KR102292204B1 - Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition - Google Patents

Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition Download PDF

Info

Publication number
KR102292204B1
KR102292204B1 KR1020210008709A KR20210008709A KR102292204B1 KR 102292204 B1 KR102292204 B1 KR 102292204B1 KR 1020210008709 A KR1020210008709 A KR 1020210008709A KR 20210008709 A KR20210008709 A KR 20210008709A KR 102292204 B1 KR102292204 B1 KR 102292204B1
Authority
KR
South Korea
Prior art keywords
electroless
gold plating
plating
cyanide
electroless gold
Prior art date
Application number
KR1020210008709A
Other languages
Korean (ko)
Inventor
한덕곤
성태현
이태호
권혁석
Original Assignee
(주)엠케이켐앤텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠케이켐앤텍 filed Critical (주)엠케이켐앤텍
Priority to KR1020210008709A priority Critical patent/KR102292204B1/en
Application granted granted Critical
Publication of KR102292204B1 publication Critical patent/KR102292204B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1834Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Abstract

The present invention relates to an electroless palladium plating method and electroless palladium plating composition and a non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition using the same. The present invention provides the electroless palladium plating method, which is able to address the problem that a void and a pin hole are generated on a surface of copper including a gold strike pre-treatment process, prevent the local erosion in a palladium plating process, and block the elution of copper ions with a palladium plated chamber, and the electroless palladium plating composition, which is able to plate with palladium with a high purity. In addition, after performing the electroless palladium plating, the present invention performs the non-cyanide electroless gold plating, thereby completely forming a gold plating layer and having excellent final solder bonding characteristics and wire bonding properties. In addition, provided is a non-cyanide electroless gold plating composition which is able to increase the stability of the gold plating bath, and provide an excellent exterior and uniform thickness of gold-plated film as well as a uniform plating speed.

Description

비시안계 무전해 금 도금방법 및 비시안계 무전해 금 도금용 조성물{NON-CYANIDE ELECTROLESS GOLD PLATING METHOD AND NON-CYANIDE ELECTROLESS GOLD PLATING COMPOSITION}Non-cyanide-based electroless gold plating method and non-cyanide-based electroless gold plating composition

본 발명은 무전해 팔라듐 도금방법과 무전해 팔라듐 도금용 조성물 및 이를 이용한 비시안계 무전해 금 도금방법과 무전해 금 도금용 조성물에 관한 것으로, 보다 상세하게는 금 스트라이크 전처리 공정을 포함하는 무전해 팔라듐 도금방법과 무전해 팔라듐 도금용 조성물 및 이를 이용한 비시안계 무전해 금 도금방법과 무전해 금 도금용 조성물에 관한 것이다. The present invention relates to an electroless palladium plating method, a composition for electroless palladium plating, and a non-cyanide-based electroless gold plating method and a composition for electroless gold plating using the same, and more particularly, to electroless palladium including a gold strike pretreatment process The present invention relates to a plating method, a composition for electroless palladium plating, and a non-cyanide-based electroless gold plating method and a composition for electroless gold plating using the same.

종래에 인쇄회로기판의 구리 배선에 금도금하는 공법으로 ENIG, ENAG, ENIGAG, ENEPIG 프로세스가 주로 사용되는데, 모두 구리 배선에 무전해 니켈 도금을 실시한 후 금 도금이 실시되는 공법이다. Conventionally, ENIG, ENAG, ENIGAG, and ENEPIG processes are mainly used as a gold plating method for copper wiring of a printed circuit board.

그러나, 최근 인쇄회로기판의 구리 배선에 직접 금도금을 실시하는 직접 무전해 금 도금 공법의 상용화가 적극적으로 요구되고 있다. 그 이유로는 첫 번째, 반도체의 고집적화로 인해 이를 탑재할 인쇄 회로 기판의 회로가 계속적으로 미세화 되면서 라인/스페이스(Line/Space)가 10㎛/10㎛ 이하까지도 요구되고 있다. 통상의 무전해 금도금의 하지 도금으로서의 니켈의 두께는 3~7㎛가 되어야 하는데, 라인/스페이스가 10㎛/10㎛ 이하인 경우에는 무전해 니켈도금을 적용하는 것이 불가능하다. 두 번째, 전자 제품이 무선화 되면서 저전류 고주파에 사용되는 RF 모듈의 경우 니켈 도금으로 인해 전기 저항이 높아져 전류가 표면을 따라 흐르는 표피 효과(Skin Effect)가 발생하므로, 니켈 도금의 대체 도금 방법이 요구되고 있다. 세 번째, 연성 인쇄 회로 기판 (Flexible PCB)의 경우 반복적인 사용으로 인해 벤딩 크랙(bending Crack)의 치명적인 불량이 발생될 수 있는데, 이는 니켈층에서 발생하고 있으므로, 니켈 도금보다 우수한 내굴곡성의 도금 방법이 요구되고 있다. 즉, 라인/스페이스가 10㎛/10㎛ 이하의 초미세회로 기판, 무선 RF 고주파 특성의 전자 부품을 실장하는 기판, 또는 반복적인 벤딩(Bending) 특성이 요구되는 연성 기판 등을 충족시킬 수 있는 니켈 도금을 하지 않는 새로운 공법의 개발이 시급하다.However, recently, the commercialization of a direct electroless gold plating method in which gold plating is performed directly on a copper wiring of a printed circuit board has been actively demanded. The reason for this is first, as the circuit of the printed circuit board to be mounted thereon continues to be miniaturized due to the high integration of the semiconductor, the line/space is required to be 10 μm/10 μm or less. The thickness of nickel as a base plating for general electroless gold plating should be 3 to 7 μm, but when the line/space is 10 μm/10 μm or less, it is impossible to apply electroless nickel plating. Second, in the case of RF modules used for low current and high frequency as electronic products become wireless, electrical resistance increases due to nickel plating, causing a skin effect in which current flows along the surface, so an alternative plating method for nickel plating is required. is becoming Third, in the case of flexible printed circuit boards (Flexible PCB), fatal defects of bending cracks may occur due to repeated use. this is being requested That is, nickel capable of satisfying ultra-fine circuit boards having a line/space of 10 μm/10 μm or less, a board on which electronic components of wireless RF high-frequency characteristics are mounted, or a flexible board requiring repetitive bending properties, etc. It is urgent to develop a new method without plating.

한편, 금 도금은, 전자 산업 부품들, 예컨대 인쇄회로기판, 세라믹 IC 패키지, ITO 보드 및 IC 카드 등 최종 표면 처리로 사용된다. 이들 전자산업 부품들 대부분의 경우 전기도금보다 무전해금 도금의 사용이 적합하다. 도금조 안정성 및 도금 성능 때문에 대부분의 무전해금 도금 용액의 금 금속 공급원으로 시안화물을 사용한다. 하지만, 시안화물의 독성 등 취급상의 문제로 비시안계 금 도금 조성물이 요구되고 있다.Meanwhile, gold plating is used as a final surface treatment for electronic industry components, such as printed circuit boards, ceramic IC packages, ITO boards and IC cards. For most of these electronic components, electroless plating is more suitable than electroplating. Cyanide is used as the gold metal source for most electroless plating solutions because of bath stability and plating performance. However, there is a demand for a non-cyanide-based gold plating composition due to handling problems such as toxicity of cyanide.

그러나, 종래 기술의 비시안계 무전해 금 도금 조성물은 도금조 안정성이 낮거나 증착 속도가 느린 등의 문제점이 있어 상용화 하기에는 불충분하다. 따라서, 균일한 금 층을 증착시킬 수 있는 새로운 비시안계 무전해 금 도금 조성물의 개발이 요구된다.However, the non-cyanide-based electroless gold plating composition of the prior art has problems such as low plating bath stability or slow deposition rate, which is insufficient for commercialization. Therefore, there is a need to develop a novel non-cyanide-based electroless gold plating composition capable of depositing a uniform gold layer.

이에 본 발명자들은 니켈 도금 대신 금 스트라이크 전처리를 하는 무전해 팔라듐 도금방법과 고순도 팔라듐 도금 피막을 형성할 수 있는 무전해 팔라듐 도금용 조성물, 이를 이용한 비시안계 금 도금방법과 균일한 금 층을 증착시킬 수 있는 비시안계 금 도금용 조성물을 개발하고 그 성능을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors have developed an electroless palladium plating method in which gold strike pretreatment is performed instead of nickel plating, a composition for electroless palladium plating capable of forming a high-purity palladium plating film, a non-cyanide gold plating method using the same, and a uniform gold layer deposition method. The present invention was completed by developing a non-cyanide-based gold plating composition and confirming its performance.

한국 등록특허 제10-1852658호 (2018.04.26. 공고)Korean Patent Registration No. 10-1852658 (2018.04.26. Announcement)

본 발명의 목적은, 구리 표면에 보이드 및 핀홀이 발생되는 문제를 해결함으로써, 팔라듐 도금시 국부침식 현상 발생을 방지하고, 무전해 팔라듐 도금조로 구리이온의 용출을 차단할 수 있는 무전해 팔라듐 도금방법을 제공하는데 있다.An object of the present invention is to provide an electroless palladium plating method capable of preventing the occurrence of local erosion during palladium plating and blocking the elution of copper ions with an electroless palladium plating bath by solving the problem of voids and pinholes occurring on the copper surface. is to provide

본 발명의 다른 목적은, 고순도 팔라듐 도금 피막을 형성할 수 있는 무전해 팔라듐 도금용 조성물을 제공하는데 있다.Another object of the present invention is to provide a composition for electroless palladium plating capable of forming a high-purity palladium plating film.

본 발명의 또 다른 목적은, 상기 무전해 팔라듐 도금 후 비시안계 무전해 금 도금을 하여 우수한 도금 특성을 얻을 수 있는 비시안계 무전해 금 도금방법을 제공하는데 있다.Another object of the present invention is to provide a non-cyanide-based electroless gold plating method capable of obtaining excellent plating characteristics by performing non-cyanide-based electroless gold plating after the electroless palladium plating.

본 발명의 또 다른 목적은, 금 도금욕의 안정성을 높이고, 우수한 도금속도 및 금도금 피막 두께의 균일성을 제공하는 비시안계 무전해 금 도금용 조성물을 제공하는데 있다.Another object of the present invention is to provide a composition for non-cyanide-based electroless gold plating that improves the stability of a gold plating bath and provides excellent plating speed and uniformity of gold plating film thickness.

본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problem(s) mentioned above, and another problem(s) not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위해, 본 발명의 일 측면에 따르면, 본 발명은 구리 표면의 금 도금 방법에 있어서, 금 스트라이크 전처리 공정을 포함하는, 무전해 팔라듐 도금방법을 제공한다.In order to solve the above problems, according to one aspect of the present invention, the present invention provides an electroless palladium plating method, including a gold strike pretreatment process in a gold plating method on a copper surface.

상기 구리는 구리 합금을 포함하는 것 일 수 있다.The copper may include a copper alloy.

상기 금 스트라이크 전처리 공정에 카보닐기를 포함하는 퓨린계 또는 피리미딘계 화합물을 사용할 수 있다.In the gold strike pretreatment process, a purine-based or pyrimidine-based compound including a carbonyl group may be used.

상기 카보닐기를 포함하는 퓨린계 또는 피리미딘계 화합물은, 2-아미노-9H-퓨린-6(H)-온, 3,7-디히드로-퓨린-2,6-디온, 7,9-디히드로-1H-퓨린-2,6,8(3H)-트리온, 5-메틸-피리미딘-2,4(1H,3H)-디온, 2,4(1H,3H)-피리미딘-디온 및 4-아미노-1H-피리미딘-2온 중 선택된 어느 하나일 수 있다.The purine-based or pyrimidine-based compound containing the carbonyl group is 2-amino-9H-purin-6(H)-one, 3,7-dihydro-purine-2,6-dione, 7,9-dione hydro-1H-purine-2,6,8(3H)-trione, 5-methyl-pyrimidine-2,4(1H,3H)-dione, 2,4(1H,3H)-pyrimidine-dione and It may be any one selected from 4-amino-1H-pyrimidin-2one.

상기 퓨린계 또는 피리미딘계 화합물은 구리 표면의 산화 반응을 차단시켜 국부 침식을 방지할 수 있다.The purine-based or pyrimidine-based compound may prevent local erosion by blocking the oxidation reaction of the copper surface.

상기 금 스트라이크 전처리 공정은 pH 4 내지 9, 50 내지 85 ℃에서 수행할 수 있다.The gold strike pretreatment process may be performed at a pH of 4 to 9 and 50 to 85 °C.

상기 무전해 팔라듐 도금은 피리미디논 화합물을 포함하는 조성물을 사용할 수 있다.For the electroless palladium plating, a composition including a pyrimidinone compound may be used.

상기 조성물은 수용성 팔라듐 화합물, 착화제, 환원제, 균일성 증가제 및 전도성 향상제를 더 포함할 수 있다.The composition may further include a water-soluble palladium compound, a complexing agent, a reducing agent, a uniformity increasing agent, and a conductivity improving agent.

상기 방법으로 제조된 무전해 팔라듐 도금의 두께는, 0.05 내지 0.3 ㎛ 일 수 있다.The thickness of the electroless palladium plating prepared by the above method may be 0.05 to 0.3 μm.

본 발명의 다른 측면에 따르면, 본 발명은, 피리미디논 화합물을 포함하는 것을 특징으로 하는, 무전해 팔라듐 도금용 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a composition for electroless palladium plating, characterized in that it comprises a pyrimidinone compound.

상기 피리미디논 화합물은, 1,3-디메틸-3,4,5,6-테트라하이드로-2(1H)-피리미디논(1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone), 4(s)-4-하이드록시-3,4-디하이드로-2(1H)-피리미디논(4(s)-4-hydroxy-3, 4-dihydro-2(1H)-pyrimidinone), 1,3-디하이드로-2H-이미다졸-z-원(1,3-Dihydro-2H-imidazol-z-one), I-메틸-테트라하이드로-2(1H)-피리미돈(I-methyl-tetrahydro-2(1H)-pyrimidone), 4-아미노-2(1H)-피리미돈(4-amino-2(1H)-pyrimidone) 중 선택된 하나 이상일 수 있다.The pyrimidinone compound is, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H)-pyrimidinone (1,3-Dimethyl-3,4,5,6-tetrahydro-2 (1H)-pyrimidinone), 4(s)-4-hydroxy-3,4-dihydro-2(1H)-pyrimidinone (4(s)-4-hydroxy-3,4-dihydro-2( 1H)-pyrimidinone), 1,3-dihydro-2H-imidazole-z-one (1,3-Dihydro-2H-imidazol-z-one), I-methyl-tetrahydro-2(1H)-pyri It may be at least one selected from midone (I-methyl-tetrahydro-2(1H)-pyrimidone) and 4-amino-2(1H)-pyrimidone (4-amino-2(1H)-pyrimidone).

상기 피리미디논 화합물은, 전체 조성물에 대하여 0.01 내지 5 중량%로 포함될 수 있다.The pyrimidinone compound may be included in an amount of 0.01 to 5% by weight based on the total composition.

상기 조성물은 수용성 팔라듐 화합물 0.05 ~ 1 중량%, 착화제 0.5 ~ 10 중량%, 환원제 0.1 ~ 10 중량%, 균일성 증가제 1 ~ 15 중량% 및 전도성 향상제 1 ~ 10 중량% 를 더 포함할 수 있다.The composition may further include 0.05 to 1% by weight of a water-soluble palladium compound, 0.5 to 10% by weight of a complexing agent, 0.1 to 10% by weight of a reducing agent, 1 to 15% by weight of a uniformity enhancing agent, and 1 to 10% by weight of a conductivity improver .

본 발명의 또 다른 측면에 따르면, 본 발명은, 구리 표면 상에 금 스트라이크 전처리 공정(a)을 하고, 무전해 팔라듐 도금(b)을 한 후, 무전해 금 도금(c)을 수행하는, 무전해 금 도금방법을 제공한다.According to another aspect of the present invention, the present invention provides a gold strike pretreatment process (a) on a copper surface, electroless palladium plating (b), and then electroless gold plating (c) It provides a gold plating method.

상기 무전해 금 도금(c)은, 아미노디카복실산 또는 페닐페나진계 화합물을 포함하는 조성물을 사용할 수 있다.For the electroless gold plating (c), a composition including an aminodicarboxylic acid or a phenylphenazine-based compound may be used.

상기 아미노디카복실산 또는 페닐페나진계 화합물은, 전체 조성물에 대하여 아미노디카복실산 1 내지 30 중량% 또는 페닐페나진계 화합물 0.01 내지 1 중량%을 포함할 수 있다.The aminodicarboxylic acid or phenylphenazine-based compound may include 1 to 30% by weight of aminodicarboxylic acid or 0.01 to 1% by weight of the phenylphenazine-based compound based on the total composition.

상기 조성물은 수용성 금화합물, 제1착화제, 제2착화제로 아미노디카복실산, 전도성 향상제, 환원제, 금이온 안정화제 및 평탄화제로 페닐페나진계 화합물을 포함할 수 있다.The composition may include a water-soluble gold compound, a first complexing agent, an aminodicarboxylic acid as a second complexing agent, a conductivity improving agent, a reducing agent, a gold ion stabilizer, and a phenylphenazine-based compound as a leveling agent.

상기 무전해 금 도금방법으로 제조된 무전해 금 도금의 두께는, 0.05 내지 0.03 ㎛ 일 수 있다.The thickness of the electroless gold plating prepared by the electroless gold plating method may be 0.05 to 0.03 μm.

상기 무전해 금 도금방법은 라인/스페이스(line/space) 10㎛/10㎛의 초미세회로의 금 도금에 사용할 수 있다.The electroless gold plating method may be used for gold plating of an ultra-fine circuit having a line/space of 10 μm/10 μm.

본 발명의 또 다른 측면에 따르면, 본 발명은, 아미노디카복실산 및 페닐페나진계 화합물을 포함하는, 무전해 금 도금용 조성물을 제공한다.According to another aspect of the present invention, there is provided a composition for electroless gold plating comprising an aminodicarboxylic acid and a phenylphenazine-based compound.

상기 조성물은 수용성 금화합물, 제1착화제, 제2착화제로 아미노디카복실산, 전도성 향상제, 환원제, 금이온 안정화제 및 평탄화제로 페닐페나진계 화합물을 포함할 수 있다.The composition may include a water-soluble gold compound, a first complexing agent, an aminodicarboxylic acid as a second complexing agent, a conductivity improving agent, a reducing agent, a gold ion stabilizer, and a phenylphenazine-based compound as a leveling agent.

상기 조성물은 수용성 금화합물 0.1 ~ 1 중량%, 제1착화제 1 ~ 30 중량%, 제2착화제 0.1 ~ 20 중량%, 전도성 향상제 1 ~ 20 중량%, 환원제 0.5 ~ 5 중량%, 금이온 안정화제 0.0001 ~ 3 중량% 및 평탄화제 0.01 ~ 1 중량% 를 포함할 수 있다.The composition comprises 0.1 to 1% by weight of a water-soluble gold compound, 1 to 30% by weight of a first complexing agent, 0.1 to 20% by weight of a second complexing agent, 1 to 20% by weight of a conductivity enhancer, 0.5 to 5% by weight of a reducing agent, gold ion stability 0.0001 to 3% by weight of an agent and 0.01 to 1% by weight of a leveling agent.

상기 아미노디카복실산은, 아미노부탄 디오익산(Aminobutane dioic acid), 이미노디아세틱산(Iminodiacetic acid), 2-아미노 글루타릭산(2-Amino glutaric acid), 4-아미노-1,2-디카복실산(4-Amino-1,2- dicarboxylic acid), 2-아미노[1,1'-바이페니]-4-4'-디카복실산(2-Amino[1,1'-biphenyi]-4-4'-dicarboxylic acid), 5-아미노 이소 프탈릭 산(5-Amino iso phthalic acid), 1-H-이미다졸-4,5-디카복실산(1-H-imidazole-4,5-dicarboxylic acid), 2-아미노-피리딘-3,5-디카복실산(2-Amino-pyridine-3,5-dicarboxylic acid), 5-아미노-1H-피롤-2,4-디카복실산(5-Amino-1H-pyrrole-2,4-dicarboxylic acid), 2-아미노-벤젠-1,4-디카복실산(2-Amino-benzene-1,4-dicarboxylic acid), 아미노말로익산(Aminomalonic acid), 4-아미노-티오펜-2,3-디카복실산(4-Amino-thiophene-2,3 dicarboxylic acid) 중 선택된 어느 하나일 수 있다.The aminodicarboxylic acid is, aminobutane dioic acid, iminodiacetic acid, 2-amino glutaric acid, 4-amino-1,2-dicarboxylic acid ( 4-Amino-1,2-dicarboxylic acid), 2-amino[1,1'-biphenyi]-4-4'-dicarboxylic acid (2-Amino[1,1'-biphenyi]-4-4'- dicarboxylic acid), 5-amino isophthalic acid, 1-H-imidazole-4,5-dicarboxylic acid, 2- Amino-pyridine-3,5-dicarboxylic acid (2-Amino-pyridine-3,5-dicarboxylic acid), 5-amino-1H-pyrrole-2,4-dicarboxylic acid (5-Amino-1H-pyrrole-2, 4-dicarboxylic acid), 2-amino-benzene-1,4-dicarboxylic acid (2-Amino-benzene-1,4-dicarboxylic acid), aminomalonic acid, 4-amino-thiophene-2, It may be any one selected from 3-dicarboxylic acid (4-Amino-thiophene-2,3 dicarboxylic acid).

상기 페닐페나진계 화합물은, 3-디에틸아미노-7-(4-디메틸 아미노 페닐아조)-5-페닐 페나지니움 클로라이드(3-Diethylamino-7-(4-Dimethyl Amino Phenylazo)-5-Phenyl Phenazinium Chloride), 3,7-디아미노-2,8-디메틸-5-페닐 페나진-5이움 클로라이드(3,7-Diamino-2,8-Dimethyl-5-Phenyl Phenazine-5ium Chloride), 3-아미노-7-(디메틸아미노)-5-페닐 페나진-5이움 클로라이드(3-Amino-7-(Dimethylamino)-5-Phenyl Phenazine-5ium Chloride), 3-아미노-7-{[4-(디메틸아미노) 페니] 아조}-5-페닐 페나진 클로라이드(3-Amino-7-{[4-(Dimethylamino) Phenyi] azo}-5-Phenyl Phenazine Chloride), 10-페닐 페나진-2,8-디아민-5-메틸-10-페닐-5,10-디하이드로페나진(10-phenyl phenazine-2,8-Diamine-5-Methly-10-Phenyl-5,10-Dihydrophenazine), N-페닐페아진-2-카복사마이드(N-Phenylphenazine-2-Carboxamide), 10-페닐 페나진-5(10H)-일라디칼(10-phenyl phenazine-5(10H)-Ylradical), 5,10-디하이드로-5-페닐 페나진(5,10-Dihydro-5-phenyl phenazine), 5-[2-(벤조트리아졸-2-Y1) 페닐)-10-페닐 페나진(5-[2-(Benzotriazol-2-Y1) Phenyl)-10-Phenyl Phenazine), N-페닐 페나진-2-아민(N-Phenyl Phenazine-2-Amine), 6,9-디메톡시-페나진-1-카복실산(6,9-Dimethoxy-Phenazine-1-Carboxylic Acid) 중 선택된 하나 이상일 수 있다.The phenylphenazine-based compound is 3-diethylamino-7-(4-dimethyl aminophenylazo)-5-phenylphenazinium chloride (3-Diethylamino-7-(4-Dimethyl Amino Phenylazo)-5-Phenyl Phenazinium Chloride), 3,7-diamino-2,8-dimethyl-5-phenyl phenazine-5ium chloride (3,7-Diamino-2,8-Dimethyl-5-Phenyl Phenazine-5ium Chloride), 3-amino -7-(dimethylamino)-5-phenyl phenazine-5ium chloride (3-Amino-7-(Dimethylamino)-5-Phenyl Phenazine-5ium Chloride), 3-amino-7-{[4-(dimethylamino) ) Phenyl] azo}-5-phenylphenazine chloride (3-Amino-7-{[4-(Dimethylamino) Phenyi] azo}-5-Phenyl Phenazine Chloride), 10-phenylphenazine-2,8-diamine- 5-methyl-10-phenyl-5,10-dihydrophenazine (10-phenyl phenazine-2,8-Diamine-5-Methly-10-Phenyl-5,10-Dihydrophenazine), N-phenylphenazine-2 -Carboxamide (N-Phenylphenazine-2-Carboxamide), 10-phenyl phenazine-5(10H)-Ylradical (10-phenyl phenazine-5(10H)-Ylradical), 5,10-dihydro-5- Phenylphenazine (5,10-Dihydro-5-phenyl phenazine), 5-[2-(Benzotriazol-2-Y1) Phenyl)-10-phenylphenazine (5-[2-(Benzotriazol-2-Y1) ) Phenyl)-10-Phenyl Phenazine), N-Phenyl Phenazine-2-amine (N-Phenyl Phenazine-2-Amine), 6,9-dimethoxy-phenazine-1-carboxylic acid (6,9-Dimethoxy- Phenazine-1-Carboxylic Acid) may be one or more selected.

본 발명의 무전해 팔라듐 도금방법에 따르면, 금 스트라이크 전처리 공정을 통해 구리 표면에 완전히 밀폐된 금속 피막층을 형성하여, 구리 표면에 보이드 및 핀홀이 형성되지 않음으로써, 팔라듐 도금시 국부침식 현상 발생을 방지하고, 무전해 팔라듐 도금조로 구리이온의 용출을 차단하여 장기간 사용할 수 있는 효과가 있다. According to the electroless palladium plating method of the present invention, a completely enclosed metal film layer is formed on the copper surface through the gold strike pretreatment process, so that voids and pinholes are not formed on the copper surface, thereby preventing local erosion during palladium plating And it has the effect of being able to use it for a long time by blocking the elution of copper ions with the electroless palladium plating bath.

또한, 본 발명의 무전해 팔라듐 조성물에 따르면, 팔라듐 도금피막과 금 도금 피막 간의 접합특성이 우수하고, 고순도 팔라듐 도금 피막을 형성할 수 있는 효과가 있다. In addition, according to the electroless palladium composition of the present invention, the bonding property between the palladium plating film and the gold plating film is excellent, and there is an effect of forming a high purity palladium plating film.

또한, 본 발명의 무전해 팔라듐 도금방법 및 무전해 팔라듐 조성물에 따르면, 상기 금 스트라이크 전처리 공정 후, 본 발명의 무전해 팔라듐 조성물로 팔라듐 도금을 수행하여, 일정한 도금속도를 유지하여 균일한 두께의 팔라듐 도금층을 얻을 수 있는 효과가 있다.In addition, according to the electroless palladium plating method and the electroless palladium composition of the present invention, after the gold strike pretreatment process, palladium plating is performed with the electroless palladium composition of the present invention to maintain a constant plating rate to achieve a uniform thickness of palladium. There is an effect that a plating layer can be obtained.

또한, 본 발명의 비시안계 무전해 금 도금방법에 따르면, 상기 팔라듐 도금 후 비시안계 무전해 금 도금을 함으로써, 금 도금층이 온전하게 형성되어, 최종 솔더 접합특성과 와이어 본딩성이 우수한 효과가 있다. In addition, according to the non-cyanide-based electroless gold plating method of the present invention, by performing the non-cyanide-based electroless gold plating after the palladium plating, the gold plating layer is completely formed, so that the final solder bonding characteristics and wire bonding properties are excellent.

또한, 본 발명의 비시안계 무전해 금 도금용 조성물에 따르면, 금 도금욕의 안정성을 높이고, 일정한 도금속도, 금 도금 피막의 우수한 외관 및 균일한 두께를 제공하는 효과가 있다.In addition, according to the non-cyanide-based electroless gold plating composition of the present invention, it is effective to improve the stability of the gold plating bath, to provide a constant plating speed, excellent appearance and uniform thickness of the gold plating film.

본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.

도 1는 종래의 무전해 금 도금방법(왼쪽, ENEPIG; Electroless Ni/Electroless Palladium/Immersion Au)과 본 발명의 무전해 금 도금방법(오른쪽, EPIG; Electroless Pd/Au)의 공정을 비교한 것이다.
도 2는 본 발명의 실시예에 사용된 인쇄회로기판을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따라 도금된 시편의 광학 현미경 사진을 나타낸 것이다. (좌: 도금후 기판 50배율, 우: 도금후 기판 100배율)
도 4a는 본 발명의 일 실시예에 따라 도금된 시편의 열처리 전(상단)과 후(하단)의 도금층 내 국부 침식을 관찰한 SEM 사진이고(1: 실시예 1, 2: 실시예 2, 3: 실시예 3), 도 4b는 종래 방법으로 도금된 시편에서 국부 침식이 일어난 도금층의 SEM 사진이다.
도 5는 본 발명의 일 실시예에 따라 도금 후 스페이스(space)가 ㎛ 이하의 회로를 관찰한 SEM 사진이다(도 5a: 실시예 1, 도 5b: 실시예 2, 도 5c: 실시예 3).
1 is a comparison of the processes of a conventional electroless gold plating method (left, ENEPIG; Electroless Ni/Electroless Palladium/Immersion Au) and an electroless gold plating method of the present invention (right, EPIG; Electroless Pd/Au).
2 shows a printed circuit board used in an embodiment of the present invention.
3 shows an optical micrograph of a specimen plated according to an embodiment of the present invention. (Left: 50x magnification of the substrate after plating, Right: 100x magnification of the substrate after plating)
Figure 4a is an SEM photograph of observing local erosion in the plating layer before (top) and after (bottom) heat treatment of a specimen plated according to an embodiment of the present invention (1: Examples 1, 2: Examples 2 and 3) : Example 3), FIG. 4b is an SEM photograph of a plating layer in which local erosion occurred in a specimen plated by a conventional method.
5 is an SEM photograph of observing a circuit having a space of μm or less after plating according to an embodiment of the present invention (FIG. 5A: Example 1, FIG. 5B: Example 2, FIG. 5C: Example 3) .

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.Advantages and features of the present invention, and a method of achieving the same, will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.

그러나 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.However, the present invention is not limited by the embodiments disclosed below, but will be implemented in a variety of different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.In addition, in the description of the present invention, if it is determined that related known technologies may obscure the gist of the present invention, detailed description thereof will be omitted.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

무전해 팔라듐 도금방법Electroless palladium plating method

본 발명의 무전해 팔라듐 도금방법은, 구리 표면의 팔라듐 도금 방법에 있어서, 금 스트라이크 전처리 공정을 포함한다.The electroless palladium plating method of the present invention includes a gold strike pretreatment step in the palladium plating method on a copper surface.

도 1은 기존의 무전해 금 도금방법(왼쪽, ENEPIG; Electroless Ni/Electroless Pd/Immersion Au)과 본 발명의 무전해 금 도금방법(오른쪽, EPIG; Electroless Pd/Au)의 공정을 비교한 것이다. BGA(Ball Grid Array)나 FC(flip Chip) BGA 등 인쇄 회로 기판의 주종 제품은 리플로우(Reflow) 공정이 2회 이상 행해지며, 높은 열이 계속 가해지므로 금속간의 이종 화합물의 생성과 금 표면으로의 하지 금속의 용출로 인해 블랙 패드(Black Pad) 불량이 발생되는데, 이를 차단시키는 목적으로 무전해 니켈과 금 도금 사이에 무전해 팔라듐 도금을 실시하는 ENEPIG 공법이 사용되고 있었다. 그러나, ENEPIG 공정은 무전해 니켈 도금의 두께가 3 ~ 7 ㎛ 으로, 라인/스페이스 10㎛/10㎛ 이하의 초미세회로 기판에는 적용하기 어려운 문제가 있었다.1 is a comparison of the processes of a conventional electroless gold plating method (left, ENEPIG; Electroless Ni/Electroless Pd/Immersion Au) and an electroless gold plating method of the present invention (right, EPIG; Electroless Pd/Au). The main products of printed circuit boards such as BGA (Ball Grid Array) and FC (Flip Chip) BGA are subjected to the reflow process twice or more, and since high heat is continuously applied, the generation of heterogeneous compounds between metals and The black pad defect occurs due to the dissolution of the underlying metal, and the ENEPIG method of performing electroless palladium plating between electroless nickel and gold plating was used for the purpose of blocking this. However, the ENEPIG process has a problem in that the thickness of electroless nickel plating is 3 to 7 μm, and it is difficult to apply to ultra-fine circuit boards with a line/space of 10 μm/10 μm or less.

도 1과 같이, 본 발명은 기존 ENEPIG 의 팔라듐 활성화 처리 공정 및 니켈 도금 과정을 생략하고 금 스트라이크 공정으로 구리 표면에 피막을 형성한다. ENEPIG 공정으로 무전해 니켈 도금 시 그 두께가 3 ~ 7 ㎛ 이나, 본 발명에 따른 EPIG 공정으로 금 스트라이크 하는 경우 금 피막의 두께가 0.005 ~ 0.02 ㎛ 으로 매우 얇다. 즉, 기존의 방법에서 하지 도금인 니켈의 두께가 3 ~ 7 ㎛ 로서 라인/스페이스가 10㎛/10㎛ 이하인 경우에 무전해 니켈 도금을 적용하는 것이 불가능 했으나, 본 발명에서 금 스트라이크로 금 피막의 두께를 0.005 ~ 0.02 ㎛ 으로 제조하여 그 문제점을 해결하였다. 1, the present invention omits the palladium activation process and nickel plating process of the existing ENEPIG, and forms a film on the copper surface by a gold strike process. In the case of electroless nickel plating by the ENEPIG process, the thickness is 3 ~ 7 ㎛, but when the gold strikes by the EPIG process according to the present invention, the thickness of the gold film is very thin, 0.005 ~ 0.02 ㎛. That is, in the conventional method, it was impossible to apply electroless nickel plating when the thickness of nickel as the base plating was 3 to 7 μm and the line/space was 10 μm/10 μm or less. The problem was solved by making the thickness of 0.005 ~ 0.02 ㎛.

또한, 종래 구리에 직접 무전해 팔라듐 도금과 무전해 금 도금을 실시하는 경우, 구리 표면에 치명적인 국부 침식이 발생하는 문제점이 있었다. 이러한 국부 침식 현상은 구리 금속의 결정 입자크기, 표면의 결함, 불순물의 존재 등으로 인한 구리 표면의 미세한 불균일성이 존재하는 경우 전위차가 발생하여, 양극(Anode)과 음극(Cathod)이 형성되어 전기 화학적 반응(Electro Chemical Reaction)이 일어나게 되어, 양극에서 구리가 이온화되어 전자를 방출하는 산화 반응이 개시되고, 반응이 촉진되어 국부 침식으로 확대되어 공식 또는 틈 부식이 발생되는 것이다. In addition, when electroless palladium plating and electroless gold plating are directly performed on copper in the related art, there is a problem in that fatal local erosion occurs on the copper surface. This local erosion phenomenon occurs when there is a fine non-uniformity on the copper surface due to the crystal grain size of copper metal, surface defects, presence of impurities, etc. Electrochemical reaction takes place, and copper is ionized at the anode to initiate an oxidation reaction that emits electrons, and the reaction is accelerated and expanded to local erosion, resulting in pitting or crevice corrosion.

이에, 금 스트라이크 전처리 공정으로 구리 표면에 완전히 밀폐된 금속 피막층을 형성하여 상기와 같은 문제점을 해결할 수 있다. 금 스트라이크 전처리 공정은 금 스트라이크 도금액에 피도금 금속(구리)을 접촉시키는 단계를 포함한다.Accordingly, the above problems can be solved by forming a completely sealed metal film layer on the copper surface through the gold strike pretreatment process. The gold strike pretreatment process includes contacting a metal to be plated (copper) with a gold strike plating solution.

구리 표면이 완전히 밀폐된 금속 피막층을 형성하기 위하여, 전처리 과정에서 금 스트라이크로 피막을 형성하고, 이 때 국부 침식 차단제로서 카보닐기를 포함하는 퓨린 또는 피라미딘계 화합물을 사용하여 구리 표면의 국부 침식을 발생시키는 산화 반응에 작용하여 국부 침식의 진행을 차단시키고, 정상적인 금 도금의 치환 침착 반응이 우선 개시되게 한다. 따라서, 국부 침식에 의한 공식 및 틈 부식이 발생되지 않는, 균일하고 완전히 밀착된 금 스트라이크 도금 피막을 형성할 수 있다. 즉, 금 스트라이크 전처리 공정 후 무전해 팔라듐 도금을 실시하는 경우, 구리이온 용출이 없고, 장기간 무전해 팔라듐 도금조의 안정성이 유지되어 균일한 팔라듐 도금을 얻을 수 있고, 이후 무전해 금 도금을 수행하는 하여, 우수한 도금 특성을 얻을 수 있다.In order to form a metal film layer that completely seals the copper surface, a film is formed with a gold strike in the pretreatment process, and local erosion of the copper surface is generated using a purine or pyramidine-based compound containing a carbonyl group as a local erosion blocker. It acts on the oxidation reaction to block the progress of local erosion, and allows the displacement deposition reaction of normal gold plating to be initiated first. Accordingly, it is possible to form a uniform and completely adhered gold strike plating film in which pitting and crevice corrosion due to local erosion do not occur. That is, when electroless palladium plating is performed after the gold strike pretreatment process, there is no copper ion elution, and the stability of the electroless palladium plating bath is maintained for a long period of time, so that uniform palladium plating can be obtained. , excellent plating properties can be obtained.

본 발명의 금 스트라이크 조성물은 본 발명의 기술분야에서 통상적으로 사용되는 금 스트라이크 조성물에 국부침식 차단제를 더 포함한다. 상기 국부침식 차단제는 카보닐기를 포함하는 퓨린 또는 피라미딘계 화합물을 사용할 수 있다. 상기 카보닐기를 포함하는 퓨린계 또는 피리미딘 계 화합물은, 2-아미노-9H-퓨린-6(H)-온, 3,7-디히드로-퓨린-2,6-디온, 7,9-디히드로-1H-퓨린-2,6,8(3H)-트리온, 5-메틸-피리미딘-2,4(1H,3H)-디온, 2,4(1H,3H)-피리미딘-디온 및 4-아미노-1H-피리미딘-2온 중 어느 하나인 것이 바람직하다. 상기 본 발명의 기술분야에서 통상적으로 사용되는 금 스트라이크 조성물은, 일 예로, 수용성 금화합물, 착화제, 전도성 향상제, 금이온 안정제, 표면 부식방지제, 하지금속용 억제 및 재석출 방지제 등이 있다.The gold strike composition of the present invention further comprises a local erosion blocking agent in the gold strike composition commonly used in the art. The local erosion blocking agent may use a purine or pyramidine-based compound containing a carbonyl group. The purine-based or pyrimidine-based compound containing the carbonyl group is 2-amino-9H-purin-6(H)-one, 3,7-dihydro-purine-2,6-dione, 7,9-dione hydro-1H-purine-2,6,8(3H)-trione, 5-methyl-pyrimidine-2,4(1H,3H)-dione, 2,4(1H,3H)-pyrimidine-dione and It is preferable that it is any one of 4-amino-1H-pyrimidin-2one. The gold strike composition commonly used in the technical field of the present invention includes, for example, a water-soluble gold compound, a complexing agent, a conductivity improver, a gold ion stabilizer, a surface corrosion inhibitor, an inhibitor for base metal and a re-precipitation inhibitor.

상기 금 스트라이크 전처리 공정은 pH 4 내지 9 에서 수행되는 것이 바람직하며, pH 6 내지 8 에서 수행되는 것이 더욱 바람직하다. pH 조정제로는 본 발명의 기술분야에서 통상적으로 사용되는 것을 이용할 수 있고, 특별히 제한되지 않는다. 예를 들면, 수산화칼륨, 수산화나트륨 또는 수산화암모늄 등을 사용할 수 있다. 상기 pH의 범위를 벗어나는 경우에는 불균일한 도금피막을 형성하는 문제가 있다.The gold strike pretreatment process is preferably performed at a pH of 4 to 9, more preferably at a pH of 6 to 8. As the pH adjuster, those commonly used in the technical field of the present invention may be used, and the pH adjusting agent is not particularly limited. For example, potassium hydroxide, sodium hydroxide, or ammonium hydroxide may be used. When the pH is out of the range, there is a problem of forming a non-uniform plating film.

상기 금 스트라이크 전처리 공정은 50 내지 85 ℃ 에서 수행되는 것이 바람직하고, 60 내지 75 ℃ 에서 수행되는 것이 더욱 바람직하다. 50 ℃ 미만에서는 도금피막 형성이 안되고, 85 ℃ 초과에서는 도금액이 분해되는 문제가 있다.The gold strike pretreatment process is preferably performed at 50 to 85 °C, more preferably at 60 to 75 °C. At less than 50 ℃, there is a problem that the plating film cannot be formed, and when it exceeds 85 ℃, the plating solution is decomposed.

상기 금 스트라이크 전처리 공정으로 제조된 금 피막의 두께는 0.005 내지 0.02 ㎛ 인 것이 바람직하며, 금 피막은 하지 금속인 구리 표면에 완전히 밀착된다.The thickness of the gold film prepared by the gold strike pretreatment process is preferably 0.005 to 0.02 μm, and the gold film is completely in close contact with the copper surface as the underlying metal.

상기 금 스트라이크 전처리 공정 후, 무전해 팔라듐 도금을 수행할 수 있다. 이는 무전해 팔라듐 도금액에 상기 금 스트라이크 도금층을 접촉시키는 것을 포함한다.After the gold strike pretreatment process, electroless palladium plating may be performed. This includes contacting the gold strike plating layer with an electroless palladium plating solution.

상기 무전해 팔라듐 도금은, 피리미디논 화합물을 포함하는 조성물을 사용할 수 있다.For the electroless palladium plating, a composition containing a pyrimidinone compound may be used.

상기 조성물은 수용성 팔라듐 화합물, 착화제, PH 조정제, 완충제, 환원제, 균일성 증가제를 포함할 수 있다.The composition may include a water-soluble palladium compound, a complexing agent, a pH adjusting agent, a buffering agent, a reducing agent, and a uniformity enhancing agent.

상기 방법으로 제조된 무전해 금 도금의 두께는, 0.05 내지 0.3 ㎛ 인 것이 바람직하고, 0.05 내지 0.15 ㎛ 인 것이 더욱 바람직하다.The thickness of the electroless gold plating prepared by the above method is preferably 0.05 to 0.3 µm, more preferably 0.05 to 0.15 µm.

무전해 팔라듐 도금용 조성물Composition for electroless palladium plating

본 발명의 무전해 팔라듐 도금용 조성물은, 피리미디논 화합물을 포함한다. 상기 피리미디논 화합물은 팔라듐 이온 안정화제로 사용되며, 상기 무전해 팔라듐 도금용 조성물은 수용성 팔라듐 화합물, 착화제, 환원제, 균일성 증가제, 전도성 향상제를 더 포함할 수 있다.The composition for electroless palladium plating of this invention contains a pyrimidinone compound. The pyrimidinone compound is used as a palladium ion stabilizer, and the composition for electroless palladium plating may further include a water-soluble palladium compound, a complexing agent, a reducing agent, a uniformity increasing agent, and a conductivity improving agent.

상기 수용성 팔라듐 화합물은 본 발명의 기술분야에서 일반적으로 알려진 것을 사용할 수 있으며, 일 예로 염화 팔라듐, 아세트산 팔라듐, 질산 팔라듐, 황산 팔라듐 등이 있다. 팔라듐 이온농도는 전체 조성물 대비 0.05 ~ 1 중량% 인 것이 바람직하고, 0.1 ~ 0.5 중량% 인 것이 더욱 바람직하다.As the water-soluble palladium compound, those generally known in the art may be used, and examples thereof include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, and the like. The palladium ion concentration is preferably 0.05 to 1% by weight, more preferably 0.1 to 0.5% by weight relative to the total composition.

상기 착화제는 암모니아 및 아민 화합물로 이루어지는 군에서 선택되는 적어도 1종을 사용할 수 있고, 보다 바람직하게 아민 화합물을 사용할 수 있다. 아민 화합물로서는, 메틸아민, 디메탈아민, 트리메틸아민, 트리에틸렌테트라민, 벤질아민, 메틸렌디아민, 에틸렌디아민, 에틸렌디아민 유도체, 테트라메틸디아민, 에틸렌디아민테트라아세트산(EDTA), 또는 그 알칼리 금속염, EDTA 유도체, 글리신 등이 있고, 1종 또는 2종 이상을 병용할 수 있다. 착화제는 전체 조성물 대비 0.5 ~ 10 중량% 인 것이 바람직하고, 1 ~ 5 중량% 인 것이 더욱 바람직하다.The complexing agent may use at least one selected from the group consisting of ammonia and an amine compound, and more preferably an amine compound. Examples of the amine compound include methylamine, dimetalamine, trimethylamine, triethylenetetramine, benzylamine, methylenediamine, ethylenediamine, ethylenediamine derivative, tetramethyldiamine, ethylenediaminetetraacetic acid (EDTA), or an alkali metal salt thereof, EDTA. derivatives, glycine, and the like, and may be used alone or in combination of two or more. The complexing agent is preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight relative to the total composition.

상기 환원제는 하이포아인산, 하이포아인산나트륨, 하이포아인칼륨, 하이포아인산 암모늄, 아인산, 아인산 나트륨, 아인산 칼륨, 아인산 암모늄, 포름산, 포름산 나트륨, 포름산 칼륨, 포름산 암모늄, 포름알데히드 등이 있고, 1종 또는 2종 이상을 병용할 수 있다. 환원제는 전체 조성물 대비 0.1 ~ 10 중량% 인 것이 바람직하고, 0.5 ~ 5 중량% 인 것이 더욱 바람직하다.The reducing agent includes hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, phosphorous acid, sodium phosphite, potassium phosphite, ammonium phosphite, formic acid, sodium formate, potassium formate, ammonium formate, formaldehyde, etc., and one or two More than one species may be used in combination. The reducing agent is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight relative to the total composition.

상기 균일성 증강제는 전형적으로 킬레이트 화합물을 제공할 수 있는 유기 카복실산이며 제 2환원제와 전도성 향상제로 작용한다. 균일성 증강제로는 폴리카복실산, 예를 들어 디- 및 트리- 카복실산 화합물, 하이트록시- 치환된 카복실산 화합물, 아민카복실산화합물, 피리딘카복실산화합물 등이 포함되고, 그 예로 옥살산, 아스코르브산, 시트르산, 말산, 클리콜산, 말론산, 락트산, 옥사락트산, 타르타르산, 니코틴산, 피코린산, 퀴놀린산 및 알카리 금속염이 포함되나 이에 한정되지 않는다. 바람직하게는 옥살산, 말론산, 아스코르브산, 니코틴산, 시트르산을 사용할 수 있고, 1종 또는 2종 이상을 병용할 수 있다. 균일성 증강제는 전체 조성물 대비 1 ~ 15 중량% 인 것이 바람직하고, 3 ~ 10 중량% 인 것이 더욱 바람직하다.The uniformity enhancer is typically an organic carboxylic acid capable of providing a chelating compound and acts as a second reducing agent and as a conductivity enhancer. Uniformity enhancers include polycarboxylic acids such as di- and tri-carboxylic acid compounds, hydroxy-substituted carboxylic acid compounds, aminecarboxylic acid compounds, pyridinecarboxylic acid compounds, and the like, such as oxalic acid, ascorbic acid, citric acid, malic acid, glycolic acid, malonic acid, lactic acid, oxalic acid, tartaric acid, nicotinic acid, picoric acid, quinoline acid and alkali metal salts. Preferably, oxalic acid, malonic acid, ascorbic acid, nicotinic acid, and citric acid can be used, and one type or two or more types can be used together. The amount of the uniformity enhancer is preferably 1 to 15% by weight, more preferably 3 to 10% by weight, based on the total composition.

상기 전도성 향상제는 전도성 향상을 목적으로 사용하며, 전도염 화합물은 설파이트(Sulfite), 바이설파이트(Bisulfite), 나이트레이트(Nitrate), 포스페이트(Phosphate), 설페이트(Sulfate), 티오설페이트(thiosulfate), 파이로포스페이트(Pyrophosphate), 파이로설페이트(Pyrosulfate) 등의 무기산 염을 사용하며, 다이소듐 설파이트(Disodium Sulfite), 포타슘 설파이트(Potassium Sulfite), 소듐 바이설파이트(Sodium Bisulfite), 소듐 설페이트(Sodium Sulfate), 포타슘 설페이트(Potassium Sulfate), 소듐 나이트레이트(Sodium Nitrate), 포타슘 나이트레이트(Potassium Nitrate), 소듐 나이트라이트(Sodium Nitrite), 포타슘 나이트라이트 (Potassium Nitrite), 포타슘 포스페이트(Potassium phosphate), 포타슘 파이로설페이트(Potassium pyrosulfate), 포타슘 파이로포스페이트(Potassium pyrophosphate), 포타슘 티오설페이트(Potassium thiosulfate) 중 선택될 수 있으나 이에 한정되는 것은 아니다. 전도제 향상제는 전체 조성물 대비 1 ~ 10 중량% 인 것이 바람직하고, 2 ~ 6 중량% 인 것이 더욱 바람직하다.The conductivity enhancer is used for the purpose of improving conductivity, and the conductive salt compound is sulfite, bisulfite, nitrate, phosphate, phosphate, sulfate, or thiosulfate. , pyrophosphate, pyrosulfate, and other inorganic acid salts are used. Disodium Sulfite, Potassium Sulfite, Sodium Bisulfite, Sodium Sulfate (Sodium Sulfate), Potassium Sulfate, Sodium Nitrate, Potassium Nitrate, Sodium Nitrite, Potassium Nitrite, Potassium Phosphate , potassium pyrosulfate, potassium pyrophosphate, potassium thiosulfate, but is not limited thereto. The amount of the conductive agent improving agent is preferably 1 to 10% by weight, more preferably 2 to 6% by weight, based on the total composition.

상기 팔라듐 이온 안정화제로 피리미디논 화합물을 사용하여, 팔라듐 도금 피막의 두께가 0.05 ~ 0.15㎛ 까지 절감될 뿐만 아니라, 우수한 내열성을 제공하여 팔라듐 도금 후 금 도금 시 팔라듐 도금과 금 도금 간의 우수한 밀착성을 제공하며, 고순도의 팔라듐 피막을 형성한다. 피리미디논 화합물은 1,3-디메틸-3,4,5,6-테트라하이드로-2(1H)-피리미디논(1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone), 4(s)-4-하이드록시-3,4-디하이드로-2(1H)-피리미디논(4(s)-4-hydroxy-3, 4-dihydro-2(1H)-pyrimidinone), 1,3-디하이드로-2H-이미다졸-z-원(1,3-Dihydro-2H-imidazol-z-one), I-메틸-테트라하이드로-2(1H)-피리미돈(I-methyl-tetrahydro-2(1H)-pyrimidone), 4-아미노-2(1H)-피리미돈(4-amino-2(1H)-pyrimidone) 을 사용할 수 있고, 1종 또는 2종 이상 병용할 수 있다. 상기 팔라듐 이온 안정화제는 0.01 ~ 5 중량% 인 것이 바람직하고, 0.1 ~ 3.0 중량% 인 것이 더욱 바람직하다.By using the pyrimidinone compound as the palladium ion stabilizer, the thickness of the palladium plating film is reduced to 0.05 ~ 0.15㎛, and excellent heat resistance is provided to provide excellent adhesion between palladium plating and gold plating during gold plating after palladium plating and forms a high-purity palladium film. The pyrimidinone compound is 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H)-pyrimidinone (1,3-Dimethyl-3,4,5,6-tetrahydro-2 (1H) )-pyrimidinone), 4(s)-4-hydroxy-3,4-dihydro-2(1H)-pyrimidinone (4(s)-4-hydroxy-3,4-dihydro-2(1H) -pyrimidinone), 1,3-dihydro-2H-imidazole-z-one (1,3-Dihydro-2H-imidazol-z-one), I-methyl-tetrahydro-2 (1H)-pyrimidone ( I-methyl-tetrahydro-2(1H)-pyrimidone), 4-amino-2(1H)-pyrimidone (4-amino-2(1H)-pyrimidone) can be used, and one type or two or more types can be used in combination. can The palladium ion stabilizer is preferably 0.01 to 5% by weight, and more preferably 0.1 to 3.0% by weight.

또한, pH 유지를 위해 완충제를 사용할 수 있다. 완충제로는 염산, 황산, 질산, 시트로산, 말론산, 말산, 타르타르산, 인산, 붕산 등의 산, 수산화나트륨, 수산화칼륨, 암모니아수 등의 알칼리를 사용할 수 있고, 1종 또는 2종 이상을 병용할 수 있다. pH는 pH 4 ~ 6 인 것이 바람직하다. PH가 너무 낮으면 PH 석출 속도가 저하되기 쉽고 PH가 높으면 도금액이 안정성이 저하된다.In addition, a buffer may be used to maintain the pH. As the buffering agent, acids such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, malonic acid, malic acid, tartaric acid, phosphoric acid, boric acid, and alkalis such as sodium hydroxide, potassium hydroxide, and aqueous ammonia can be used, and one or two or more can be used in combination. can do. It is preferable that pH is pH 4-6. If the PH is too low, the PH precipitation rate tends to decrease, and if the PH is high, the stability of the plating solution is reduced.

무전해 금 도금방법Electroless gold plating method

본 발명의 무 전해 금 도금방법은, 구리 표면 상에 금 스트라이크 전처리 공정(a)을 하고, 무전해 팔라듐 도금(b)을 한 후, 무전해 금 도금(c)을 수행한다.In the electroless gold plating method of the present invention, a gold strike pretreatment process (a) is performed on a copper surface, electroless palladium plating (b) is performed, and then electroless gold plating (c) is performed.

상기 구리 표면 상의 금 스트라이크 전처리 공정(a) 및 무전해 팔라듐 도금(b)은 상기 무전해 팔라듐 도금방법에 기술된 내용과 중복되므로 생략한다. The gold strike pretreatment process (a) and the electroless palladium plating (b) on the copper surface are omitted because they overlap with those described in the electroless palladium plating method.

상기 무전해 금 도금(c)은 무전해 금 도금액에 상기 무전해 팔라듐 도금방법으로 형성된 팔라듐 도금층을 접촉시키는 것을 포함한다.The electroless gold plating (c) includes contacting an electroless gold plating solution with a palladium plating layer formed by the electroless palladium plating method.

상기 무전해 금 도금(c)은, 아미노디카복실산 또는 페닐페나진계 화합물을 포함하는 조성물을 사용할 수 있다.For the electroless gold plating (c), a composition including an aminodicarboxylic acid or a phenylphenazine-based compound may be used.

상기 아미노디카복실산 또는 페닐페나진계 화합물은, 전체 조성물에 대하여 아미노디카복실산 1 내지 30 중량% 또는 페닐페나진계 화합물 0.01 내지 1 중량%을 포함할 수 있다.The aminodicarboxylic acid or phenylphenazine-based compound may include 1 to 30% by weight of aminodicarboxylic acid or 0.01 to 1% by weight of the phenylphenazine-based compound based on the total composition.

상기 조성물은 수용성 금화합물, 제1착화제, 제2착화제로 아미노디카복실산, 전도성 향상제, 환원제, 금이온 안정화제 및 평탄화제로 페닐페나진계 화합물을 포함할 수 있다.The composition may include a water-soluble gold compound, a first complexing agent, an aminodicarboxylic acid as a second complexing agent, a conductivity improving agent, a reducing agent, a gold ion stabilizer, and a phenylphenazine-based compound as a leveling agent.

상기 방법으로 제조된 무전해 금 도금의 두께는, 0.05 내지 0.3 ㎛ 인 것이 바람직하고, 0.05 내지 0.15 ㎛ 인 것이 더욱 바람직하다.The thickness of the electroless gold plating prepared by the above method is preferably 0.05 to 0.3 µm, more preferably 0.05 to 0.15 µm.

상기 무전해 금 도금방법은 바람직하게는 인쇄회로기판의 구리 배선 금 도금에 사용될 수 있다. 또한, 라인/스페이스(line/space) 10㎛/10㎛의 초미세회로의 금 도금에 사용될 수 있다.The electroless gold plating method may be preferably used for gold plating of copper wiring of a printed circuit board. In addition, it can be used for gold plating of ultra-fine circuits having a line/space of 10 μm/10 μm.

무전해 금 도금용 조성물Composition for electroless gold plating

본 발명의 무전해 금 도금용 조성물은, 아미노디카복실산 및 페닐페나진계 화합물을 포함한다.The composition for electroless gold plating of the present invention includes an aminodicarboxylic acid and a phenylphenazine-based compound.

상기 조성물은 수용성 금화합물, 착화제, 전도성 향상제, 환원제, 금이온 안정화제 및 평탄화제를 더 포함할 수 있다. 착화제는 기본적으로 사용되는 제1착화제 외에 제2착화제를 더 포함할 수 있고, 아미노디카복실산은 제2착화제로, 페닐페나진계 화합물은 평탄화제로 사용된다.The composition may further include a water-soluble gold compound, a complexing agent, a conductivity improving agent, a reducing agent, a gold ion stabilizer, and a leveling agent. The complexing agent may further include a second complexing agent in addition to the basically used first complexing agent, aminodicarboxylic acid is used as the second complexing agent, and the phenylphenazine-based compound is used as a leveling agent.

상기 수용성 금화합물은 비시안계로서 본 발명의 기술분야에서 일반적으로 알려진 것을 사용할 수 있으며, 일 예로 금의 아황산염, 티오황산염, 황산염, 질산염, 메탄술폰산염, 염화물, 브롬화물, 요오드화물 등이 있다. 상기 수용성 금화합물은 1종 또는 2종 이상을 함께 사용할 수 있다. 수용성 금화합물은 전체 조성물 대비 0.1 ~ 1 중량%를 사용하는 것이 바람직하고, 0.1 ~ 0.5 중량%를 사용하는 것이 더욱 바람직하다. 0.1 중량% 미만에서는 석출속도가 느려지고, 1 중량% 초과 시에는 안정성이 저하되는 문제점이 있다.As the water-soluble gold compound, a non-cyanide compound generally known in the art may be used, and examples thereof include gold sulfite, thiosulfate, sulfate, nitrate, methanesulfonate, chloride, bromide, and iodide. The water-soluble gold compound may be used alone or in combination of two or more. The water-soluble gold compound is preferably used in an amount of 0.1 to 1% by weight, more preferably 0.1 to 0.5% by weight, based on the total composition. If it is less than 0.1% by weight, the precipitation rate is slowed, and when it exceeds 1% by weight, there is a problem in that stability is lowered.

상기 제1착화제는 도금액 중의 금속 이온을 용해, 배위, 착화 시킴으로써, 금속 또는 금속이온이 석출되지 않게 하는 등의 역할을 한다. 제1착화제는, 바람직하게는 다중 배위성 리간드이고, 예를 들면, 에틸렌디아민 테트라아세트산(EDTA), 디에틸렌트리아민 펜다아세트산(DTPA), 트리에틸렌테트라민 헥사아세트산, 프로판디아민 테트라아세트산, N-2(2-하이드록시에틸)에틸렌디아민 트리아세트산,1,3-디아미노사이크로헥산 테트라아세트산, 에틸렌글리콜-비스((β-아미노에에테르)-N, N'-테트라아세트산) 등과 같은 알킬렌폴리아민 폴리아세트산, N,N,N',N'-테트라키스-(2-하이드 록시프로필)-에틸렌디아민, 에틸렌디아민, 2,2,2'-트리 아미노트리 에틸아민, 트리에틸렌 테트라민, 디에틸렌트리아민, 테트라키스(아미노에틸) 에틸렌디아민 등과 같은 폴리아민, 이들의 나트륨염, 칼륨염 또는 암모늄염, 및 이들의 혼합물로 이루어지는 군으로부터 선택될 수 있고, 바람직하게는, 알킬렌폴리아민 폴리아세트산을, 더욱 바람직하게는 에틸렌디아민 테트라아세트산(EDTA), 디에틸렌트리아민 펜타아세트산(DIPA), 트리에틸렌테트라민 핵사아세트산, 프로판디아민 테트라아세트산 등을 언급할 수 있으나 이들에 한정되는 것은 아니다. 제1착화제는 전체 조성물 대비 1 ~ 30 중량% 인 것이 바람직하고, 1 ~ 5 중량% 인 것이 더욱 바람직하다.The first complexing agent serves to prevent metal or metal ions from being precipitated by dissolving, coordinating, and complexing the metal ions in the plating solution. The first complexing agent is preferably a multicoordinating ligand, for example, ethylenediamine tetraacetic acid (EDTA), diethylenetriamine pendaacetic acid (DTPA), triethylenetetramine hexaacetic acid, propanediamine tetraacetic acid, N Alkyl such as -2(2-hydroxyethyl)ethylenediamine triacetic acid, 1,3-diaminocyclohexane tetraacetic acid, ethylene glycol-bis((β-aminoether)-N, N'-tetraacetic acid), etc. Ren polyamine polyacetic acid, N,N,N',N'-tetrakis-(2-hydroxypropyl)-ethylenediamine, ethylenediamine, 2,2,2'-triaminotriethylamine, triethylenetetramine, It may be selected from the group consisting of polyamines such as diethylenetriamine and tetrakis(aminoethyl)ethylenediamine, sodium salts, potassium salts or ammonium salts thereof, and mixtures thereof, preferably alkylenepolyamine polyacetic acid , more preferably ethylenediamine tetraacetic acid (EDTA), diethylenetriamine pentaacetic acid (DIPA), triethylenetetramine hexaacetic acid, propanediamine tetraacetic acid, and the like, but are not limited thereto. The amount of the first complexing agent is preferably 1 to 30% by weight, more preferably 1 to 5% by weight, based on the total composition.

제2착화제는, 아미노디카복실산으로 트리덴데이트 컴플렉스로 작용하므로 금속이온의 석출을 방지하는 작용을 한다. 상기 아미노디카복실산은 아미노부탄 디오익산(Aminobutane dioic acid), 이미노디아세틱산(Iminodiacetic acid), 2-아미노 글루타릭산(2-Amino glutaric acid), 4-아미노-1,2-디카복실산(4-Amino-1,2- dicarboxylic acid), 2-아미노[1,1'-바이페니]-4-4'-디카복실산(2-Amino[1,1'-biphenyi]-4-4'-dicarboxylic acid), 5-아미노 이소 프탈릭 산(5-Amino iso phthalic acid), 1-H-이미다졸-4,5-디카복실산(1-H-imidazole-4,5-dicarboxylic acid), 2-아미노-피리딘-3,5-디카복실산(2-Amino-pyridine-3,5-dicarboxylic acid), 5-아미노-1H-피롤-2,4-디카복실산(5-Amino-1H-pyrrole-2.4-dicarboxylic acid), 2-아미노-벤젠-1,4-디카복실산(2-Amino-benzene-1,4-dicarboxylic acid), 아미노말로익산(Aminomalonic acid), 4-아미노-티오펜-2,3-디카복실산(4-Amino-thiophene-2,3 dicarboxylic acid) 중 선택될 수 있다. 제2착화제는 전체 조성물 대비 0.1 ~ 20 중량% 인 것이 바람직하고, 0.5 ~ 10 중량% 인 것이 더욱 바람직하다.Since the second complexing agent acts as a tridentate complex with aminodicarboxylic acid, it acts to prevent precipitation of metal ions. The aminodicarboxylic acid is aminobutane dioic acid, iminodiacetic acid, 2-amino glutaric acid, 4-amino-1,2-dicarboxylic acid (4 -Amino-1,2-dicarboxylic acid), 2-amino [1,1'-biphenyi]-4-4'-dicarboxylic acid (2-Amino[1,1'-biphenyi]-4-4'-dicarboxylic acid) acid), 5-amino isophthalic acid, 1-H-imidazole-4,5-dicarboxylic acid, 2-amino -Pyridine-3,5-dicarboxylic acid (2-Amino-pyridine-3,5-dicarboxylic acid), 5-amino-1H-pyrrole-2,4-dicarboxylic acid (5-Amino-1H-pyrrole-2.4-dicarboxylic acid) acid), 2-amino-benzene-1,4-dicarboxylic acid (2-Amino-benzene-1,4-dicarboxylic acid), aminomalonic acid, 4-amino-thiophene-2,3-di It may be selected from carboxylic acid (4-Amino-thiophene-2,3 dicarboxylic acid). The amount of the second complexing agent is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, based on the total composition.

상기 전도성 향상제는 전도성 향상을 목적으로 사용하며, 전도염 화합물은 설파이트(Sulfite), 바이설파이트(Bisulfite), 나이트레이트(Nitrate), 포스페이트(Phosphate), 설페이트(Sulfate), 티오설페이트(thiosulfate), 파이로포스페이트(Pyrophosphate), 파이로설페이트(Pyrosulfate) 등의 무기산 염을 사용하며, 다이소듐 설파이트(Disodium Sulfite), 포타슘 설파이트(Potassium Sulfite), 소듐 바이설파이트(Sodium Bisulfite), 소듐 설페이트(Sodium Sulfate), 포타슘 설페이트(Potassium Sulfate), 소듐 나이트레이트(Sodium Nitrate), 포타슘 나이트레이트(Potassium Nitrate), 소듐 나이트라이트(Sodium Nitrite), 포타슘 나이트라이트 (Potassium Nitrite), 포타슘 포스페이트(Potassium phosphate), 포타슘 파이로설페이트(Potassium pyrosulfate), 포타슘 파이로포스페이트(Potassium pyrophosphate), 포타슘 티오설페이트(Potassium thiosulfate) 중 선택될 수 있으나 이에 한정되는 것은 아니다. 전도제 향상제는 전체 조성물 대비 1 ~ 20 중량% 인 것이 바람직하고, 5 ~ 10 중량% 인 것이 더욱 바람직하다.The conductivity enhancer is used for the purpose of improving conductivity, and the conductive salt compound is sulfite, bisulfite, nitrate, phosphate, phosphate, sulfate, or thiosulfate. , pyrophosphate, pyrosulfate, and other inorganic acid salts are used. Disodium Sulfite, Potassium Sulfite, Sodium Bisulfite, Sodium Sulfate (Sodium Sulfate), Potassium Sulfate, Sodium Nitrate, Potassium Nitrate, Sodium Nitrite, Potassium Nitrite, Potassium Phosphate , potassium pyrosulfate, potassium pyrophosphate, potassium thiosulfate, but is not limited thereto. The amount of the conductive agent improving agent is preferably 1 to 20% by weight, more preferably 5 to 10% by weight, based on the total composition.

상기 환원제는 아스코르브산, 이소아스코르브산, 아스코르브산 화합물 또는 그 염(나트륨염, 칼륨염, 암모늄염 등); 하이드로퀴논, 메틸하이드로퀴논 등의 하이드로퀴논 유도체, 포름산, 포름산나트륨, 포름산 칼륨, 포름산 암모늄, 소디움포름알데히드바이설파이트 등이 있고, 1종 또는 2종 이상을 병용할 수 있다. 환원제는 전체 조성물 대비 0.5 ~ 5 중량% 인 것이 바람직하고, 0.8 ~ 3 중량% 인 것이 더욱 바람직하다.The reducing agent is ascorbic acid, isoascorbic acid, an ascorbic acid compound or a salt thereof (sodium salt, potassium salt, ammonium salt, etc.); Hydroquinone derivatives, such as hydroquinone and methylhydroquinone, formic acid, sodium formate, potassium formate, ammonium formate, sodium formaldehyde bisulfite, etc. exist, 1 type, or 2 or more types can be used together. The reducing agent is preferably 0.5 to 5% by weight, more preferably 0.8 to 3% by weight relative to the total composition.

상기 금이온 안정화제는 S-H 결합을 갖는 머캅토 화합물을 사용한다. 2-머캅토피리미딘, 2-머캅토벤족사졸, 2-머캅토벤조티아졸, 2-머캅토벤즈이미다졸, 2-아미노-5-머캅토-1,3,4-티아디아졸 등이 있으며, 이들에 한정되는 것은 아니다. 상기 금이온 안정화제는 전체 조성물 대비 0.0001 ~ 3 중량% 인 것이 바람직하고, 0.001 ~ 1 중량% 인 것이 더욱 바람직하다.The gold ion stabilizer uses a mercapto compound having an S-H bond. 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, 2-amino-5-mercapto-1,3,4-thiadiazole, etc. and is not limited thereto. The gold ion stabilizer is preferably 0.0001 to 3% by weight, more preferably 0.001 to 1% by weight, based on the total composition.

상기 평탄화제로 사용하는 페닐페나진계 화합물은 마이크로아조리간드로 작용하여 Sulfite[Au(SO₃)₂]3- Bath의 안전성을 증대시키며 금 피막의 균일성과 양호한 외관 평탄성을 제공한다. 상기 페닐페나진계 화합물은, 3-디에틸아미노-7-(4-디메틸 아미노 페닐아조)-5-페닐 페나지니움 클로라이드(3-Diethylamino-7-(4-Dimethyl Amino Phenylazo)-5-Phenyl Phenazinium Chloride), 3,7-디아미노-2,8-디메틸-5-페닐 페나진-5이움 클로라이드(3,7-Diamino-2,8-Dimethyl-5-Phenyl Phenazine-5ium Chloride), 3-아미노-7-(디메틸아미노)-5-페닐 페나진-5이움 클로라이드(3-Amino-7-(Dimethylamino)-5-Phenyl Phenazine-5ium Chloride), 3-아미노-7-{[4-(디메틸아미노) 페니] 아조}-5-페닐 페나진 클로라이드(3-Amino-7-{[4-(Dimethylamino) Phenyi] azo}-5-Phenyl Phenazine Chloride), 10-페닐 페나진-2,8-디아민-5-메틸-10-페닐-5,10-디하이드로페나진(10-phenyl phenazine-2,8-Diamine-5-Methly-10-Phenyl-5,10-Dihydrophenazine), N-페닐페아진-2-카복사마이드(N-Phenylphenazine-2-Carboxamide), 10-페닐 페나진-5(10H)-라디칼(10-phenyl phenazine-5(10H)-Ylradical), 5,10-디하이드로-5-페닐 페나진(5,10-Dihydro-5-phenyl phenazine), 5-[2-(벤조트리아졸-2-Y1) 페닐)-10-페닐 페나진(5-[2-(Benzotriazol-2-Y1) Phenyl)-10-Phenyl Phenazine), N-페닐 페나진-2-아민(N-Phenyl Phenazine-2-Amine), 6,9-디메톡시-페나진-1-카복실산(6,9-Dimethoxy-Phenazine-1-Carboxylic Acid) 중 선택될 수 있고, 이들 중 1종 또는 2종 이상 병용할 수 있다. 상기 평탄화제는 0.01 ~ 1 중량% 인 것이 바람직하고, 0.02 ~ 0.5 중량% 인 것이 더욱 바람직하다.The phenylphenazine-based compound used as the leveling agent acts as a microazo ligand to increase the safety of Sulfite[Au(SO₃)₂] 3- Bath, and provides uniformity of gold film and good flatness of appearance. The phenylphenazine-based compound is 3-diethylamino-7-(4-dimethyl amino phenylazo)-5-phenyl phenazinium chloride (3-Diethylamino-7-(4-Dimethyl Amino Phenylazo)-5-Phenyl Phenazinium Chloride), 3,7-diamino-2,8-dimethyl-5-phenyl phenazine-5ium chloride (3,7-Diamino-2,8-Dimethyl-5-Phenyl Phenazine-5ium Chloride), 3-amino -7-(dimethylamino)-5-phenyl phenazine-5ium chloride (3-Amino-7-(Dimethylamino)-5-Phenyl Phenazine-5ium Chloride), 3-amino-7-{[4-(dimethylamino) ) Phenyl] azo}-5-phenylphenazine chloride (3-Amino-7-{[4-(Dimethylamino) Phenyi] azo}-5-Phenyl Phenazine Chloride), 10-phenylphenazine-2,8-diamine- 5-methyl-10-phenyl-5,10-dihydrophenazine (10-phenyl phenazine-2,8-Diamine-5-Methly-10-Phenyl-5,10-Dihydrophenazine), N-phenylphenazine-2 -Carboxamide (N-Phenylphenazine-2-Carboxamide), 10-phenyl phenazine-5(10H)-radical (10-phenyl phenazine-5(10H)-Ylradical), 5,10-dihydro-5-phenyl Phenazine (5,10-Dihydro-5-phenyl phenazine), 5-[2-(benzotriazole-2-Y1) phenyl)-10-phenyl phenazine (5-[2-(Benzotriazol-2-Y1) Phenyl)-10-Phenyl Phenazine), N-Phenyl Phenazine-2-amine (N-Phenyl Phenazine-2-Amine), 6,9-dimethoxy-phenazine-1-carboxylic acid (6,9-Dimethoxy-Phenazine) -1-Carboxylic Acid), and one or two or more of them may be used in combination. The leveling agent is preferably 0.01 to 1% by weight, and more preferably 0.02 to 0.5% by weight.

또한, pH 유지를 위해 완충제를 사용할 수 있다. 금도금 공정 중 솔더레지스트의 원형 유지가 중요하다. 금도금 중에 솔더레지스트의 손상 및 침투 현상 발생으로 회로 형성이 매우 어렵고, 솔더레지스트는 PH 변화에 특히 민감하게 손상되므로 완충제 역할이 중요하다. 본 발명은 전도성 향상에 도움을 주며, PH 변동을 제어할 수 있는 유기 카복실산를 사용하는 것이 바람직하다. 완충체로는 시트르산(Citric Acid), 아세트산(Acetic Acid), 타타르산(Tartaric Acid), 포름산(Formin Acid), 숙신산(Succinic Acid), 젖산(Lactic Acid), 말산(Malic Acid), 옥살산(Oxalic Acid), 요산(Uric Acid), 벤조산(Benzoic Acid) 등을 사용할 수 있고, 이들 중 1종 또는 2종 이상 병용할 수 있다.In addition, a buffer may be used to maintain the pH. It is important to maintain the original shape of the solder resist during the gold plating process. During gold plating, it is very difficult to form a circuit due to damage and penetration of the solder resist, and the solder resist is particularly sensitive to changes in pH, so the role of a buffer is important. The present invention helps to improve conductivity, and it is preferable to use an organic carboxylic acid capable of controlling the PH fluctuation. Buffers include Citric Acid, Acetic Acid, Tartaric Acid, Formin Acid, Succinic Acid, Lactic Acid, Malic Acid, Oxalic Acid ), uric acid, benzoic acid, etc. may be used, and one or two or more of them may be used in combination.

또한, 금 도금액의 특성을 저해하지 않는 한도 내에서, 계면활성제, 결정 조정제, pH 조정제, 소포제 등과 같이 첨가제를 더 포함할 수 있다. 계면활성제는 도금액과 금속 표면 사이에 젖음성을 조절하고 도금되는 입자 크기를 미세화하는 작용을 위해 사용되며, 음이온성, 양이온성, 비이온성 또는 양쪽성 계면활성제로부터, 바람직하게는 음이온성 계면활성제로부터 선택된다. In addition, as long as the properties of the gold plating solution are not impaired, additives such as a surfactant, a crystal adjuster, a pH adjuster, an antifoaming agent, and the like may be further included. The surfactant is used to control the wettability between the plating solution and the metal surface and to refine the particle size to be plated, and is selected from anionic, cationic, nonionic or amphoteric surfactants, preferably from anionic surfactants. do.

또한, 탈륨 화합물, 납 화합물, 비스머스 화합물 및 비소 화합물로 이루어지는 군에서 선택되는 첨가제를 더 포함하여, 금 피막 외관이 더욱 양호해지고, 외관 불균일의 억제가 더욱 뛰어날 수 있다.In addition, by further including an additive selected from the group consisting of a thallium compound, a lead compound, a bismuth compound, and an arsenic compound, the appearance of the gold film may be improved and suppression of appearance irregularity may be further improved.

상기의 무전해 금 도금방법에 상기 무전해 금 도금 조성물을 사용하여 도금할 경우, 금 도금 두께를 0.05 내지 0.15 ㎛ 까지 저감할 수 있고, 우수한 솔더 접합성과 와이어 본딩성을 얻을 수 있다. 또한, 경제성이 탁월하고 상용화가 가능한 장점이 있다.When plating is performed using the electroless gold plating composition in the electroless gold plating method, the gold plating thickness can be reduced to 0.05 to 0.15 μm, and excellent solder bonding properties and wire bonding properties can be obtained. In addition, there are advantages of excellent economic feasibility and commercialization.

실시예Example

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are only illustrative of the present invention and the scope of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

본 실시예에서 인쇄회로기판은 SMD 타입의 두께 1 mm의 FR-4 기판을 사용하였다. As the printed circuit board in this embodiment, an SMD type FR-4 board having a thickness of 1 mm was used.

도 2는 본 발명의 실시예 1 ~ 3에서 사용된 평가용 기판을 보여주는 사진이다. 기판에 형성된 패드 오프닝 크기는 350㎛ 이고, 피치 크기는 800㎛ 으로 도2a에 나타난 패턴으로 형성하였으며, 제작된 보드는 체인(daisy chain)으로 구성하여 전기적으로 모두 연결되게 설계하여 솔더링 평가를 수행하였다. 또한 도 2b에 나타난 바와 같이 넓은 면적과 좁은 패드를 회로로 이어 갈바닉 반응이 일어날 수 있는 기판을 설계하여 도금속도, 도금외관, 도금 밀착성 평가를 수행하였다.2 is a photograph showing a substrate for evaluation used in Examples 1 to 3 of the present invention. The pad opening size formed on the substrate was 350 μm, the pitch size was 800 μm, and it was formed in the pattern shown in FIG. . In addition, as shown in Fig. 2b, by designing a substrate capable of galvanic reaction by connecting a large area and a narrow pad with a circuit, plating speed, plating appearance, and plating adhesion were evaluated.

테스트 기판의 금 도금은 하기 표 1에 기재된 바와 같이 수행하였고, 표 1에 기재된 약품은 ㈜엠케이켐앤텍社 제품을 사용하였다. Neozen SG은 카보닐기를 포함한 퓨린계 또는 피리미딘 계 화합물을 포함한 것이다.Gold plating of the test board was performed as shown in Table 1 below, and the drugs listed in Table 1 were manufactured by MK Chem & Tech. Neozen SG contains a purine-based or pyrimidine-based compound including a carbonyl group.

공정process 약품명drug name 온도 (℃)Temperature (℃) 시간 (min)time (min) 탈지skim Acid Clean 820Acid Clean 820 40℃40℃ 55 소프트 에칭soft etching MKS-3000MKS-3000 25℃25℃ 55 산 세정pickling Sulfuric AcidSulfuric Acid 25℃25℃ 1One 금 스트라이크gold strike Neozen SGNeozen SG 75℃75℃ 55 무전해 팔라듐도금Electroless palladium plating 실시예 1~3Examples 1-3 70℃70℃ 1010 무전해 금도금electroless gold plating 실시예 1~3Examples 1-3 60℃60℃ 1515

실시예 1 ~ 3Examples 1-3

실시예 1 ~3은 도1의 EPIG 공법으로 금 스트라이크 하고, 표 2에 나타난 성분, 함량 및 조건에 따라 시편을 무전해 팔라듐 도금한 후 무전해 금 도금하였다. In Examples 1 to 3, gold strikes were performed by the EPIG method of FIG. 1, and the specimens were electroless palladium plating according to the components, contents and conditions shown in Table 2, followed by electroless gold plating.

공정process 구분division 성분ingredient 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 무전해 팔라듐 도금Electroless palladium plating 수용성 팔라듐 화합물Water-soluble palladium compound Pd 금속Pd metal 1One 1One 1One 착화제complexing agent EDTAEDTA 2020 2020 2020 에틸렌디아민ethylenediamine 1010 1010 1010 환원제reducing agent 포름산나트륨sodium formate 1010 차아인산나트륨 sodium hypophosphite 1010 아인산나트륨sodium phosphite 1010 균일성 증강제Uniformity Enhancer 시트르산citric acid 3030 옥살산oxalic acid 3030 말산malic acid 3030 전도성 향상제Conductivity enhancer 황산나트륨sodium sulfate 3030 3030 3030 인산수소나트륨Sodium hydrogen phosphate 2020 2020 2020 팔라듐이온 안정화제Palladium Ion Stabilizer 4-아미노2(1H)피리미돈4-amino2(1H)pyrimidone 22 22 22 water 순수pure 전체 1L가 되도록 투입Put in so that the total volume is 1L 전체 1L가 되도록 투입Put in so that the total volume is 1L 전체 1L가 되도록 투입Put in so that the total volume is 1L PHPH 5.25.2 5.25.2 5.25.2 온도 (℃ )Temperature (℃) 6565 6565 6565 시간 (Min)Time (Min) 1010 1010 1010 무전해 금도금electroless gold plating 수용성 금 화합물water soluble gold compound Au 금속Au metal 1One 1One 1One 제1착화제first complexing agent EDTAEDTA 1515 1515 1515 에틸렌디아민ethylenediamine 1010 1010 1010 제2착화제secondary complexing agent 이미노디아세틱산iminodiaacetic acid 55 55 2-아미노구르타릭산2-Aminoglutaric acid 55 전도성 향상제Conductivity enhancer 소디움히드로겐설파이트Sodium Hydrogensulfite 2020 2020 2020 소디움설파이트sodium sulfite 4040 포타시움설파이트Potassium sulfite 4040 4040 환원제reducing agent 아스코르빈산ascorbic acid 1010 1010 포름산나트륨sodium formate 2020 2020 금이온 안정화제gold ion stabilizer 2-머캅토 벤즈이미다졸 2-Mercaptobenzimidazole 0.050.05 0.10.1 2-머캅토 1.3.4 티아디아졸2-Mercapto 1.3.4 Thiadiazole 0.10.1 평탄화제leveling agent N-페닐페나진-2아민N-phenylphenazine-2amine 0.20.2 0.20.2 0.20.2 water 순수pure 전체 1L가 되도록 투입Put in so that the total volume is 1L 전체 1L가 되도록 투입Put in so that the total volume is 1L 전체 1L가 되도록 투입Put in so that the total volume is 1L PHPH 7.07.0 7.07.0 7.07.0 온도 (℃ )Temperature (℃) 6060 6060 6060 시간 (MIN)Time (MIN) 1515 1515 1515

* 상기 물질들의 첨가량 단위는 g/L 임.* The unit of addition amount of the above substances is g/L.

실험예 1 ~ 10Experimental Examples 1 to 10

상기 실시예 1 ~ 3 으로 도금된 시편에 대해 다음과 같은 실험을 수행하고 그 결과를 표 3으로 나타내었다.The following experiments were performed on the specimens plated in Examples 1 to 3, and the results are shown in Table 3.

1. 팔라듐 및 금 도금 두께: XRF 도금층 분석 장비로 두께를 측정하였다. 표 4는 도금 후 10 point 도금 두께 실측한 데이터를 나타낸 것이다.1. Palladium and gold plating thickness: The thickness was measured by XRF plating layer analysis equipment. Table 4 shows the data measured 10 point plating thickness after plating.

2. 금 도금 외관: 도금된 시편의 외관상 얼룩이나 변색 등의 외관상 이상 유무를 광학 현미경으로 관찰하였다(도 3 참고). 2. Gold plating appearance: The presence or absence of external abnormalities such as stains or discoloration on the appearance of the plated specimen was observed with an optical microscope (refer to FIG. 3).

3. 열처리 전 도금층간 국부 침식: FEI사 HELIOS 6001 FIB 장비를 이용하여 20㎛의 단명 가공 후 SEM으로 도금층 내 국부 침식을 관찰하여 도 4a(1: 실시예 1, 2: 실시예 2, 3: 실시예)의 상단에 나타냈고, 이로부터 도금층의 국부 침식 유무를 확인하였다. 도 4a 상단의 SEM 사진에서 확인할 수 있는 바와 같이, 국부 침식은 일어나지 않았다.3. Local erosion between plating layers before heat treatment: After short-lived machining of 20 μm using FEI’s HELIOS 6001 FIB equipment, local erosion in the plating layer was observed with SEM in Figure 4a (1: Example 1, 2: Example 2, 3: Example), and the presence or absence of local erosion of the plating layer was confirmed from this. As can be seen from the SEM photograph at the top of FIG. 4a , local erosion did not occur.

4. 열처리 후 도금층간 국부 침식: 도금된 시편을 175 ℃ 오븐에서 24시간 동안 열처리한 후 FIB 장비를 이용하여 20㎛ 단면 가공 후 SEM으로 도금층 내 국부 침식을 관찰하여 도 4a(1: 실시예 1, 2: 실시예 2, 3: 실시예)의 하단에 나타냈고, 이로부터 도금층의 국부 침식 유무를 확인하였다. 도 4a 하단의 SEM 사진에서 확인할 수 있는 바와 같이, 국부 침식은 일어나지 않았다. 또한, 도 4b는 종래 방법으로 도금된 시편에서 국부 침식이 일어난 도금층의 SEM 사진으로 도 4a와는 확연히 다름을 알 수 있었다. 4. Local erosion between plating layers after heat treatment: After heat-treating the plated specimen in an oven at 175 ° C. for 24 hours, using FIB equipment, 20 μm cross-section was processed, and local erosion in the plating layer was observed with SEM in Figure 4a (1: Example 1) , 2: Example 2, 3: Example), and the presence or absence of local erosion of the plating layer was confirmed from this. As can be seen from the SEM photograph at the bottom of FIG. 4a , local erosion did not occur. In addition, FIG. 4b is an SEM photograph of the plating layer in which local erosion occurred in the specimen plated by the conventional method, and it was found that it was significantly different from FIG. 4a.

5. 도금 밀착성: 테이프에 의한 박리 시험(Peel test)을 실시하여 베이스 금속과 도금층이 분리되어 테이프에 부착하는지를 확인하였다. 5. Plating adhesion: A peel test was performed using a tape to confirm whether the base metal and the plating layer were separated and adhered to the tape.

6. 솔더 접합 강도: 솔더 볼의 풀(Pull) 강도와 파괴 모드에 대한 시험은 DAGE 4000 기기로 실시하였다. 풀 스피드(Pull Speed)는 5,000㎛/sec로 하였고, 시편은 도금 후의 강도를 측정하였고, 실험은 총 30회 실시하여 평균값을 구하였다. 6. Solder joint strength: The solder ball pull strength and failure mode were tested with a DAGE 4000 instrument. The pull speed was set to 5,000 μm/sec, the strength of the specimen after plating was measured, and the experiment was performed a total of 30 times to obtain an average value.

[측정 조건][Measuring conditions]

측정 방식: 볼 풀 (Ball Pull) 테스트 Measurement method: Ball pull test

솔더볼: 알파메탈 0.45Φ SAC305 (Sn-3.0Ag-0.5Cu)Solder Ball: Alpha Metal 0.45Φ SAC305 (Sn-3.0Ag-0.5Cu)

리플로우: 멀티리플로우 (BTU사, VIP-70)Reflow: Multi-reflow (BTU, VIP-70)

리플로우 조건: Top 260 ℃Reflow conditions: Top 260 ℃

테스트 조건: Baking 175 ℃, 15 hr -> Reflow 1 time (Peak: 260 ℃) -> Mount Solder Ball -> Reflow (Peak: 260 ℃)Test conditions: Baking 175 ℃, 15 hr -> Reflow 1 time (Peak: 260 ℃) -> Mount Solder Ball -> Reflow (Peak: 260 ℃)

Pad Size/Solder Ball: Pad 300/Ball SAC 305, Φ0.450Pad Size/Solder Ball: Pad 300/Ball SAC 305, Φ0.450

[Failure mode classifications][Failure mode classifications]

Mode 1: Pad Lift-off - GoodMode 1: Pad Lift-off - Good

Mode 2: Ball Failure - GoodMode 2: Ball Failure - Good

Mode 3: Ball Extruded - GoodMode 3: Ball Extruded - Good

Mode 4: Bond Failure - FailMode 4: Bond Failure - Fail

7. 와이어 본딩: DAGE 4000 기기(Bonding Strength Testing machine)를 사용하여 와이어 본딩의 접합 강도 및 파괴 모드를 평가하였다. 풀 스피드(Pull Speed)는 1,000㎛/sec 하였고, 와이어 브레이크(Break) 모드는 아래와 같이 5단계로 구분하였다. 접합 강도는 시료30개를 풀 테스트(Pull Test)를 한 후 평균 강도 값으로 구하였고, 와이어의 브레이크(Break) 지점을 확인하여 양호 모드(Good Mode)와 접합계면이 파괴되는 불량모드(Failure Mode)로 구분하여 평가하였다.7. Wire bonding: A DAGE 4000 machine (Bonding Strength Testing machine) was used to evaluate the bonding strength and failure mode of wire bonding. The pull speed was 1,000㎛/sec, and the wire break mode was divided into 5 stages as follows. The joint strength was obtained as an average strength value after performing a pull test on 30 samples. ) and evaluated.

[측정 조건][Measuring conditions]

와이어 본딩기(Wire Bonder): 3H CORPORATION社 WIRE BONDER HB-16(maker: TPT), W-4626 와이어: 1mil-AuWire Bonder: 3H CORPORATION's WIRE BONDER HB-16 (maker: TPT), W-4626 Wire: 1mil-Au

스테이지 온도: 165 ℃Stage temperature: 165 ℃

[와이어 브레이크(Break) 모드][Wire Break Mode]

A: 1st Bond lift; Bad ModeA: 1 st Bond lift; Bad Mode

B: 1st Bond neck break; Good ModeB: 1 st Bond neck break; Good Mode

C: Au wire break; Good ModeC: Au wire break; Good Mode

D: 2nd Bond neck break; Good ModeD: 2 nd Bond neck break; Good Mode

E: 2nd Bond lift; Bad ModeE: 2 nd Bond lift; Bad Mode

8. 솔더 퍼짐성: 도금된 시편의 표면에 플럭스(Flux)를 박막으로 도포 후 알파메탈 0.3Φ SAC305(Sn-3.0Ag-0.5Cu) 솔더 볼을 올린 후 리플로우를 처리하고, 퍼져나간 솔더 볼의 (가로+세로)/2로 측정하였다.8. Solder spreadability: After applying flux as a thin film to the surface of the plated specimen, put alpha metal 0.3Φ SAC305 (Sn-3.0Ag-0.5Cu) solder balls on it, reflow it, and It was measured as (width+length)/2.

9. 내크랙성 시험: 내크랙성 시험을 위해 MIT-DA 기기로 실시하였다. 도금된 시편의 한쪽을 고정시키고 다른 한쪽엔 250 g의 추를 매달아 시편을 팽팽하게 만든 뒤 시편 회로 중간부를 좌우로 135˚씩 꺽어서 회로가 끊어지는 순간까지의 좌우 왕복 횟수를 측정하였다.9. Crack resistance test: For the crack resistance test, MIT-DA was used. One side of the plated specimen was fixed and a 250 g weight was hung on the other side to make the specimen taut, and then the middle part of the circuit of the specimen was bent by 135˚ left and right to measure the number of left and right reciprocation until the moment the circuit was broken.

10. 회로 번짐: 도금 후 스페이스(Space)가 20㎛ 이하의 회로를 SEM으로 관찰하여, 번짐 유무를 확인하였고, 이를 도 5a 내지 5c로 나타내었다.10. Circuit bleeding: After plating, a circuit having a space of 20 μm or less was observed by SEM to check whether or not there was any bleeding, and this is shown in FIGS. 5A to 5C .

[측정 조건][Measuring conditions]

번짐율(%)=(번짐폭(um)/회로폭(um)) X 100Bleed rate (%) = (Bread width (um) / Circuit width (um)) X 100

항목item 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 팔라듐 도금 두께 (㎛)Palladium plating thickness (㎛) 0.110.11 0.110.11 0.100.10 금 도금 두께(㎛)Gold plating thickness (㎛) 0.140.14 0.140.14 0.140.14 금 도금 외관gold plated exterior 양호Good 양호Good 양호Good 열처리 전 도금층 층간 보이드Void between plating layer before heat treatment 없음does not exist 없음does not exist 없음does not exist 열처리 후 도금층 층간 보이드Interlayer voids in the plating layer after heat treatment 없음does not exist 없음does not exist 없음does not exist 도금 밀착성Plating adhesion 양호Good 양호Good 양호Good 솔더 접합 강도(gf)Solder joint strength (gf) 728.12728.12 715.21715.21 732.25732.25 솔더 퍼짐성(㎛)Solder spreadability (㎛) 876.28876.28 868.52868.52 877.48877.48 와이어 본딩 강도(g)Wire bonding strength (g) 13.713.7 12.612.6 11.911.9 내크랙성 시험(회)Crack resistance test (times) 185185 187187 189189 회로 번짐(%)Circuit bleeding (%) 00 00 00

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 NoNo PdPd AuAu PdPd AuAu PdPd AuAu 1One 0.1150.115 0.1530.153 0.1390.139 0.1560.156 0.1000.100 0.1480.148 22 0.1080.108 0.1490.149 0.1100.110 0.1360.136 0.1390.139 0.1740.174 33 0.1100.110 0.1510.151 0.1020.102 0.1330.133 0.0910.091 0.1340.134 44 0.1040.104 0.1460.146 0.1080.108 0.1380.138 0.0930.093 0.1480.148 55 0.1140.114 0.1550.155 0.1080.108 0.1480.148 0.0890.089 0.1280.128 66 0.1030.103 0.1240.124 0.1330.133 0.1570.157 0.0930.093 0.1320.132 77 0.1030.103 0.1250.125 0.1110.111 0.1420.142 0.1020.102 0.1440.144 88 0.1210.121 0.1280.128 0.1050.105 0.1340.134 0.1020.102 0.1460.146 99 0.1200.120 0.1410.141 0.1050.105 0.1250.125 0.1020.102 0.1320.132 1010 0.1100.110 0.1280.128 0.0950.095 0.1270.127 0.0970.097 0.1300.130 평균두께 (㎛)Average thickness (㎛) 0.1110.111 0.1400.140 0.1120.112 0.1400.140 0.1010.101 0.1420.142 Max ㎛Max μm 0.1210.121 0.1550.155 0.1390.139 0.1570.157 0.1390.139 0.1740.174 Min ㎛Min μm 0.1030.103 0.1240.124 0.0950.095 0.1250.125 0.0890.089 0.1280.128 표준 편차Standard Deviation 0.0070.007 0.0130.013 0.0140.014 0.0110.011 0.0140.014 0.0140.014

지금까지 본 발명에 따른 무전해 팔라듐 도금방법과 무전해 팔라듐 도금용 조성물 및 이를 이용한 비시안계 무전해 금 도금방법과 무전해 금 도금용 조성물에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.Specific examples of the electroless palladium plating method and the composition for electroless palladium plating according to the present invention, and the non-cyanide-based electroless gold plating method and the composition for electroless gold plating using the same have been described, but within the scope of the present invention It is evident that various implementation modifications are possible within the limit not departing from it.

그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the following claims as well as the claims and equivalents.

즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지고, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.That is, it should be understood that the above-described embodiments are illustrative in all respects and not restrictive, and the scope of the present invention is indicated by the claims to be described later rather than the detailed description, and the meaning and scope of the claims and All changes or modifications derived from the concept of equivalents thereof should be construed as being included in the scope of the present invention.

Claims (24)

(a) 구리 표면 상에 금 스트라이크 전처리 단계;
(b) 상기 금 스트라이크 전처리 후에 피리미디논 화합물을 포함한 무전해 팔라듐 도금용 조성물을 사용하여 무전해 팔라듐 도금수행 단계; 및
(c) 상기 무전해 팔라듐 도금 수행 후에 아미노디카복실산 및 페닐페나진계 화합물을 포함한 비시안계 무전해 금 도금용 조성물을 사용하여 비시안계 무전해 금 도금 수행 단계;를 포함하는
비시안계 무전해 금 도금방법.
(a) gold strike pretreatment on the copper surface;
(b) performing electroless palladium plating using a composition for electroless palladium plating including a pyrimidinone compound after the gold strike pretreatment; and
(c) performing non-cyanide-based electroless gold plating using a non-cyanide-based electroless gold plating composition including aminodicarboxylic acid and a phenylphenazine-based compound after performing the electroless palladium plating;
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 구리는 구리 합금을 포함하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The copper is characterized in that it comprises a copper alloy,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 금 스트라이크 전처리에 카보닐기를 포함하는 퓨린계 또는 피리미딘계 화합물을 사용하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
Characterized in using a purine-based or pyrimidine-based compound containing a carbonyl group in the gold strike pretreatment,
Non-cyanide electroless gold plating method.
제3항에 있어서,
상기 카보닐기를 포함하는 퓨린계 또는 피리미딘 계 화합물은,
2-아미노-9H-퓨린-6(H)-온, 3,7-디히드로-퓨린-2,6-디온, 7,9-디히드로-1H-퓨린-2,6,8(3H)-트리온, 5-메틸-피리미딘-2,4(1H,3H)-디온, 2,4(1H,3H)-피리미딘-디온 및 4-아미노-1H-피리미딘-2온 중 선택된 어느 하나인 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
4. The method of claim 3,
The purine-based or pyrimidine-based compound containing the carbonyl group,
2-Amino-9H-purin-6(H)-one, 3,7-dihydro-purine-2,6-dione, 7,9-dihydro-1H-purine-2,6,8(3H)- Any one selected from trione, 5-methyl-pyrimidine-2,4(1H,3H)-dione, 2,4(1H,3H)-pyrimidine-dione and 4-amino-1H-pyrimidin-2one characterized in that
Non-cyanide electroless gold plating method.
제3항에 있어서,
상기 퓨린계 또는 피리미딘계 화합물은 구리 표면의 산화 반응을 차단시켜 국부 침식을 방지하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
4. The method of claim 3,
The purine-based or pyrimidine-based compound is characterized in that it prevents local erosion by blocking the oxidation reaction of the copper surface,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 금 스트라이크 전처리 공정은 pH 4 내지 9, 50 내지 85 ℃ 에서 수행하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The gold strike pretreatment process is characterized in that it is carried out at pH 4 to 9, 50 to 85 ℃,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 무전해 팔라듐 도금용 조성물은 수용성 팔라듐 화합물, 착화제, 환원제, 균일성 증가제, 및 전도성 향상제를 더 포함하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The composition for electroless palladium plating further comprises a water-soluble palladium compound, a complexing agent, a reducing agent, a uniformity increasing agent, and a conductivity improving agent,
Non-cyanide electroless gold plating method.
제1항 내지 제7항 중 어느 한 항에 있어서,
상기 도금방법으로 제조된 무전해 팔라듐 도금의 두께는,
0.05 내지 0.3 ㎛ 인 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
8. The method according to any one of claims 1 to 7,
The thickness of the electroless palladium plating prepared by the plating method is,
characterized in that 0.05 to 0.3 μm,
Non-cyanide electroless gold plating method.
삭제delete 삭제delete 제1항에 있어서,
상기 피리미디논 화합물은,
1,3-디메틸-3,4,5,6-테트라하이드로-2(1H)-피리미디논(1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone), 4(s)-4-하이드록시-3,4-디하이드로-2(1H)-피리미디논(4(s)-4-hydroxy-3, 4-dihydro-2(1H)-pyrimidinone), 1,3-디하이드로-2H-이미다졸-z-원(1,3-Dihydro-2H-imidazol-z-one), I-메틸-테트라하이드로-2(1H)-피리미돈(I-methyl-tetrahydro-2(1H)-pyrimidone), 4-아미노-2(1H)-피리미돈(4-amino-2(1H)-pyrimidone) 중 선택된 하나 이상인 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The pyrimidinone compound is
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone); 4(s)-4-hydroxy-3,4-dihydro-2(1H)-pyrimidinone (4(s)-4-hydroxy-3,4-dihydro-2(1H)-pyrimidinone), 1 ,3-dihydro-2H-imidazole-z-one (1,3-Dihydro-2H-imidazol-z-one), I-methyl-tetrahydro-2 (1H)-pyrimidone (I-methyl-tetrahydro) -2(1H)-pyrimidone), 4-amino-2(1H)-pyrimidone (4-amino-2(1H)-pyrimidone), characterized in that at least one selected from the group consisting of,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 피리미디논 화합물은,
상기 무전해 팔라듐 도금용 전체 조성물에 대하여 0.01 내지 5 중량%로 포함되는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The pyrimidinone compound is
characterized in that it is included in an amount of 0.01 to 5% by weight based on the total composition for electroless palladium plating,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 무전해 팔라듐 도금용 조성물은 상기 무전해 팔라듐 도금용 전체 조성물에 대하여 수용성 팔라듐 화합물 0.05 ~ 1 중량%, 착화제 0.5 ~ 10 중량%, 환원제 0.1 ~ 10 중량%, 균일성 증가제 1 ~ 15 중량% 및 전도성 향상제 1 ~ 10 중량%를 더 포함하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The composition for electroless palladium plating includes 0.05 to 1% by weight of a water-soluble palladium compound, 0.5 to 10% by weight of a complexing agent, 0.1 to 10% by weight of a reducing agent, and 1 to 15% by weight of a uniformity increasing agent based on the total composition for electroless palladium plating % and 1 to 10% by weight of a conductivity enhancer,
Non-cyanide electroless gold plating method.
삭제delete 삭제delete 제1항에 있어서,
상기 무전해 금 도금용 조성물은,
상기 무전해 금 도금용 전체 조성물에 대하여 아미노디카복실산 1 내지 30 중량% 및 페닐페나진계 화합물 0.01 내지 1 중량%을 포함하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The composition for electroless gold plating comprises:
1 to 30% by weight of aminodicarboxylic acid and 0.01 to 1% by weight of a phenylphenazine-based compound based on the total composition for electroless gold plating,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 무전해 금 도금용 조성물은 수용성 금화합물, 제1착화제, 제2착화제로 아미노디카복실산, 전도성 향상제, 환원제, 금이온 안정화제 및 평탄화제로 페닐페나진계 화합물을 포함하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The composition for electroless gold plating comprises a water-soluble gold compound, a first complexing agent, an aminodicarboxylic acid as a second complexing agent, a conductivity improving agent, a reducing agent, a gold ion stabilizer, and a phenylphenazine-based compound as a leveling agent,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 도금방법으로 제조된 무전해 금 도금의 두께는,
0.05 내지 0.3 ㎛ 인 것을 특징으로 하는,
비시안계 무전해 금 도금방법.
According to claim 1,
The thickness of the electroless gold plating prepared by the plating method is,
characterized in that 0.05 to 0.3 μm,
Non-cyanide electroless gold plating method.
제1항에 있어서,
상기 무전해 금 도금방법은
라인/스페이스(line/space) 10㎛/10㎛의 초미세회로의 금 도금에 사용하는 것을 특징으로 하는,
비시안계 무전해 금 도금방법.


According to claim 1,
The electroless gold plating method is
Characterized in that it is used for gold plating of ultra-fine circuits of line/space 10㎛/10㎛,
Non-cyanide electroless gold plating method.


삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020210008709A 2021-01-21 2021-01-21 Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition KR102292204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210008709A KR102292204B1 (en) 2021-01-21 2021-01-21 Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210008709A KR102292204B1 (en) 2021-01-21 2021-01-21 Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition

Publications (1)

Publication Number Publication Date
KR102292204B1 true KR102292204B1 (en) 2021-08-25

Family

ID=77495083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210008709A KR102292204B1 (en) 2021-01-21 2021-01-21 Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition

Country Status (1)

Country Link
KR (1) KR102292204B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045211A (en) * 2014-09-04 2017-04-26 니혼 고쥰도가가쿠 가부시키가이샤 Palladium plating solution and palladium coating obtained using same
KR101852658B1 (en) 2011-10-12 2018-04-26 아토테크더치랜드게엠베하 Electroless palladium plating bath composition
KR102041850B1 (en) * 2019-04-08 2019-11-06 (주)엠케이켐앤텍 Gold-strike plating method corresponding to pretreatment process for electroless palladium plating on copper surface of printed circuit board, composition of gold-strike plating solution and electroless plating method of palladium and gold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852658B1 (en) 2011-10-12 2018-04-26 아토테크더치랜드게엠베하 Electroless palladium plating bath composition
KR20170045211A (en) * 2014-09-04 2017-04-26 니혼 고쥰도가가쿠 가부시키가이샤 Palladium plating solution and palladium coating obtained using same
KR102041850B1 (en) * 2019-04-08 2019-11-06 (주)엠케이켐앤텍 Gold-strike plating method corresponding to pretreatment process for electroless palladium plating on copper surface of printed circuit board, composition of gold-strike plating solution and electroless plating method of palladium and gold

Similar Documents

Publication Publication Date Title
KR101996915B1 (en) Substitution type electroless gold plating bath containing purine or pyrimidine-based compound having carbonyl oxygen and substitution type electroless gold plating using the same
KR101431491B1 (en) Electroless gold plating method and electronic parts
US9072203B2 (en) Solderability enhancement by silver immersion printed circuit board manufacture
US7704307B2 (en) Electroless palladium plating liquid
US20100155108A1 (en) Electroless nickel plating solution composition, flexible printed circuit board and manufacturing method thereof
US8562727B2 (en) Electroless palladium plating solution
US9175400B2 (en) Immersion tin silver plating in electronics manufacture
KR101883249B1 (en) A pretreating-activating solution for an electroless nickel plating, a method for electroless plating a thin-nickel and a method for surface-treating using the same, and a printed circuit board comprising an electroless thin-nickel
CN106399983B (en) Cyanide-free electroless gold plating bath and electroless gold plating method
KR102041850B1 (en) Gold-strike plating method corresponding to pretreatment process for electroless palladium plating on copper surface of printed circuit board, composition of gold-strike plating solution and electroless plating method of palladium and gold
US6383269B1 (en) Electroless gold plating solution and process
KR102292204B1 (en) Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition
KR101883250B1 (en) An electroless nickel plating solution, a method for electroless plating a nickel and a method for treating a surfacethe same, and a printed circuit board comprising an electroless thin-nickel
JP4831710B1 (en) Electroless gold plating solution and electroless gold plating method
TWI805624B (en) Electroless palladium plating solution
KR102292210B1 (en) Non-cyanide electroless gold plating method and composition for electroless gold plating
CN105051254B (en) For the method for the copper surface active of electroless-plating
KR100797515B1 (en) Substitution type electroless gold plating bath
JPWO2011118537A1 (en) Cyan-based electrolytic gold plating bath and plating method using the same
KR101507452B1 (en) ENEPIG method for PCB
EP3693495A1 (en) Electroless palladium plating solution, and electroless palladium plated coating

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant