JP2000058228A - Thin film resistance heating element and toner heating/ fixing member using it - Google Patents

Thin film resistance heating element and toner heating/ fixing member using it

Info

Publication number
JP2000058228A
JP2000058228A JP10228223A JP22822398A JP2000058228A JP 2000058228 A JP2000058228 A JP 2000058228A JP 10228223 A JP10228223 A JP 10228223A JP 22822398 A JP22822398 A JP 22822398A JP 2000058228 A JP2000058228 A JP 2000058228A
Authority
JP
Japan
Prior art keywords
heating element
film
resistance heating
thin
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10228223A
Other languages
Japanese (ja)
Other versions
JP4076280B2 (en
Inventor
Motoyasu Nakanishi
幹育 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Sogyo Co Ltd
Original Assignee
Suzuki Sogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Sogyo Co Ltd filed Critical Suzuki Sogyo Co Ltd
Priority to JP22822398A priority Critical patent/JP4076280B2/en
Publication of JP2000058228A publication Critical patent/JP2000058228A/en
Application granted granted Critical
Publication of JP4076280B2 publication Critical patent/JP4076280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Abstract

PROBLEM TO BE SOLVED: To provide a thin film heating element with excellent performance by applying a coating agent composition blended with a specific quantity of one or both of a carbon nano-tube and a carbon micro-coil into a film forming component to a base material, then hardening it. SOLUTION: One or both of a carbon nano-tube and a carbon micro-coil are used as a resistance heating property applying element blended into the film forming component of a coating agent composition, the blended ratio is properly set to 1-50 pts.wt. against the film forming component of 100 pts.wt., preferably 5-10 pts.wt. When the blended ratio is changed, the resistance of a heating element can be changed. The film forming component is selected from a composition blended with organosiloxane having a functional side chain as a bridging agent and a curing catalyst into organopolysiloxane serving as a main agent and a composition blended with a high-heat solvent into ceramic grains.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通電することによ
り発熱する抵抗発熱体に関する。さらに詳しくは、優れ
た発熱性能と機械的強度を有する薄膜抵抗発熱体に関す
る。また、本発明は、複写機、ファクシミリ、プリンタ
ー等において、被転写物に転写されたトナーを加熱によ
り定着させる際に用いる、トナーの加熱定着用部材に関
する。
The present invention relates to a resistance heating element that generates heat when energized. More specifically, it relates to a thin-film resistance heating element having excellent heat generation performance and mechanical strength. In addition, the present invention relates to a heat fixing member for toner used in a copying machine, a facsimile, a printer, and the like when fixing the toner transferred to a transfer target by heating.

【0002】[0002]

【従来の技術】従来、カーボンナノチューブを導電性、
熱伝導性、電磁波シールド性等の機能の付与要素として
用い、例えばポリアミド、ポリエステル、ポリエーテ
ル、ポリイミド等の有機材料、あるいはガラス、セラミ
ックス材料等の無機材料等をマトリックスとして用い、
それらを複合して、導電性、熱伝導性、電磁波シールド
性等の機能を有する構造材料用複合材とすることは知ら
れている。また、カーボンマイクロコイルが電磁波シー
ルド材等に利用されることも知られている。しかし、未
だ、カーボンナノチューブあるいはカーボンマイクロコ
イルを機能付与要素として含有し、基体に任意の厚さの
堅牢な被膜を容易に形成し得るコーティング剤組成物は
提案されていない。カーボンナノチューブあるいはカー
ボンマイクロコイルは、その特異な特性からして、多く
の分野で利用することが期待されており、その一つとし
て、機能性コーティング剤の分野において、所望の厚さ
で均一に容易に塗布し得て、均一で堅牢な被膜を容易に
形成できる、カーボンナノチューブあるいはカーボンマ
イクロコイルを含有する機能性コーティング剤組成物の
提供が望まれていた。
2. Description of the Related Art Conventionally, carbon nanotubes are made conductive,
Thermal conductivity, used as an element for imparting functions such as electromagnetic wave shielding properties, for example, an organic material such as polyamide, polyester, polyether, polyimide, or glass, using an inorganic material such as a ceramic material as a matrix,
It is known to combine them into a composite material for structural materials having functions such as conductivity, heat conductivity, and electromagnetic wave shielding properties. It is also known that carbon microcoils are used for electromagnetic wave shielding materials and the like. However, there has not yet been proposed a coating composition containing a carbon nanotube or a carbon microcoil as a function-imparting element and capable of easily forming a robust coating having an arbitrary thickness on a substrate. Carbon nanotubes or carbon microcoils are expected to be used in many fields due to their unique properties. One of them is that in the field of functional coating agents, carbon nanotubes or carbon microcoils can be uniformly and easily formed to a desired thickness. It has been desired to provide a functional coating agent composition containing a carbon nanotube or a carbon microcoil, which can be applied to a varnish and can easily form a uniform and robust film.

【0003】一方、複写機、ファクシミリ、レーザープ
リンター等において印刷等を行う際には、被転写物に転
写されたトナーを印刷の最終段階で加熱溶融し定着させ
る必要がある。従来、この加熱定着させる方法としては
主に2つの方法が知られている。
On the other hand, when printing is performed in a copying machine, a facsimile, a laser printer, or the like, it is necessary to heat and fuse the toner transferred to the transfer object at the final stage of printing. Heretofore, two main methods have been known as a method for heat fixing.

【0004】従来の方法の一つは図2に示すように、ト
ナーに接触するローラー11の内部にヒーター10を設
置し、ローラーの全体を輻射熱で加熱することによりト
ナーを間接的に加熱する方法である。この方法は、ロー
ラー全体を均一に加熱できるため、印刷スピードが速い
という利点を有する一方、電力のロスが大きい、印刷を
始めるまでの待ち時間が長い、ローラーの温度コントロ
ールが困難である等の問題がある。
As shown in FIG. 2, one of the conventional methods is to install a heater 10 inside a roller 11 which comes into contact with the toner, and to heat the toner indirectly by heating the entire roller with radiant heat. It is. This method has the advantage that the printing speed is fast because the entire roller can be heated uniformly, but has the problems of large power loss, long waiting time before starting printing, and difficulty in controlling the temperature of the roller. There is.

【0005】従来の方法のもう一つとしては、図3に示
すように、トナーに接触する部分を、エンドレスベルト
13を介してヒーター12で間接的に加熱する方法であ
る。この方法は、ベルトの一部分のみを加熱するため、
電力のロスも少なく印刷開始までの待ち時間も短い利点
があるが、エンドレスベルトの回転に伴って次々に異な
る部位を加熱しなければならないため、温度むらが生じ
易く印刷スピードを遅くせざるを得ない。
As another conventional method, as shown in FIG. 3, a portion in contact with the toner is indirectly heated by a heater 12 via an endless belt 13. This method heats only a part of the belt,
It has the advantage of low power loss and short waiting time until printing starts.However, since different parts must be heated one after another with the rotation of the endless belt, temperature unevenness tends to occur and printing speed must be reduced. Absent.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、上記機能
性コーティング剤組成物についての従来の状況に鑑み、
カーボンナノチューブあるいはカーボンマイクロコイル
を含有させた優れた機能性コーティング剤組成物を開発
すべく鋭意検討していたところ、図らずも、カーボンナ
ノチューブあるいはカーボンマイクロコイルが、薄膜抵
抗発熱体を形成するのに用いられる機能性コーティング
剤組成物において、抵抗発熱機能付与要素として好適に
用い得ることを見出した。すなわち、被膜形成性成分に
カーボンナノチューブ及びカーボンマイクロコイルのい
ずれか一方又は双方を配合したコーティング剤組成物の
硬化被膜が、薄膜抵抗発熱体として優れた性能を示すこ
とを見出した。したがって、本発明の第一の目的は、優
れた性能の薄膜抵抗発熱体を提供することにある。
SUMMARY OF THE INVENTION In view of the conventional situation of the above functional coating composition, the present inventors
We have been studying to develop an excellent functional coating agent composition containing carbon nanotubes or carbon microcoils, but unintentionally, carbon nanotubes or carbon microcoils could form a thin-film resistance heating element. It has been found that the functional coating composition used can be suitably used as a resistance heating function imparting element. That is, the inventors have found that a cured film of a coating composition in which one or both of a carbon nanotube and a carbon microcoil is blended with a film-forming component exhibits excellent performance as a thin-film resistance heating element. Accordingly, a first object of the present invention is to provide a thin-film resistance heating element having excellent performance.

【0007】また、トナーの加熱定着用部材についての
従来の状況に鑑み、本発明は、上記薄膜抵抗発熱体を利
用して、ローラー表面の温度コントロールが容易で、温
度むらが生じず、さらに電力のロスが小さく、印刷開始
までの待ち時間も短く、印刷スピードを速くできる新規
なトナーの加熱定着用部材を提供することを第2の目的
とする。
Further, in view of the conventional situation of the heat fixing member for toner, the present invention makes it possible to easily control the temperature of the roller surface by using the above-mentioned thin film resistance heating element, to prevent the occurrence of temperature unevenness, and to further reduce power consumption. It is a second object of the present invention to provide a novel toner heat-fixing member capable of reducing the loss of the toner, shortening the waiting time until the start of printing, and increasing the printing speed.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る薄膜抵抗発熱体は、被膜形成性成分に
カーボンナノチューブ及びカーボンマイクロコイルのい
ずれか一方又は双方が配合されたコーティング剤組成物
を、基材に塗布して硬化せしめてなることを特徴とす
る。
In order to achieve the above-mentioned object, a thin-film resistance heating element according to the present invention comprises a coating agent comprising a film-forming component and one or both of carbon nanotubes and carbon microcoils. The composition is characterized by being applied to a substrate and cured.

【0009】また、上記のコーティング剤組成物におけ
る、カーボンナノチューブ及びカーボンマイクロコイル
のいずれか一方又は双方の配合割合は、被膜形成性成分
100重量部に対して1〜50重量部であることを特徴
とする。
[0009] In the above-mentioned coating composition, one or both of carbon nanotubes and carbon microcoils are mixed in an amount of 1 to 50 parts by weight per 100 parts by weight of the film-forming component. And

【0010】さらに、上記のコーティング剤組成物にお
ける被膜形成性成分は、(a)オルガノポリシロキサン
を主剤とし、それに架橋剤として官能性側鎖を有するオ
ルガノシロキサンおよび硬化触媒が配合された組成物、
(b)セラミックス粒子に高熱用溶媒が配合された組成
物、(c)ペルヒドロポリシラザンの有機溶媒溶液、あ
るいは(d)金属酸化物粉末の存在下に低分子量のグリ
シジルエーテル型エポキシ樹脂を触媒を用いて反応さ
せ、調製されたプレポリマー、から選ばれた一のもので
あることを特徴とする。
Further, the film-forming component in the above coating composition is (a) a composition comprising an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst.
A catalyst comprising (b) a composition in which a solvent for high heat is mixed with ceramic particles, (c) an organic solvent solution of perhydropolysilazane, or (d) a low molecular weight glycidyl ether type epoxy resin in the presence of a metal oxide powder is used as a catalyst. And a prepolymer prepared by reacting with the prepolymer.

【0011】本発明の薄膜抵抗発熱体は、カーボンナノ
チューブあるいはカーボンマイクロコイルの特異な形状
からして、それら相互が絡み合ってそれら相互の接触が
容易に密に図られ、かつ被膜形成性成分との結合も強固
なものとなるから、高性能でかつ優れた機械的強度を有
する。
The thin-film resistance heating element of the present invention has a unique shape of carbon nanotubes or carbon microcoils, which are entangled with each other so that they are easily and densely contacted with each other. Since the bonding is also strong, it has high performance and excellent mechanical strength.

【0012】また本発明は、トナーの加熱定着用部材と
して、上述の薄膜抵抗発熱体を用いたことを特徴とす
る。
Further, the present invention is characterized in that the above-mentioned thin film resistance heating element is used as a heat fixing member for toner.

【0013】さらに本発明は、上記のトナーの加熱定着
用部材において、薄膜抵抗発熱体が、トナーの加熱定着
用部材の円周面を構成することを特徴とする。したがっ
て、トナーを間接的に加熱する従来の方法と異なり、ト
ナーに接する部分が直接発熱するため、温度コントロー
ルが容易になり、温度むらも生じない。
Further, the present invention is characterized in that in the above-mentioned toner heat fixing member, the thin film resistance heating element forms a circumferential surface of the toner heat fixing member. Therefore, unlike the conventional method in which the toner is indirectly heated, the portion in contact with the toner directly generates heat, so that the temperature can be easily controlled and temperature unevenness does not occur.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。本発明で用いるカーボンナノチュー
ブあるいはカーボンマイクロコイルとしては、公知の種
々のカーボンナノチューブ及びカーボンマイクロコイル
を用いることができる。カーボンナノチューブは、一般
に、炭素からなる、外径2〜70nmで、長さが直径の
102 倍以上である円筒状の中空繊維状のものであっ
て、炭素含有ガスの気相分解反応や、炭素棒・炭素繊維
などのアーク放電によって得られるものである。また、
その末端形状は必ずしも円筒状である必要はなく、例え
ば円錐状等変形していても差し支えない。さらに末端は
閉じた構造でも開いていてもどちらでも良い。好ましく
用いられるカーボンナノチューブの例として、ハイペリ
オン・カタリシス・インターナショナル社製のGrap
hite Fibrils・Grades BN(商品
名)等が挙げられる。
Embodiments of the present invention will be described below in detail. As the carbon nanotube or carbon microcoil used in the present invention, various known carbon nanotubes and carbon microcoils can be used. Carbon nanotubes typically composed of carbon, an outer diameter of 2 to 70 nm, be of cylindrical hollow fiber is not less than 10 2 times the diameter length, vapor phase decomposition reaction or a carbon-containing gas, It is obtained by arc discharge of carbon rods and carbon fibers. Also,
The end shape does not necessarily need to be cylindrical, and may be deformed, for example, conical. Further, the ends may be closed or open. As an example of a carbon nanotube preferably used, Graph made by Hyperion Catalysis International Co., Ltd.
white Fibrils / Grades BN (trade name) and the like.

【0015】カーボンマイクロコイルは、一般に、炭素
からなる、繊維直径が0.05〜5μm、コイル外径が
繊維直径の2〜10倍であり、巻数が10μm当たり5
/コイル外径(μm)〜50/コイル外径(μm)であ
るコイル状繊維のものであって、炭素含有ガスの気相分
解反応によって得られるものである。本発明の実施に当
たり、カーボンナノチューブとカーボンマイクロコイル
を併用することもでき、その併用割合は必要に応じて適
宜選択することができる。
The carbon microcoil is generally made of carbon, has a fiber diameter of 0.05 to 5 μm, an outer coil diameter of 2 to 10 times the fiber diameter, and has 5 turns per 10 μm.
/ Coil outer diameter (μm) to 50 / coil outer diameter (μm), which is obtained by a gas phase decomposition reaction of a carbon-containing gas. In carrying out the present invention, a carbon nanotube and a carbon microcoil can be used in combination, and the combination ratio can be appropriately selected as needed.

【0016】本発明の薄膜抵抗発熱体の製造は、方法自
体は従来の薄膜抵抗発熱体の製造法に準じて行うことが
できる。すなわち、従来から知られた、抵抗発熱性被膜
を形成するコーティング組成物を基材に塗布して硬化せ
しめる方法において、コーティング組成物の被膜形成性
成分に配合する抵抗発熱性付与要素としてカーボンナノ
チューブ及びカーボンマイクロコイルのいずれか一方又
は双方を用いることにより、製造することができる。
The method of manufacturing the thin-film resistance heating element of the present invention can be carried out according to a conventional method of manufacturing a thin-film resistance heating element. That is, conventionally known, in a method of applying a coating composition for forming a resistive heat-generating film to a substrate and curing it, carbon nanotubes and carbon nanotubes as resistive heat-generating elements to be added to the film-forming component of the coating composition It can be manufactured by using one or both of the carbon microcoils.

【0017】この際、カーボンナノチューブ、カーボン
マイクロコイルの配合割合は、必要に応じて適宜選択す
ることができるが、一般に、被膜形成性成分100重量
部に対して1〜50重量部が適当であり、好ましくは5
〜10重量部である。配合割合を変えることによって発
熱体の抵抗値を変えることができ、したがって発熱量を
制御することができる。
At this time, the mixing ratio of the carbon nanotubes and the carbon microcoils can be appropriately selected as needed, but generally, 1 to 50 parts by weight is appropriate for 100 parts by weight of the film-forming component. , Preferably 5
To 10 parts by weight. By changing the mixing ratio, the resistance value of the heating element can be changed, and therefore, the amount of generated heat can be controlled.

【0018】また、本発明者らは、本発明の薄膜抵抗発
熱体の製造に関して次のことを知見している。すなわ
ち、被膜形成性成分として(a)オルガノポリシロキサ
ンを主剤とし、それに架橋剤として官能性側鎖を有する
オルガノシロキサン及び硬化触媒が配合された組成物、
(b)セラミックス粒子に高熱用溶媒が配合された組成
物、(c)ペルヒドロポリシラザンの有機溶媒溶液、及
び(d)金属酸化物粉末の存在下に低分子量のグリシジ
ルエーテル型エポキシ樹脂を触媒を用いて反応させ、調
製されたプレポリマーという特定の被膜形成性成分から
選ばれた被膜形成性成分を用い、それにカーボンナノチ
ューブ及びカーボンマイクロコイルのいずれか一方又は
双方を配合したという特定のコーティング剤組成物を用
いると、所望の厚さで均一に容易に塗布することがで
き、均一で堅牢な被膜を容易に形成することができるの
で、一層好適に品質の優れた薄膜抵抗発熱体を製造し得
ることを知見している。
The present inventors have found the following regarding the production of the thin-film resistance heating element of the present invention. That is, a composition comprising (a) an organopolysiloxane as a main component as a film-forming component, and an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst.
A catalyst comprising (b) a composition in which a solvent for high heat is mixed with ceramic particles, (c) an organic solvent solution of perhydropolysilazane, and (d) a glycidyl ether type epoxy resin having a low molecular weight in the presence of a metal oxide powder. A specific coating agent composition in which a film-forming component selected from a specific film-forming component called a prepolymer prepared by using and reacting with one or both of carbon nanotubes and carbon microcoils is used. When a product is used, it can be easily and uniformly applied with a desired thickness, and a uniform and robust film can be easily formed. Therefore, a thin-film resistance heating element having excellent quality can be more suitably manufactured. I know that.

【0019】上記特定の被膜形成性成分にカーボンナノ
チューブ及びカーボンマイクロコイルのいずれか一方又
は双方を配合したコーティング剤組成物は、本発明者ら
が案出し、別途特許出願(平成10年7月14日出願)
された発明に係る新規なコーティング剤組成物である。
The inventors of the present invention devised a coating agent composition in which one or both of carbon nanotubes and carbon microcoils are blended with the above-mentioned specific film-forming component, and separately filed a patent application (July 14, 1998). Application)
A novel coating composition according to the invention.

【0020】上記特定のコーティング剤組成物で用いら
れる被膜形成性成分の一つは、上記のとおり、オルガノ
ポリシロキサンを主剤とし、それに架橋剤として官能性
側鎖を有するオルガノシロキサン及び硬化触媒が配合さ
れた組成物(以下「オルガノポリシロキサン組成物」と
略称)である。このオルガノポリシロキサン組成物にお
いて、主剤のオルガノポリシロキサンは、メチル基ある
いはフェニル基を有するものが好ましい。架橋剤として
は、アルコキシ基、アシロキシ基、オキシム基等の官能
性側鎖を有するオルガノシロキサンが好ましい。硬化触
媒としては、Zn、Al、Co、Sn等の金属を含有す
る有機化合物及びハロゲンが好ましい。また、このオル
ガノポリシロキサン組成物は、珪素成分をSiO2 換算
で40%以上含有していることが好ましく、また溶剤、
水もしくは水酸基を含有しないものである。また、この
オルガノポリシロキサン組成物は、低温加熱や常温乾燥
でも硬化して、硬質で密着性に優れたセラミックス被膜
を形成する。また、その硬化機構は、主剤のオリガノポ
リシロキサンの官能基が、まず空気中の水分により加水
分解を受けて水酸基に変化し、次に該オリガノポリシロ
キサンの水酸基を架橋剤のオルガノシロキサンの官能基
がアタックし、硬化触媒の作用も受けて脱アルコール反
応を起こし、三次元構造の高分子化合物たるポリシロキ
サン硬化体を形成すると考えられている。いわゆるゾル
・ゲル法による金属アルコキシ縮合物となる。かかるオ
ルガノポリシロキサン組成物の例として、ホ−マーテク
ノロジー株式会社販売のヒートレスガラス(HEATL
ESS GLASS)(商品名)等が挙げられる。上記
オルガノポリシロキサン組成物には、必要に応じて、例
えばシロキサン結合が三次元に伸びた網状構造で、珪素
原子に一個のメチル基が結合した無機と有機の中間的な
構造を有するシリコーン樹脂の微粒子などの他の配合物
も添加することができる。上記無機と有機の中間的な構
造を有するシリコーン樹脂の例として、東芝シリコーン
株式会社販売のトスパール(商品名)等が挙げられる。
As described above, one of the film-forming components used in the above-mentioned specific coating composition is mainly composed of an organopolysiloxane, and is further blended with an organosiloxane having a functional side chain as a crosslinking agent and a curing catalyst. (Hereinafter abbreviated as "organopolysiloxane composition"). In this organopolysiloxane composition, the organopolysiloxane as a main component preferably has a methyl group or a phenyl group. As the crosslinking agent, an organosiloxane having a functional side chain such as an alkoxy group, an acyloxy group, and an oxime group is preferable. As the curing catalyst, an organic compound containing a metal such as Zn, Al, Co, and Sn and a halogen are preferable. Further, the organopolysiloxane composition preferably contains a silicon component in an amount of 40% or more in terms of SiO 2 ,
It does not contain water or a hydroxyl group. In addition, the organopolysiloxane composition cures even when heated at low temperature or dried at room temperature to form a hard ceramic coating having excellent adhesion. Further, the curing mechanism is such that the functional group of the organopolysiloxane of the main agent is first hydrolyzed by moisture in the air to be changed to a hydroxyl group, and then the hydroxyl group of the organopolysiloxane is converted to the hydroxyl group of the crosslinking agent organosiloxane. It is considered that a functional group is attacked and a dealcoholization reaction is caused by the action of a curing catalyst to form a cured polysiloxane as a polymer compound having a three-dimensional structure. It becomes a metal alkoxy condensate by the so-called sol-gel method. As an example of such an organopolysiloxane composition, a heatless glass (HEATL) sold by Homer Technology Co., Ltd.
ESS GLASS) (trade name). If necessary, the organopolysiloxane composition may be, for example, a silicone resin having an intermediate structure between inorganic and organic in which a siloxane bond has a three-dimensionally extended network structure and one methyl group bonded to a silicon atom. Other formulations, such as microparticles, can also be added. Examples of the silicone resin having an intermediate structure between inorganic and organic include Tospearl (trade name) sold by Toshiba Silicone Co., Ltd.

【0021】被膜形成性成分の他の一つは、上記のとお
り、セラミックス粒子に高熱用溶媒が配合された組成物
である。この組成物における高熱用溶媒の例としては、
ブタノール、イソプロパノール等のアルコール系溶剤等
が挙げられる。またセラミックス粒子の例としては、ア
ルミナ、アルミニウム、ジルコニア、溶融シリカ、パー
ライト、ムライト等のセラミックス粒子が挙げられ、そ
の粒径は、必要に応じて適宜選択することができるが、
一般に数〜数十μmが適当である。高熱用溶媒は、被膜
形成性成分全体で比重が2〜3程度になるように配合し
たものが好適に用いられる。このセラミックス粒子に高
熱用溶媒が配合された組成物の例として、株式会社熱研
製のレッドプルーフ(商品名)等が挙げられる。
Another one of the film-forming components is, as described above, a composition comprising a ceramic particle and a high heat solvent. Examples of the solvent for high heat in this composition include:
Examples thereof include alcohol solvents such as butanol and isopropanol. Examples of the ceramic particles include ceramic particles such as alumina, aluminum, zirconia, fused silica, pearlite, and mullite, and the particle size can be appropriately selected as necessary.
Generally, several to several tens of μm is appropriate. As the solvent for high heat, a solvent which is blended so that the specific gravity of the entire film-forming component becomes about 2 to 3 is preferably used. As an example of a composition in which a solvent for high heat is blended with the ceramic particles, Red Proof (trade name) manufactured by Athen Co., Ltd. and the like can be mentioned.

【0022】被膜形成性成分のさらに他の一つは、上記
のとおり、ペルヒドロポリシラザンの有機溶媒溶液であ
る。ペルヒドロポリシラザンは、構造式が〔SiHa
bn (式中、aは1〜3、bは0または1であ
る。)で表されるセラミックス前駆体である。このペル
ヒドロポリシラザンは、例えば、ジクロロシランと溶媒
中のピリジンとの錯体生成を経由して合成することによ
り(ピリジン錯体法)、低分子量環状体の少ない、比較
的高分子量のオリゴマーを得ることができる。実際の分
子構造は複雑であるが、不規則な環状部を多く含む、数
平均分子量が数千のオリゴマーである。このペルヒドロ
ポリシラザンは、基体表面に塗布後焼成することにより
セラミックスに転化され、大気またはそれに準じた雰囲
気下で焼成した場合には、シリカガラス(SiO2 )に
転化する。有機溶媒の例としては、ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素溶媒が挙げられ、中で
もキシレンは好ましく用いられる。有機溶媒溶液中のペ
ルヒドロポリシラザンの濃度は、必要に応じて適宜選択
できるが、高濃度であると水飴状となり作業性に劣るの
で、適当に粘性を有する範囲とする。かかるペルヒドロ
ポリシラザンの例として、東燃株式会社製の東燃ポリシ
ラザン(商品名)等が挙げられる。また、このペルヒド
ロポリシラザンの有機溶媒溶液には、必要に応じて、酸
化マグネシウム、炭化珪素等ののフィラー等を配合する
ことができる。
Still another one of the film-forming components is a solution of perhydropolysilazane in an organic solvent as described above. Perhydropolysilazane has a structural formula of [SiH a N
Hb ] n (where a is 1 to 3 and b is 0 or 1). This perhydropolysilazane can be synthesized, for example, by forming a complex of dichlorosilane and pyridine in a solvent (pyridine complex method) to obtain a relatively high molecular weight oligomer having a small number of low molecular weight cyclic substances. it can. Although the actual molecular structure is complex, it is an oligomer having a number average molecular weight of several thousand containing many irregular cyclic parts. This perhydropolysilazane is converted into ceramics by being applied to the surface of the substrate and then baked, and when baked in air or an atmosphere similar thereto, it is converted into silica glass (SiO 2 ). Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, among which xylene is preferably used. The concentration of perhydropolysilazane in the organic solvent solution can be appropriately selected as needed. However, if the concentration is high, it becomes syrupy and poor in workability, so that it is in a range having an appropriate viscosity. Examples of such perhydropolysilazane include Tonen polysilazane (trade name) manufactured by Tonen Corporation. In addition, a filler such as magnesium oxide and silicon carbide can be added to the organic solvent solution of perhydropolysilazane, if necessary.

【0023】被膜形成性成分のなおさらに他の一は、上
記のとおり、金属酸化物粉末の存在下に低分子量のグリ
シジルエーテル型エポキシ樹脂を触媒を用いて反応さ
せ、調製されたプレポリマーである。このプレポリマー
は、例えば、国際公開番号W090/08168号公報
の実施例1〜5の記載に従い、次の製造方法により得る
ことができる。まず、反応容器に低分子量のグリシジル
エーテル型エポキシ樹脂と触媒を投入し、加熱下におい
て反応させる。次に、反応容器に金属酸化物粉末を投入
し、攪拌しながら加熱を継続し、所要時間後に反応を終
了させ、プレポリマーを得る。このプレポリマーの製造
において用いる低分子量のグリシジルエーテル型エポキ
シ樹脂としては、レゾルシノールのジグリシジルエーテ
ル、ビスフェノールAのジグリシジルエーテル等を挙げ
ることができる。また、触媒としては、2−エチル−4
−メチルイミダゾール、2−メチルイミダゾール、4−
メチルイミダゾール等を挙げることができる。さらに、
金属酸化物粉末としては、特に制限はないが、シリカ粉
末、アルミナ粉末、マグネシア粉末が好ましく用いられ
る。また、このプレポリマーの例として、株式会社ニッ
ケーコー製のセラプロテックス(商品名)等を挙げるこ
とができる。
Still another one of the film-forming components is a prepolymer prepared by reacting a low molecular weight glycidyl ether type epoxy resin with a catalyst in the presence of a metal oxide powder as described above. . This prepolymer can be obtained by the following production method, for example, according to the description of Examples 1 to 5 in International Publication No. WO090 / 08168. First, a low molecular weight glycidyl ether type epoxy resin and a catalyst are charged into a reaction vessel and reacted under heating. Next, the metal oxide powder is charged into the reaction vessel, heating is continued while stirring, and after a required time, the reaction is terminated to obtain a prepolymer. Examples of the low-molecular-weight glycidyl ether type epoxy resin used in the production of the prepolymer include diglycidyl ether of resorcinol, and diglycidyl ether of bisphenol A. As the catalyst, 2-ethyl-4
-Methylimidazole, 2-methylimidazole, 4-
Methyl imidazole and the like can be mentioned. further,
The metal oxide powder is not particularly limited, but silica powder, alumina powder, and magnesia powder are preferably used. Further, as an example of the prepolymer, Seraprotex (trade name) manufactured by Nikko Co., Ltd. can be mentioned.

【0024】上記特定のコーティング剤組成物における
カーボンナノチューブ及びカーボンマイクロコイルのい
ずれか一方又は双方の配合割合は、必要に応じて適宜選
択することができるが、一般に、被膜形成性成分100
重量部に対して1〜50重量部が適当であり、好ましく
は5〜10重量部である。
The mixing ratio of one or both of the carbon nanotubes and the carbon microcoils in the specific coating agent composition can be appropriately selected as necessary.
The amount is suitably 1 to 50 parts by weight, preferably 5 to 10 parts by weight based on parts by weight.

【0025】また、上記特定のコーティング剤組成物の
調製は、上記各種被膜形成性成分のいずれかと、カーボ
ンナノチューブ及びカーボンマイクロコイルのいずれか
一方又は双方とを、ヘンシェルミキサー、オープンロー
ルミキサー、バンバリー混合機等の公知の混合手段を用
いて適宜混合して行うことができる。
The specific coating agent composition is prepared by mixing one of the above various film-forming components with one or both of the carbon nanotubes and the carbon microcoils by using a Henschel mixer, an open roll mixer, and a Banbury mixer. It can be suitably mixed using a known mixing means such as a mixer.

【0026】本発明の薄膜抵抗発熱体の製造に当たり、
上記それぞれのカーボンナノチューブ及びカーボンマイ
クロコイルのいずれか一方又は双方を含有したコーティ
ング剤組成物は、スピンコート法、ディッピングコート
法、スプレイコート法、バーコート法、ロールコート
法、印刷法など公知の塗布方法により基体に塗布するこ
とができる。基体としては、フッ素樹脂、イミド樹脂、
アミド樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステ
ル樹脂、ブチルゴム等のポリマー材料、あるいは各種セ
ラミックス、ガラス等の従来から薄膜抵抗発熱体を構成
するに用いられていた基体を、必要に応じて適宜選択し
て用いることができる。
In manufacturing the thin film resistance heating element of the present invention,
The coating composition containing one or both of the carbon nanotubes and carbon microcoils described above can be formed by known coating methods such as spin coating, dipping coating, spray coating, bar coating, roll coating, and printing. It can be applied to a substrate by any method. As the substrate, a fluororesin, an imide resin,
Polymer materials such as amide resins, epoxy resins, urethane resins, polyester resins, and butyl rubber, or various ceramics, glass, and other substrates conventionally used to form thin-film resistance heating elements are appropriately selected as necessary. Can be used.

【0027】基体に塗布されたコーティング剤組成物の
塗膜は、硬化させて、薄膜抵抗発熱体とされる。コーテ
ィング剤組成物の硬化条件は、用いたコーティング剤組
成物の被膜形成性成分の種類等に応じて適宜選択でき
る。
The coating film of the coating composition applied to the substrate is cured to form a thin-film resistance heating element. The curing conditions of the coating composition can be appropriately selected according to the type of the film-forming component of the coating composition used.

【0028】特に、(a)〜(d)の被膜形成性成分を
含むコーティング剤組成物を用いることによって、より
堅牢なコーティング被膜を得ることができる。その際の
硬化条件は、(a)及び(b)の場合は常温〜120℃
で1〜24時間、(c)の場合は100〜600℃で1
時間、(d)の場合は80℃で4時間保持するのが適当
である。またこの硬化は、従来から知られた方法により
行うことができる
Particularly, by using a coating composition containing the film-forming components (a) to (d), a more robust coating film can be obtained. The curing conditions at that time are as follows: (a) and (b): room temperature to 120 ° C.
For 1 to 24 hours, and in the case of (c), 1 to 100 to 600 ° C.
In the case of (d), it is appropriate to hold at 80 ° C. for 4 hours. This curing can be performed by a conventionally known method.

【0029】また、本発明の薄膜抵抗発熱体は、従来の
薄膜抵抗発熱体と同様に、電極が設けられることは無論
のこと、必要に応じて、例えば、合成樹脂、セラミック
ス等等の被覆材、防湿防滴材等で被覆する等、所望の付
帯要素を付加することができる。
The thin-film resistance heating element of the present invention, like the conventional thin-film resistance heating element, needless to say that electrodes are provided, and if necessary, for example, a coating material such as a synthetic resin or ceramic. A desired accessory element can be added, such as coating with a moisture-proof and drip-proof material.

【0030】本発明の薄膜抵抗発熱体は、住宅における
床暖房用ヒータ、融雪パネル用ヒータ、温室ハウス用ヒ
ータ、サウナ用ヒータ、各種保温貯蔵庫用ヒータ、発酵
室暖房用ヒータ等、従来応用されている用途に用いるこ
とができる。
The thin-film resistance heating element of the present invention is conventionally applied to a heater for floor heating, a heater for a snow melting panel, a heater for a greenhouse, a heater for a sauna, a heater for various heat storage, a heater for a fermentation room, etc. in a house. Can be used for certain applications.

【0031】また、本発明の薄膜抵抗発熱体の好適な用
途として、複写機等のトナーの加熱定着用部材に用いる
ことができる。用いる場合の実施の形態としては、トナ
ーを加熱できれば特に限定されるものではないが、例え
ば、図3におけるヒーターとして用いる場合、あるいは
図1に示すようにローラー状の加熱定着用部材の円周面
を薄膜抵抗発熱体1で構成する場合等が挙げられる。
As a preferred application of the thin-film resistance heating element of the present invention, it can be used for a member for heating and fixing toner such as a copying machine. There is no particular limitation on the embodiment in which the toner can be heated as long as the toner can be heated. For example, when the toner is used as a heater in FIG. 3, or as shown in FIG. Is composed of the thin-film resistance heating element 1.

【0032】特に、図1に示すようなローラー状の加熱
定着用部材にすることによって、ローラーの表面全体が
直接発熱するため、ローラーの温度コントロールが容易
になり、また温度のむらも生じない。結果として、印刷
スピードを速くすることができ、電力のロスが小さく、
印刷開始までの待ち時間が短かい加熱定着用部材とな
る。
In particular, by using a roller-shaped heat fixing member as shown in FIG. 1, heat is directly generated on the entire surface of the roller, so that the temperature of the roller can be easily controlled and the temperature does not become uneven. As a result, printing speed can be increased, power loss is small,
The heat fixing member has a short waiting time until the start of printing.

【0033】さらに、上述の(a)〜(d)の被膜形成
性成分を用いることによって、より堅牢な抵抗発熱体に
することができるため、印刷時にローラーにしわ、ゆが
み等が生じず、さらなる印刷スピード、印刷品質の向上
が可能となる。
Further, by using the above-mentioned film-forming components (a) to (d), a more robust resistance heating element can be obtained, so that wrinkles and warpage do not occur on the roller during printing. Printing speed and printing quality can be improved.

【0034】また、ローラー状のトナーの加熱定着用部
材として用いる際には、抵抗発熱体とトナーが直接接触
するとトナーの電荷が奪われてしまいオフセットの原因
となるので、抵抗発熱体の外側を、絶縁性材料で被覆す
ることが好ましい。例えば、フッ素樹脂やイミド樹脂等
は離型性にも優れるため好適に用いられる。またゴム等
の緩衝材で被覆することもできる。
Further, when the roller is used as a heat fixing member for toner, if the resistive heating element and the toner come into direct contact with each other, the charge of the toner is deprived and causes an offset. It is preferable to cover with an insulating material. For example, a fluororesin or an imide resin is preferably used because of its excellent releasability. Further, it can be covered with a cushioning material such as rubber.

【0035】被覆する方法としては、特に限定されるも
のではないが、ローラー状の抵抗発熱体の外側にスプレ
ーコート法、浸漬法等によって絶縁性の樹脂をコーティ
ングする方法、インサート成形によって抵抗発熱体の層
の外側に絶縁体の層を成形する方法、あるいは2色射出
成形機を用いてローラー基材の外周面に抵抗発熱体の層
と絶縁層を2色成形する方法等が挙げられる。
The coating method is not particularly limited, but a method of coating an insulating resin on the outside of the roller-shaped resistance heating element by a spray coating method, a dipping method, or the like, or a method of inserting the resistance heating element by insert molding. Or a method of forming two layers of the resistance heating element layer and the insulating layer on the outer peripheral surface of the roller substrate using a two-color injection molding machine.

【0036】また、上記被覆材と抵抗発熱体の間には粘
着剤、接着剤等を適宜用いることができる。
An adhesive, an adhesive or the like can be appropriately used between the coating material and the resistance heating element.

【0037】[0037]

【実施例】以下、実施例により本発明を更に詳しく説明
するが、本発明はこれらにより限定されるものではな
い。ヒートレスガラス GS600A1(ホ−マーテク
ノロジー(株)販売;商品名;オルガノポリシロキサン
を主剤とし、それに架橋剤として官能性側鎖を有するオ
ルガノシロキサン及び硬化触媒が配合された組成物)1
00重量部と、イソペンチルアルコール20重量部及び
カーボンナノチューブ(ハイペリオン・カタリシス・イ
ンターナショナル社製Graphite Fibril
s・Grades BN)5重量部とを、ボールミルで
6時間混合してコーティング剤組成物を調製した。この
コーティング剤組成物を、メタクリル板に、スプレーコ
ートで塗布し、膜厚200μmの塗膜とした。これを、
硬化炉により120℃に2時間保持して塗膜を硬化させ
て、薄膜抵抗発熱体を得た。この薄膜抵抗発熱体(硬化
被膜)の厚さは100μmであった。上記硬化被膜の形
成されたメタクリル板について、三菱化学(株)製ロー
レスターHPを用いて表面抵抗値及び体積抵抗値を測定
した。その結果は、表面抵抗値は3.375×10
3 (Ω/□)、体積抵抗値は101.93(Ω・cm)とな
り、体積抵抗値から計算される発熱量は良好な値を示し
た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Heatless glass GS600A1 (sold by Homer Technology Co., Ltd .; trade name; a composition containing an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst) 1
00 parts by weight, 20 parts by weight of isopentyl alcohol and carbon nanotubes (Graphite Fibril manufactured by Hyperion Catalysis International, Inc.)
s.Grades BN) was mixed with a ball mill for 6 hours to prepare a coating composition. This coating composition was applied to a methacryl plate by spray coating to form a coating film having a thickness of 200 μm. this,
The coating film was cured while being kept at 120 ° C. for 2 hours in a curing furnace to obtain a thin-film resistance heating element. The thickness of this thin-film resistance heating element (cured film) was 100 μm. The surface resistance value and the volume resistance value of the methacryl plate on which the cured film was formed were measured using Loresta HP manufactured by Mitsubishi Chemical Corporation. As a result, the surface resistance value was 3.375 × 10
3 (Ω / □), the volume resistance value was 10 1.93 (Ω · cm), and the calorific value calculated from the volume resistance value was a good value.

【0038】[0038]

【発明の効果】本発明によれば、優れた性能の薄膜抵抗
発熱体が提供される。本発明の薄膜抵抗発熱体は、カー
ボンナノチューブあるいはカーボンマイクロコイルの特
異な形状からして、それら相互が絡み合ってそれら相互
の接触が容易に密に図られ、かつ被膜形成性成分との結
合も強固なものとなるから、高性能でかつ優れた機械的
強度を有する。特に、上記特定のコーティング剤組成物
を用いて形成された薄膜抵抗発熱体は、当該コーティン
グ剤組成物が、所望の厚さで均一に容易に塗布すること
ができ、均一で堅牢な被膜を容易に形成することができ
るので、一層品質の優れたものとなる。
According to the present invention, a thin-film resistance heating element having excellent performance is provided. The thin-film resistance heating element of the present invention has a unique shape of carbon nanotubes or carbon microcoils, and is entangled with each other to easily and densely contact with each other, and has a strong bond with the film-forming component. Therefore, it has high performance and excellent mechanical strength. In particular, the thin-film resistance heating element formed using the specific coating agent composition can be easily and uniformly applied to a desired thickness with the coating agent composition, and can easily form a uniform and robust film. , So that the quality is further improved.

【0039】また、上記の薄膜抵抗発熱体を用いたトナ
ーの加熱定着用部材は、加熱定着用部材全体が直接発熱
するため、ローラー表面の温度コントロールが容易で、
温度むらも生じない。結果として、印刷スピードを速く
することができ、電力のロスが小さく、印刷開始までの
待ち時間も短くすることができる。
Further, in the heat-fixing member for toner using the above-described thin-film resistance heating element, since the heat-fixing member as a whole directly generates heat, it is easy to control the temperature of the roller surface.
No temperature unevenness occurs. As a result, the printing speed can be increased, the power loss is small, and the waiting time until the start of printing can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のトナーの加熱定着用部材の1形態を
示す模式図である。
FIG. 1 is a schematic view showing one embodiment of a heat fixing member for toner of the present invention.

【図2】 従来のトナーの加熱定着用部材を示す模式図
である。
FIG. 2 is a schematic view showing a conventional heat fixing member for toner.

【図3】 従来の別のトナーの加熱定着用部材を示す模
式図である。
FIG. 3 is a schematic view showing another conventional heat-fixing member for toner.

【符号の説明】[Explanation of symbols]

1 薄膜抵抗発熱体 10 ヒーター 11 ローラー 12 ヒーター 13 エンドレスベルト DESCRIPTION OF SYMBOLS 1 Thin-film resistance heating element 10 Heater 11 Roller 12 Heater 13 Endless belt

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被膜形成性成分にカーボンナノチューブ
及びカーボンマイクロコイルのいずれか一方又は双方が
配合されたコーティング剤組成物を、基材に塗布して硬
化せしめてなることを特徴とする薄膜抵抗発熱体。
1. A thin-film resistance heating method comprising applying a coating composition comprising a film-forming component and one or both of carbon nanotubes and carbon microcoils to a substrate and curing the coating composition. body.
【請求項2】 コーティング剤組成物における、カーボ
ンナノチューブ及びカーボンマイクロコイルのいずれか
一方又は双方の配合割合が、被膜形成性成分100重量
部に対して1〜50重量部であることを特徴とする請求
項1記載の薄膜抵抗発熱体。
2. The coating composition according to claim 1, wherein one or both of the carbon nanotubes and the carbon microcoils are mixed in an amount of 1 to 50 parts by weight with respect to 100 parts by weight of the film-forming component. The thin-film resistance heating element according to claim 1.
【請求項3】 被膜形成性成分が、下記(a)〜(d)
から選ばれた一のものであることを特徴とする請求項1
又は2記載の薄膜抵抗発熱体。 (a)オルガノポリシロキサンを主剤とし、それに架橋
剤として官能性側鎖を有するオルガノシロキサンおよび
硬化触媒が配合された組成物。 (b)セラミックス粒子に高熱用溶媒が配合された組成
物。 (c)ペルヒドロポリシラザンの有機溶媒溶液。 (d)金属酸化物粉末の存在下に低分子量のグリシジル
エーテル型エポキシ樹脂を触媒を用いて反応させ、調製
されたプレポリマー。
3. The film-forming component comprises the following components (a) to (d):
2. The method according to claim 1, wherein said one is selected from the group consisting of:
Or the thin-film resistance heating element according to 2. (A) A composition comprising an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst. (B) A composition in which a high heat solvent is blended with ceramic particles. (C) An organic solvent solution of perhydropolysilazane. (D) A prepolymer prepared by reacting a low molecular weight glycidyl ether type epoxy resin with a catalyst in the presence of a metal oxide powder.
【請求項4】 請求項1乃至3記載の薄膜抵抗発熱体を
用いたトナーの加熱定着用部材。
4. A heating and fixing member for toner using the thin-film resistance heating element according to claim 1.
【請求項5】 請求項1乃至3記載の薄膜抵抗発熱体
で、トナーの加熱定着用部材の円周面を構成することを
特徴とする請求項4記載のトナーの加熱定着用部材。
5. The heat-fixing member for toner according to claim 4, wherein the thin-film resistance heating element according to claim 1 forms a circumferential surface of the heat-fixing member for toner.
JP22822398A 1998-08-12 1998-08-12 Thin film resistance heating element and toner heat fixing member using the same Expired - Fee Related JP4076280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22822398A JP4076280B2 (en) 1998-08-12 1998-08-12 Thin film resistance heating element and toner heat fixing member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22822398A JP4076280B2 (en) 1998-08-12 1998-08-12 Thin film resistance heating element and toner heat fixing member using the same

Publications (2)

Publication Number Publication Date
JP2000058228A true JP2000058228A (en) 2000-02-25
JP4076280B2 JP4076280B2 (en) 2008-04-16

Family

ID=16873112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22822398A Expired - Fee Related JP4076280B2 (en) 1998-08-12 1998-08-12 Thin film resistance heating element and toner heat fixing member using the same

Country Status (1)

Country Link
JP (1) JP4076280B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305899A (en) * 2000-04-26 2001-11-02 Ricoh Co Ltd Heating roller
JP2002075602A (en) * 2000-08-25 2002-03-15 Shimadzu Corp Surface heat generating body
JP2002110402A (en) * 2000-09-29 2002-04-12 Shimadzu Corp Resistor paste and variable resistor
JP2002134325A (en) * 2000-07-08 2002-05-10 Lg Electronics Inc Inductor utilizing carbon nanotube and/or carbon nanofiber
WO2004023845A1 (en) * 2002-08-02 2004-03-18 Nanotech Co., Ltd. Seat-like heating units using carbon nanotubes
DE102004044352A1 (en) * 2004-09-09 2006-03-16 E.G.O. Elektro-Gerätebau GmbH A radiation heater for glass ceramic cooker hobs has a conductive track comprising carbon nanotubes on ann electrically insulating base
JP2007109640A (en) * 2005-09-13 2007-04-26 Ist Corp Planar heating element and manufacturing method of the same
WO2007089118A1 (en) * 2006-02-03 2007-08-09 Exaenc Corp. Heating element using carbon nano tube
JP2007272223A (en) * 2006-03-10 2007-10-18 Ist Corp Heating fixing belt, its manufacturing method and image fixing device
EP1865440A1 (en) * 2006-06-07 2007-12-12 Psion Teklogix Inc. Heated protective window for an optical scanning device
JP2009094074A (en) * 2007-10-10 2009-04-30 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Exothermic light source and its manufacturing method
WO2009081986A1 (en) 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
US20090277897A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
JP2010010133A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heater
JP2010034047A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heat source
JP2010254564A (en) * 2009-04-20 2010-11-11 Qinghua Univ Hollow heat source
US20110318077A1 (en) * 2010-06-24 2011-12-29 Konica Minolta Business Technologies, Inc. Heat-producing element for fixing device and image forming apparatus
US8354593B2 (en) 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
JP2013048110A (en) * 2008-07-25 2013-03-07 Qinghua Univ Hollow heat source
JP2013077587A (en) * 2009-04-20 2013-04-25 Qinghua Univ Linear heat source
KR101321099B1 (en) * 2011-12-15 2013-10-23 금오공과대학교 산학협력단 Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
US8581158B2 (en) 2006-08-02 2013-11-12 Battelle Memorial Institute Electrically conductive coating composition
US8722171B2 (en) 2011-01-04 2014-05-13 Nanocomp Technologies, Inc. Nanotube-based insulators
US8847074B2 (en) 2008-05-07 2014-09-30 Nanocomp Technologies Carbon nanotube-based coaxial electrical cables and wiring harness
US8999285B2 (en) 2005-07-28 2015-04-07 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
KR101518735B1 (en) * 2009-02-19 2015-05-18 삼성전자주식회사 Heating adopting carbon nanotube and fusing device using the same
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
US9165701B2 (en) 2013-01-18 2015-10-20 Samsung Electronics Co., Ltd. Resistance heating element and heating member and fusing device employing the same
US9236669B2 (en) 2007-08-07 2016-01-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
US9348280B2 (en) 2011-05-19 2016-05-24 Samsung Electronics Co., Ltd. Heating composite, and heating apparatus and fusing apparatus including the same
US9501013B2 (en) 2012-05-08 2016-11-22 Samsung Electronics Co., Ltd. Heating member and fusing apparatus including the same
US9718691B2 (en) 2013-06-17 2017-08-01 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
JP2018113412A (en) * 2017-01-13 2018-07-19 東京応化工業株式会社 Composition and method for manufacturing siliceous film
US10423105B2 (en) 2016-03-22 2019-09-24 Kinyosha Co., Ltd. Heat fixing belt, method for producing heat fixing belt, and image fixing device
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258974A (en) * 1992-08-07 1994-09-16 Purintonikusu:Kk Thermal fixing device
JPH09244182A (en) * 1996-01-18 1997-09-19 Eastman Kodak Co Image forming element with electrically conductive layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258974A (en) * 1992-08-07 1994-09-16 Purintonikusu:Kk Thermal fixing device
JPH09244182A (en) * 1996-01-18 1997-09-19 Eastman Kodak Co Image forming element with electrically conductive layer

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305899A (en) * 2000-04-26 2001-11-02 Ricoh Co Ltd Heating roller
JP2002134325A (en) * 2000-07-08 2002-05-10 Lg Electronics Inc Inductor utilizing carbon nanotube and/or carbon nanofiber
JP2002075602A (en) * 2000-08-25 2002-03-15 Shimadzu Corp Surface heat generating body
JP2002110402A (en) * 2000-09-29 2002-04-12 Shimadzu Corp Resistor paste and variable resistor
WO2004023845A1 (en) * 2002-08-02 2004-03-18 Nanotech Co., Ltd. Seat-like heating units using carbon nanotubes
DE102004044352A1 (en) * 2004-09-09 2006-03-16 E.G.O. Elektro-Gerätebau GmbH A radiation heater for glass ceramic cooker hobs has a conductive track comprising carbon nanotubes on ann electrically insulating base
DE102004044352B4 (en) * 2004-09-09 2010-09-02 E.G.O. Elektro-Gerätebau GmbH Heating device for an electric heating device
US8999285B2 (en) 2005-07-28 2015-04-07 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US10029442B2 (en) 2005-07-28 2018-07-24 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US11413847B2 (en) 2005-07-28 2022-08-16 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
JP2007109640A (en) * 2005-09-13 2007-04-26 Ist Corp Planar heating element and manufacturing method of the same
JP2009525580A (en) * 2006-02-03 2009-07-09 エクサイーエヌシー コーポレーション Heating element using carbon nanotubes
WO2007089118A1 (en) * 2006-02-03 2007-08-09 Exaenc Corp. Heating element using carbon nano tube
JP2007272223A (en) * 2006-03-10 2007-10-18 Ist Corp Heating fixing belt, its manufacturing method and image fixing device
EP1865440A1 (en) * 2006-06-07 2007-12-12 Psion Teklogix Inc. Heated protective window for an optical scanning device
US8581158B2 (en) 2006-08-02 2013-11-12 Battelle Memorial Institute Electrically conductive coating composition
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
US9236669B2 (en) 2007-08-07 2016-01-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
JP2009094074A (en) * 2007-10-10 2009-04-30 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Exothermic light source and its manufacturing method
WO2009081986A1 (en) 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
US20090277897A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US8847074B2 (en) 2008-05-07 2014-09-30 Nanocomp Technologies Carbon nanotube-based coaxial electrical cables and wiring harness
US9396829B2 (en) 2008-05-07 2016-07-19 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US9198232B2 (en) * 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
JP2010010133A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heater
JP2013048110A (en) * 2008-07-25 2013-03-07 Qinghua Univ Hollow heat source
JP4669059B2 (en) * 2008-07-25 2011-04-13 ツィンファ ユニバーシティ Hollow heat source
JP2010034047A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heat source
KR101518735B1 (en) * 2009-02-19 2015-05-18 삼성전자주식회사 Heating adopting carbon nanotube and fusing device using the same
JP2013077587A (en) * 2009-04-20 2013-04-25 Qinghua Univ Linear heat source
JP2010254564A (en) * 2009-04-20 2010-11-11 Qinghua Univ Hollow heat source
US8354593B2 (en) 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
US20110318077A1 (en) * 2010-06-24 2011-12-29 Konica Minolta Business Technologies, Inc. Heat-producing element for fixing device and image forming apparatus
US8722171B2 (en) 2011-01-04 2014-05-13 Nanocomp Technologies, Inc. Nanotube-based insulators
US10145627B2 (en) 2011-01-04 2018-12-04 Nanocomp Technologies, Inc. Nanotube-based insulators
US9348280B2 (en) 2011-05-19 2016-05-24 Samsung Electronics Co., Ltd. Heating composite, and heating apparatus and fusing apparatus including the same
KR101321099B1 (en) * 2011-12-15 2013-10-23 금오공과대학교 산학협력단 Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
US9501013B2 (en) 2012-05-08 2016-11-22 Samsung Electronics Co., Ltd. Heating member and fusing apparatus including the same
US9165701B2 (en) 2013-01-18 2015-10-20 Samsung Electronics Co., Ltd. Resistance heating element and heating member and fusing device employing the same
US9718691B2 (en) 2013-06-17 2017-08-01 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
US10423105B2 (en) 2016-03-22 2019-09-24 Kinyosha Co., Ltd. Heat fixing belt, method for producing heat fixing belt, and image fixing device
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
JP2018113412A (en) * 2017-01-13 2018-07-19 東京応化工業株式会社 Composition and method for manufacturing siliceous film

Also Published As

Publication number Publication date
JP4076280B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4076280B2 (en) Thin film resistance heating element and toner heat fixing member using the same
JP2000026760A (en) Functional coating composition
JP2728607B2 (en) Manufacturing method of heat conductive composite sheet
JPH0260888B2 (en)
JP2010242087A (en) Self-adhesive silicone composition capable of being addition-crosslinked at room temperature by pt catalyst
KR101235402B1 (en) Insulating Silicone Rubber Composition for Fixing Roller or Fixing Belt, and Fixing Roller and Fixing Belt
JP7050479B2 (en) Its use in adhesive compositions and electronics
CN106167602A (en) Conductive preparation with and preparation method thereof
JPH0248178B2 (en)
JP2007171946A (en) Silicone rubber composition for high-heat-conductivity heat fixing roll or fixing belt, and heat fixing roll or fixing belt
US9665049B2 (en) Member for electrophotography, method for manufacturing member for electrophotography, and image-forming apparatus
JP2007530404A5 (en)
CN106661439B (en) The modified liquid crystal liquid crystal property elastomer of the thermal conductivity modifiers and thermal conductivity of elastomer
KR20040031021A (en) Low-specific-gravity liquid silicone rubber composition and an article molded therefrom
EP0994158B1 (en) Process for forming fired film using an organopolysiloxane composition
JP2000233907A (en) Heat conductive boron nitride fine powder, heat conductive silicone composition containing the fine powder and insulating heat-radiating sheet
JP4840560B2 (en) Conductive roller and method for improving adhesion between silicone rubber elastic layer and surface layer thereof
JP2002194103A (en) Method for preparing rubber roller and heat-sealed roller
JP2006336668A (en) High heat conductive heat fixing roll or thermosetting silicone rubber composition for fixing belt, fixing roll, and fixing belt
JP3750779B2 (en) Heat fixing roll
US20060040814A1 (en) Roller for use with substrates bearing printed ink images and a composition for coating the roller
JP7452304B2 (en) Composition for heat dissipation member, heat dissipation member, electronic device, and method for producing heat dissipation member
JP4645802B2 (en) Fluorine resin-coated fixing belt
JP2008150505A (en) Silicone rubber composition and fixing member
JP3301310B2 (en) Elastic roll and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees