KR100797515B1 - Substitution type electroless gold plating bath - Google Patents

Substitution type electroless gold plating bath Download PDF

Info

Publication number
KR100797515B1
KR100797515B1 KR1020057006374A KR20057006374A KR100797515B1 KR 100797515 B1 KR100797515 B1 KR 100797515B1 KR 1020057006374 A KR1020057006374 A KR 1020057006374A KR 20057006374 A KR20057006374 A KR 20057006374A KR 100797515 B1 KR100797515 B1 KR 100797515B1
Authority
KR
South Korea
Prior art keywords
acid
gold plating
plating solution
gold
concentration
Prior art date
Application number
KR1020057006374A
Other languages
Korean (ko)
Other versions
KR20050067181A (en
Inventor
시게키 시미즈
류지 다카사키
요시조우 기요하라
겐지 요시바
Original Assignee
니혼 고우준도 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니혼 고우준도 가가쿠 가부시키가이샤 filed Critical 니혼 고우준도 가가쿠 가부시키가이샤
Publication of KR20050067181A publication Critical patent/KR20050067181A/en
Application granted granted Critical
Publication of KR100797515B1 publication Critical patent/KR100797515B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76874Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroless plating

Abstract

환원제를 사용하지 않고 피도금 금속 표면의 산화를 방지하고, 땜납 접합 특성이 양호한 금 피막을 형성시키는, 치환형 무전해 금 도금액을 개시한다.Disclosed is a substituted electroless gold plating solution which prevents oxidation of the surface of a metal to be plated without using a reducing agent and forms a gold film having good solder bonding properties.

수용성 금 염, 전도성 향상제, 이미노 2초산 구조를 갖는 킬레이트제, 주쇄 또는 환중에 질소 원자를 2개 이상 포함하는 유기 화합물로 이루어지는 표면산화 억제제, 및 잔량으로서의 용매를 포함하는 치환형 무전해 금 도금액. Substituted electroless gold plating solution containing a water-soluble gold salt, a conductivity enhancer, a chelating agent having an imino diacetic acid structure, a surface oxidation inhibitor composed of an organic compound containing two or more nitrogen atoms in the main chain or ring, and a solvent as a residual amount .

치환형 무전해 금 도금액, 수용성 금 염, 전도성 향상제 Substituted electroless gold plating solution, water soluble gold salt, conductivity improver

Description

치환형 무전해 금 도금액{SUBSTITUTION TYPE ELECTROLESS GOLD PLATING BATH}Substituted electroless gold plating solution {SUBSTITUTION TYPE ELECTROLESS GOLD PLATING BATH}

본 발명은 치환형 무전해 금 도금액에 관한 것이다. The present invention relates to a substituted electroless gold plating solution.

치환형 금 도금액은 전자 부품에 설치되어, 통상 O.2 미크론 이하의 박막을 형성시키는 데에 이용되고 있다. 이것은 전자 부품 실장시의 접합부를 금박막으로 보호하기 위한 것으로, 도금 공정으로 치환 도금이 행해진 전자 부품의 도금 피복부는, 실장 공정에 있어서 땜납 등을 이용해서 다른 전자 부품과 접합되며, 최종적으로는 퍼스널 컴퓨터, 휴대 전화 등의 전자 장치로서 조합되어 사용되고 있다. Substituted gold plating solutions are installed in electronic components and are usually used to form thin films of 0.2 microns or less. This is to protect the junction part at the time of electronic component mounting with a gold thin film, The plating coating part of the electronic component by which substitution plating was performed by the plating process is joined with other electronic components using solder etc. in a mounting process, and finally a personal It is used in combination as an electronic device, such as a computer and a mobile telephone.

최근, 전자 장치가 소형화, 경량화됨으로써, 치환형 금 도금의 땜납 접합 특성이 문제가 되는 경우가 많아졌다. 이는, 전자 장치의 소형화, 경량화의 요구에 부응하기 위해서 땜납 접합부의 면적이 작아지는 것에 더하여, 전자 장치의 이동 기회가 증가함에 따라, 낙하 등의 기계적 충격, 압박이나 변형 압력에 노출될 기회가 많아지고 있다. 전자 회로의 단선을 방지하기 위해서, 종래부터 더욱 높은 땜납 접합 강도가 필요하게 되었다. In recent years, as the electronic device becomes smaller and lighter, the solder bonding properties of the substitution-type gold plating become more problematic. In order to meet the demand for miniaturization and weight reduction of the electronic device, in addition to the smaller area of the solder joint, there are many opportunities to be exposed to mechanical shocks such as drops, pressure, and deformation pressures as the electronic device has increased opportunities for movement. ought. In order to prevent disconnection of an electronic circuit, higher solder joint strength is required conventionally.

치환형 금 도금은, 주로, 하지 금속(예를 들면 구리, 니켈, 코발트, 팔라듐 등)의 부식을 방지하고, 땜납 용융시의 젖음성을 확보하기 위해서 이용되고 있으나, 이 치환형 금 도금이 바르게 행하여지지 않으면, 땜납의 접합 강도가 저하된다. 즉, 치환형 금 도금이 바르게 행하여지지 않는 경우, 하지 금속(예를 들면 구리, 니켈 등)의 산화가 발생하는 경우가 있고, 이러한 금 도금 표면을 땜납 접합하면, 하지 금속과 땜납 간에 형성되는 접착층이 충분한 강도를 부여하지 않는 경우가 있다. 하지 금속 상에 형성된 금 박막은, 땜납 용융시에 땜납 내부에 확산해가고, 계면 합금층이 피도금 금속과 땜납으로 형성된다. Substituted gold plating is mainly used to prevent corrosion of underlying metals (for example, copper, nickel, cobalt, palladium, etc.) and to secure wettability during solder melting. If it does not, the soldering strength of solder will fall. That is, when the substitution type gold plating is not performed correctly, oxidation of the base metal (for example, copper, nickel, etc.) may occur, and when such a gold plating surface is solder-bonded, an adhesive layer formed between the base metal and the solder This sufficient strength may not be given. The gold thin film formed on the base metal diffuses into the solder at the time of solder melting, and the interfacial alloy layer is formed of the metal to be plated and the solder.

종래부터, 치환형 금 도금 공정 중의 하지 금속의 산화를 어떻게 방지할 것인가에 대한 많은 기술 검토가 이루어지고 있다. 여기에서, 치환형 금 도금이란, 도금액 중의 금과, 하지 금속(예를 들면 구리나 니켈 등)의 이온화 경향의 차이를 이용한 금 도금법으로, 가장 이온화하기 어려운 금속인 금을 이온으로 하여 도금액에 용해시켜, 여기에 피도금 기판으로서 하지 금속을 설치한 기판을 침지하면, 이온화 경향이 큰 하지 금속이 이온이 되어서 도금액에 용해하고, 대신에 도금액 중의 금 이온이 금속으로서 하지 금속 상에 석출하고, 금 피막을 형성하는 것을 이용한 것이다. 따라서, 치환 금 도금법에서는, 환원제를 필요로 하지 않는다.Background Art Conventionally, many technical studies have been made on how to prevent the oxidation of the underlying metal during the substitutional gold plating process. Here, the substitution type gold plating is a gold plating method using the difference in the ionization tendency between gold in the plating liquid and the base metal (for example, copper or nickel), and dissolves in the plating liquid using gold, which is the most difficult metal ion, as an ion. When the substrate on which the underlying metal is provided as the substrate to be plated is immersed therein, the underlying metal having a high ionization tendency becomes an ion and is dissolved in the plating liquid, and instead the gold ions in the plating liquid precipitate as a metal on the underlying metal, It is used to form a film. Therefore, the substitution gold plating method does not require a reducing agent.

한편, 환원제를 필요로 하는 무전해 도금은, 환원형 도금이라고도 불려지고 있고, 치환형 보다도 두꺼운 막두께가 필요한 경우, 보통은 0.2 미크론 이상의 경우, 에 이용되고 있다. On the other hand, electroless plating requiring a reducing agent is also referred to as reduction plating, and is used in the case where a thicker film thickness than the substitution type is required, usually 0.2 micron or more.

최근, 환원제를 치환 도금액에 첨가해서 치환 반응과 환원 반응을 동시에 진 행시키는 치환 환원 도금이라고 불리는 도금액이 소개되고 있다. 이 방법에서는, 환원제의 작용에 의해 금이 석출할 뿐만 아니라, 하지 금속의 산화가 방지되어, 결과로서 땜납 접합 강도가 개량된다고 해석되고 있다. 일본국 특허공개 2000-219973호 공보에서는, 히드라진, 히드록실아민 등의 환원제를 첨가한 무전해 금 도금액이 소개되고, 일본국 특허공개 2001-107259호 공보에서는, 차아 인산염, 히드라진 화합물의 환원제를 첨가한 무전해 도금액이 소개되고 있다.In recent years, a plating solution called substitutional reduction plating has been introduced in which a reducing agent is added to a substitution plating solution to simultaneously perform a substitution reaction and a reduction reaction. In this method, not only gold precipitates by the action of a reducing agent, but oxidation of the underlying metal is prevented, and as a result, it is analyzed that solder joint strength is improved. In Japanese Patent Laid-Open No. 2000-219973, an electroless gold plating solution containing a reducing agent such as hydrazine and hydroxylamine is introduced, and in Japanese Patent Laid-Open No. 2001-107259, a reducing agent of a hypophosphite and hydrazine compound is added. An electroless plating solution is introduced.

그러나, 이러한 환원제를 첨가한 치환 환원 도금액에는, 도금액 중의 환원제의 분석·보충을 도금 작업 중에 상시 행하지 않으면 안된다는 문제점이 있다. 환원제는, 도금욕의 가열에 의해 분해하고, 이 때 전자를 방출하는 물질이기 때문에, 도금액 중에 첨가되어서 이용되기 위해서는 이 분해 반응은 필요한 화학 반응이다. 이로부터, 도금의 진행에 따라서 환원제가 분해하고, 유효한 환원제의 양은 점점 감소하고 있다. 따라서, 도금욕 중에 잔존하고 있는 환원제의 양을 분석하여, 분해한 만큼의 양을 보충하는 작업은 치환 환원형의 도금액에는 불가결한 작업이라고 할 수 있다. 환원제의 보급이 양호하게 행하여지지 않을 경우에는, 도금액 중의 환원제 농도의 변화나 분해 등에 의한 금석출 상태의 변화가 발생하여, 양호한 도금을 안정적으로 하기 어렵게 되는 결과, 땜납 접합 강도도 불안정하게 되는 경향이 있다. However, the substituted reduction plating solution to which such a reducing agent is added has a problem that analysis and supplementation of the reducing agent in the plating solution must be performed at all times during the plating operation. Since the reducing agent is a substance which decomposes by heating of the plating bath and emits electrons at this time, this decomposition reaction is a chemical reaction necessary in order to be added and used in the plating liquid. From this, the reducing agent decomposes as the plating proceeds, and the amount of the effective reducing agent is gradually decreasing. Therefore, the work which analyzes the quantity of the reducing agent which remain | survives in a plating bath, and makes up the amount which decomposed | disassembled is indispensable to a substitution reduction type plating liquid. If the supply of the reducing agent is not performed well, a change in the gold precipitation state due to a change in the concentration of the reducing agent in the plating solution, decomposition, or the like occurs, which makes it difficult to stably perform good plating, and the solder joint strength also tends to become unstable. have.

한편, 통상의 치환 도금액에는 환원제가 함유되어 있기 않기 때문에, 이러한 작업은 불필요하게 된다. 일본국 특허 공개 2001-144441호 공보에는, 도금액 중에 하지 금속을 용해하지 않는 착화제 및 하지 금속의 과잉 에칭을 억제하는 금 석출 방지제를 필수 성분으로 하는 무전해 도금액에 관한 기술이 소개되어 있다. 이 기술은, 하지 금속의 과도한 에칭 억제를 목적으로 하는 것이며, 하지 금속의 산화 방지에 대해서는 검토되어 있지 않다.On the other hand, since the reducing agent is not contained in the usual substitution plating solution, such an operation becomes unnecessary. Japanese Unexamined Patent Application Publication No. 2001-144441 discloses a technique related to an electroless plating solution containing as an essential component a complexing agent which does not dissolve the base metal in the plating solution and a gold precipitation inhibitor which suppresses excessive etching of the base metal. This technique is aimed at suppressing excessive etching of the base metal, and has not been studied about the oxidation prevention of the base metal.

또한, 하지 금속을 용해하지 않는 착화제를 이용하면, 치환 반응에 의해 용출하는 하지 금속을 안정하게 용해시킬 수 없고, 하지 금속도 금과 함께 재석출되기 쉽게 되며, 얻어진 금 도금은 갈색을 띤 색조가 되어, 금 본래의 레몬노랑 색조를 나타내지 않게 되는 것이다. In addition, when a complexing agent which does not dissolve the base metal is used, it is not possible to stably dissolve the base metal eluted by the substitution reaction, and the base metal is also easily reprecipitated with gold, and the obtained gold plating has a brownish tint. It becomes the thing and does not show the original lemon yellow hue of gold.

발명의 개요Summary of the Invention

본 발명은, 환원제를 이용하지 않고, 피도금 금속 표면의 산화를 유효하게 방지하고, 땜납 접합 특성의 양호한 금 피막을 형성시키는 무전해 금 도금액을 제공한다. 즉, 사용시의 환원제의 분석·보충이 불필요한 치환형 무전해 금 도금액을 제공할 수 있다. The present invention provides an electroless gold plating solution that effectively prevents oxidation of the surface of the metal to be plated without using a reducing agent and forms a good gold film having solder bonding properties. That is, the substitution type electroless gold plating solution which does not need analysis and supplementation of the reducing agent at the time of use can be provided.

그러므로, 본 발명에 의한 치환형 무전해 금 도금액은, 수용성 금 염, 전도성 향상제, 이미노 2초산형 킬레이트제, 주쇄 또는 환 중에 질소 원자를 2개 이상 포함하는 유기 화합물로 이루어지는 표면산화 억제제, 및 잔량으서의 용매를 포함하고 있는 것을 특징으로 하는 것이다. Therefore, the substituted electroless gold plating solution according to the present invention is a surface oxidation inhibitor composed of a water-soluble gold salt, a conductivity enhancer, an imino diacetic acid chelating agent, an organic compound containing two or more nitrogen atoms in a main chain or a ring, and It is characterized by including the residual solvent.

본 발명자들은, 수용성 금 염, 전도성 향상제 및 착화제로 이루어지는 도금액에 각 종화합물을 첨가해서 치환형 무전해 금 도금액을 얻고, 이 금 도금액에 의해 형성시킨 금 도금 피막에 땜납 접합을 행하고, 그 접합 강도를 측정하였다.The present inventors add each kind of compound to a plating solution composed of a water-soluble gold salt, a conductivity enhancer, and a complexing agent to obtain a substituted electroless gold plating solution, and solder bonding to a gold plating film formed by the gold plating solution. Was measured.

본 발명자들은, 전자 부품에 널리 이용되고 있는 구리, 니켈 등의 표면에는, 주쇄 또는 환 중에 질소 원자를 2개 이상 포함하는 유기 화합물이 표면산화 억제제로서 유효하다는 것을 발견하고, 본 발명에 도달하였다. MEANS TO SOLVE THE PROBLEM The present inventors discovered that the organic compound which contains two or more nitrogen atoms in a principal chain or a ring is effective as a surface oxidation inhibitor on the surface of copper, nickel, etc. which are widely used for an electronic component, and reached this invention.

이들의 일련의 표면산화 억제제를 필수 성분으로 하는 본 발명에 의한 치환형 무전해 금 도금액은, 환원제를 함유하지 않는데도 불구하고, 얻어진 금 도금피막 땜납 특성이 양호한 것이다. 그리고, 이 금 도금액은, 환원제를 함유하지 않기 때문에 열 안정성에 뛰어나고, 도금 작업중에 상시 환원제의 분석·보충 등을 행하지 않아도 양호한 것이다.The substituted electroless gold plating solution according to the present invention, which contains a series of these surface oxidation inhibitors as essential components, has good gold plated coating solder properties obtained even though it does not contain a reducing agent. And since this gold plating solution does not contain a reducing agent, it is excellent in thermal stability, and is good even if it does not analyze or supplement a reducing agent at all times during a plating operation.

또한, 본 발명의 도금액은 하지 금속을 킬레이트하여 안정하게 용해시키기 때문에, 도금액을 이용함으로써 축적되는 치환 반응 생성물(금이 석출할 때, 용출 한 하지 금속 이온)이, 도금 석출층에 혼입하여, 금 도금의 색조(레몬노랑)를 손상하지 않고, 장시간 동안의 도금액 사용이 가능하게 된다. In addition, since the plating liquid of the present invention chelates and stably dissolves the base metal, the substitution reaction product (the base metal ion eluted when gold precipitates) is accumulated in the plating deposition layer by using the plating liquid. It is possible to use the plating liquid for a long time without damaging the color tone of the plating (lemon yellow).

본 발명에 따르면, 환원제를 이용하지 않고, 피도금 금속 표면의 산화를 방지하고, 땜납 접합 특성의 양호한 금피막을 형성시키는 치환형 무전해 금 도금액을 제공할 수 있다. 이 금 도금액은, 보존 안정성이 양호한 것이고, 또한 환원제량의 분석 및 보충 작업을 전혀 필요로 하지 않는 것이다. According to the present invention, it is possible to provide a substitution type electroless gold plating solution which prevents oxidation of the surface of the metal to be plated and forms a gold film having good solder bonding properties without using a reducing agent. This gold plating solution has good storage stability and does not require any analysis and replenishment of the reducing agent amount.

그리고, 본 발명에 의한 금 도금액은, 도금액 중에 축적되는 용출 금속, 예를 들면, 구리 및 니켈, 코발트, 팔라듐 등의 금속 이온의 영향을 받기 어려운 것이기 때문에, 양호한 성능의 금 도금층을 안정적이고 또한 장기간에 걸쳐 형성 가능한 것이다. In addition, since the gold plating liquid according to the present invention is hardly affected by metal ions such as eluted metals accumulated in the plating liquid, for example, copper, nickel, cobalt, and palladium, the gold plating layer having good performance is stable and long-term. It can be formed over.

발명의 구체적인 설명Detailed description of the invention

<구성 성분><Constituent components>

본 발명에 의한 금 도금액의 주요 구성 성분은, 수용성 금 염, 전도성 향상제, 이미노 2초산 구조를 갖는 킬레이트제, 및 주쇄 또는 환 중에 질소 원자를 2개 이상 포함하는 유기 화합물로 이루어지는 표면산화 억제제이다. 여기서 '금 도금'이란, 24K 금 도금(순도 98% 이상) 및 24K 금 도금부터 14K(순도 56~60%) 정도에 이르기까지의 각종 금속 종(예를 들면, Ni, Co, Ag, In 등)과의 임의의 합금 비율의 합금 금 도금을 말하는 것이다.The main constituents of the gold plating solution according to the present invention are surface oxidation inhibitors composed of a water-soluble gold salt, a conductivity enhancer, a chelating agent having an imino diacetic acid structure, and an organic compound containing two or more nitrogen atoms in the main chain or ring. . Here, 'gold plating' refers to various metal species (for example, Ni, Co, Ag, In, etc.) ranging from 24K gold plating (at least 98% purity) and 24K gold plating to 14K (56-60% purity). It means the alloy gold plating of arbitrary alloy ratio with).

(1) 수용성 금 염(1) water soluble gold salt

수용성 금 염으로서는, 시안화 제1금 칼륨, 시안화 제2금 칼륨, 염화 제1금 나트륨, 염화 제2금 나트륨, 아황산 금 암모늄, 아황산 금 칼륨, 아황산 금 나트륨, 티오황산 금 나트륨, 티오황산 금 칼륨 및 이들의 혼합물이 양호한 성질을 나타낸다. 본 발명에 있어서 특히 바람직한 것은, 시안화 제1 금 칼륨 및 아황산 금 나트륨이다. 금 도금액 중의 수용성 금 염의 농도로서는, 0.1∼10g/L의 범위가 이용 가능하고, 특히 바람직한 것은 O.5~5g/L의 범위이다. As water-soluble gold salts, potassium cyanide, potassium cyanide, potassium chloride, sodium chloride, sodium chloride, gold ammonium sulfite, gold potassium sulfite, gold sodium sulfite, gold sodium thiosulfate and gold potassium thiosulfate And mixtures thereof show good properties. Particularly preferred in the present invention are potassium cyanide potassium and sodium sodium sulfite. As the concentration of the water-soluble gold salt in the gold plating solution, a range of 0.1 to 10 g / L is available, and a particularly preferable range is 0.5 to 5 g / L.

(2) 전도성 향상제(2) conductivity enhancer

전도성 향상제로서는, 붕산, 붕산염, 인산, 인산염, 황산, 황산염, 티오황산염, 질산염, 염화물 염 등의 무기화합물, 구연산, 구연산염, 사과산, 사과산염, 호박산, 호박산염, 유산, 유산염, 말론산, 말론산염, 말레산, 말레산염, 옥살산, 옥살산염, 주석산, 주석산염, 프탈산, 프탈산염, 안식향산, 안식향산염, 글리신, 글리신염, 글루탐산, 글루탐산염 등의 유기 화합물, 및 이들의 혼합물이 양호한 성질을 나타낸다. 염 화합물인 경우, 당해 화합물은 칼륨염, 나트륨염 또는 암모늄인 것이 바람직하다. Examples of conductivity enhancers include inorganic compounds such as boric acid, borate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, nitrate and chloride salts, citric acid, citrate, malic acid, malate, succinic acid, succinate, lactic acid, lactate, malonic acid and malon Organic compounds such as acid salts, maleic acid, maleic acid, oxalic acid, oxalate, tartaric acid, tartarate, phthalic acid, phthalate, benzoic acid, benzoate, glycine, glycine salt, glutamic acid, glutamate, and mixtures thereof have good properties. Indicates. In the case of a salt compound, the compound is preferably potassium salt, sodium salt or ammonium.

본 발명에 있어서 특히 바람직한 전도성 향상제는, 지방족 다가 카르복시산 및 이들의 칼륨염, 나트륨염, 암모늄염이다. 금 도금액 중의 전도성 향상제의 농도는, 5.500g/L의 범위가 이용 가능하고, 특히 바람직한 것은 10~200g/L의 범위이다.Particularly preferred conductivity enhancers in the present invention are aliphatic polyhydric carboxylic acids and their potassium salts, sodium salts and ammonium salts. The concentration of the conductivity enhancer in the gold plating solution is available in the range of 5.500 g / L, and particularly preferably in the range of 10 to 200 g / L.

(3) 킬레이트제(3) chelating agent

본 발명에 의한 금 도금액에 있어서의 킬레이트제로서는, 이미노 2초산 구조를 갖는 킬레이트제를 이용한다. 이러한 킬레이트제는, 금 도금이 시행된 기판의 표면 금속, 예를 들면 구리, 니켈, 코발트, 철 등(합금을 포함함)의 금속을, 금 도금 처리시, 도금액 중에 안정하게 용해할 수 있는 것이다. 이러한 구리, 니켈, 코발트, 철 등(합금을 포함함)의 금속을 용해할 수 있는 이미노 2초산 구조를 갖는 킬레이트제를 필수 성분으로서 이용함으로써, 금 도금이 시행되는 기판의 표면 금속(예를 들면 구리, 니켈, 코발트, 철 등)의 도금액 중에서의 용해를 촉진하는 동시에, 이들의 금속이 재석출하는 것을 방지할 수 있다.As a chelating agent in the gold plating solution of the present invention, a chelating agent having an imino diacetic acid structure is used. Such a chelating agent can stably dissolve a surface metal of a substrate subjected to gold plating, for example, a metal such as copper, nickel, cobalt, iron, or the like (including alloy) in a plating solution during the gold plating process. . By using a chelating agent having an imino diacetic acid structure capable of dissolving such metals as copper, nickel, cobalt, iron, and the like (including alloys) as an essential component, the surface metal of the substrate subjected to gold plating (e.g., For example, copper, nickel, cobalt, iron and the like can be dissolved in a plating solution, and these metals can be prevented from reprecipitation.

이러한 이미노 2초산 구조를 갖는 킬레이트제로서는, 에틸렌디아민 4초산, 히드록시에틸이미노 2초산, 니트릴로 3초산, 히드록시에틸 에틸렌디아민 3초산, 디에틸렌 트리아민 5초산, 트리에틸렌 테트라민 6초산, 디카르복시메틸글루탐산, 프로판디아민 4초산, 1,3-디아미노-2-히드록시프로판 4초산, 및 이들의 수용성염(예를 들면, 바람직하게는 나트륨염, 칼륨염, 암모늄염), 및 이들의 혼합물 등을 들 수 있다. Examples of the chelating agent having an imino diacetic acid structure include ethylenediamine tetraacetic acid, hydroxyethylimino diacetic acid, nitrile triacetic acid, hydroxyethyl ethylenediamine triacetic acid, diethylene triamine pentaacetic acid and triethylene tetramine 6 Acetic acid, dicarboxymethylglutamic acid, propanediamine tetraacetic acid, 1,3-diamino-2-hydroxypropane tetraacetic acid, and their water-soluble salts (for example, sodium salts, potassium salts, ammonium salts), and And mixtures thereof.

이미노 2초산 타입의 착화제 중에서도 바람직한 것은 Ni 나 Cu 를 안정하게 용해시키는 작용이 강한 킬레이트제이고, 초산 유닛을 분자 내에 3개 이상 포함하는 것이 특히 바람직하다. 즉, 니트릴로 3초산, 히드록시에틸 에틸렌디아민 3초산, 에틸렌디아민 4초산, 디에틸렌트리아민 5초산, 트리에틸렌테트라민 6초산, 및 이들의 수용성염이 특히 바람직하다.Among the imino diacetic acid type complexing agents, preferred are chelating agents having a strong action of stably dissolving Ni and Cu, and particularly preferably containing three or more acetic acid units in the molecule. That is, nitrile triacetic acid, hydroxyethyl ethylenediamine triacetic acid, ethylenediamine tetraacetic acid, diethylenetriamine pentaacetic acid, triethylenetetramine hexaacetic acid, and water-soluble salts thereof are particularly preferable.

금 도금액 중에 있어서의 이미노 2초산 구조를 갖는 킬레이트제의 농도는, 1~200g/L의 범위에서 사용되고, 특히 바람직한 것은 2∼100g/L의 범위이다. The concentration of the chelating agent having an imino diacetic acid structure in the gold plating solution is used in the range of 1 to 200 g / L, and particularly preferably in the range of 2 to 100 g / L.

또한, 이와 같은 이미노 2초산 구조를 갖는 킬레이트제에는, 필요에 따라 다른 킬레이트제를 병용할 수 있다. 단, 유기 포스폰산 화합물 등과 같이 하지 금속(예를 들면 구리, 니켈, 코발트 등)을 실질적으로 용해하지 않는 것은, 치환 반응에 의해 용출하는 하지 금속을 안정하게 용해시킬 수 없고, 하지 금속도 금과 함께 재석출을 쉽게 발생하게 되고, 얻어진 금 도금의 색조가 불량하게 되거나, 땜납 접합 강도가 부족한 경우가 있기 때문에, 본 발명에서는 적합하지 않다.Moreover, the other chelating agent can be used together as needed for the chelating agent which has such an imino diacetic acid structure. However, those which do not substantially dissolve the base metals (for example, copper, nickel, cobalt, etc.), such as organic phosphonic acid compounds, cannot stably dissolve the base metals eluted by the substitution reaction. It is not suitable in the present invention because reprecipitation easily occurs and the color tone of the obtained gold plating becomes poor or the solder joint strength may be insufficient.

(4) 표면산화 억제제(4) surface oxidation inhibitors

본 발명에 있어서 이용되는 표면산화 억제제는, 주쇄 또는 환 중에 질소 원자를 2개 이상, 바람직하게는 3개 이상, 포함하는 유기 화합물이다. 이 표면산화 억제제는, 전자 공여성 화합물인 것이 바람직하고, 그 경우의 전자 공여성이 당해 화합물의 주쇄 또는 환 중에 존재하는 질소 원자가 -NH- 구조인 것에 의해, 즉 주쇄 또는 환 중에 1 또는 2개 이상의 -NH- 기가 존재함으로써, 부여되는 것이 바람직하다. The surface oxidation inhibitor used in the present invention is an organic compound containing two or more, preferably three or more nitrogen atoms in the main chain or the ring. It is preferable that this surface oxidation inhibitor is an electron donating compound, and when the electron donor in that case has a -NH- structure in which the nitrogen atom which exists in the main chain or ring of the said compound is ie, 1 or 2 in a main chain or ring, It is preferable that it is given by the presence of the above-NH- groups.

이와 같은 본 발명의 표면산화 억제제의 구체적인 예로서는, 하기의 화학식[I]로 나타내는 지방족 화합물 및 화학식 [II]로 나타내는 복소환 화합물을 들 수 있다. Specific examples of such surface oxidation inhibitors of the present invention include aliphatic compounds represented by the following general formula [I] and heterocyclic compounds represented by the general formula [II].

Figure 112005019240746-pct00001
[I]
Figure 112005019240746-pct00001
[I]

[여기에서, R1~R4는 각각 독립적으로 수소, 탄소수 1~3의 알킬기, -(C2H4)m-NH2, -(C2H4)n-OH 를 나타낸다(여기서, m은 0 또는 1이고, n은 0 또는 1이다). p는 0~4의 정수이다.][Wherein, R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 3 carbon atoms,-(C 2 H 4 ) m -NH 2 ,-(C 2 H 4 ) n -OH (where m Is 0 or 1 and n is 0 or 1). p is an integer of 0-4.]

Figure 112005019240746-pct00002
[II]
Figure 112005019240746-pct00002
[II]

[여기에서,

Figure 112005019240746-pct00003
는 -NH-기의 질소 원자 및 탄소 원자를 환 중에 갖는 복소환을 나타낸다. R5은, 이 복소환 중의 탄소 원자에 결합한 수소, 탄소수 1∼3의 알킬기, 아미노기, 탄소수 1~3의 알킬 아미노기를 나타낸다.][From here,
Figure 112005019240746-pct00003
Represents a heterocycle having a nitrogen atom and a carbon atom of an —NH— group in the ring. R <5> represents hydrogen couple | bonded with the carbon atom in this heterocycle, a C1-C3 alkyl group, an amino group, and a C1-C3 alkyl amino group.]

상기 화학식 I의 화합물에 있어서, R1∼R4로서는 수소, 메틸기가 바람직하고, m 으로서는 O 또는 1, n 으로서는 O 또는 1, p 로서는 1~3 이 바람직하다. In the compound of the above formula (I), R 1 to R 4 are preferably hydrogen or methyl group, and m is preferably O or 1, n is preferably O or 1, p is preferably 1-3.

상기 화학식 II의 화합물에 있어서, R5로서는 수소, 메틸기, 아미노기가 바람직하다. 「-NH- 기의 질소 원자 및 탄소 원자를 환중에 갖는 복소환」으로서는 5원 환인 것이 바람직하다. 이 5원환의 복소환 중 나머지 4원자(즉, 상기 -NH- 기의 질소 원자 이외의 원자)는, 4개의 탄소 원자, 3개의 탄소 원자와 1개의 질소 원자, 2개의 탄소 원자와 2개의 질소 원자, 1개의 탄소 원자와 3개의 질소 원자일 수 있다. 이 탄소 원자에는 R5이 결합할 수 있다. 상기 화학식 II 의 복소환 화합물은, 1개의 「-NH- 기의 질소 원자 및 탄소 원자를 환 중에 갖는 복소환」으로 이루어진 복소 단환 화합물이라도, 이 복소 단환 화합물 중의 2개의 탄소 원자를 공유한 형태로 2개 또는 그 이상의 환이 형성되어 있는 축합 복소환계 화합물이라도 좋다. 벤즈이미다졸 및 벤즈트리아졸은 이 축합 복소환계 화합물의 바람직한 구체적인 예이다.In the compound represented by the above formula (II), R 5 is preferably hydrogen, methyl or amino. It is preferable that it is a 5-membered ring as a "heterocycle which has the nitrogen atom and carbon atom of -NH- group in a ring." The remaining four atoms of the five-membered heterocycle (that is, atoms other than the nitrogen atom of the -NH- group) are four carbon atoms, three carbon atoms and one nitrogen atom, two carbon atoms and two nitrogen atoms. It may be an atom, one carbon atom and three nitrogen atoms. R 5 may be bonded to this carbon atom. The heterocyclic compound represented by the above formula (II) may be a heterocyclic compound consisting of one “heterocycle having a nitrogen atom and a carbon atom of —NH— group in a ring” in the form of sharing two carbon atoms in the heteromonocyclic compound. The condensed heterocyclic compound in which two or more rings are formed may be used. Benzimidazole and benztriazole are preferable specific examples of this condensed heterocyclic compound.

상기와 같이, 본 발명에 있어서의 표면산화 억제제는 전자 공여성 화합물인 것이 바람직하는 점에서, 주쇄 또는 환 중에 질소 원자를 3개 이상 포함하고 또한 이 중의 적어도 1개 이상의 질소 원자가 -NH- 구조인 화합물, 그 중에서도 특히 π전자 과잉 타입의 방향족 화합물이 바람직하다.As described above, since the surface oxidation inhibitor in the present invention is preferably an electron donating compound, it contains three or more nitrogen atoms in the main chain or ring, and at least one or more nitrogen atoms thereof are -NH-. Among these compounds, an aromatic compound of a? Electron excess type is particularly preferable.

본 발명의 표면산화 억제제의 바람직한 구체적인 예로서는, 하기 화합물을 예시할 수 있다.As a preferable specific example of the surface oxidation inhibitor of this invention, the following compound can be illustrated.

지방족 화합물로서는, 에틸렌디아민, N,N'-비스(베타히드록시에틸)-에틸렌디아민, 디에틸렌트리아민, N,N'-비스(베타히드록시에틸)-디에틸렌트리아민, 트리에틸렌테트라민, N,N'-비스(베타히드록시에틸)-트리에틸렌테트라민, 테트라에틸렌펜타민, N,N'-비스(베타히드록시에틸)-테트라에틸렌펜타민 등을 들 수 있다. 특히 바람직한 것은, 질소 원자 수가 3개 이상이고, 또한 적어도 1개의 질소 원자가 2급 아민 구조인 지방족 화합물이다.Examples of the aliphatic compounds include ethylenediamine, N, N'-bis (betahydroxyethyl) -ethylenediamine, diethylenetriamine, N, N'-bis (betahydroxyethyl) -diethylenetriamine, triethylenetetramine , N, N'-bis (betahydroxyethyl) -triethylenetetramine, tetraethylenepentamine, N, N'-bis (betahydroxyethyl) -tetraethylenepentamine, etc. are mentioned. Especially preferred are aliphatic compounds having three or more nitrogen atoms and at least one nitrogen atom having a secondary amine structure.

방향족 화합물로서는, 2-아미노피롤, 3-아미노피롤, 2-아미노인돌, 3-아미노인돌, 피라졸, 3-아미노피라졸, 4-아미노피라졸, 5-아미노피라졸, 이미다졸, 2-아미노이미다졸, 4-아미노이미다졸, 5-아미노이미다졸, 1,2,3-트리아졸, 4-아미노-1,2,3-트리아졸, 5-아미노-1,2,3-트리아졸, 1,2,4-트리아졸, 3-아미노-1,2,4-트리아졸, 5-아미노-1,2,4-트리아졸, 테트라졸, 5-아미노-테트라졸, 벤즈이미다졸, 2-아미노-벤즈이미다졸, 벤즈트리아졸 등을 들 수 있다. 이 중에서 특히 바람직한 것은, 질소 원자 수가 3개 이상이고, 또한 π전자 과잉 타입의 방향족 복소환 화합물이다. 복소환 화합물의 π전자 과잉 타입과 결핍 타입에 대해서는 성서 "Heterocyclic Chemistry, by Adrien Albert, The Anthon Press University of London, 1959" 에 상세하게 해설되어 있다. 일본국 특허 공개 2000-14441호 공보에는, 금 석출 억제제로서 다양한 질소 함유 화합물이 열거되어 있으나, 이 중 파이 전자 결핍 타입의 피리딘, 트리아진 등의 방향족 화합물은 본 발명에서는 이용할 수 없다.As an aromatic compound, 2-aminopyrrole, 3-aminopyrrole, 2-aminoindole, 3-aminoindole, pyrazole, 3-aminopyrazole, 4-aminopyrazole, 5-aminopyrazole, imidazole, 2- Aminoimidazole, 4-aminoimidazole, 5-aminoimidazole, 1,2,3-triazole, 4-amino-1,2,3-triazole, 5-amino-1,2,3-triazole , 1,2,4-triazole, 3-amino-1,2,4-triazole, 5-amino-1,2,4-triazole, tetrazole, 5-amino-tetrazole, benzimidazole, 2-amino- benzimidazole, benztriazole, etc. are mentioned. Particularly preferred among these are aromatic heterocyclic compounds having a nitrogen atom number of 3 or more and a? Electron excess type. The π-electron excess and deficiency types of heterocyclic compounds are described in detail in the Bible "Heterocyclic Chemistry, by Adrien Albert, The Anthon Press University of London, 1959". Japanese Unexamined Patent Application Publication No. 2000-14441 discloses various nitrogen-containing compounds as gold precipitation inhibitors, but among these, aromatic compounds such as pyridine and triazine of the pi electron deficient type cannot be used in the present invention.

금 도금액 중의 표면산화 억제제의 농도는, 5~50000ppm의 범위에서 이용 가능하고, 특히 바람직한 것은 10∼10000ppm의 범위이다.The concentration of the surface oxidation inhibitor in the gold plating solution can be used in the range of 5 to 50000 ppm, particularly preferably in the range of 10 to 10000 ppm.

(5) 기타의 성분(임의성분)(5) Other ingredients (optional ingredients)

본 발명에 따른 금 도금액에는, 필요에 따라서, 결정 조정제, 계면 활성제 및(또는) 완충제 등을 적당히 선택해서 첨가할 수 있다. 본 발명에 있어서 바람직한 결정 조정제로서는, 예를 들면 탈륨 및 납을 예시할 수 있다. 결정 조정제의 도금액 중의 농도는, 0.1~100ppm, 특히 1~50ppm이 바람직하다. To the gold plating solution according to the present invention, a crystal regulator, a surfactant, a buffer, and / or the like may be appropriately selected and added as necessary. As a preferable crystal | crystallization regulator in this invention, thallium and lead can be illustrated, for example. As for the density | concentration in the plating liquid of a crystal | crystallization regulator, 0.1-100 ppm, especially 1-50 ppm are preferable.

계면 활성제는, 주로 도금액의 피도금 기재의 젖음성을 조절하기 위해서 사용되는 것이다. 본 발명에서는, 중성, 음이온성, 양이온성 계면 활성제를 사용할 수 있다. 계면 활성제의 도금액 중의 농도는, 1~1000ppm의 범위에서 적당히 사용할 수 있다.Surfactant is mainly used in order to adjust the wettability of the to-be-plated base material of a plating liquid. In the present invention, neutral, anionic and cationic surfactants can be used. The density | concentration in the plating liquid of surfactant can be used suitably in the range of 1-1000 ppm.

완충제에 관해서는, 전도성 염 성분으로서 완충 작용을 가지는 화합물(완충제)이 사용되는 적도 있지만, 별도로 첨가하는 것도 가능하다. 프탈산염, 인산염, 붕산염, 주석산염, 유산염, 초산염 등을 10~200g/L의 범위에서 사용할 수 있다. As for the buffer, a compound (buffer) having a buffering function has been used as the conductive salt component, but it can also be added separately. Phthalates, phosphates, borates, tartarates, lactates, acetates and the like can be used in the range of 10-200 g / L.

(6) 금 도금액의 사용(6) the use of gold plating solutions

상기의 성분으로 이루어지는 본 발명에 의한 치환형 무전해 금 도금액은, 욕조에 넣어, 소정의 pH로 조정한 후, 가열하여 사용한다. pH는 보통 4~8의 범위이고, 욕의 온도는 보통 60∼100℃의 범위이다.The substituted electroless gold plating solution according to the present invention comprising the above components is placed in a bath, adjusted to a predetermined pH, and then heated and used. The pH is usually in the range of 4 to 8, and the temperature of the bath is usually in the range of 60 to 100 ° C.

도금액에 침적되는 피도금 재료는, 금속부에 바람직하게는 구리 또는 구리합금, 또는 구리 상에 형성된 니켈 도금 피막을 갖는 것이다. 구리 또는 구리합금으로서 압연 등의 기계적 가공, 전기 도금법, 무전해 도금법, 기상 도금법 등의 각종 방법으로 형성된 것을 피도금 부분으로 할 수 있다. 니켈 도금 피막으로서는. 구리 상에 0.2~10 미크론의 두께로 전기 도금 또는 무전해 도금으로 형성된 것을 피도금 부분으로 할 수 있다.The plated material to be deposited in the plating liquid preferably has a nickel plating film formed on copper or a copper alloy or copper. Copper or copper alloy can be made into the to-be-plated part formed by various methods, such as mechanical processing, such as rolling, an electroplating method, an electroless plating method, and a vapor phase plating method. As a nickel plating film. What is formed by electroplating or electroless plating to the thickness of 0.2-10 micron on copper can be used as a to-be-plated part.

이들의 피도금부에 형성되는 금 도금 박막은, 통상 0.02~O.4㎛, 바람직하게는 O.03∼0.2㎛의 두께이다. 이 금 피막 상에 탑재되는 땜납 볼은, 접속부(패드)의 크기에 따라서 지름이 100㎛~1mm의 범위 내의 것이 사용된다. The gold plating thin film formed in these to-be-plated parts is 0.02-0.4 micrometers normally, Preferably it is the thickness of 0.03-0.2 micrometer. As for the solder ball mounted on this gold film, the thing of the diameter of 100 micrometers-1 mm is used according to the magnitude | size of a connection part (pad).

땜납 조성은, 종래의 Sn-Pb계 이외에, Pb-프리 땜납으로 총칭되는 다양한 조성의 것이 사용 가능하다.As the solder composition, in addition to the conventional Sn-Pb system, those having various compositions collectively referred to as Pb-free solder can be used.

<땜납 접합 특성의 평가법><Evaluation Method of Solder Bonding Characteristics>

도 1은, 본 발명에 있어서, 땜납 접합 특성 평가에 이용한 기판의 개요를 나타낸 것이다.1 shows an outline of a substrate used for solder joint characteristics evaluation in the present invention.

도 1에 나타낸 바와 같이, 피도금 처리 기판은, 세로 40mm × 가로 40mm × 두께 1mm 의 유리 에폭시 기판(1)에, 지름 0.76mm의 원형 구리 패드(2)가 바둑판의 눈 형상으로 배열되어 있는 것이며, 각 구리 패드 주변이 포토솔더레지스트(3)으로 피복되어 있는 것이다. 각각의 구리 패드(2)는 두께 12㎛의 구리에 의해 형성되고, 레지스트 피복(3)의 두께는 20 미크론, 구리 패드(2)의 개구부의 지름은 0.62mm 이다.As shown in FIG. 1, in the to-be-plated board | substrate, the circular copper pad 2 of diameter 0.76mm is arranged in the shape of the board | substrate on the glass epoxy board | substrate 1 of 40 mm in length x 40 mm in width x 1 mm in thickness. Each copper pad periphery is covered with the photosolder resist 3. Each copper pad 2 is formed of copper having a thickness of 12 mu m, the thickness of the resist coating 3 is 20 microns, and the diameter of the opening of the copper pad 2 is 0.62 mm.

상기 기판을 하기의 표 1의 조건에 따라, 탈지 처리, 소프트 에칭 및 산활성화(산세)로 이루어지는 전처리를 행한 후에, 치환형 무전해 도금을 행하고, 각 구리 패드부(2)의 개구부의 구리 표면 상에 두께 0.06㎛의 금 도금 피막(4)이 직접 형성된 기판(1a)(이하, 직접 금 도금 처리 기판(1a)라 함)를 얻었다(도 2A)).After the substrate was subjected to pretreatment consisting of degreasing treatment, soft etching, and acid activation (pickling) according to the conditions shown in Table 1 below, substitutional electroless plating was performed, and the copper surface of the opening of each copper pad portion 2 was subjected to. The board | substrate 1a (henceforth a direct gold plating process board | substrate 1a) in which the gold plating film 4 of thickness 0.06 micrometer was formed directly was obtained (FIG. 2A).

공정fair 처리 약제Treatment pharmaceutical 처리 조건Processing conditions 탈지 Degreasing PAC-200(무라타) PAC-200 (Murata) 50℃×5분 50 degrees Celsius * 5 minutes 수세 Defensive 소프트 에칭 Soft etching MEOX(무라타) MEOX (Murata) 30℃×5분 30 degrees C * 5 minutes 수세 Defensive 산 활성화 Acid activation 10% 황산 10% sulfuric acid 실온×30초 Room temperature x 30 seconds 수세 Defensive 치환 금 도금 Substitution gold plating 실시예 본문 중에 기재 Example description 실시예 본문 중에 기재 Example description

특별히, 상기 기판을 하기의 표 2의 조건에 따라, 각 구리 패드(2)의 구리 표면 상에 두께 5㎛의 니켈 도금 피막(5)가 형성되고, 더우기 이 니켈 도금 피막(5) 상에 두께 0.06㎛의 금 도금 피막(4)가 형성된 기판 1b(이하, 하지 니켈 도금 처리 기판(1b)이라 한다)를 나타내었다(도 2B).Specifically, according to the conditions of Table 2 below, a nickel plated film 5 having a thickness of 5 μm is formed on the copper surface of each copper pad 2, and furthermore, a thickness is formed on the nickel plated film 5. The board | substrate 1b (henceforth a base nickel plating process board | substrate 1b) in which the gold plating film 4 of 0.06 micrometer was formed was shown (FIG. 2B).

공정fair 처리 약제Treatment pharmaceutical 처리 조건Processing conditions 탈지 Degreasing PAC-200(무라타) PAC-200 (Murata) 50℃×5분 50 degrees Celsius * 5 minutes 수세 Defensive 소프트 에칭 Soft etching MEOX(무라타) MEOX (Murata) 50℃×5분 50 degrees Celsius * 5 minutes 수세 Defensive 산세 Pickling 10% 황산 10% sulfuric acid 실온×60초 Room temperature x 60 seconds Pb부여 Pb grant KAT 450(카미무라) KAT 450 (Kamimura) 실온×1분 Room temperature x 1 minute 수세 Defensive 무전해 니켈 도금 Electroless nickel plating NPR-4(카미무라) NPR-4 (Kamimura) 80℃×25분 80 ℃ × 25 minutes 수세 Defensive 산 활성화 Acid activation 10% 황산 10% sulfuric acid 실온×60초 Room temperature x 60 seconds 수세 Defensive 치환 금 도금 Substitution gold plating 실시예 본문 중에 기재 Example description 실시예 본문 중에 기재 Example description

도 2A는, 상기에서 나타난 직접 금 도금 처리 기판(1a)의 단면을, 도 2B는, 상기에서 나타난 하지 니켈 도금 처리 기판(1b)의 단면을 나타낸 것이다. FIG. 2A shows a cross section of the direct gold plating substrate 1a shown above, and FIG. 2B shows a cross section of the underlying nickel plating substrate 1b shown above.

상기의 직접 금 도금 처리 기판(1a) 및 하지 니켈 도금 처리 기판(1b)의 각각의 패드부의 금 도금 피막(4)의 표면에, 각각 지름 0.76mm의 땜납(6)을 탑재하고, 이것을 융착하여 땜납 접합하고(도 3), 그 접합 강도를 하기 방법에 의해 평가하였다. On the surface of the gold plating film 4 of each pad part of the said direct gold plating board | substrate 1a and the base nickel plating board | substrate 1b, the solder 6 of diameter 0.76mm is respectively mounted, and this is fusion-bonded, It soldered together (FIG. 3) and the joint strength was evaluated by the following method.

땜납 볼(6)은, Pb 땜납 및 Pb-프리 땜납을 이용하였다.As the solder ball 6, Pb solder and Pb-free solder were used.

땜납 탑재 프로세스 및 땜납 접합 특성의 평가는, 다음과 같이 하였다. The evaluation of the solder mounting process and the solder joint characteristics were as follows.

상기의 직접 금 도금 처리 기판(1a) 및 하지 니켈 도금 처리 기판(1b)의 각 패드부에 땜납 볼(6)을 설치하고, 리플로우 장치(본 검토에서는, 리플로우 땜납 부착 장치 「RF-430」, 일본 펄스 기술연구소사제를 사용하였음)에서, 땜납 볼을 용해시키고, 땜납 볼(6)을 패드부의 금 도금 피막(4)에 접합시켰다(도 3). 이 때, 금 피막(4)는, 그 일부가 땜납 볼 중에 용해되고, 하지의 구리 또는 니켈의 합금층을 형성시켜, 땜납 볼은 고정된다.The solder ball 6 is provided in each pad part of the said direct gold plating process board | substrate 1a and the base nickel plating process board 1b, and a reflow apparatus (in this examination, reflow soldering apparatus "RF-430 The solder ball was dissolved, and the solder ball 6 was bonded to the gold plating film 4 of the pad portion (FIG. 3). At this time, a part of the gold film 4 is dissolved in the solder ball to form an alloy layer of underlying copper or nickel, and the solder ball is fixed.

리플로우 온도 및 리플로우 시간을, 이용하는 땜납의 조성 등을 고려해서 20Considering the reflow temperature and the reflow time, the composition of the solder to be used is 20

0~300℃의 범위로 적당히 설정하고, 평가를 행하였다. It set suitably in the range of 0-300 degreeC, and evaluated.

땜납 접합 특성의 평가는, 셰어 강도 측정 장치(본 검토에서는, 「본드 테스터 4000」, 데이지사를 이용하였음)를 이용하고, 땜납 볼(6)을 패드로부터 박리하고(도 4), 그 박리면의 상황을 관찰함으로써 행하였다. Evaluation of the solder joint characteristics was carried out using a shear strength measuring device (in this study, "bond tester 4000" and daisy yarn), peeling the solder ball 6 from the pad (Fig. 4), the peeling surface This was done by observing the situation.

박리면(7)이 땜납 볼의 볼 내부(즉, 레지스트(3)의 표면보다 윗쪽)에 발생하는 경우(도 5)가 접합 신뢰성이 높고, 박리면(7)이 패드부 내(즉, 레지스트(3)의 표면보다 아래쪽)에 발생하는 경우(도 6)는 접합 신뢰성이 낮은 것으로 판단하였다. When the peeling surface 7 occurs inside the ball of the solder ball (i.e., above the surface of the resist 3) (FIG. 5), the bonding reliability is high, and the peeling surface 7 is in the pad portion (i.e., the resist). When it occurred below the surface of (3) (FIG. 6), it was judged that joining reliability was low.

땜납 접합 특성을 평가할 때는, 땜납이 접합되는 패드 상의 금 도금 피막의 두께도 엄밀히 컨트롤하여 행할 필요가 있어, 금 도금 두께의 측정은, 형광 X선 막두께 측정계(「SEA5120」, 세이코 인스트루멘트사제)를 사용해서 정밀하게 행하여, 평가 결과에 불균일이 없도록 하였다.When evaluating the solder joint characteristics, it is necessary to strictly control the thickness of the gold plating film on the pad to which the solder is bonded, and the measurement of the gold plating thickness is performed by a fluorescent X-ray film thickness meter ("SEA5120", manufactured by Seiko Instruments Co., Ltd.). ) Was performed precisely so that the evaluation result was not uneven.

도 1은, 땜납 접합 특성을 평가하기 위한 기판을 나타내는 도면이다.1 is a diagram illustrating a substrate for evaluating solder joint characteristics.

도 2A 및 도 2B는, 본 발명에 의한 도금 처리 기판을 나타내는 단면도이다.2A and 2B are sectional views showing the plating process substrate according to the present invention.

도 3은, 땜납 접합 특성의 평가에 사용한 땜납 볼을 나타내는 도면이다.3 is a diagram illustrating a solder ball used for evaluation of solder bonding properties.

도 4는, 땜납 볼의 셰어 강도 측정의 개요를 나타내는 도면이다.4 is a diagram illustrating an outline of measurement of shear strength of solder balls.

도 5는, 접합이 양호한 경우의 박리 상태를 나타내는 도면이다.It is a figure which shows the peeling state in the case where joining is favorable.

도 6은, 접합이 불량인 경우의 박리 상태를 나타내는 도면이다.It is a figure which shows the peeling state in the case where joining is bad.

도 7A 및 도 7B는, 실시예 1의 Auger 측정 결과를 나타내는 도면이다.7A and 7B are diagrams showing the Auger measurement results of Example 1. FIG.

도 8A 및 도 8B는, 비교예 1의 Auger 측정 결과를 나타내는 도면이다.8A and 8B are diagrams showing the Auger measurement results of Comparative Example 1. FIG.

도 9는, 비교예 3의 ESCA 측정 결과를 나타내는 도면이다.9 is a diagram illustrating an ESCA measurement result of Comparative Example 3. FIG.

(실시예 1)(Example 1)

표 3의 실시예 1에 기재된 조성의 금 도금액을 500mL 비이커에 준비하고, pH를 7.O으로 조정 후, 85℃로 가열하였다. 도 1의 기판을, 표 2의 조건에서 니켈 도금한 후 (도 2B), 준비한 금 도금욕에 10분간 침적하고, O.06 미크론 두께의 금피막을 형성시켰다. Pb 땜납 볼을 금 도금된 20개의 패드부에 탑재하고, 230℃의 리플로우 장치에서 융착한 후, 전단 장치에서 20개의 땜납 볼을 박리하고, 각 박리 부를 관찰하였다.The gold plating solution of the composition of Example 1 of Table 3 was prepared in the 500 mL beaker, pH was adjusted to 7.O, and it heated to 85 degreeC. The substrate of FIG. 1 was nickel plated on the conditions of Table 2 (FIG. 2B), and was immersed in the prepared gold plating bath for 10 minutes, and the gold film of thickness 06. micron was formed. Pb solder balls were mounted on 20 gold-plated pad portions, and after fusion bonding at a 230 ° C. reflow apparatus, 20 solder balls were peeled off at the shear apparatus, and each peeled portion was observed.

땜납 내의 절단에 의한 것(즉, 박리면이 땜납 볼의 볼 부분 내에 발생한 것)이 100%이고, Ni계면이 노출된 패드는 없으며, 양호한 땜납 접속 적합성을 나타내었다. It was 100% by the cutting | disconnection in a solder (namely, the peeling surface generate | occur | produced in the ball part of a solder ball), and there was no pad which exposed Ni interface, and showed favorable solder connection suitability.

다음으로, 이 금 도금액을 90℃의 오븐에 넣고, 80시간 방치 후 꺼냈으나, 금 도금액 중에 금의 석출은 인정되지 않고, 도금욕의 열안정성은 양호하였다. Next, the gold plating solution was placed in an oven at 90 ° C. and left after 80 hours, but the precipitation of gold was not recognized in the gold plating solution, and the thermal stability of the plating bath was good.

도금액을 실온으로 복구하여, 다시 pH를 7.0로 조정하고, 85℃로 가열 후, 도 1의 기판을 표 2의 조건으로 니켈 도금한 것(도 2B)을 10분간 침적하여, 0.06 미크론의 금 도금 피막을 수득하였다. Pb 땜납 볼을 20개 탑재하고, 230℃의 리플로우 온도로 융착 후, 땜납 박리 모드를 측정한 바, 땜납 내의 박리가 95%이고, Ni 계면이 노출한 패드는 5%에 불과하였다. The plating solution was returned to room temperature, pH was adjusted to 7.0 again, and after heating to 85 ° C., the nickel plated substrate (FIG. 2B) was immersed under the conditions of Table 2 (FIG. 2B) for 10 minutes, and then plated with 0.06 micron gold. A film was obtained. After mounting 20 Pb solder balls and fusion | melting at the reflow temperature of 230 degreeC, the solder peeling mode was measured and the peeling in solder was 95%, and the pad which exposed Ni interface was only 5%.

(실시예 2)(Example 2)

표 3의 실시예 2에 나타낸 조성의 금 도금액을 준비하고, 실시예 1과 동일한 방법으로, 니켈 도금 처리한 기판(도 2B)으로 도금 처리를 행하여, 0.05 미크론의 두께의 금 도금 피막을 형성시켰다. 이 금 도금 기판으로, 20개의 Pb 땜납 볼의 박리 모드를 측정한 바, 땜납 내 절단이 100% 양호하였다. 다음으로, 이 금 도금액을 90℃의 오븐에 넣고, 80시간 후에도, 금의 석출은 일어나지 않고 안정적이었다. The gold plating solution of the composition shown in Example 2 of Table 3 was prepared, plating was performed with the nickel plating board | substrate (FIG. 2B) by the method similar to Example 1, and the gold plating film of 0.05 micron thickness was formed. . When the peeling mode of 20 Pb solder balls was measured with this gold plating board | substrate, the cutting | disconnection in solder was 100% favorable. Next, this gold plating solution was put into an oven at 90 ° C., and even after 80 hours, precipitation of gold did not occur and was stable.

도금액을 실온으로 복구하고, 다시 pH를 7.O로 조정하고, 85℃에 가열 후, 도 1의 기판을, 표 2의 조건으로 니켈 도금한 것(도 2B)을 10분간 침적하여, O.05 미크론의 금 도금 피막을 수득하였다. Pb 땜납 볼을 20개 탑재하고, 230℃의 리플로우 온도로 융착 후, 땜납 박리 모드를 측정한 바, 땜납 내의 박리가 95%이고, Ni 계면이 노출한 패드는 5%에 불과하였다. After the plating liquid was restored to room temperature, pH was adjusted to 7.O again, and heated to 85 ° C., the plated substrate of FIG. 1 was nickel plated under the conditions of Table 2 (FIG. A 05 micron gold plated film was obtained. After mounting 20 Pb solder balls and fusion | melting at the reflow temperature of 230 degreeC, when the solder peeling mode was measured, the peeling in solder was 95% and only the pad which Ni interface exposed was only 5%.

(실시예 3)(Example 3)

표 3의 실시예 3에 기재된 조성의 금 도금액을 500mL 비이커에 준비하고, pH를 5.O로 조정 후, 85℃로 가열하였다. 도 1의 기판을, 표 1의 조건으로 전처리한 후(도 2A), 준비한 도금욕에 10분간 침적하여, 0.06 미크론 두께의 피막을 형성시켰다. 수득한 금 도금 피막의 깊이 방향의 분석을 ESCA(ULVAC제, QUANTUM 2000)로 행한 결과를 도 9에 나타낸다. 하지 구리의 산화는 나타나지 않고, 금도금 피막 중에 탄소도 검출되지 않는다. 표면산화 억제제는 구리 표면의 산화를 억제하지만, 금 도금 피막 중에는 포함되지 않는 것을 나타내고 있다. 다음으로, 땜납 볼 테스트를 행하였다. Pb-프리 땜납 볼(Sn-Ag3.O-CuO.5)을 금 도금된 20개의 패드 부에 탑재하고, 255℃의 리플로우 장치로 융착 후, 전단 장치로 20개의 땜납 볼을 박리하여, 각 박리부를 관찰하였다.The gold plating solution of the composition of Example 3 of Table 3 was prepared in the 500 mL beaker, pH was adjusted to 5.O, and it heated to 85 degreeC. After the substrate of FIG. 1 was pretreated under the conditions of Table 1 (FIG. 2A), it was immersed in the prepared plating bath for 10 minutes to form a film having a thickness of 0.06 microns. The result of having analyzed the depth direction of the obtained gold plating film by ESCA (made by ULVAC, QUANTUM 2000) is shown in FIG. Oxidation of the underlying copper does not appear, and no carbon is detected in the gold plated film. It has been shown that the surface oxidation inhibitor inhibits oxidation of the copper surface but is not included in the gold plating film. Next, a solder ball test was done. Pb-free solder balls (Sn-Ag3.O-CuO.5) were mounted on 20 gold plated pad portions, and fused with a reflow apparatus at 255 ° C, followed by peeling 20 solder balls with a shear apparatus. The peeling part was observed.

땜납 내의 절단에 의한 것이 95%이고, Cu 계면이 노출한 패드는 5%뿐이고, 양호한 땜납 접속 적합성을 나타내었다. 95% of the cuts in the solder and only 5% of the pads exposed to the Cu interface showed good solder connection suitability.

다음으로, 금 도금액을 90℃의 오븐에 넣고, 100시간 방치 후, 꺼내었으나, 금 도금액 중에 금의 석출은 나타나지 않고, 열 안정성은 양호하였다. Next, the gold plating solution was placed in an oven at 90 ° C. and left for 100 hours, and then taken out. However, no precipitation of gold appeared in the gold plating solution, and thermal stability was good.

도금액을 실온으로 복구하고, 다시 pH를 5.0로 조정하고, 85℃로 가열 후, 도 1의 기판을 표 1의 조건으로 전처리한 것(도 2A)을 10분간 침적하여, 0.06 미크론의 금 도금 피막을 수득하였다. 금 도금 피막의 색조는 선명한 레몬노랑 색이었다. The plating liquid was restored to room temperature, pH was adjusted to 5.0 again, and after heating to 85 ° C., the substrate of FIG. 1 pretreated under the conditions of Table 1 (FIG. 2A) was deposited for 10 minutes, and a 0.06 micron gold plating film was obtained. Obtained. The color tone of the gold-plated film was a bright lemon yellow color.

Pb-프리 땜납 볼(Sn-Ag3.0-Cu0.5)을 20개 탑재하고, 255℃의 리플로우 온도로 융착 후, 땜납 박리 모드를 측정한 바, 땜납 내의 박리가 95%이고, Cu 계면이 노출한 패드는 5%에 불과하였다. After mounting 20 Pb-free solder balls (Sn-Ag3.0-Cu0.5) and fusion at the reflow temperature of 255 degreeC, the solder peeling mode was measured and the peeling in solder is 95%, and Cu interface is carried out. This exposed pad was only 5%.

(실시예 4)(Example 4)

실시예 3에 기재의 금 도금액을 500mL 조합하여, 1000mL의 비커에 넣어서 도금 런닝 테스트를 행하였다. 5cm 각(角)의 구리 판을 다수 준비하여, 실시예 3에 기재된 조건으로 금 도금을 행하고, O.06 미크론 부근의 금 도금 피막을 형성시키는 작업을 반복하였다. 런닝 중에 도금액 중의 금 농도를 ICP(세이코 인스트루먼트 제, SPS 3000)로 측정하여, 금 농도가 0.2g/L 감소할 때마다 같은 양의 시안화 제1금 칼륨을 보충하면서, 도금 작업을 반복하고, 총량 4.Og/L의 금이 소비된 시점에서 런닝을 종료하였다. 이 테스트에 필요한 일 수는 5일간이었다. 500 mL of the gold plating solutions of Example 3 were combined, and it put into the 1000 mL beaker, and the plating running test was done. A large number of 5 cm copper plates were prepared, gold plating was carried out under the conditions described in Example 3, and the operation of forming a gold plating film around 0.06 micron was repeated. During the run, the gold concentration in the plating liquid was measured by ICP (Seiko Instruments, SPS 3000), and the plating operation was repeated while replenishing the same amount of potassium cyanide potassium potassium chloride each time the gold concentration decreased by 0.2 g / L. Running was finished when Og / L of gold was consumed. The number of days required for this test was five days.

테스트 종료 후의 금 도금액 중의 표면산화 억제제의 농도를 캐필러리 전기 영동 장치(오츠카전자 제, CAPI 3200)로 분석한 바, 124 트리아졸의 농도는 1000±40ppm이고, 런닝 전의 농도와 같았다.The concentration of the surface oxidation inhibitor in the gold plating solution after the test was analyzed by a capillary electrophoresis apparatus (manufactured by Otsuka Electronics, CAPI 3200). The concentration of 124 triazole was 1000 ± 40 ppm, which was the same as the concentration before running.

본 발명의 표면산화 억제제는 장시간 가온 조건 하(85℃, 5일간)에서도 분해 하지 않고, 또한 도금 반응 시에 소비되지 않았음을 알게되었다. It was found that the surface oxidation inhibitor of the present invention did not decompose under prolonged heating conditions (85 ° C., 5 days) and was not consumed during the plating reaction.

(비교예 1)(Comparative Example 1)

표 3의 비교예 1에 나타낸 조성의 금 도금액을 준비하고, 실시예 1과 같은 방법으로 도금 처리를 행하여, O.07 미크론 두께의 금 도금 피막을 형성시켰다. 이 금 도금 기판에 20개의 Pb 땜납 볼을 실시예 1과 같이 탑재하고, 땜납 박리 모드를 측정한 바, 땜납내 절단은 고작 10%로, 나머지의 90%는 니켈 계면이 노출되고, 불만족한 땜납 접속 특성을 나타내었다.The gold plating solution of the composition shown in the comparative example 1 of Table 3 was prepared, plating was performed by the method similar to Example 1, and the gold plating film of thickness 0.17 micron was formed. 20 Pb solder balls were mounted on this gold plated substrate as in Example 1, and the solder peeling mode was measured. Intra solder cutting was only 10%, and the remaining 90% of the nickel interface was exposed, resulting in unsatisfactory solder. The connection characteristics are shown.

(비교예 2)(Comparative Example 2)

표 3의 비교예 2에 나타낸 조성의 금 도금액을 준비하고, 실시예 1과 같은 방법으로 도금 처리를 행하고, 0.07 미크론 두께의 금 도금 피막을 형성시켰다. 이 금 도금 기판에 20개의 Pb 땜납 볼을 실시예 1과 같이 탑재하고, 땜납 박리 모드를 측정한 바, 땜납 내 절단은 고작 5%이고, 나머지의 95%는 니켈 계면이 노출되고, 불만족한 땜납 접속 특성을 나타내었다.The gold plating solution of the composition shown in the comparative example 2 of Table 3 was prepared, the plating process was performed by the method similar to Example 1, and the gold plating film of 0.07 micron thickness was formed. Twenty Pb solder balls were mounted on this gold plated substrate as in Example 1, and the solder peeling mode was measured. Only 5% of the cut in the solder was only 5%, and the remaining 95% exposed the nickel interface. The connection characteristics are shown.

(깊이 Auger 측정)(Depth Auger measurement)

본 발명의 금 도금액의 표면산화 억제의 효과를 조사를 위하여, 실시예 1에서 작성한 금 도금 피막과 비교예 1에서 작성한 도금 피막의, 하지 금속(니켈)의 산화 정도 깊이 Auger 측정(Microlab 310-F, 영국 VG사, 전자원: 필드에미션)를 행 하였다.In order to investigate the effect of inhibiting the surface oxidation of the gold plating solution of the present invention, the oxidation degree depth Auger measurement of the base metal (nickel) of the gold plated film prepared in Example 1 and the plated film prepared in Comparative Example 1 (Microlab 310-F , VG, UK, Source: Field Emissions).

실시예 1의 Auger 측정 결과를 도 7에, 비교예 1을 도 8에 나타낸다. 표면산화 억제제가 첨가되지 않는 비교예 1이, Ni 하지가 격렬하게 산화되어 있다.The Auger measurement result of Example 1 is shown in FIG. 7, and Comparative Example 1 is shown in FIG. In Comparative Example 1, in which the surface oxidation inhibitor was not added, the Ni base was oxidized violently.

(비교예 3)(Comparative Example 3)

표 3의 비교예 3에 나타낸 조성의 금 도금액을 준비하고, 실시예 3과 같은 방법으로 처리한 기판으로 도금 처리를 하고, 0.05 미크론 두께의 금 도금 피막을 형성시켰다. 이 금 도금 기판으로, 20개의 Pb 프리 땜납(실시예 3과 동일한 조성)볼의 박리 모드를 측정한 바, 땜납 내 절단이 60%, Cu 계면 노출 40%였다. 그 다음에 이 금 도금액을 90℃의 오븐에 넣으면 8시간 후에는, 금의 석출(비이커 밑바닥에의 금의 침전)이 발생하고, 금 도금액은 분해하였다. 이 금 도금액은 환원제의 아스코르빈산이 첨가되어 있기 때문에 열안정성이 떨어졌다. The gold plating solution of the composition shown in the comparative example 3 of Table 3 was prepared, plated with the board | substrate processed by the method similar to Example 3, and the gold plating film of 0.05 micron thickness was formed. When the peeling mode of 20 Pb-free solder (the composition similar to Example 3) ball was measured with this gold-plated board | substrate, cutting | disconnection in solder was 60% and Cu interface exposure 40%. Subsequently, when the gold plating solution was placed in an oven at 90 ° C., after 8 hours, precipitation of gold (precipitation of gold at the bottom of the beaker) occurred, and the gold plating solution was decomposed. This gold plating solution was inferior in thermal stability because ascorbic acid as a reducing agent was added.

(비교예 4)(Comparative Example 4)

표 3의 비교예 4에 나타낸 조성의 금 도금액을 준비하여, 실시예 3과 같은 방법으로 도금 처리를 행하고, 0.07 미크론 두께의 도금 피막을 형성시켰다. 이 금 도금 기판에 20개의 Pb-프리 땜납(실시예 3과 동일한 조성) 볼을 실시예 3과 동일하게 탑재하고, 땜납 박리 모드를 측정한 바, 땜납 내 절단은 고작 10%이고, 남은 90%는 Cu 계면이 노출하고, 불만족한 땜납 접속 특성을 나타내었다. The gold plating solution of the composition shown in the comparative example 4 of Table 3 was prepared, plating was performed by the method similar to Example 3, and the plating film of 0.07 micron thickness was formed. Twenty Pb-free solder (same compositions as in Example 3) balls were mounted on this gold plated substrate in the same manner as in Example 3, and the solder peeling mode was measured. The Cu interface was exposed and exhibited unsatisfactory solder connection characteristics.

(비교예 5)(Comparative Example 5)

표 3의 비교예 5에 나타낸 조성의 금 도금액을 준비하고, 실시예 3과 같은 방법으로 도금 처리를 행하였으나, 흑색의 금 도금 석출층이 되고, 레몬노랑색의 금 도금 피막은 얻어지지 않았다. 포스폰산을 이용한 킬레이트제의 구리 용해성이 낮고, 구리가 금과 함께 공석출된 것으로 생각된다.The gold plating solution of the composition shown in the comparative example 5 of Table 3 was prepared, and plating process was performed by the method similar to Example 3, but it became a black gold plating precipitation layer and the lemon yellow gold plating film was not obtained. It is thought that copper solubility of the chelating agent using phosphonic acid is low, and copper co-precipitated with gold.

(비교예 6)(Comparative Example 6)

표 3의 비교예 6에 나타낸 금 도금액을 준비하고, 실시예 3과 같은 방법으로 도금처리를 행하여, 0.06 미크론의 금 도금 피막을 형성시켰다. 금 도금 피막의 색조는 레몬노랑색이었다. 이 금 도금 기판에 20개의 Pb-프리 땜납(실시예 3과 동일한 조성) 볼을 실시예 3과 동일하게 탑재하고, 땜납 박리 모드를 측정한 바, 땜납 내 절단은 20% 밖에 없고, 나머지 80%의 패드로 Cu 계면이 노출하고, 불만족한 땜납 접속 특성을 나타내었다.The gold plating liquid shown in the comparative example 6 of Table 3 was prepared, plating was performed by the method similar to Example 3, and the gold plating film of 0.06 micron was formed. The color tone of the gold plating film was lemon yellow. Twenty Pb-free solder (same compositions as in Example 3) balls were mounted on this gold plated substrate in the same manner as in Example 3, and the solder peeling mode was measured. The Cu interface was exposed with a pad of P, and unsatisfactory solder connection characteristics were shown.

수용성금염 시안화 제1금 칼륨 (금환산)Water Soluble Gold Salt Potassium Cyanide (Gold equivalent) 전도성 향상제 Conductivity enhancer 킬레이트제 Chelating agents 표면산화 억제제 Surface oxidation inhibitor 환원제 아스코르빈산 (*2)Reducing Agent Ascorbic Acid (* 2) 말레산Maleic acid 구연산 칼륨Potassium citrate 실시예1 Example 1 2.0g/L   2.0 g / L  ─ 25.0g/L   25.0 g / L EDTA칼륨 10.0g/L EDTA Potassium 10.0g / L 5아미노테트라졸(*1) 0.5g/L 5 aminotetrazol (* 1) 0.5 g / L  ─ 실시예2 Example 2 2.0g/L   2.0 g / L  ─ 25.0g/L   25.0 g / L EDTA칼륨 10.0g/L EDTA Potassium 10.0g / L 디에틸렌트리아민(*1) 0.5g/L Diethylenetriamine (* 1) 0.5 g / L  ─ 실시예3 Example 3 2.0g/L   2.0 g / L 25.0g/L   25.0 g / L 45.0g/L   45.0 g / L EDTA 3칼륨 20.0g/L EDTA 3 Potassium 20.0g / L 1,2,4-트리아졸(*1) 1.0g/L 1,2,4-triazole (* 1) 1.0 g / L  ─ 비교예1 Comparative Example 1 2.0g/L   2.0 g / L  ─ 25.0g/L   25.0 g / L EDTA 칼륨 10.0g/L EDTA Potassium 10.0g / L  ─  ─ 비교예2 Comparative Example 2 2.0g/L   2.0 g / L  ─ 25.0g/L   25.0 g / L EDTA 칼륨 10.0g/L EDTA Potassium 10.0g / L 트리아진(*2) Triazine (* 2)  ─ 비교예3 Comparative Example 3 2.0g/L   2.0 g / L 25.0g/L   25.0 g / L 45.0g/L   45.0 g / L EDTA 3칼륨 20.0g/L EDTA 3 Potassium 20.0g / L  ─ 1.0g/L   1.0 g / L 비교예4 Comparative Example 4 2.0g/L   2.0 g / L 25.0g/L   25.0 g / L 45.0g/L   45.0 g / L EDTA 3칼륨 20.0g/L EDTA 3 Potassium 20.0g / L  ─  ─ 비교예5 Comparative Example 5 2.0g/L    2.0 g / L 25.0g/L    25.0 g / L 45.0g/L    45.0 g / L 에틸렌디아민테트라메틸렌포스폰산 20.0g/L Ethylenediaminetetramethylenephosphonic acid 20.0 g / L 1,2,4-트리아졸(*1) 1.0g/L 1,2,4-triazole (* 1) 1.0 g / L 비교예6 Comparative Example 6 2.0g/L   2.0 g / L 25.0g/L   25.0 g / L 45.0g/L   45.0 g / L EDTA 칼륨 20.0g/L EDTA Potassium 20.0g / L 피리딘(*2) 1.0g/L Pyridine (* 2) 1.0 g / L

(*1): -NH-결합 있음                                                (* 1): -NH- with bond

(*2): -NH-결합 없음                                                (* 2): no -NH-bonding

Claims (10)

수용성 금 염, 전도성 향상제, 이미노 2초산 구조를 갖는 킬레이트제, 환 중에 질소 원자를 2개 이상 포함하는 유기 화합물로 이루어지는 표면산화 억제제, 및 잔량으로서의 용매를 포함하는 치환형 무전해 금 도금액.A substituted electroless gold plating solution comprising a water-soluble gold salt, a conductivity enhancer, a chelating agent having an imino diacetic acid structure, a surface oxidation inhibitor composed of an organic compound containing two or more nitrogen atoms in a ring, and a solvent as a residual amount. 제1항에 있어서,The method of claim 1, 수용성 금 염이, 시안화 제1금 칼륨, 시안화 제2금 칼륨, 아황산 금 칼륨, 아황산 금 나트륨, 티오 황산 금 칼륨, 티오 황산 금 나트륨, 및 이들의 혼합물으로 이루어지는 군으로부터 선택되는 The water-soluble gold salt is selected from the group consisting of potassium cyanide potassium, potassium cyanide potassium, potassium sulfite, gold sodium sulfite, gold potassium thiosulfate, gold sodium thiosulfate, and mixtures thereof. 치환형 무전해 금 도금액.Substituted electroless gold plating solution. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 전도성 향상제가, 붕산, 인산, 황산, 티오황산, 질산, 염화물, 구연산, 사과산, 호박산, 유산, 말론산, 말레산, 옥살산, 주석산, 프탈산, 안식향산, 글리신, 글루탐산, 이들의 칼륨염, 나트륨염 또는 암모늄염, 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것인 The conductivity improving agent is boric acid, phosphoric acid, sulfuric acid, thiosulfate, nitric acid, chloride, citric acid, malic acid, succinic acid, lactic acid, malonic acid, maleic acid, oxalic acid, tartaric acid, phthalic acid, benzoic acid, glycine, glutamic acid, potassium salts thereof, sodium salt Or ammonium salts, and mixtures thereof 치환형 무전해 금 도금액.Substituted electroless gold plating solution. 제1항에 있어서,The method of claim 1, 킬레이트제가, 에틸렌디아민 4초산, 히드록시에틸 이미노 2초산, 니트릴로 3초산, 히드록시에틸 에틸렌디아민 3초산, 디에틸렌트리아민 5초산, 트리에틸렌테트라민 6초산, 디카르복시메틸글루탐산, 프로판디아민 4초산, 1,3-디아미노-2-히드록시프로판 4초산, 이들의 나트륨염, 칼륨염 또는 암모늄염, 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 The chelating agent is ethylenediamine tetraacetic acid, hydroxyethyl imino diacetic acid, nitrile triacetic acid, hydroxyethyl ethylenediamine triacetic acid, diethylenetriamine pentaacetic acid, triethylenetetramine hexaacetic acid, dicarboxymethyl glutamic acid, propanediamine Tetraacetic acid, 1,3-diamino-2-hydroxypropane tetraacetic acid, sodium salts, potassium salts or ammonium salts thereof, and mixtures thereof 무전해 치환형 금 도금액.Electroless substituted gold plating solution. 제1항에 있어서,The method of claim 1, 표면산화 억제제가, 전자 공여성 화합물인Surface oxidation inhibitor is an electron donating compound 치환형 무전해 금 도금액.Substituted electroless gold plating solution. 제1항에 있어서,The method of claim 1, 표면산화 억제제가, 환 중에 질소 원자를 3개 이상 포함하고 또한 이 중 적어도 1개 이상의 질소 원자가 -NH- 구조인 것인Wherein the surface oxidation inhibitor comprises at least three nitrogen atoms in the ring and at least one of the nitrogen atoms is -NH- 치환형 무전해 금 도금액.Substituted electroless gold plating solution. 제1항에 있어서,The method of claim 1, 표면산화 억제제가, 하기 화학식IIThe surface oxidation inhibitor is represented by the following general formula (II) (화학식 II) Formula II
Figure 112007051711950-pct00005
Figure 112007051711950-pct00005
[여기에서,
Figure 112007051711950-pct00006
는 -NH- 기의 질소 원자 및 탄소 원자를 환 중에 갖는 복소환을 나타낸다. R5은, 이 복소환 중의 탄소 원자에 결합한 수소, 탄소수 1∼3의 알킬기, 아미노기, 탄소수 1~3의 알킬아미노기를 나타낸다.]로 나타내는 복소환 화합물인
[From here,
Figure 112007051711950-pct00006
Represents a heterocyclic ring having a nitrogen atom and a carbon atom of the —NH— group in the ring. R 5 represents hydrogen bonded to a carbon atom in this heterocycle, an alkyl group having 1 to 3 carbon atoms, an amino group, or an alkylamino group having 1 to 3 carbon atoms.
치환형 무전해 금 도금액.Substituted electroless gold plating solution.
제1항에 있어서,The method of claim 1, 표면산화 억제제가, 2-아미노피롤, 3-아미노피롤, 2-아미노인돌, 3-아미노인돌, 피라졸, 3-아미노피라졸, 4-아미노피라졸, 5-아미노피라졸, 이미다졸, 2-아미노이미다졸, 4-아미노이미다졸, 5-아미노이미다졸, 1,2,3-트리아졸, 4-아미노-1,2,3-트리아졸, 5-아미노-1,2,3-트리아졸, 1,2,4-트리아졸, 3-아미노-1,2,4-트리아졸, 5-아미노-1,2,4-트리아졸, 테트라졸, 5-아미노-테트라졸, 벤즈이미다졸, 2-아미노-벤즈이미다졸, 벤즈트리아졸 및 이들의 혼합물로 이루어지는 군으로부터 선택된 것인The surface oxidation inhibitor is 2-aminopyrrole, 3-aminopyrrole, 2-aminoindole, 3-aminoindole, pyrazole, 3-aminopyrazole, 4-aminopyrazole, 5-aminopyrazole, imidazole, 2 -Aminoimidazole, 4-aminoimidazole, 5-aminoimidazole, 1,2,3-triazole, 4-amino-1,2,3-triazole, 5-amino-1,2,3-triazole Sol, 1,2,4-triazole, 3-amino-1,2,4-triazole, 5-amino-1,2,4-triazole, tetrazole, 5-amino-tetrazole, benzimidazole , 2-amino-benzimidazole, benztriazole and mixtures thereof 치환형 무전해 금 도금액.Substituted electroless gold plating solution. 제1항에 있어서,The method of claim 1, 수용성 금염의 농도가, 0.1~10g/L, 전도성 향상제의 농도가 5~500g/L, 킬레이트제의 농도가 1~200g/L, 표면산화 억제제의 농도가 5~50,000ppm인The concentration of the water-soluble gold salt is 0.1 to 10 g / L, the concentration of the conductivity improving agent is 5 to 500 g / L, the concentration of the chelating agent is 1 to 200 g / L, and the concentration of the surface oxidation inhibitor is 5 to 50,000 ppm. 치환형 무전해 금 도금액.Substituted electroless gold plating solution. 제1항에 있어서,The method of claim 1, 수용성 금염의 농도가, 0.5~5.0g/L, 전도성 향상제의 농도가 10~200g/L, 킬레이트제의 농도가 5~100g/L, 표면산화 억제제의 농도가 10~10,000ppm인The concentration of the water-soluble gold salt is 0.5-5.0 g / L, the concentration of the conductivity enhancer is 10-200 g / L, the concentration of the chelating agent is 5-100 g / L, and the concentration of the surface oxidation inhibitor is 10-10,000 ppm. 치환형 무전해 금 도금액.Substituted electroless gold plating solution.
KR1020057006374A 2002-10-22 2003-10-16 Substitution type electroless gold plating bath KR100797515B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002306826 2002-10-22
JPJP-P-2002-00306826 2002-10-22

Publications (2)

Publication Number Publication Date
KR20050067181A KR20050067181A (en) 2005-06-30
KR100797515B1 true KR100797515B1 (en) 2008-01-24

Family

ID=32170918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057006374A KR100797515B1 (en) 2002-10-22 2003-10-16 Substitution type electroless gold plating bath

Country Status (5)

Country Link
JP (1) JPWO2004038063A1 (en)
KR (1) KR100797515B1 (en)
AU (1) AU2003301573A1 (en)
TW (1) TWI275663B (en)
WO (1) WO2004038063A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161968B1 (en) * 2010-07-19 2012-07-04 롯데알미늄 주식회사 Liquid for improving conductivity and process of forming conductive pattern using thereof by gravure printing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955315B2 (en) * 2005-06-16 2012-06-20 メタローテクノロジーズジャパン株式会社 Electroless gold plating solution for forming gold plating film for wire bonding
JP5013077B2 (en) 2007-04-16 2012-08-29 上村工業株式会社 Electroless gold plating method and electronic component
JP6111058B2 (en) * 2012-12-07 2017-04-05 東洋鋼鈑株式会社 FUEL CELL SEPARATOR, FUEL CELL CELL, FUEL CELL STACK, AND METHOD FOR MANUFACTURING FUEL CELL SEPARATOR
WO2017122959A1 (en) 2016-01-13 2017-07-20 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
KR101857596B1 (en) * 2018-01-31 2018-05-14 (주)엠케이켐앤텍 Substitution type electroless gold plating bath using a nitrogen-containing heteroarylcarboxylic acid and substitution type electroless gold plating using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145997A (en) * 1992-11-13 1994-05-27 Kanto Chem Co Inc Electroless gold plating liquid
KR20010067278A (en) * 1999-10-04 2001-07-12 모기 쥰이찌 Substitutional electroless gold plating method and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3831842B2 (en) * 2002-03-25 2006-10-11 奥野製薬工業株式会社 Electroless gold plating solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145997A (en) * 1992-11-13 1994-05-27 Kanto Chem Co Inc Electroless gold plating liquid
KR20010067278A (en) * 1999-10-04 2001-07-12 모기 쥰이찌 Substitutional electroless gold plating method and semiconductor device
US6398856B1 (en) 1999-10-04 2002-06-04 Shinko Electric Industries Co., Ltd. Substitutional electroless gold plating solution, electroless gold plating method and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161968B1 (en) * 2010-07-19 2012-07-04 롯데알미늄 주식회사 Liquid for improving conductivity and process of forming conductive pattern using thereof by gravure printing method

Also Published As

Publication number Publication date
AU2003301573A1 (en) 2004-05-13
KR20050067181A (en) 2005-06-30
TWI275663B (en) 2007-03-11
TW200422430A (en) 2004-11-01
WO2004038063A1 (en) 2004-05-06
JPWO2004038063A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
TWI716868B (en) Substitution type electroless gold plating bath containing purine or pyrimidine-based compound having carbonyl oxygen and substitution type electroless gold plating using the same
US6395329B2 (en) Printed circuit board manufacture
USRE45279E1 (en) Process for silver plating in printed circuit board manufacture
TWI519674B (en) The palladium is given a liquid with a catalyst
US5795409A (en) Surface treating agent for copper or copper alloy
EP1930472B1 (en) Electroless palladium plating bath and electroless palladium plating method
US6319543B1 (en) Process for silver plating in printed circuit board manufacture
CN106399983B (en) Cyanide-free electroless gold plating bath and electroless gold plating method
KR20080093366A (en) Electroless gold plating method and electronic parts
KR102041850B1 (en) Gold-strike plating method corresponding to pretreatment process for electroless palladium plating on copper surface of printed circuit board, composition of gold-strike plating solution and electroless plating method of palladium and gold
US7300501B2 (en) Electroless gold plating liquid
KR100712261B1 (en) Electroless gold plating solution and process
KR100797515B1 (en) Substitution type electroless gold plating bath
KR101857596B1 (en) Substitution type electroless gold plating bath using a nitrogen-containing heteroarylcarboxylic acid and substitution type electroless gold plating using the same
JP2020084301A (en) Electroless plating bath
JP2006312763A (en) Substitution type electroless gold plating liquid
WO2012011305A1 (en) Electroless gold plating solution, and electroless gold plating method
KR100749992B1 (en) Electroless gold plating solution
KR102292204B1 (en) Non-cyanide electroless gold plating method and non-cyanide electroless gold plating composition
TW202043546A (en) Electroless gold plating bath
EP4166690A1 (en) Electroless gold plating bath
JP2006002196A (en) Activating composition for pretreatment of displacing-precipitation-type gold plating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121217

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 12