KR101470564B1 - 에틸렌과 α-올레핀의 탄성 공중합체 제조방법 - Google Patents

에틸렌과 α-올레핀의 탄성 공중합체 제조방법 Download PDF

Info

Publication number
KR101470564B1
KR101470564B1 KR1020120001475A KR20120001475A KR101470564B1 KR 101470564 B1 KR101470564 B1 KR 101470564B1 KR 1020120001475 A KR1020120001475 A KR 1020120001475A KR 20120001475 A KR20120001475 A KR 20120001475A KR 101470564 B1 KR101470564 B1 KR 101470564B1
Authority
KR
South Korea
Prior art keywords
aryl
alkyl
olefin
ethylene
ring
Prior art date
Application number
KR1020120001475A
Other languages
English (en)
Other versions
KR20120007087A (ko
Inventor
옥명안
신대호
권승범
한정석
이호성
심춘식
함형택
정지수
채성석
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of KR20120007087A publication Critical patent/KR20120007087A/ko
Application granted granted Critical
Publication of KR101470564B1 publication Critical patent/KR101470564B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 에틸렌과 α-올레핀의 공중합체 제조방법에 관한 것으로, 좀 더 상세하게는 필름, 연질포장재, 몰딩제품, 전선, 내충격성 보강재, 핫멜트 접착제, 등으로 다양하게 응용 가능한 밀도 0.910 이하의 에틸렌과 α-올레핀의 공중합체의 제조용 촉매로서 유용한 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하여 밀도 0.910 이하에서 탄성을 나타내는 에틸렌과 α-올레핀의 공중합체을 제조하는 방법을 제공하는 것이다. 본 발명에서 제공하는 촉매 조성물은 시클로펜타디엔 유도체와 오르토 (ortho-) 위치에 아릴 유도체가 치환된 아릴옥시기를 가진 음이온성 리간드를 최소 하나 이상 포함하는 전이금속 촉매 및 알루미녹산, 또는 붕소 또는 알루미늄 화합물을 활성화제로 사용하는 촉매계로서 좁은 분자량 분포 및 균일한 밀도분포를 가지는 밀도 0.910 이하의 에틸렌과 α-올레핀 공중합에서 활성이 높고 고급 α-올레핀에 대한 반응성이 우수한 중합방법을 제공한다.

Description

에틸렌과 α-올레핀의 탄성 공중합체 제조방법 {Method for preparing elastomeric copolymers of ethylene and a-olefins}
본 발명은 에틸렌과 α-올레핀의 탄성 공중합체 제조방법에 관한 것으로, 보다 구체적으로는 4족 전이금속 촉매와 알루미녹산 조촉매 또는 붕소 화합물 조촉매를 포함하는 촉매계 및 이를 이용한 에틸렌과 α-올레핀의 탄성 공중합체의 제조방법에 관한 것이다.
종래에 에틸렌과 α-올레핀과 공중합체 제조에는 일반적으로 티타늄 또는 바나듐 화합물의 주촉매 성분과 알킬알루미늄 화합물의 조촉매 성분으로 구성되는 이른바 지글러-나타 촉매계가 사용되어 왔다. 그런데 지글러-나타 촉매계는 에틸렌 단독 중합에 대하여 고활성을 나타내지만, 불균일한 촉매 활성점 때문에 고급 α-올레핀과의 공중합 반응성이 좋지 못하여 일반적으로 밀도 0.910 이하의 탄성을 나타내는 에틸렌과 α-올레핀과의 공중합체 제조를 위해서는 다량의 α-올레핀 공단량체를 사용하여야 하며 이러한 조건에서는 촉매의 활성도가 낮아지는 단점이 있다. 또한 이러한 촉매를 사용하여 생성된 공중합체는 조성분포가 매우 불균일하고 분자량 분포가 넓어 탄성중합체로서 적합한 물성을 가지기가 어렵다.
최근에 티타늄, 지르코늄, 하프늄 등 주기율표 4족 전이금속의 메탈로센 화합물과 조촉매인 메틸알루미녹산(methylaluminoxane)으로 구성되는 이른바 메탈로센 촉매계가 개발되었다. 메탈로센 촉매계는 단일 종의 촉매활성점을 갖는 균일계 촉매이기 때문에 기존의 지글러-나타 촉매계에 비하여 분자량분포가 좁고 조성분포가 균일한 에틸렌과 α-올레핀의 공중합체를 제조할 수 있는 특징을 가지고 있다.
예를 들면, 유럽공개특허 제 320,762호, 제 3,726,325호 또는 일본 특개소63-092621호, 일본 특개평02-84405호, 또는 특개평03-2347호에서는 Cp2TiCl2, Cp2ZrCl2, Cp2ZrMeCl, Cp2ZrMe2, 에틸렌(IndH4)2ZrCl2 등에서 메탈로센 화합물을 조촉매 메틸알루미녹산으로 활성화시킴으로써 에틸렌과 α-올레핀을 고활성으로 공중합시켜 분자량분포(Mw/Mn)가 1.5~2.0 범위인 공중합체를 제조할 수 있음을 발표하였다. 그러나 상기 촉매계로는 80℃ 이상의 고온에서 실시되는 용액중합법에 적용할 경우 촉매 자체의 입체장애 효과로 인하여 밀도 0.910 이하의 탄성공중합체를 제조하기 위하여 지글러-나타계의 촉매와 마찬가지로 많은 량의 고급 α-올레핀을 사용하여야 단점이 있으며, 또한 이러한 경우 β-수소이탈반응이 우세하여 중량평균분자량(Mw)이 30,000 이상의 고분자량 중합체를 제조하기에는 적합하지 않다.
한편, 용액중합 조건에서 에틸렌과 α-올레핀과의 공중합에서 높은 촉매활성과 고분자량의 중합체를 제조할 수 있는 촉매로서 전이금속을 고리형태로 연결시킨 소위 기하구속형 비 메탈로센계 촉매가 발표되었다. 유럽특허 제 0416815호와 동 특허 제 0420436 호에서는 하나의 시클로펜타디엔 리간드에 아미드기를 고리형태로 연결시킨 예를 제시하였고, 동특허 제 0842939호에서는 전자주게 화합물로서 페놀계 리간드를 시클로펜타디엔 리간드와 고리형태로 연결시킨 촉매의 예를 보여준다. 그러나 이러한 기하구속형 촉매의 경우 촉매 자체의 낮아진 입체 장애 효과로 인하여 고급 α-올레핀과의 반응성이 현저히 개선되었다. 그러나 촉매 합성 단계가 복잡하고 리간드와 전이금속화합물간의 고리 형성 반응 과정의 수율이 매우 낮기 때문에 밀도 0.910 이하의 에틸렌과 α-올레핀과의 공중합체 제조에 적합한 경제성있는 제조공정을 구현하기에는 많은 어려움이 있다.
반면, 기하구속형이 아닌 비메탈로센계 촉매의 예로는 미국특허 제6,329,478호와 한국공개특허공보 제 2001-0074722호를 들 수 있다. 이러한 특허에서는 최소한 하나 이상의 포스핀이민 화합물을 리간드로 사용한 단일활성점 촉매가 140℃ 이상의 고온 용액 중합조건에서 에틸렌과 α-올레핀 공중합시 높은 에틸렌 전환율을 보이고 있는 것을 볼 수 있다. 그러나 이러한 촉매는 메탈로센 촉매의 경우와 마찬가지로 고급 α-올레핀에 반응성이 높지 않아 에틸렌과 고급 α-올레핀의 탄성중합체를 제조하기에 적합하지 않다.
상기 종래 기술의 문제점을 극복하기 위하여 본 발명자들은 광범위한 연구를 수행한 결과, 시클로펜타디엔 유도체와 오르토 (ortho-) 위치에 아릴 유도체가 치환된 아릴옥시기를 가진 음이온성 리간드를 최소 하나 이상 포함하는 촉매 및 알루미녹산 또는 붕소 또는 알루미늄 화합물을 활성화제로 사용하는 촉매계가 좁은 분자량 분포 및 균일한 밀도분포를 가지는 밀도 0.910 이하의 에틸렌과 α-올레핀과의 탄성 공중합체 제조에 적합한 것을 발견하였고, 본 발명은 이에 기초하여 완성되었다.
따라서, 본 발명의 목적은 필름, 연질포장재, 몰딩제품, 전선, 내충격성 보강재, 핫멜트 접착제, 등으로 다양하게 응용 가능한 밀도 0.910 이하의 에틸렌과 α-올레핀의 공중합체의 제조용 촉매로서 유용한 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하여 밀도 0.910 이하에서 탄성을 나타내는 에틸렌과 α-올레핀의 공중합체을 제조하는 방법을 제공하는 것이며, 밀도 0.910 이하의 에틸렌과 α-올레핀 공중합에서 활성이 높고 고급 α-올레핀에 대한 반응성이 우수한 단일활성점 촉매 및 이러한 촉매 성분을 이용하여 좁은 분자량 분포 및 조성 분포와 중량평균 분자량 50,000 이상의 에틸렌과 α-올레핀의 공중합체를 상업적인 관점에서 경제적으로 제조할 수 있는 중합방법을 제공하는데 있다.
병렬식의 2차 연속반응기 중에서 하기 화학식 1에 표시된 바와 같이, 4족 전이금속 주위에 시클로펜타디엔 유도체와 오르토 (ortho-) 위치에 아릴 유도체가 치환된 아릴옥시기를 가진 음이온성 리간드를 최소 하나 이상 포함하는 촉매 및 알루미녹산 또는 붕소 또는 알루미늄 화합물을 활성화제로 사용하는 촉매 조성물 존재 하에서 에틸렌 및 하나 이상의 C3 - C18의 α-올레핀 공단량체를 공중합시켜 밀도 0.850 내지 0.910g/cc의 에틸렌 및 α-올레핀 공중합체를 제조하는 방법을 제공한다.
[화학식 1]
Figure 112012001240712-pat00001
상기 식에서, M은 주기율표 상 4족의 전이금속이고;
Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
R1 내지 R4 는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴 아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
Ar1 은 (C6-C30)아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는
Figure 112012001240712-pat00002
이며;
R11 내지 R15는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R11 내지 R15는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
상기 R1 내지 R4, R11 내지 R15, X1 및 X2의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오, 아릴티오; R1 내지 R4 또는 R11 내지 R15가 인접한 치환체와 알킬렌 또는 알케닐렌으로 연결되어 형성된 고리; 및 상기 Ar1과 Ar11의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.
본 발명에서 사용된 촉매는 하기 화학식 1의 전이금속 촉매 및 조촉매가 포함된 촉매조성물이다. 상기 조촉매에는 붕소화합물 및 알루미늄 화합물에서 선택되거나 이들의 혼합물이 포함될 수 있다.
우선, 하기 화학식 1은 전이금속 주위에 시클로펜타디엔 유도체 및 오르토(ortho-)위치에 아릴 유도체가 치환된 아릴옥사이드 리간드를 최소 하나이상 포함하고, 리간드 상호간 가교되지 않는 4족 전이금속 촉매이다.
[화학식 1]
Figure 112012001240712-pat00003

*상기 화학식 1의 전이금속 촉매에서 중심금속인 M은 주기율표 상 4족의 전이금속이고 바람직하게는 티타늄, 지르코늄 또는 하프늄이다. 또한 상기 Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있다. 상기 Cp의 구체적인 예로는, 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 펜타메틸시클로펜타디에닐, 부틸시클로펜타디에틸, sec-부틸시클로펜타디에닐, tert-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인데닐, 메틸인데닐, 디메틸인데닐, 에틸인데닐, 이소프로필인데닐, 플로레닐, 메틸플로레닐, 디메틸플로레닐, 에틸플로레닐, 이소프로필플로레닐 등이 있다.
상기 화학식 1의 아릴페녹사이드 리간드 상의 R1내지 R4 에 관련하여서는, 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오 또는 니트로이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
Ar1 은 (C6-C30)의 아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는
Figure 112012001240712-pat00004
이며;
R11 내지 R15는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R11 내지 R15는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
상기 R1 내지 R4, R11 내지 R15, X1 및 X2의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오, 아릴티오; R1 내지 R4 또는 R11 내지 R15가 인접한 치환체와 알킬렌 또는 알케닐렌으로 연결되어 형성된 고리; 및 상기 Ar1과 Ar11의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
상기 할로겐 원자의 예로서 불소, 염소, 브롬 또는 요오드원자를 들 수 있고; 상기 (C1-C20)알킬 또는 (C3-C20)시클로알킬의 예로서, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, n-헥실, n-옥틸, n-데실, n-도데실, n-펜타데실, 또는 n-에이코실이고, 이 중 바람직한 것은 메틸, 에틸, 이소프로필, tert-부틸이며; (C6-C30)아릴의 예를 들면, 페닐, 나프틸, 안트라세닐, 플로레닐을 들 수 있고; (C6-C30)아르(C1-C20)알킬기의 예로서 벤질, (2-메틸페닐)메틸, (3-메틸페닐)메틸, (4-메틸페닐)메틸, (2,3-디메틸페닐)메틸, (2,4-디메틸페닐)메틸, (2,5-디메틸페닐)메틸, (2,6-디메틸페닐)메틸, (3,4-디메틸페닐)메틸, (4,6-디메틸페닐)메틸, (2,3,4-트리메틸페닐)메틸, (2,3,5-트리메틸페닐)메틸, (2,3,6-트리메틸페닐)메틸, (3,4,5-트리메틸페닐)메틸, (2,4,6-트리메틸페닐)메틸, (2,3,4,5-테트라메틸페닐)메틸, (2,3,4,6-테트라메틸페닐)메틸, (2,3,5,6-테트라메틸페닐)메틸, (펜타메틸페닐)메틸, (에틸페닐)메틸, (n-프로필페닐)메틸, (이소프로필페닐)메틸, (n-부틸페닐)메틸, (sec-부틸페닐)메틸, (n-테트라데실페닐)메틸, 트리페닐메틸, 나프틸메틸 또는 안트라세닐메틸을 들 수 있고, 이 중 바람직한 것은 벤질, 트리페닐메틸이며; (C1-C20)알콕시의 예로는 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, sec-부톡시, tert-부톡시, n-펜톡시, 네오펜톡시, n-헥속시, n-옥톡시, n-도데속시, n-펜타데속시 또는 n-에이코속시를 들 수 있고, 이 중 바람직한 것은 메톡시, 에톡시, 이소프로폭시 또는tert-부톡시이며; (C3-C20)알킬실록시 또는 (C6-C30)아릴실록시의 예로서 트리메틸실록시, 트리에틸실록시, 트리-n-프로필실록시, 트리이소프로필실록시, 트리-n-부틸실록시, 트리-sec-부틸실록시, 트리-tert-부틸실록시, 트리-이소부틸실록시, tert-부틸디메틸실록시, 트리-n-펜틸실록시, 트리-n-헥시릴록시, 트리시클로헥실실록시, 페닐실록시, 디페닐실록시, 나프틸실록시를 들 수 있고, 이 중 바람직한 것은 트리메틸실록시, 또는 tert-부틸디메틸실록시 또는 페닐실록시이다. 또한, (C1-C20)알킬아미노 또는 (C6-C30)아릴아미노의 예로서 디메틸아미노, 디에틸아미노, 디-n-프로필아미노, 디이소프로필아미노, 디-n-부틸아미노, 디-sec-부틸아미노, 디-tert-부틸아미노, 디이소부틸아미노, tert-부틸이소프로필아미노, 디-n-헥실아미노, 디-n-옥틸아미노, 디-n-데실아미노, 디페닐아미노, 디벤질아미노, 메틸에틸아미노, 메틸페닐아미노, 벤질헥실아미노를 들 수 있고, 이 중 바람직한 것은 디메틸아미노, 디에틸아미노 또는 디페닐아미노이며, (C1-C20)알킬티오 또는 (C6-C30)의 예로서, 메틸티오, 에틸티오, 이소프로필티오, 페닐티오, 나프틸티오를 들 수 있다.
상기 화학식 1의 구체적인 예로서 하기 화학식에서 선택될 수 있다.
[화학식 1-1]
Figure 112012001240712-pat00005
[화학식 1-2]
Figure 112012001240712-pat00006
[화학식 1-3]
Figure 112012001240712-pat00007
[화학식 1-4]
Figure 112012001240712-pat00008
[화학식 1-5]
Figure 112012001240712-pat00009
[화학식 1-6]
Figure 112012001240712-pat00010
[화학식 1-7]
Figure 112012001240712-pat00011
[화학식 1-8]
Figure 112012001240712-pat00012
[화학식 1-9]
Figure 112012001240712-pat00013
[화학식 1-10]
Figure 112012001240712-pat00014
[화학식 1-11]
Figure 112012001240712-pat00015
[화학식 1-12]
Figure 112012001240712-pat00016
[화학식 1-13]
Figure 112012001240712-pat00017
[화학식 1-14]
Figure 112012001240712-pat00018
상기 R21 내지 R26은 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R21 내지 R26은 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있고; 상기 R21 내지 R26 의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오 및 아릴티오는 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있고;
Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
X1 및 X2는 서로 독립적으로 메틸 또는 Cl이다.
더욱 구체적으로는 상기 전이금속촉매는 하기에서 선택되는 것을 특징으로 하는 에틸렌 공중합체의 제조방법을 제공한다.
Figure 112012001240712-pat00019
Figure 112012001240712-pat00020
Figure 112012001240712-pat00021
Figure 112012001240712-pat00022
Figure 112012001240712-pat00023
상기 Cp는 서로 독립적으로 중심금속 Ti와 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
X1 및 X2는 서로 독립적으로 메틸 또는 Cl이다.
한편, 상기 화학식 1의 전이금속 촉매는 올레핀 중합에 사용되는 활성촉매 성분이 되기 위하여, 바람직하게는 본 발명에 따른 전이금속 화합물 중의 X 리간드를 추출하여 중심금속을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 알루미늄 화합물 또는 붕소 화합물, 또는 이들의 혼합물이 조촉매로서 사용된다. 이때 사용되는 유기알루미늄 화합물은 반응용매 내에서 촉매독으로 작용하는 미량의 극성물질을 제거하기 위함이지만 X리간드가 할로겐인 경우에는 알킬화제로서 작용할 수도 있다.
본 발명에서의 조촉매로 사용될 수 있는 붕소화합물은 미국특허 제5,198,401호에서 볼 수 있는 바와 같이 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 화합물 중에서 선택될 수 있다.
[화학식 2]
B(R31)3
[화학식 3]
[R32]+[B(R31)4]-
[화학식 4]
[(R33)qZH]+[B(R31)4]-
상기 화학식 2 내지 화학식 4에서, B는 붕소원자; R31은 페닐이며, 상기 페닐은 불소원자, 불소 원자에 의해 치환되거나 치환되지 않은 (C1-C20)알킬, 또는 불소 원자에 의해 치환되거나 치환되지 않은 (C1-C20)알콕시로부터 선택된 3 내지 5개의 치환기로 더 치환될 수 있으며; R32는 (C5-C7)시클로알킬 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C30)아르(C1-C20)알킬 라디칼, 예를 들면 트리페닐메틸 라디칼; Z는 질소 또는 인원자; R33은 (C1-C20)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C4)알킬기로 치환된 아닐리늄 라디칼; q는 2 또는 3의 정수이다.
상기 붕소계 조촉매의 바람직한 예로는 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라플루오로페닐)보레인, 트리스(3,4,5-트리플루오로페닐)보레인, 트리스(2,3,4-트리플루오로페닐)보레인, 페닐비스(펜타플루오로페닐)보레인, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트, 테트라키스(2,3,4,5-테트라플루오로페닐)보레이트, 테트라키스(3,4,5-트리플루오로페닐)보레이트, 테트라키스(2,2,4-트리플루오로페닐)보레이트, 페닐비스(펜타플루오로페닐)보레이트 또는 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트를 들 수 있다. 또한 그것들의 특정 배합예로는 페로세늄 테트라키스(펜타플루오로페닐)보레이트 1,1'-디메틸페로세늄 테트라키스(펜타플루오로페닐)보레이트, 은 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-2,4,6-펜타메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 디이소프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트 트리(메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 또는 트리(디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트가 포함되고, 이 중 가장 바람직한 것은 N,N-디메틸아닐리늄 테트라키스(펜타플루오르페닐)보레이트, 트리페닐메틸 리니움테트라키스(펜타플루오르페닐)보레이트 또는 트리스(펜타플루오르페닐)보레인이고, 이 때 중심금속 M: 붕소원자의 몰비는 바람직하게는 1:0.1~50, 보다 바람직하게는 1:0.5~15이다.
본 발명에서 사용되는 알루미늄 화합물은 화학식 5 또는 화학식 6의 알루미녹산 화합물, 화학식 7의 유기알루미늄 화합물, 또는 화학식 8 또는 화학식 9가 유기알루미늄 히드로카빌옥사이드 화합물이 사용될 수 있다.
[화학식 5]
(-Al(R41)-O-)m
[화학식 6]
*(R41)2Al-(-O(R41)-)p-(R41)2
[화학식 7]
(R42)rAl(E)3-r
[화학식 8]
(R43)2AlOR44
[화학식 9]
R43Al(OR44)2
상기 화학식 5 내지 화학식 9에서, R41은 선형 또는 비선형의 (C1-C20)알킬로서, 바람직하게는 메틸 또는 이소부틸이고, m과 p는 서로 독립적으로 5 내지 20의 정수이고; R42, R43은 (C1-C20)알킬; E는 수소원자 또는 할로겐원자; r은 1 내지 3의 정수; R44는 (C1-C20)알킬 또는 (C6-C30)아릴 중에서 선택될 수 있다.
상기 알루미늄 화합물로 사용할 수 있는 구체적인 예로서, 알루미녹산 화합물로서 메틸알루미녹산, 개량메틸알루미녹산, 테트라이소부틸알루미녹산이 있고; 유기알루미늄 화합물의 예로서 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리이소부틸알루미늄, 및 트리헥실알루미늄을 포함하는 트리알킬알루미늄; 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미튬클로라이드, 및 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드; 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 이소부틸알루미늄디클로라이드, 및 헥실알루미늄디클로라이드를 포함하는 알킬알루미늄디클로라이드; 디메틸알루미늄하이드라이드, 디에틸알루미늄하이드라이드, 디프로필알루미늄하이드라이드, 디이소부틸알루미늄하이드라이드 및 디헥실알루미늄하이드라이드를 포함하는 디알킬알루미늄하이드라이드를 들 수 있으며, 바람직하게는 트리알킬알루미늄, 보다 바람직하게는 트리에틸알루미늄 및 트리이소부틸알루미늄이고, 이 때 중심금속인 M: 알루미늄원자의 몰비는 바람직하게는 1:1 내지 1:2,000, 보다 바람직하게는 1:5 내지 1:1,000이다.
또한, 중심금속 M: 붕소원자:알루미늄원자의 몰비는 바람직하게는 1:0.1~50:1~1,000, 보다 바람직하게는 1:0.5~15;5~500이다.
본 발명의 상기 전이금속 촉매 조성물을 이용하여 밀도 0.910 이하의 에틸렌과 α-올레핀의 공중합체의 제조방법은 적절한 유기용매의 존재하에 상기의 전이금속 촉매, 조촉매, 및 에틸렌 및 α-올레핀 공단량체를 접촉시켜 용액상에서 진행된다. 또한 반응기는 하나 이상의 연속 교반형 또는 파이프형이 사용될 수 있으며, 2개 이상이 연속 또는 병렬로 사용될 경우는 각 반응기의 조건을 달리하여 반응 분획에 따라 서로 다른 분자량 및 밀도를 가진 공중합체가 물리적 화학적으로 혼합된 형태의 공중합체를 제조 할 수도 있다.
상기 제조방법에 사용될 수 있는 바람직한 유기용매는 C3-C20의 탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 크실렌 등을 들 수 있으며, 경우에 따라서는 두개 이상의 상기 유기용매의 혼합물이 사용 될 수 있다.
공단량체로 C3~C18의 α-올레핀을 사용할 수 있으며, 바람직하기로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-헥사데센, 및 1-옥타데센으로 이루어진 군으로부터 선택될 수 있다. 보다 바람직하게는 1-부텐, 1-헥센, 1-옥텐, 또는 1-데센과 에틸렌을 공중합시킬 수 있다.
중합 반응은 반응기 내부의 반응물이 용액상태로 존재 할 수 있는 압력과 온도에서 수행된다. 이 경우 바람직한 중합반응기 압력은 10 내지 200 기압 바람직하게는 20 내지 150 기압이고, 중합반응 온도는 60 내지 250℃, 바람직하기로는 80 내지 170℃이다.
본 발명의 방법에 따라 제조된 공중합체는 보통 에틸렌 40~90중량%을 함유하며, 바람직하기로는 50 내지 85 중량 %의 에틸렌을 포함하며, 더욱 바람직하기로는 55 내지 80 중량%의 범위이다. 밀도 범위는 0.850 내지 0.910g/cc, 바람직하기로는 0.855 내지는 0.905 g/cc 사이, 더욱 바람직하기로는 0.860 내지는 0.900 g/cc 범위이다.
공중합체 제조시 분자량을 조절하기 위해 수소를 분자량조절제로 사용할 수 있으며, 통상 30,000~500,000 범위의 중량평균분자량 (Mw)을 가지며, 1.5 내지는 3.0 범위의 분자량분포를 갖는다.
상기와 같이 하여 제조된 에틸렌과 α-올레핀의 공중합체는 고분자량 부분에는 α-올레핀으로 인한 분지가 적고 저분자량 부분에 대부분의 분지가 몰려있는 기존 지글러-나타계 촉매에서 제조된 공중합체와 달리 고분자량 부분에도 균일하게 α-올레핀 분지가 분포되어 있고 헥산 등에 추출될 수 있는 α-올레핀 분지가 다량 포함된 저분자량 성분이 거의 없어 탄성체로서의 중요한 물성을 제공 할 뿐 아니라 최종 제품의 위생성을 크게 개선 시킬 수 있다. 따라서 이와 같이 제조된 에틸렌과 α-올레핀의 공중합체는 결정성 폴리머의 내충격성 보강재, 필름, 연질포장재, 몰딩제품, 전선피복, 핫멜트 접착제, 등 다양하게 응용 가능하다.
본 발명에서 제시된 촉매 조성물은 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체의 용융점 이상의 온도에서 실시하는 용액중합공정에 적용하는 것이 바람직하다. 그러나 미국특허 제4,752,597호에 개시된 바와 같이 다공성 금속옥사이드 지지체에 상기 전이금속 촉매 및 조촉매를 지지시켜 비균일 촉매 조성물로서 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다.
본 발명에 따른 전이금속 촉매 조성물과 이를 이용한 에틸렌과 α-올레핀의 공중합체 제조방법은 촉매 활성이 높을 뿐 아니라, 고급 α-올레핀 류와의 공중합 반응성이 매우 좋고 고분자량의 중합체를 높은 수율로 제조할 수 있기 때문에 이미 알려진 메탈로센 및 비 메탈로센계 단일활성점 촉매에 비해 밀도 0.850 내지 0.910 g/cc의 탄성을 가지는 공중합체 제조에 상업적인 실용성이 높다. 또한 비가교형 단일활성점 촉매이기 때문에 촉매의 합성단계가 단순하고 합성 수율이 높아서 낮은 촉매 제조원가를 보임과 동시에 α-올레핀 공단량체의 사용량이 적기 때문에 공정의 경제성이 뛰어난 장점이 있다.
따라서 본 발명에 따른 전이금속 촉매 조성물 및 제조방법은 다양한 물성과 탄성을 갖는 에틸렌과 α-올레핀의 공중합체의 제조에 유용하게 사용될 수 있다.
도 1은 본 발명의 실시예 11에 따른 에틸렌 및 α-올레핀과의 공중합체의 13C-NMR 스펙트럼.
도 2는 본 발명의 실시예 11에 따른 에틸렌 및 α-올레핀과의 공중합체의 겔크로마토그피로부터 얻어진 분자량분포 곡선.
이하 실시예를 통하여 본 발명을 구체적으로 설명하지만, 하기의 실시예에 의하여 본 발명의 범주가 본 발명을 한정하는 것은 아니다.
별도로 언급되는 경우를 제외하고 모든 리간드 및 촉매 합성 실험은 질소 분위기 하에서 표준 슐렝크 (Schlenk) 또는 글로브박스 기술을 사용하여 수행되었으며 반응에 사용되는 유기용매는 나트륨금속과 벤조페논 하에서 환류시켜 수분을 제거하여 사용직전 증류하여 사용하였다. 합성된 리간드 및 촉매의 1H-NMR 분석은 상온에서 Varian Oxford 300 MHz을 사용하여 수행하였다.
중합용매인 시클로헥산은 Q-5 촉매 (BASF 사 제품), 실리카겔 및 활성알루미나가 충진된 관을 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독 물질을 충분히 제거시킨 후 사용하였다.
중합된 중합체는 아래에 설명된 방법에 의하여 분석되었다.
1. 용융흐름지수 (MI)
ASTM D 2839에 의거하여 측정하였다.
2. 밀도
ASTM D 1505에 의거, 밀도구배관을 사용하여 측정하였다.
3. 융용점 (Tm) 분석
Dupont DSC2910을 이용하여 질소분위기 하에서 10℃/min의 속도로 2nd 가열조건에서 측정하였다.
4. 분자량 및 분자량분포
PL Mixed-BX2+preCol이 장착된 PL210 GPC를 이용하여 135℃에서 1.0mL/min의 속도로 1,2,3-트리클로로벤젠 용매하에서 측정하였으며, PL 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.
5. 공중합체 중의 α-올레핀 함량 (중량%)
Bruker DRX500 핵자기공명분광기를 이용하여 125MHz에서 1,2,4 트리클로로벤젠/C6D6 (7/3 중량분율) 혼합용매를 사용하여 120℃에서 13C-NMR 모드로 측정하였다. (참고문헌: Randal, J. C. JMS - Rev . Macromol . Chem . Phys. 1980, C29, 201)
[제조예 1] 비스 (2- 페닐페녹시 )( 펜타메틸시클로펜타디에닐 )티타늄(IV)클로라이드의 합성
2-페닐페놀 (1.72g, 10.1mmol, Aldrich 99%)을 건조된 플라스크에 넣고 40ml의 톨루엔에 녹인 후 잘 교반시키며 온도를 0℃로 냉각시켰다. N-부틸리튬 (4.8ml, 2.5M 헥산 용액, Aldrich)을 혼합물에 천천히 적가하였다. 적가가 끝나면 1시간 동안 온도를 유지시킨 후에 펜타메틸시클로펜타디에닐티타늄트리클로라이드 (1.64g, 5.5mmol)을 10ml 톨루엔에 녹여서 천천히 적가하였다. 적가가 끝나면 1시간 동안 유지시킨 후에 상온으로 올려주고 다시 1시간 동안 교반시켰다. 반응기 온도를 90℃로 올려준 후 12시간 동안 반응시켰다. 얻어진 혼합물을 여과한 다음 휘발물질을 제거하고 톨루엔/헥산 혼합 용매로 -35℃에서 재결정을 실시하여 주황색 고체성분 2.3g을 얻었다.
수율 75 % 1H NMR (C6D6) δ = 1.54 ( s, 15H ), 6.74~7.16 ( m, 9H ) ppm.
[제조예 2] ( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(9',9'' 디메틸플루오렌-2'-일)페녹시)티타늄(IV)의 합성
2- 브로모 -9,9'- 디메틸플루오렌의 합성
1000 mL 3구 둥근 플라스크에 2-브로모플루오렌(25g, 102.0 mmol), 요오드메탄 (43.4g, 306.0 mmol)과 DMSO 300 mL를 넣고 질소 분위기하에서 교반하여 녹인다. 포타슘-터트-부톡사이드(32.1g, 285.6 mmol)를 DMSO 400 mL에 녹여 서서히 적가시킨다.상온에서 12시간동안 교반시킨후 다시 80℃에서 1시간 동안 교반시킨 다음 상온으로 온도를 내린다. 물 1000mL와 혼합한 다음 노말헥산으로 추출한다. 유기혼합물을 증류수로 3번 씻어준 다음 무수 마그네슘 설페이트(MgSO4 )로 수분을 제거한 후 회전증발기로 용매를 제거하고 실리카겔 크로마토그라피관을 이용하여 노말헥산으로 정제하여 다시 노말헥산에서 재결정하여 흰색 고형분인 2-브로모-9,9'-디메틸플루오렌 27.0g(수율 96.9% )을 수득하였다.
1H-NMR (CDCl3) δ= 1.65(s, 6H), 7.35-7.39(m, 2H), 7.44-7.50(m, 2H), 7.58-7.62(m, 2H), 7.72-7.73(m, 1H) ppm
2-(2''- 메톡시페닐 )-9,9'- 디메틸플루오렌의 합성
2-브로모-9,9'-디메틸플루오렌(27.0g, 98.8mmol), 2-메톡시페닐보로닉산 (18.0g, 118.6 mmol), 팔라듐아세테이트 (0.13g, 0.6 mmol), 트리페닐포스핀(0.94 g, 3.6 mmol) 및 인산칼륨 (40.9 g, 177.9 mmol)을 투입한 플라스크에 70 ml의 물과 150 mL의 디메톡시에탄 혼합용액을 넣고 6시간 환류시킨다. 상온으로 냉각시킨 후 염화 암모늄 수용액 (150 mL)과 200 mL의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산으로 정제하여 고형분인 2-(2''-메톡시페닐)-9,9'-디메틸플루오렌 28.0g(수율 94.0% )을 수득하였다.
1H-NMR (CDCl3) δ= 1.56(s, 6H), 3.88(s, 3H), 7.04-7.06(d, 1H), 7.08-7.11(t, 1H), 7.33-7.39(m, 3H), 7.43-7.45(d, 1H), 7.47-7.48(d, 1H), 7.56-7.58(d, 1H), 7.63(s, 1H), 7.76-7.840(t, 2H) ppm
2-(9',9''- 디메틸플루오렌 -2'-일)페놀의 합성
2-(2''-메톡시페닐)-9,9'-디메틸플루오렌 (25.0 g, 83.2 mmol)을 400 mL의 메틸렌클로라이드에 녹인 후 -78℃에서 100 mL의 보론트리브로마이드(1M-메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올려 3시간동안 반응시켰다. 반응 후 얼음(150 g)과 디에틸에테르(300 mL) 혼합용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산과 메틸렌클로라이드 혼합용액으로 정제하여 흰색 고형분인 2-(9',9''-디메틸플루오렌-2'-일)페놀 18.0 g(수율 75.5%) 을 수득하였다.
1H-NMR (CDCl3) δ= 1.55(s, 6H), 7.04-7.07(m, 2H), 7.30-7.40(m, 4H), 7.47-7.50(m, 2H), 7.55(s, 1H), 7.78-7.80 (d, 1H), 7.85-7.87(d, 1H) ppm
( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(9',9''- 디메틸플루오렌 -2'-일)페녹시)티타늄(IV)의 합성
2-(9',9''-디메틸플루오렌-2'-일)페놀 (5.0 g, 17.1 mmol)을 200 mL 톨루엔에 녹인후 -78℃에서 노르말부틸리튬 (2.5M 헥산용액, 6.9 mL)을 서서히 주입한 후 상온에서 12시간 동안 교반시킨다. 반응물의 온도를 -78℃으로 내린다음 (펜타메틸시클로펜타디에닐)티타늄(IV)트리클로라이드(4.7 g, 16.3 mmol)를 100 mL의 톨루엔에 녹여 서서히 첨가하여, 12시간 동안 상온에서 반응을 시켰다. 반응이 완료되면 셀라이트로 필터하여 용매를 제거하고 정제된 톨루엔과 헥산으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 적색의 고체성분인 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9',9''-디메틸플루오렌-2'-일) 페녹시) 티타늄(IV) 5.6 g (수율 63.9%)을 얻었다.
1H-NMR (C6D6) δ= 1.61(s, 6H), 1.77(s, 15H), 7.03-7.05(t, 1H), 7.16-7.19(t, 1H), 7.32-7.34(m, 2H), 7.37-7.39(d, 1H), 7.42-7.44(d, 1H), 7.46-7.47(d, 1H), 7.71-7.77(m, 3H), 7.82-7.84(d, 1H) ppm
Mass (APCI mode, m/z): 539.4
실시예 1
회분식중합장치를 사용하여 다음과 같이 에틸렌과 1-옥텐과의 공중합을 수행하였다.
충분히 건조 후 질소로 치환시킨 2000 mL 용량의 스테인레스스틸 반응기에 시클로헥산 1140 mL와 1-옥텐 150 ml를 넣은 다음 개량 메틸알루미녹산-7 (Akzo Nobel사, modified MAO-7, 7 wt% Al Isopar 용액) 54.2 mM 톨루엔 용액 11.1 mL를 반응기에 투입하였다. 이후 반응기의 온도를 140 ℃까지 가열한 다음 제조예 1에서 합성한 비스(2-페닐페녹시)(펜타메틸시클로펜타디에닐)티타늄(IV)클로라이드 (5mM 톨루엔 용액) 0.4 mL와 0.6 mL의 트리페닐메틸리니움테트라키스펜타플루오르페닐보레이트 (99%, Boulder Scientific) 10 mM 톨루엔 용액을 순차적으로 투입한 다음 에틸렌으로 반응기내의 압력을 30 kg/cm2까지 채운 후 연속적으로 공급하여 중합되도록 하였다. 반응시작 1분 내에 최대온도 165.0℃까지 도달하였고, 1분이 지나면 100mL의 10vol% 염산수용액 함유한 에탄올을 투입하여 중합을 종료시킨 다음 1.5 L의 에탄올로 1 시간 동안 교반한 후 반응생성물을 여과, 분리하였다. 회수된 반응생성물을 60℃의 진공오븐에서 8시간 동안 건조시킨 결과 40 g의 중합체가 얻어졌다. 중합체의 멜트인덱스는 11.3, 밀도는 0.8821 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 42,000 g/mol, 분자량분포(Mw/Mn)가 2.10이였고, 1-옥텐 함량 26.5 중량%이었다.
실시예 2
1-옥텐 230mL를 사용한 것을 제외하고는 실시예1과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.
최대온도는 167.5 ℃에 도달하였으며 최종적으로 44.0 g의 중합체가 얻어졌다. 중합체의 멜트인덱스는 15.3, 밀도는 0.8678 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 31,000 g/mol, 분자량분포(Mw/Mn)가 2.05이였고, 1-옥텐 함량 34.4 중량%이었다.
실시예 3
1-옥텐 대신 1-데센 150 mL를 사용한 것을 제외하고는 실시예1과 동일하게 에틸렌과 1-데센과의 공중합을 수행하였다.
최대온도는 175 ℃에 도달하였으며 최종적으로 53.0 g의 중합체가 얻어졌다. 중합체의 멜트인덱스는 12.0, 밀도는 0.8887 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 37,000 g/mol, 분자량분포(Mw/Mn)가 2.41 이었다.
실시예 4
1-옥텐 대신 1-데센 230mL를 사용한 것을 제외하고는 실시예1과 동일하게 에틸렌과 1-데센과의 공중합을 수행하였다.
최대온도 169 ℃에 도달하였으며 최종적으로 50.0 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 16.1, 밀도는 0.8786 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 34,000 g/mol, 분자량분포(Mw/Mn)가 2.25이었다.
실시예 5
촉매 투입전 반응온도를 80 ℃까지 가열한 것과 1-데센 150mL를 투입한 것을 제외하고는 실시예 1과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.
최대온도 156.0 ℃에 도달하였으며 최종적으로 100.0 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 8.0, 밀도는 0.8815 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량( Mw )이 65,000 g/ mol , 분자량분포( Mw / Mn )가 2.30이었다.
실시예 6
제조예 2에서 합성된 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9',9''-디메틸플루오렌-2'-일)페녹시)티타늄(IV)을 촉매로 사용한 것을 제외하고는 실시예1과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.
*최대온도 175 ℃에 도달하였으며 최종적으로 48 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 5.5, 밀도는 0.8840 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 82,000 g/mol, 분자량분포(Mw/Mn)가 2.25이였고, 1-옥텐 함량 25.5 중량%이었다.
실시예 7
1-옥텐 60mL를 사용한 것을 제외하고는 실시예 6과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.
최대온도 176.0 ℃에 도달하였으며 최종적으로 46 g의 중합체가 얻어졌다 중합체의 융용점은 91.5℃, 멜트인덱스는 4.0, 밀도는 0.8979 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 86,000 g/mol, 분자량분포(Mw/Mn)가 2.17이였고, 1-옥텐 함량 17.9 중량%이었다.
실시예 8
1-옥텐 230mL를 사용한 것을 제외하고는 실시예 6과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.
최대온도는 170 ℃에 도달하였으며 최종적으로 42 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 13.0, 밀도는 0.8680 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 37,000 g/mol, 분자량분포(Mw/Mn)가 2.21이였고, 1-옥텐 함량 32.0 중량%이었다.
실시예 9
촉매 투입전 반응온도를 80 ℃까지 가열한 것을 제외하고는 실시예8과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.
최대온도는 149 ℃에 도달하였으며 최종적으로 95 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 4.1, 밀도는 0.8710 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 83,000 g/mol, 분자량분포(Mw/Mn)가 2.09이였고, 1-옥텐 함량 30.5 중량%이었다.
실시예 10 내지 실시예 12
연속식중합장치를 사용하여 다음과 같이 에틸렌과 1-옥텐과의 공중합을 수행하였다.
촉매, 반응용매 및 단량체를 포함한 모든 반응 원재료는 정량펌프를 사용하여 420 mL 용량의 반응기로 연속적으로 주입하였으며, 중합된 반응물에서의 미반응 단량체 및 용매의 제거와 중합체 회수도 연속적으로 이루어졌다. 중합용매로는 시클로헥산이 사용되었으며, 각 원료의 유량 및 주요 반응조건은 표 1에 표시하였다. 반응기를 나오는 반응물에 5.2mmol/hr 유량으로 팔라고닉산을 주입하여 촉매를 비활성화시킨 후 미반응 단량체와 용매를 제거하여 중합체를 얻었다. 촉매는 실시예 10과 11은 제조예 1에서 합성된 비스(2-페닐페녹시)(펜타메틸시클로펜타디에닐)티타늄(IV)클로라이드를 실시예 12는 제조예 2에서 합성된 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9',9''-디메틸플루오렌-2'-일) 페녹시) 티타늄(IV) 가 사용되었다. 촉매 사용량은 표 1에 나타난 것과 같다. Ti는 단일 활성점 촉매, Al은 조촉매인 트리이소부틸알루미늄, B는 트리페닐메틸리니움테트라키스펜타플루오르페닐 보레이트를 각각 나타낸다. 촉매는 톨루엔에 0.2 g/l 의 농도로 용해시켜 주입하였고, 공단량체로 1-옥텐을 사용하였다. 반응기의 전환률은 각각의 반응 조건에서 반응기 후단 공정 스트림의 개스크로마토그라피 분석을 통해 측정하였다. 표 2에는 실시예 10과 11에 의해 제조된 에틸렌과 1-옥텐과의 공중합체의 분석결과이다.
[표 1]
Figure 112012001240712-pat00024
[표 2]
Figure 112012001240712-pat00025
상기의 실시예들로부터 알 수 있는 바와 같이 본 발명을 통한 촉매 조성물 및 제조방법을 통해 밀도 0.910g/cc 이하에서 30,000 이상의 높은 분자량과 3 이하의 좁은 분자량 분포를 가지는 에틸렌과 α-올레핀과의 공중합체를 회분식 또는 연속 반응조건하에서 성공적으로 생산할 수 있음을 알 수 있다.
도 1은 본 발명의 실시예 11에 따른 에틸렌 및 α-올레핀과의 공중합체의 13C-NMR 스펙트럼으로 전형적인 랜덤공중합체의 스펙트럼으로서 Randal, J. C. (참고문헌 JMS - Rev . Macromol . Chem . Phys. 1980, C29, 201)의 방법에 의하여 중합체 중의 α-올레핀 함량을 구할 수 있다.
도 2는 본 발명의 실시예 11에 따른 에틸렌 및 α-올레핀과의 공중합체의 겔크로마토그피로부터 얻어진 분자량분포 곡선이다. 도 2를 참조하면, 분자량분포 곡선의 범위로 보아 표 2에 나타난 바와 같이 실시예 11에 의해 제조된 공중합체의 분자량 분포를 확인할 수 있다.
또한, 본 발명의 촉매계를 이용하여 고온의 용액 중합 조건에서 적은 량의 a-올레핀 공단량체를 투입하면서도 높은 수율로 밀도 0.910g/cc이하의 에틸렌과 a-올레핀과의 공중합체를 제조할 수 있음을 보여준다.
이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.

Claims (15)

  1. 단일반응기 또는 직렬 또는 병렬식의 2차 연속반응기 중에서 하기 화학식 1의 전이금속 화합물 촉매를 포함하는 촉매 조성물 존재 하에 에텔렌 및 C3 - C18의 α-올레핀 공단량체를 공중합시켜 밀도 0.850~0.910g/cc인 에틸렌 및 α-올레핀과의 공중합체 제조방법.
    [화학식 1]
    Figure 112012001240712-pat00026

    상기 식에서, M은 주기율표 상 4족의 전이금속이고;
    Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    R1 내지 R4 는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴 아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    Ar1 은 (C6-C30)아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
    X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오 또는 (C6-C30)아릴티오이며;
    상기 R1 내지 R4, X1 및 X2의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오, 아릴티오; R1 내지 R4가 인접한 치환체와 알킬렌 또는 알케닐렌으로 연결되어 형성된 고리; 및 상기 Ar1과 Ar11의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
  2. 제1항에 있어서,
    상기 화학식 1의 전이금속 촉매는 M이 Ti, Zr 또는 Hf인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  3. 제2항에 있어서,
    상기 전이금속촉매는 하기 화학식에서 선택되는 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
    [화학식 1-2]
    Figure 112012001240712-pat00027

    [화학식 1-3]
    Figure 112012001240712-pat00028

    [화학식 1-4]
    Figure 112012001240712-pat00029

    [화학식 1-5]
    Figure 112012001240712-pat00030

    상기 R21 내지 R23은 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R21 내지 R23은 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있고; 상기 R21 내지 R23 의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오 및 아릴티오는 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있고;
    Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    X1 및 X2는 서로 독립적으로 메틸 또는 Cl이다.
  4. 제3항에 있어서,
    상기 전이금속촉매는 하기에서 선택되는 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
    Figure 112012001240712-pat00031

    상기 Cp는 서로 독립적으로 중심금속 Ti와 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    X1 및 X2는 서로 독립적으로 메틸 또는 Cl이다.
  5. 제1항에 있어서,
    상기 촉매조성물은 상기 전이금속 촉매; 및 알루미녹산 화합물, 알킬알루미늄 화합물 및 붕소 화합물, 또는 이들의 혼합물로부터 선택되는 조촉매; 를 포함하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  6. 제5항에 있어서,
    상기 전이금속 촉매와 상기 조촉매의 비율이 전이금속 M: 붕소원자: 알루미늄 원자의 몰비 기준으로 1:0.5~50:1~1,000인 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  7. 제5항에 있어서,
    상기 붕소 화합물 조촉매는 N,N-디메틸아닐리니움 테트라키스펜타플루오르페닐보레이트, 또는 트리페닐메틸리니움 테트라키스펜타플루오르페닐보레이트, 또는 이들의 혼합물로부터 선택되는 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  8. 제1항에 있어서,
    상기 α-올레핀 공단량체는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센 및 이들의 혼합물로부터 선택되는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  9. 제1항에 있어서,
    상기 공중합체 중 α-올레핀 공단량체의 함량은 10중량% 내지는 60중량%인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  10. 제9항에 있어서,
    상기 공중합체 중 α-올레핀 공단량체의 함량은 20중량% 내지는 45중량%인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  11. 제1항에 있어서,
    상기 공중합체는 밀도가 0.855 내지는 0.905 g/cc인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  12. 제11항에 있어서,
    상기 공중합체는 밀도가 0.860 내지는 0.900 g/cc인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  13. 제1항에 있어서,
    상기 공중합체의 중량평균분자량은 30,000 내지는 500,000 사이이며 분자량분포 (Mw/Mn)는 1.5 내지 3.0 인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  14. 제1항에 있어서,
    상기 공중합체 제조를 위한 반응기 내의 압력은 10 ~ 150 기압이고, 중합 반응 온도는 80 ~ 250℃인 것을 특징으로 하는 에틸렌 및 α-올레핀과의 공중합체 제조방법.
  15. 삭제
KR1020120001475A 2008-11-05 2012-01-05 에틸렌과 α-올레핀의 탄성 공중합체 제조방법 KR101470564B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080109174 2008-11-05
KR20080109174 2008-11-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082288A Division KR101167082B1 (ko) 2008-11-05 2009-09-02 에틸렌과 α-올레핀의 탄성 공중합체 제조방법

Publications (2)

Publication Number Publication Date
KR20120007087A KR20120007087A (ko) 2012-01-19
KR101470564B1 true KR101470564B1 (ko) 2014-12-10

Family

ID=42276532

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020090082288A KR101167082B1 (ko) 2008-11-05 2009-09-02 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
KR1020120001475A KR101470564B1 (ko) 2008-11-05 2012-01-05 에틸렌과 α-올레핀의 탄성 공중합체 제조방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020090082288A KR101167082B1 (ko) 2008-11-05 2009-09-02 에틸렌과 α-올레핀의 탄성 공중합체 제조방법

Country Status (10)

Country Link
US (2) US8013086B2 (ko)
EP (1) EP2344552B1 (ko)
JP (1) JP2012507589A (ko)
KR (2) KR101167082B1 (ko)
CN (2) CN102083871A (ko)
CA (1) CA2728110C (ko)
ES (1) ES2684566T3 (ko)
RU (1) RU2512536C2 (ko)
TW (1) TWI476214B (ko)
WO (1) WO2010053264A2 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101454693B1 (ko) * 2009-12-23 2014-11-06 에스케이이노베이션 주식회사 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
KR101248421B1 (ko) * 2010-07-15 2013-03-28 에스케이이노베이션 주식회사 탄성 및 가공성이 우수한 에틸렌 공중합체
KR102058069B1 (ko) * 2017-12-22 2019-12-20 주식회사 엘지화학 올레핀계 중합체
JP7130301B2 (ja) * 2018-05-04 2022-09-05 エルジー・ケム・リミテッド オレフィン系共重合体及びその製造方法
CN111116783A (zh) * 2018-10-31 2020-05-08 中国石油化工股份有限公司 一种烯烃聚合物及其制备方法
EP4127054A1 (en) * 2020-03-30 2023-02-08 SABIC Global Technologies B.V. Thermoplastic materials for use in slurry transportation pipes
CN114989339A (zh) * 2022-07-05 2022-09-02 宁夏清研高分子新材料有限公司 一种提高tpx聚合物规整度的方法
CN117986422A (zh) * 2022-10-27 2024-05-07 中国石油化工股份有限公司 一种乙烯/α烯烃共聚物及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639696B1 (ko) * 2005-07-01 2006-10-30 에스케이 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용아릴페녹시 촉매계
KR20070104845A (ko) * 2006-04-24 2007-10-29 에스케이에너지 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752597A (en) * 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
JPS6392621A (ja) 1986-10-08 1988-04-23 Mitsubishi Petrochem Co Ltd エチレン共重合体の製造法
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
DE3742934A1 (de) 1987-12-18 1989-06-29 Hoechst Ag Verfahren zur herstellung einer chiralen, stereorigiden metallocen-verbindung
JPH0284405A (ja) 1988-09-20 1990-03-26 Mitsubishi Petrochem Co Ltd エチレン重合体の製造法
GB8828206D0 (en) 1988-12-02 1989-01-05 Shell Int Research Process for conversion of hydrocarbonaceous feedstock
JP2926836B2 (ja) 1989-02-22 1999-07-28 住友電気工業株式会社 窒素含有サーメット合金
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
EP0842939B1 (en) 1995-07-14 2004-10-06 Sumitomo Chemical Company, Limited Olefin polymerization catalyst containing a transition metal complex and process for producing olefin polymers
US5814714A (en) * 1995-11-30 1998-09-29 The Dow Chemical Company Mono-olefin/polyene interpolymers, method of preparation, compositions containing the same, and articles made thereof
CA2243783C (en) 1998-07-21 2007-06-05 Nova Chemicals Ltd. Bis-phosphinimine catalyst
EP1674490A1 (en) * 2004-12-23 2006-06-28 Borealis Technology Oy Copolymer
CN101522727B (zh) * 2006-10-18 2011-07-20 Sk能源株式会社 用来制备乙烯均聚物或乙烯与α-烯烃的共聚物的芳基苯氧基催化剂体系
KR101011497B1 (ko) * 2007-01-29 2011-01-31 주식회사 엘지화학 초저밀도 폴리올레핀 공중합체의 제조 방법
KR101181314B1 (ko) * 2008-03-05 2012-09-11 에스케이이노베이션 주식회사 에틸렌 공중합체 필름 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639696B1 (ko) * 2005-07-01 2006-10-30 에스케이 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용아릴페녹시 촉매계
KR20070104845A (ko) * 2006-04-24 2007-10-29 에스케이에너지 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계

Also Published As

Publication number Publication date
US20110282011A1 (en) 2011-11-17
KR101167082B1 (ko) 2012-07-20
JP2012507589A (ja) 2012-03-29
EP2344552A2 (en) 2011-07-20
US20100113720A1 (en) 2010-05-06
RU2512536C2 (ru) 2014-04-10
TWI476214B (zh) 2015-03-11
US8013086B2 (en) 2011-09-06
WO2010053264A2 (en) 2010-05-14
CA2728110C (en) 2013-10-15
TW201026722A (en) 2010-07-16
EP2344552B1 (en) 2018-08-01
CN107365398A (zh) 2017-11-21
CA2728110A1 (en) 2010-05-14
KR20120007087A (ko) 2012-01-19
EP2344552A4 (en) 2013-11-06
WO2010053264A3 (en) 2010-07-29
RU2010154457A (ru) 2012-07-10
KR20100050385A (ko) 2010-05-13
ES2684566T3 (es) 2018-10-03
CN102083871A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
KR101060838B1 (ko) 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계
KR101470564B1 (ko) 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
KR101142117B1 (ko) 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101142115B1 (ko) 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및이를 이용한 에틸렌 단독중합체 또는 에틸렌과α-올레핀의 공중합체의 제조방법
JP5879035B2 (ja) 遷移金属触媒組成物、及びエチレン単独重合体又はエチレンとα−オレフィンの共重合体の製造方法
KR101146875B1 (ko) 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는에틸렌과 올레핀의 공중합체 제조방법
KR101141359B1 (ko) 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용균일 촉매계
KR20150138042A (ko) 새로운 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
JP5839521B2 (ja) 共重合性に優れた遷移金属触媒系及びこれを用いたエチレン単独重合体またはエチレン及びα−オレフィンの共重合体の製造方法
KR101186489B1 (ko) 전이금속 화합물 및 이를 포함하는 에틸렌 단독중합체 또는공중합체 제조용 전이금속 촉매 조성물
KR101142122B1 (ko) 새로운 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101470532B1 (ko) 새로운 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101511742B1 (ko) 공중합성이 우수한 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
RU2575004C2 (ru) Современные каталитические системы с переходным металлом на основе внедрения сомономера и использующие их способы приготовления гомополимеров этилена или сополимеров этилена и олефинов
KR101454693B1 (ko) 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
KR101831258B1 (ko) 새로운 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180711

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190510

Year of fee payment: 6