてPtCl9HOを還元して、触媒金属であるPtをカーボンに担持させた。上述の燃料電池電極触媒製造の全工程は約1時間30分を要した。その後、洗浄し、ろ過し、90℃で24時間乾燥することで、本発明及び比較対象の燃料電池電極触媒を得た。 Thereafter, a noble metal (Pt) serving as a fuel cell catalyst was supported by the following procedure. First, a PtCl 6 9H 2 O aqueous solution was prepared by adding PtCl 6 9H 2 O (Wako) having a weight of 20 wt% to carbon to 100 ml of deionized water. Next, 20 ml of the above PtCl 6 9H 2 O aqueous solution was dropped into a mixed solution of 100 ml of deionized water containing carbon prepared as described above and 20 ml of ethanol using a buret for 10 minutes. . Thereafter, 0.19 g of NaBH 4 (Wako) reducing agent powder was added. The cycle of dropping 20 ml of this PtCl 6 9H 2 O aqueous solution and then adding 0.19 g of NaBH 4 powder was repeated a total of 5 times. Then, it stirred for about 10 minutes-20 minutes so that the reduction | restoration to Pt might be performed completely. In this way, PtCl 6 9H 2 O was reduced, and Pt as a catalyst metal was supported on carbon. The entire process for producing the fuel cell electrode catalyst described above took about 1 hour 30 minutes. Then, it wash | cleaned, filtered, and obtained the fuel cell electrode catalyst of this invention and a comparison object by drying at 90 degreeC for 24 hours.

[製造した20wt%Pt/CNF−CB及び20wt%Pt/CB並びに市販触媒20wt%Pt/Cの活性評価]
上述のようにして製造した実施例の20wt%Pt/CNF−CB、並びに比較例としての上述のようにして製造した20wt%Pt/CB及び市販触媒20wt%Pt/C(Johnson Matthey)にそれぞれNafion(登録商標)バインダー(Wako社;40wt%)を添加してスラリー化し、カーボンペーパーの上にこれらのスラリーである電極触媒を塗布し(Pt換算で0.3mg/cm)、それぞれ燃料電池のアノード電極として利用した。カソード電極は、Johnson Matthey(20wt%Pt/C)にNafionバインダー(Wako社;40wt%)を添加してスラリー化し、カーボンペーパーの上に電極触媒(Pt換算で0.3mg/cm)を塗布して製造した。このようにして製造したアノード電極とカソード電極との間にNafion 電解質膜(Dupon社;Nafion 115)を挟んで155℃、0.8MPaの状態で10分間ホットプレスを行なうことで、燃料電池電極を製造した。この電極を用いて単電池を作成し、I−V特性を利用して実施例及び比較例の触媒の活性を評価した。I−V測定条件としては70℃、100%加湿の状態で評価し、東陽テクニカ社製の燃料電池テストシステムを使用して分析を行なった。
[Activity evaluation of produced 20 wt% Pt / CNF-CB and 20 wt% Pt / CB and commercially available catalyst 20 wt% Pt / C]
Example 20 wt% Pt / CNF-CB prepared as described above, and 20 wt% Pt / CB prepared as described above as a comparative example and commercially available catalyst 20 wt% Pt / C (Johnson Matthey), respectively. (Registered trademark) Binder (Wako; 40 wt%) was added to form a slurry, and the electrode catalyst as a slurry was applied on carbon paper (0.3 mg / cm 2 in terms of Pt). Used as an anode electrode. The cathode electrode was made into a slurry by adding a Nafion binder (Wako; 40 wt%) to Johnson Matthey (20 wt% Pt / C), and an electrode catalyst (0.3 mg / cm 2 in terms of Pt) was applied on the carbon paper. And manufactured. A fuel cell electrode is formed by performing hot pressing at 155 ° C. and 0.8 MPa for 10 minutes with a Nafion electrolyte membrane (Dupon; Nafion 115) sandwiched between the anode electrode and the cathode electrode thus manufactured. Manufactured. A single cell was prepared using this electrode, and the activity of the catalysts of Examples and Comparative Examples was evaluated using IV characteristics. The IV measurement conditions were evaluated at 70 ° C. and 100% humidification, and the analysis was performed using a fuel cell test system manufactured by Toyo Technica.

CNF−CB複合体のモデルを図1に示す。CBの表面にFe−Ni金属触媒を担持させてエチレンガスを投入すると、CBの表面から繊維状ナノカーボンが成長してCBを覆う形態のCNF−CB複合体が合成される。   A model of the CNF-CB complex is shown in FIG. When an Fe-Ni metal catalyst is supported on the surface of CB and ethylene gas is introduced, fibrous nanocarbon grows from the surface of CB and a CNF-CB composite in a form covering CB is synthesized.

合成されたCNF−CB複合体をSEMとTEMを利用して観察した。そのSEM像及びTEM像をそれぞれ図2及び図3に示す。図2はCB(図2(a))及びCNF−CB複合体(図2(b))のSEM像である。CNF−CB複合体ではCBから直径が20nm〜40nm、長さが10nm〜100nmのCNFが成長していることが確認された。なお、直径よりも長さの短いCNFも観察されたが、これは成長のごく初期段階のものであると考えられる。図3はCB(図3(a))及びCNF−CB複合体(図3(b))のTEM像である。図3(a)からわかるように、CBは球状の粒子が連結してミクロン単位の二次粒子を形成している。一方、CNF−CB複合体では、図3(b)からわかるように、CBの表面からCNFが成長してCBを覆っている形態のCNF−CB複合体が合成されている。それと共に、CBの一次孔部分をCNFが塞いでいる(つまり、一次孔自体は残っているとしても、その上からCNFで蓋をした状態になっている)ことも確認した。   The synthesized CNF-CB complex was observed using SEM and TEM. The SEM image and TEM image are shown in FIGS. 2 and 3, respectively. FIG. 2 is an SEM image of CB (FIG. 2 (a)) and CNF-CB complex (FIG. 2 (b)). In the CNF-CB complex, it was confirmed that CNF having a diameter of 20 nm to 40 nm and a length of 10 nm to 100 nm was grown from CB. Although CNF having a length shorter than the diameter was also observed, it is considered that this is an extremely early stage of growth. FIG. 3 is a TEM image of CB (FIG. 3A) and CNF-CB complex (FIG. 3B). As can be seen from FIG. 3A, spherical particles are connected to form secondary particles in units of microns. On the other hand, in the CNF-CB complex, as can be seen from FIG. 3B, a CNF-CB complex in a form in which CNF grows from the surface of the CB and covers the CB is synthesized. At the same time, it was also confirmed that CNF was blocking the primary hole portion of CB (that is, even if the primary hole itself remained, it was covered with CNF from above).

図4は様々な温度及び時間の条件下で合成されたCNF−CB複合体のSEM写真を示す。CNF−CB複合体の合成温度は610℃及び640℃とし、また合成時間は10分、20分及び30分として、二通りの温度と三通りの合成時間の組み合わせである六通りの条件で合成処理を行った。合成温度及び合成時間が増加するにつれて繊維状ナノカーボンの長さも増大することがわかった。また、それにつれて、以下の表1に示すようにCNF−CB複合体の重量も増加した。   FIG. 4 shows SEM photographs of CNF-CB composites synthesized under various temperature and time conditions. The synthesis temperature of the CNF-CB complex is 610 ° C. and 640 ° C., and the synthesis time is 10 minutes, 20 minutes, and 30 minutes. The synthesis is performed under six conditions, which are combinations of two temperatures and three synthesis times. Processed. It has been found that the length of the fibrous nanocarbon increases with increasing synthesis temperature and synthesis time. In addition, the weight of the CNF-CB complex also increased as shown in Table 1 below.

図5に、様々な合成温度と合成時間との組み合わせにより合成したCNF−CB複合体及びそれらの原料として使用したCBのBET法による比表面積測定の結果を示す。CBの比表面積は261m/gと測定された。CB上で繊維状ナノカーボンが合成されたCNF−CB複合体の比表面積は、合成温度が610℃の場合は合成時間10分で306m/g、20分で334m/g及び30分で355m/gとなった。合成温度が640℃の場合は合成時間10分で319m/g、20分で348m/g及び30分で378m/gとなった。このようにして合成されたCNF−CB複合体は何れの合成条件のものもCBに比べて大きな比表面積を有することが示された。その中でも、640℃で30分間合成したCNF−CB複合体はCBに比べて比表面積が40%以上増加した。 FIG. 5 shows the results of measurement of the specific surface area by the BET method of CNF-CB composites synthesized by various combinations of synthesis temperatures and synthesis times and CBs used as raw materials thereof. The specific surface area of CB was measured to be 261 m 2 / g. The specific surface area of CNF-CB composite fibrous nanocarbon is synthesized on CB, if the synthesis temperature is 610 ° C. at synthesis time 10 min 306m 2 / g, 20 min 334m 2 / g and at 30 minutes It became 355 m < 2 > / g. If the synthesis temperature of 640 ° C. became 378m 2 / g at 348m 2 / g and 30 min at 319m 2 / g, 20 minutes at synthesis time 10 minutes. It was shown that the CNF-CB complex synthesized in this way has a larger specific surface area than that of CB under any synthesis condition. Among them, the specific surface area of the CNF-CB composite synthesized at 640 ° C. for 30 minutes increased by 40% or more compared to CB.

20wt%Pt/C、20wt%Pt/CB及び20wt%Pt/CNF−CBを燃料電池触媒として上述のようにして作製した燃料電池のI−V特性を評価した。その結果を図6に示す。上述の単純な燃料電池電極触媒プロセスで製造した本発明の比較例としての20wt%Pt/CB触媒を使用した燃料電池の電力密度は450mW/cmとなり、市販されている20wt%Pt/C触媒を使用した燃料電池の電力密度427mW/cmに比べて少し高い触媒活性を得ることができた。本発明の実施例のCNF−CB複合体を触媒担体とした20wt%Pt/CNF−CB触媒を使用して同様に作製した燃料電池は468mW/cmの電力密度を達成し、上述の20wt%Pt/C触媒に基づく燃料電池に比べて41mW/cmだけ高い電力密度を達成できた。 The IV characteristics of the fuel cells prepared as described above using 20 wt% Pt / C, 20 wt% Pt / CB and 20 wt% Pt / CNF-CB as fuel cell catalysts were evaluated. The result is shown in FIG. The power density of a fuel cell using a 20 wt% Pt / CB catalyst as a comparative example of the present invention manufactured by the above simple fuel cell electrode catalyst process is 450 mW / cm 2 , and a commercially available 20 wt% Pt / C catalyst. As a result, it was possible to obtain a slightly higher catalytic activity than the power density of 427 mW / cm 2 of the fuel cell using NO. A fuel cell similarly produced using a 20 wt% Pt / CNF-CB catalyst using the CNF-CB composite of the example of the present invention as a catalyst support achieved a power density of 468 mW / cm 2 , and the above-mentioned 20 wt% A power density higher by 41 mW / cm 2 was achieved compared to fuel cells based on Pt / C catalysts.

燃料電池触媒担体として使用できる本発明のCNF−CB複合体は、CBの表面に繊維状のナノカーボンを成長させてCBを覆う形態を有すること及びCBの一次孔部分をナノ繊維が塞いでいることを、SEM、TEMで確認した。また、温度範囲としては常圧の状態で610℃〜1000℃の範囲、合成温度は10分以上の組み合わせで所望の形態を有するCNF−CB複合体が合成されることもSEMで確認した。更に、合成温度及び時間を調節することによって有効比表面積を制御できることが分かった。なお、合成時間を長くするとCNF−CB複合体を形成するCNFを実質的にいくらでも長くすることができるが、CNFが過度に長くなるとカーボンナノ繊維同士の絡み合いが甚だしくなってCNF−CB複合体の分散性が低下する。そのため、実用的には合成時間を2時間以下とするのが望ましい。   The CNF-CB composite of the present invention that can be used as a fuel cell catalyst support has a form in which a fibrous nanocarbon is grown on the surface of the CB to cover the CB, and the primary fibers of the CB are blocked with the nanofibers. This was confirmed by SEM and TEM. It was also confirmed by SEM that a CNF-CB complex having a desired form was synthesized in a combination of a temperature range of 610 ° C. to 1000 ° C. under normal pressure and a synthesis temperature of 10 minutes or more. Furthermore, it was found that the effective specific surface area can be controlled by adjusting the synthesis temperature and time. In addition, if the synthesis time is lengthened, CNF forming the CNF-CB composite can be made virtually any length, but if CNF becomes excessively long, the entanglement between the carbon nanofibers becomes excessive and the CNF-CB composite Dispersibility decreases. Therefore, in practice, it is desirable that the synthesis time is 2 hours or less.

上述した実施例ではCB上にCNFを成長させるためにCBにNiとFeとの組み合わせを担持させた。しかし、CNFのこのような成長に使用できるための金属触媒としてはこれに限定されるものではなく、Ni、Fe、Cu、Mg及びCoから選択された二またはもっと多くの金属種の組み合わせを使用しても、CNFを同様に成長させることができる。更に、上述したように、CNFはCB以外のカーボンナノ粒子の上にも成長させることができる。また、実施例ではCBとしてVulcan XC-72R(VC)を使用したが、もちろんこれに限定されるものではない。アセチレンブラック、ケッチェンブラックなど、他の多くの種類のカーボンブラックも使用することができる。また、実施例ではCNFの原料となる炭素源としてエチレンを使用したが、炭素源はこれに限定されるものではなく、例えばエチレン、アセチレンまたはメタン等のガス、あるいはこれらのうちから選択した二種もしくはもっと多くのガスを混合したものを使用することができる。更に、カーボンナノ粒子上のCNFの長さは概ね10nm〜100nm、また直径は概ね10nm〜数μm(例えば10μm)の範囲である。   In the embodiment described above, a combination of Ni and Fe was supported on the CB in order to grow CNF on the CB. However, the metal catalyst that can be used for such growth of CNF is not limited to this and uses a combination of two or more metal species selected from Ni, Fe, Cu, Mg and Co. Even so, CNF can be grown similarly. Furthermore, as described above, CNF can be grown on carbon nanoparticles other than CB. In the embodiment, Vulcan XC-72R (VC) is used as the CB, but the present invention is not limited to this. Many other types of carbon black such as acetylene black and ketjen black can also be used. In the examples, ethylene was used as a carbon source as a raw material for CNF, but the carbon source is not limited to this. For example, a gas such as ethylene, acetylene or methane, or two kinds selected from these gases Alternatively, a mixture of more gases can be used. Furthermore, the length of CNF on the carbon nanoparticles is generally in the range of 10 nm to 100 nm, and the diameter is in the range of approximately 10 nm to several μm (for example, 10 μm).

本発明のCNF−カーボンナノ粒子複合体はCB等のカーボンナノ粒子に比較して表面の一次孔が少ないために、その表面にPt等の触媒を担持させた場合にその利用効率が高く、また分散性が良いためにその利用に当たっての取り扱いが容易になる。また、本複合体は低温かつ短時間で合成することが可能であり、更に製造方法が単純であることにより、これを利用した製品の低コスト化に貢献できる。従って、本発明は例えば燃料電池触媒分野に大いに利用されることが期待される。   Since the CNF-carbon nanoparticle composite of the present invention has fewer primary pores on the surface than carbon nanoparticles such as CB, its utilization efficiency is high when a catalyst such as Pt is supported on the surface. Since the dispersibility is good, the handling in the use becomes easy. In addition, the composite can be synthesized at a low temperature and in a short time, and the manufacturing method is simple, which can contribute to cost reduction of a product using the composite. Therefore, the present invention is expected to be used greatly in the field of fuel cell catalysts, for example.

国際公開2011/118756号International Publication No. 2011/118756 特開2006−334527号公報JP 2006-334527 A 国際公開2011/111791号International Publication 2011/111791 国際公開2012/053334号International Publication 2012/053334 特開2003−342840号公報JP 2003-342840 A 国際公開2014/0343571号International Publication No. 2014/0343571 国際公開2012/077598号International Publication No. 2012/077598 国際公開2012/086597号International Publication No. 2012/088657 国際公開2013/035698号International Publication No. 2013/035698 国際公開2011/065471号International Publication No. 2011-066541

Claims (14)

カーボンナノ粒子表面にカーボンナノファイバーが設けられている、カーボンナノファイバー−カーボンナノ粒子複合体。   A carbon nanofiber-carbon nanoparticle composite in which carbon nanofibers are provided on the surface of the carbon nanoparticle. 前記カーボンナノ粒子はカーボンブラックである、請求項1に記載のカーボンナノファイバー−カーボンナノ粒子複合体。   The carbon nanofiber-carbon nanoparticle composite according to claim 1, wherein the carbon nanoparticle is carbon black. 前記カーボンナノファイバーは前記カーボンナノ粒子表面上の一次孔の少なくとも一部を塞いている、請求項1または2に記載のカーボンナノファイバー−カーボンナノ粒子複合体。   The carbon nanofiber-carbon nanoparticle composite according to claim 1 or 2, wherein the carbon nanofiber closes at least a part of primary pores on the surface of the carbon nanoparticle. 前記カーボンナノ粒子の直径は60nm〜120nmであり、前記カーボンナノファイバーの直径は10nmから100nm、長さは10nm〜10μmである、請求項1から3の何れかに記載のカーボンナノファイバー−カーボンナノ粒子複合体。   4. The carbon nanofiber-carbon nanoparticle according to claim 1, wherein the carbon nanoparticle has a diameter of 60 nm to 120 nm, the carbon nanofiber has a diameter of 10 nm to 100 nm, and a length of 10 nm to 10 μm. Particle complex. 前記カーボンナノファイバーは前記カーボンナノ粒子から屈曲して伸びる、請求項1から4の何れかに記載のカーボンナノファイバー−カーボンナノ粒子複合体。   The carbon nanofiber-carbon nanoparticle composite according to any one of claims 1 to 4, wherein the carbon nanofiber is bent and extends from the carbon nanoparticle. 表面に金属が担持されたカーボンナノ粒子に炭素源を含む原料ガスを供給して加熱することにより、カーボンナノ粒子表面にカーボンナノファイバーを成長させる、カーボンナノファイバー−カーボンナノ粒子複合体の製造方法。   A method for producing a carbon nanofiber-carbon nanoparticle composite, wherein carbon nanofibers are grown on the surface of carbon nanoparticle by supplying a source gas containing a carbon source to carbon nanoparticle having a metal supported on the surface and heating the carbon nanoparticle . 前記炭素源はエチレン、アセチレン及びメタンからなる群から選択された一または複数のガスである、請求項6に記載のカーボンナノファイバー−カーボンナノ粒子複合体の製造方法。   The method for producing a carbon nanofiber-carbon nanoparticle composite according to claim 6, wherein the carbon source is one or more gases selected from the group consisting of ethylene, acetylene, and methane. 前記金属はニッケル、鉄、銅、マグネシウム及びコバルトからなる群から選択された複数の金属の組み合わせである、請求項6または7に記載のカーボンナノファイバー−カーボンナノ粒子複合体の製造方法。   The method for producing a carbon nanofiber-carbon nanoparticle composite according to claim 6 or 7, wherein the metal is a combination of a plurality of metals selected from the group consisting of nickel, iron, copper, magnesium and cobalt. 金属塩が担持されたカーボンナノ粒子を還元性雰囲気中で加熱することにより前記表面に金属が担持されたカーボンナノ粒子を得る、請求項6から8の何れかに記載のカーボンナノファイバー−カーボンナノ粒子複合体の製造方法。   The carbon nanofiber-carbon nanoparticle according to any one of claims 6 to 8, wherein the carbon nanoparticle on which the metal salt is supported is heated in a reducing atmosphere to obtain the carbon nanoparticle on which the metal is supported on the surface. A method for producing a particle composite. 前記還元性雰囲気は水素を含む、請求項9に記載のカーボンナノファイバー−カーボンナノ粒子複合体の製造方法。   The method for producing a carbon nanofiber-carbon nanoparticle composite according to claim 9, wherein the reducing atmosphere contains hydrogen. 前記加熱を610℃から1000℃の温度範囲で10分から2時間行う、請求項6から10に記載のカーボンナノファイバー−カーボンナノ粒子複合体の製造方法。   The method for producing a carbon nanofiber-carbon nanoparticle composite according to claim 6, wherein the heating is performed in a temperature range of 610 ° C. to 1000 ° C. for 10 minutes to 2 hours. 請求項1から5の何れかに記載のカーボンナノ繊維−カーボンナノ粒子複合体に触媒活性を有する物質を担持させた触媒。   A catalyst obtained by supporting a substance having catalytic activity on the carbon nanofiber-carbon nanoparticle composite according to any one of claims 1 to 5. 前記触媒活性を有する物質は白金、パラジウム、イリジウム、金、銀、ニッケル、鉄、白金−ルテニウム合金,白金−パラジウム合金,白金-イリジウム合金、白金−コバルト合金、白金−コバルト−マンガン合金、白金−アンチモン合金、白金−アンチモン−酸化スズ合金、酸化ルテニウム、酸化イリジウム、酸化スズ、ジルコニア、チタニア、セリア、酸化タンタル及び酸化アルミニウムからなる群から選択される、請求項12に記載の触媒。   The substance having catalytic activity is platinum, palladium, iridium, gold, silver, nickel, iron, platinum-ruthenium alloy, platinum-palladium alloy, platinum-iridium alloy, platinum-cobalt alloy, platinum-cobalt-manganese alloy, platinum- 13. The catalyst of claim 12, selected from the group consisting of antimony alloys, platinum-antimony-tin oxide alloys, ruthenium oxide, iridium oxide, tin oxide, zirconia, titania, ceria, tantalum oxide and aluminum oxide. 請求項12または13に記載の触媒からなる燃料電池電極用触媒。   A fuel cell electrode catalyst comprising the catalyst according to claim 12 or 13.
JP2014221019A 2014-10-30 2014-10-30 Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite Pending JP2016088763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221019A JP2016088763A (en) 2014-10-30 2014-10-30 Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221019A JP2016088763A (en) 2014-10-30 2014-10-30 Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite

Publications (1)

Publication Number Publication Date
JP2016088763A true JP2016088763A (en) 2016-05-23

Family

ID=56018551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221019A Pending JP2016088763A (en) 2014-10-30 2014-10-30 Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite

Country Status (1)

Country Link
JP (1) JP2016088763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226063A1 (en) * 2017-06-08 2018-12-13 주식회사 엘지화학 Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using same, and lithium secondary battery
CN113278990A (en) * 2021-05-25 2021-08-20 中北大学 Ruthenium quantum dot-loaded carbon fiber hydrogen evolution catalyst and preparation method and application thereof
CN115161688A (en) * 2022-07-07 2022-10-11 中国科学院福建物质结构研究所 Iridium-supported cucurbit carbon composite material and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226063A1 (en) * 2017-06-08 2018-12-13 주식회사 엘지화학 Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using same, and lithium secondary battery
KR20180134306A (en) * 2017-06-08 2018-12-18 주식회사 엘지화학 Electrode Slurry for Secondary Battery Comprising Conductive Agent with Excellent Dispersibility and Secondary Battery Comprising the Same
CN109952620A (en) * 2017-06-08 2019-06-28 株式会社Lg化学 Composite conducting material with superior dispersibility, using its lithium secondary battery paste for electrode forming and lithium secondary battery
EP3511946A4 (en) * 2017-06-08 2019-11-13 LG Chem, Ltd. Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using same, and lithium secondary battery
KR102166020B1 (en) * 2017-06-08 2020-10-15 주식회사 엘지화학 Electrode Slurry for Secondary Battery Comprising Conductive Agent with Excellent Dispersibility and Secondary Battery Comprising the Same
US10902968B2 (en) 2017-06-08 2021-01-26 Lg Chem, Ltd. Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using the same, and lithium secondary battery
CN109952620B (en) * 2017-06-08 2021-03-30 株式会社Lg化学 Composite conductive material having excellent dispersibility, slurry for forming electrode of lithium secondary battery using same, and lithium secondary battery
US11837376B2 (en) 2017-06-08 2023-12-05 Lg Energy Solution, Ltd. Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using the same, and lithium secondary battery
CN113278990A (en) * 2021-05-25 2021-08-20 中北大学 Ruthenium quantum dot-loaded carbon fiber hydrogen evolution catalyst and preparation method and application thereof
CN113278990B (en) * 2021-05-25 2023-08-22 中北大学 Ruthenium quantum dot loaded carbon fiber hydrogen evolution catalyst and preparation method and application thereof
CN115161688A (en) * 2022-07-07 2022-10-11 中国科学院福建物质结构研究所 Iridium-supported cucurbit carbon composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Xu et al. Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol
US11801494B2 (en) Method for preparing single-atom catalyst supported on carbon support
Fashedemi et al. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@ Fe/C core-shell nanocatalysts
Hou et al. MoS2 nanoplates embedded in Co–N-doped carbon nanocages as efficient catalyst for HER and OER
Li et al. Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol
Lu et al. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation
Qin et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium
Hsieh et al. Microwave-assisted polyol synthesis of Pt–Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation
Li et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels
JP5168452B2 (en) Method for producing electrode catalyst for fuel cell
Kakaei Decoration of graphene oxide with Platinum Tin nanoparticles for ethanol oxidation
Du et al. Facile fabrication of Pt–Ni alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment
Xu et al. A facile strategy for the synthesis of NiSe@ CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction
Zhang et al. Cu3P/RGO promoted Pd catalysts for alcohol electro-oxidation
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
Hsieh et al. Electrochemical activity and durability of Pt–Sn alloys on carbon-based electrodes prepared by microwave-assisted synthesis
WO2018044900A1 (en) Ultrafine nanowires as highly efficient electrocatalysts
JP5158334B2 (en) Method for producing electrode catalyst for fuel cell
Hsieh et al. Deposition of binary Pd–Rh catalysts on nanostructured carbon supports for non-enzymatic glucose oxidation
Fu et al. Fe2O3 and Co bimetallic decorated nitrogen doped graphene nanomaterial for effective electrochemical water split hydrogen evolution reaction
CN103259023A (en) Preparation method of hydrogen cell electrode material
Chen et al. Nanostructured coral-like carbon as Pt support for fuel cells
Chiang et al. The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells
JP2016088763A (en) Carbon nanofiber/carbon nanoparticle composite and method for producing the same, and catalyst using carbon nanofiber/carbon nanoparticle composite
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media