JPH09306476A - Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material

Info

Publication number
JPH09306476A
JPH09306476A JP8118004A JP11800496A JPH09306476A JP H09306476 A JPH09306476 A JP H09306476A JP 8118004 A JP8118004 A JP 8118004A JP 11800496 A JP11800496 A JP 11800496A JP H09306476 A JPH09306476 A JP H09306476A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
fiber
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8118004A
Other languages
Japanese (ja)
Inventor
Tokuo Komaru
篤雄 小丸
Naoyuki Nakajima
尚幸 中島
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8118004A priority Critical patent/JPH09306476A/en
Publication of JPH09306476A publication Critical patent/JPH09306476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material of high capacity having a good cycle characteristic, and provide a secondary battery of high reliability having high energy density. SOLUTION: This nonaqueous electrolyte secondary battery is formed by having a negative/positive electrode consisting of carbon material capable of doping/dedoping lithium and a nonaqueous electrolyte dissolving an electrolyte in a nonaqueous solvent. An organic material is formed into a fiber shape, thereafter made infusible, to be heat treated, a carbon material is obtained, and its sectional higher order structure is radial type in the center part and a random radial type in a surface layer part, the negative electrode is constituted. When assuming R for radius of fiber composed of carbon material and L for radius of location forming a radial part concentrically to this fiber, a carbon material fiber with L/R less than 1 is formed, this fiber serves as a negative electrode material. Further, the negative electrode material for the nonaqueous electrolyte secondary battery is used, the nonaqueous electrolyte secondary battery is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池用負極材料とこれを用いた二次電池に関するもので
あり、更に詳しくは前記負極材料として炭素材料を用い
ることに関するものである。
TECHNICAL FIELD The present invention relates to a negative electrode material for a lithium ion secondary battery and a secondary battery using the same, and more particularly to the use of a carbon material as the negative electrode material.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型、軽量化を次々と実現させている。それに
伴い、ポータブル用電源としての電池に対してもますま
す小型、軽量、且つ高エネルギー密度の要求が高まって
いる。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. Along with this, demands for batteries as portable power sources that are smaller, lighter, and have higher energy density are increasing.

【0003】従来、一般用途の二次電池としては鉛電
池、ニッケル・カドミウム電池等の水溶液系電池が主流
であった。これらの電池は、サイクル特性にはある程度
満足できるが、電池重量やエネルギー密度の点では満足
できる特性とは言えなかった。一方、リチウム或いはリ
チウム合金を負極に用いた非水電解液二次電池の研究開
発は近年盛んに行われている。この電池は高エネルギー
密度を有し、自己放電も少なく、軽量という優れた特性
を有するが、充放電サイクルの進行に伴い、リチウムが
充電時にデンドライト状に結晶成長し、正極に到達して
内部ショートに至る欠点があり、実用化への大きな障害
となっていた。
Conventionally, an aqueous solution type battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery for general use. These batteries can satisfy the cycle characteristics to some extent, but cannot be said to be satisfactory in terms of battery weight and energy density. On the other hand, research and development of non-aqueous electrolyte secondary batteries using lithium or a lithium alloy for the negative electrode have been actively conducted in recent years. This battery has high energy density, low self-discharge, and excellent characteristics such as light weight, but as the charge and discharge cycle progresses, lithium grows into dendrite-like crystals during charging and reaches the positive electrode, causing an internal short circuit. However, it was a major obstacle to practical use.

【0004】そこでこのような問題を解消するものとし
て、負極に炭素材料を使用した非水電解液二次電池、い
わゆるリチウムイオン二次電池が注目されている。リチ
ウムイオン二次電池は、炭素層間へのリチウムのドープ
/脱ドープを負極反応に利用するもので、充放電サイク
ルが進行しても充電時のデンドライト状の析出は見られ
ず、良好な充放電サイクル特性を示すものである。
As a solution to such a problem, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode, that is, a so-called lithium ion secondary battery has been receiving attention. The lithium-ion secondary battery utilizes doping / dedoping of lithium between carbon layers for the negative electrode reaction, and no dendrite-like deposition is observed during charging even if the charging / discharging cycle progresses, and good charging / discharging It shows cycle characteristics.

【0005】ところで、負極として使用可能な炭素材料
としてはいくつかあるが、最初に実用化された材料はコ
ークスやガラス状炭素である。これらは有機材料を比較
的低温で熱処理することによって得られた結晶性が低い
材料であるが、PC(炭酸プロピレン)を主体とする電
解液を用いて実用電池として商品化された。更に最近で
は、PCを主溶媒に用いると、負極として使用不可能で
あった黒鉛類においても、EC(炭酸エチレン)を主体
とする電解液を用いることで使用可能なレベルに到達し
た。
By the way, although there are several carbon materials that can be used as the negative electrode, the first practical materials are coke and glassy carbon. These are materials having low crystallinity obtained by heat-treating an organic material at a relatively low temperature, but they have been commercialized as a practical battery using an electrolytic solution containing PC (propylene carbonate) as a main component. More recently, when PC was used as the main solvent, even graphites that could not be used as the negative electrode reached a level where they could be used by using an electrolytic solution containing EC (ethylene carbonate) as a main component.

【0006】黒鉛類は、鱗片状のものが比較的容易に入
手でき、従来よりアルカリ電池用導電材料として広く用
いられている。この黒鉛類は、難黒鉛化性炭素材料に比
べて結晶性が高く、真密度が高い。従って、これによっ
て負極を構成すれば、高い電極充填性が得られ、電池の
エネルギー密度が高められることになる。このことか
ら、黒鉛類は負極材料として期待の大きな材料であると
言える。
[0006] Graphites, which are scaly, are relatively easily available and have been widely used as conductive materials for alkaline batteries. These graphites have higher crystallinity and higher true density than the non-graphitizable carbon material. Therefore, if the negative electrode is constituted by this, a high electrode filling property is obtained and the energy density of the battery is increased. From this, it can be said that graphites are promising materials as negative electrode materials.

【0007】しかし、上記炭素材料のほとんどは、実際
電池に使用されている粒子サイズよりも大きいブロック
状等であり、粉砕することによって粉末とされ使用され
る。このため、物理的、或いは化学的な処理によってミ
クロに、或いはマクロに炭素構造を制御しても、粉砕に
よって構造が乱れ、充分その効果を得ることができなか
った。
However, most of the above-mentioned carbon materials are in the form of blocks having a particle size larger than that actually used in batteries, and are pulverized into powder to be used. Therefore, even if the carbon structure is controlled microscopically or macroscopically by physical or chemical treatment, the structure is disturbed by pulverization, and the effect cannot be sufficiently obtained.

【0008】これにたいして、繊維状の有機物を炭素化
する等して得られる繊維状炭素(カーボンファイバー)
は比較的炭素構造を制御しやすく、最近注目されてい
る。その構造は、前駆体である有機物繊維の構造を大き
く反映する。有機物繊維としてはポリアクリルニトリル
等のポリマーを原料としたものや、石油ピッチ等のピッ
チ、またさらに配向させたメソフェースピッチを原料と
したものがあり、紡糸されることによって繊維状とな
る。しかしながら、いずれも炭素化時に熱処理される
際、溶融し、繊維構造を破壊してしまうことが生じてい
た。
On the other hand, fibrous carbon (carbon fiber) obtained by carbonizing fibrous organic matter
Is relatively easy to control the carbon structure, and has recently attracted attention. The structure largely reflects the structure of the precursor organic fiber. As the organic fibers, there are fibers made from polymers such as polyacrylonitrile, pitches such as petroleum pitch, and fibers made from further oriented mesophase pitch. The fibers are spun into fibers. However, in all cases, when heat-treated during carbonization, they were melted and destroyed the fiber structure.

【0009】そのため、通常は繊維表面に酸化等により
不融化処理した後に炭素化を行っていた。このようにし
て得られた繊維状炭素は有機物繊維構造に由来する断面
構造を持ち、同心円状に配向したオニオンスキン型、放
射状に配向したラジアル型、等方的なランダム型等の高
次構造を示す。これらを黒鉛化処理した黒鉛繊維は真密
度が高く結晶性も比較的高いため、非水電解液二次電池
用の負極材料として有望なものである。
Therefore, carbonization is usually performed after the fiber surface is infusibilized by oxidation or the like. The fibrous carbon thus obtained has a cross-sectional structure derived from an organic fiber structure, and has a higher-order structure such as a concentrically oriented onion skin type, a radially oriented radial type, or an isotropic random type. Show. Graphite fibers obtained by subjecting these to graphitization have high true density and relatively high crystallinity, and thus are promising as a negative electrode material for non-aqueous electrolyte secondary batteries.

【0010】しかしながら、前記の繊維状炭素は負極材
料としての容量は十分でなく、要求される容量を達成す
ることが困難であった。負極反応の主なものとしてイン
ターカレーション反応があり、これによる容量は結晶性
が高いほど大きくなることが知られている。繊維状炭素
の場合、繊維径は細く、断面形状は円形であることから
炭素層面の再配列が起こりにくく、鱗片状黒鉛のごとく
高結晶性とすることができなかった。
However, the above-mentioned fibrous carbon does not have sufficient capacity as a negative electrode material, and it has been difficult to achieve the required capacity. It is known that an intercalation reaction is a main negative electrode reaction, and the capacity due to the intercalation reaction increases as the crystallinity increases. In the case of fibrous carbon, since the fiber diameter is thin and the cross-sectional shape is circular, rearrangement of the carbon layer surface is unlikely to occur, and it was not possible to make it highly crystalline like flake graphite.

【0011】特に、ラジアル型は結晶性は向上しやすい
ものの、充放電時の膨張収縮により、繊維軸に平行に割
れが生じ、繊維構造が破壊されるため、ラジアルにラン
ダムを混ぜたランダムラジアル型が主流であった。従っ
て、電子機器の発達につれ、更なる高エネルギー密度化
の要求が高まっている現状では、これらの繊維状炭素を
用いて作製した電池の容量では不十分となってきてい
る。
In particular, although the radial type is easy to improve the crystallinity, the expansion and contraction during charge and discharge cause cracks parallel to the fiber axis and destroy the fiber structure. Therefore, a random radial type in which random is mixed with the radial type is used. Was the mainstream. Therefore, the capacity of batteries manufactured using these fibrous carbons has become insufficient under the present circumstances where the demand for higher energy density is increasing with the development of electronic devices.

【0012】[0012]

【発明が解決しようとする課題】従って本発明の課題
は、繊維状炭素の結晶性を向上させ、高容量とすると共
に、これを負極に用いることでエネルギー密度が高く、
高信頼性の非水電解液二次電池を提供しようとするもの
である。
Therefore, an object of the present invention is to improve the crystallinity of fibrous carbon to have a high capacity, and by using it for the negative electrode, the energy density is high,
It is intended to provide a highly reliable non-aqueous electrolyte secondary battery.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウムのドープ脱ドープ可能な
炭素材料よりなる負極、正極および非水溶媒に電解質が
溶解された非水電解液を有してなる非水電解液二次電池
において、有機原料が繊維状に形成され、その後不融化
され、熱処理されてなる炭素材料であって、且つその断
面の高次構造が、中心部がラジアル型構造で表層部がラ
ンダムラジアル型構造である負極を構成する。
The present invention has been made in view of the above problems, and is a non-aqueous electrolytic solution in which an electrolyte is dissolved in a negative electrode, a positive electrode, and a non-aqueous solvent made of a carbon material capable of being doped and dedoped with lithium. In a non-aqueous electrolyte secondary battery comprising, a carbon material formed by fibrous organic raw material, then infusibilized, and heat-treated, and the higher-order structure of its cross-section has a central part A negative electrode having a radial structure and a surface layer portion having a random radial structure is constituted.

【0014】また、前記炭素材料からなる繊維の半径を
Rとし、これと同心円状にラジアル部を形成する部位の
半径をLとしたとき、L/Rが1未満である炭素材料繊
維を形成し、これを負極材料とする。
When the radius of the fiber made of the carbon material is R and the radius of the radial concentric portion is L, the carbon material fiber having L / R of less than 1 is formed. This is used as the negative electrode material.

【0015】更に、リチウムのドープ脱ドープ可能な炭
素材料よりなる負極、正極および非水溶媒に電解質が溶
解された非水電解液を有してなる非水電解液二次電池に
おいて、上記炭素材料繊維を負極材料として用いて上記
課題を解決する。
Furthermore, in a non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent, The above problems are solved by using fibers as a negative electrode material.

【0016】上述した繊維状炭素はその中心部に高結晶
性で高容量が得られるラジアル型構造と、表層部には充
放電時の膨張収縮による繊維構造破壊に強いランダムラ
ジアル型構造を有する断面高次構造をしているので、こ
れを負極に用いることでエネルギー密度が高く、高信頼
性の二次電池が可能となる。
The above-mentioned fibrous carbon has a cross section having a radial type structure in which a high crystallinity and a high capacity are obtained in the central part and a random radial type structure in the surface layer part, which is resistant to the fiber structure destruction due to expansion and contraction during charge and discharge Since it has a high-order structure, a secondary battery with high energy density and high reliability can be obtained by using it for the negative electrode.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態について図1
ないし図5を参照して説明する。図1は本発明による繊
維状炭素の断面であって、(a)はその断面写真であ
り、(b)はその模式図である。図2は本発明による繊
維状炭素の作製装置の要部を示す図であって、(a)は
吐出管の吐出孔から見た図であり、(b)は吐出管の側
面断面図である。図3は本発明の繊維状炭素を用いた筒
形電池の側面断面図である。また、図4は本発明による
繊維状炭素のラジアル型構造と容量の関係を示す図であ
り、図5は繊維状炭素のラジアル型構造と容量維持率の
関係を示す図である。
FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a cross section of a fibrous carbon according to the present invention, (a) is a photograph of the cross section, and (b) is a schematic view thereof. 2A and 2B are views showing a main part of a device for producing fibrous carbon according to the present invention, FIG. 2A is a view seen from a discharge hole of a discharge pipe, and FIG. 2B is a side sectional view of the discharge pipe. . FIG. 3 is a side sectional view of a tubular battery using the fibrous carbon of the present invention. 4 is a diagram showing the relationship between the radial type structure of fibrous carbon and the capacity according to the present invention, and FIG. 5 is a diagram showing the relationship between the radial type structure of fibrous carbon and the capacity retention rate.

【0018】前述の課題を解決するために、本発明者ら
は繊維状炭素断面の高次構造において、その中心部をラ
ジアル型構造とし、表層部をランダムラジアル型構造と
することにより、充放電時の膨張収縮に耐える強度と、
高容量を兼ね備えた繊維状炭素が実現可能であることを
見いだした。
In order to solve the above-mentioned problems, the inventors of the present invention used a higher-order structure having a fibrous carbon cross-section with a radial type structure in the central part and a random radial type structure in the surface layer part to achieve charge / discharge. Strength to withstand the expansion and contraction of time,
It has been found that a fibrous carbon having a high capacity can be realized.

【0019】即ち、本発明の繊維状炭素における断面高
次構造は図1に示すように、その中心部はラジアル型構
造をとるが、このラジアル型構造は炭素層面の配向性が
高く、特に高温熱処理によって高結晶性が得られやす
い。その一方では充放電時の膨張収縮による繊維構造破
壊が起こりやすくなるため、ワレが発生する表層部を、
強度が高く比較的結晶性の高いランダムラジアル型構造
とすることにより、大きなインターカレーション容量と
充放電時の膨張収縮に耐える高強度な実用性の高い繊維
状炭素を負極として用いて効果が大きいことが知られ
た。
That is, as shown in FIG. 1, the cross-sectional higher-order structure of the fibrous carbon of the present invention has a radial type structure at the center thereof, and this radial type structure has a high orientation of the carbon layer surface, especially at high temperature. High crystallinity is easily obtained by heat treatment. On the other hand, since the fiber structure destruction due to expansion and contraction during charge and discharge is likely to occur, the surface layer portion where cracks occur is
Random radial type structure with high strength and relatively high crystallinity has a large effect by using fibrous carbon with high strength and high practicality that withstands large intercalation capacity and expansion / contraction during charging / discharging as a negative electrode. I was known.

【0020】本発明の繊維状炭素において、ラジアル型
構造を多く含めばインターカレーション容量は増加する
が、その一方で充放電時の膨張収縮の繰り返しによって
起こる繊維構造破壊が生じやすくなるため、ラジアル型
構造の含有率は、電池の目的用途により適宜選択が可能
である。繊維状炭素の断面の半径をR、同心円状にラジ
アル型構造を形成する半径をLとしたとき、L/Rによ
りラジアル型構造の含有率を規定できるが、この価は1
未満が好ましい。
In the fibrous carbon of the present invention, if the radial type structure is included in a large amount, the intercalation capacity increases, but on the other hand, since the fiber structure destruction that occurs due to repeated expansion and contraction during charge and discharge is likely to occur, the radial carbon structure can be increased. The content of the mold structure can be appropriately selected depending on the intended use of the battery. When the radius of the cross section of the fibrous carbon is R and the radius of forming the radial type structure in a concentric circle is L, the content rate of the radial type structure can be defined by L / R, but this value is 1
Less than is preferred.

【0021】本発明の繊維状炭素は熱処理により炭素化
されるが、更に2000℃以上、好ましくは2500℃
以上の高温で熱処理を行うことで黒鉛化される。この黒
鉛化繊維状炭素は人造黒鉛に近い真密度を有し、高い電
極充填密度が得られるため好ましい。
The fibrous carbon of the present invention is carbonized by heat treatment, but it is further 2000 ° C. or higher, preferably 2500 ° C.
Graphitization is performed by heat treatment at the above high temperature. This graphitized fibrous carbon is preferable because it has a true density close to that of artificial graphite and a high electrode packing density can be obtained.

【0022】より高い電極充填密度を得るには、黒鉛化
繊維状炭素の真密度は2.1g/cm3 以上が好まし
く、2.18g/cm3 以上が更に好ましい。黒鉛材料
の真密度(ブタノール溶媒によるピクノメータ法)は、
その結晶性によって決まり、X線回折法(学振法)で得
られる(002)面間隔、(002)面のC軸結晶子厚
み等の結晶構造パラメータが指標となる。高い真密度の
材料を得るためには、結晶性が高いほうがよく、X線回
折法で得られる(002)面間隔が0.340nm未満
が好ましく、0.335nm以上、0.337nm以下
が更に好ましい。また、(002)面のC軸結晶子厚み
については14.0nm以上が好ましく、30.0nm
以上が更に好ましい。
In order to obtain a higher electrode packing density, the true density of graphitized fibrous carbon is preferably 2.1 g / cm 3 or more, more preferably 2.18 g / cm 3 or more. The true density of graphite material (Pycnometer method using butanol solvent) is
The crystal structure parameters such as the (002) plane distance and the C-axis crystallite thickness of the (002) plane, which are determined by the crystallinity and obtained by the X-ray diffraction method (Gakushin method), are used as an index. In order to obtain a material with high true density, it is preferable that the crystallinity is high, and the (002) plane spacing obtained by X-ray diffraction is preferably less than 0.340 nm, more preferably 0.335 nm or more and 0.337 nm or less. . The C-axis crystallite thickness of the (002) plane is preferably 14.0 nm or more and 30.0 nm.
The above is more preferred.

【0023】また、良好なサイクル特性を得るために
は、嵩密度は0.4g/cm3 以上の材料を用いること
が好ましい。嵩密度が0.4g/cm3 以上の黒鉛材料
を用いて構成された負極は、良好な電極構造を有し、負
極合剤層から黒鉛材料が剥がれ落ちると言ったことが起
き難い。従って、長サイクル寿命が得られることとな
る。
In order to obtain good cycle characteristics, it is preferable to use a material having a bulk density of 0.4 g / cm 3 or more. The negative electrode composed of a graphite material having a bulk density of 0.4 g / cm 3 or more has a good electrode structure, and it is unlikely that the graphite material peels off from the negative electrode mixture layer. Therefore, a long cycle life can be obtained.

【0024】尚、本発明で規制する嵩密度は、JIS
K−1469に記載される方法で求められる価である。
この価が0.4g/cm3 以上の黒鉛材料を用いれば、
十分に長いサイクル寿命が得られるが、好ましくは嵩密
度が0.5g/cm3 以上、より好ましく嵩密度が0.
7g/cm3 以上の材料を用いるのがよい。
The bulk density regulated by the present invention is JIS
It is the value determined by the method described in K-1469.
If a graphite material with this value of 0.4 g / cm 3 or more is used,
Although a sufficiently long cycle life can be obtained, the bulk density is preferably 0.5 g / cm 3 or more, and more preferably the bulk density is 0.1 g / cm 3 .
It is preferable to use a material of 7 g / cm 3 or more.

【0025】嵩密度測定方法 嵩密度の測定方法を次に示す。予め質量を測定しておい
た容量100cm3 のメスシリンダーを斜めにし、これ
に試料粉末100cm3 を、さじを用いて徐々に投入す
る。そして、全体の質量を最小目盛0.1gで測り、そ
の質量からメスシリンダーの質量を差し引くことで試料
粉末Mを求める。
Bulk Density Measuring Method The bulk density measuring method will be described below. A graduated cylinder having a capacity of 100 cm 3 whose mass has been measured in advance is tilted, and 100 cm 3 of the sample powder is gradually charged into the graduated cylinder. Then, the total mass is measured with a minimum scale of 0.1 g, and the mass of the graduated cylinder is subtracted from the mass to obtain the sample powder M.

【0026】つぎに試料粉末が投入されたメスシリンダ
ーにコルク栓をし、その状態のメスシリンダーを、ゴム
板に対して約5cmの高さから50回落下させる。その
結果、メスシリンダー中の試料粉末は圧縮されるので、
その圧縮された試料粉末の容積Vを読み取る。そして、
下記の(1)式により嵩密度(g/cm3 )を算出す
る。
Next, a graduated cylinder containing the sample powder is covered with a cork stopper, and the graduated cylinder in this state is dropped 50 times from a height of about 5 cm with respect to the rubber plate. As a result, the sample powder in the graduated cylinder is compressed,
Read the volume V of the compressed sample powder. And
The bulk density (g / cm 3 ) is calculated by the following formula (1).

【0027】 D=W/V (1) ここで、 D:嵩密度(g/cm3 ) W:メスシリンダー中の試料粉末の質量(g) V:50回落下後のメスシリンダー中の試料粉末の容積
(cm3
D = W / V (1) where D: bulk density (g / cm 3 ) W: mass of sample powder in graduated cylinder (g) V: sample powder in graduated cylinder after 50 drops Volume of (cm 3 )

【0028】また、更に(2)式で示される形状パラメ
ータxの平均値が125以下である場合、さらにサイク
ル特性が良好なものとなる。即ち、黒鉛材料粉末の代表
的な形状は、扁平な円柱状、或いは直方体状である。こ
の黒鉛材料粉末の最も厚さの薄い部分の厚みをT、最も
長さの長い部分の長さをL、奥行きに相当する長軸と直
交する方向の長さをWとしたときに、LとWそれぞれを
Tで除した価の積が前記形状パラメータxである。この
形状パラメータxが小さいほど、底面積に対する高さが
高く、扁平度が小さいことを意味する。
Further, when the average value of the shape parameter x shown in the equation (2) is 125 or less, the cycle characteristics are further improved. That is, a typical shape of the graphite material powder is a flat columnar shape or a rectangular parallelepiped shape. When the thickness of the thinnest part of this graphite material powder is T, the length of the longest part is L, and the length in the direction orthogonal to the major axis corresponding to the depth is W, L The product of the values obtained by dividing each W by T is the shape parameter x. The smaller the shape parameter x, the higher the height with respect to the bottom area and the smaller the flatness.

【0029】 x=(W/T)×(L/T) (2) ここで、 x:形状パラメータ T:粉末の最も厚さの薄い部分の厚み L:粉末の長軸方向の長さ w:粉末の長軸と直交する方向の長さX = (W / T) × (L / T) (2) Here, x: shape parameter T: thickness of the thinnest part of the powder L: length of the powder in the major axis direction w: Length of powder in the direction orthogonal to the long axis

【0030】また、平均形状パラメータxave.を以下の
ような実測によって求める。まず、黒鉛試料粉末をSE
M(走査型電子顕微鏡)を用いて観察し、最も長さの長
い部分の長さが平均粒径の±30%であるような粉末を
10個選択する。そして、選択した10個の粉末それぞ
れについて(2)式より形状パラメータxを計算し、そ
の平均を算出する。この算出された平均値が前記平均形
状パラメータxave.である。黒鉛粉末の平均形状パラメ
ータxave.が125以下であれば上記効果は得られる
が、好ましくは2以上115以下、更に好ましくは2以
上100以下がよい。
Further, the average shape parameter xave. Is obtained by the following actual measurement. First, the graphite sample powder is SE
Observe using M (scanning electron microscope), and select 10 powders in which the length of the longest part is ± 30% of the average particle size. Then, the shape parameter x is calculated from the equation (2) for each of the 10 selected powders, and the average thereof is calculated. The calculated average value is the average shape parameter xave. The above effect can be obtained when the average shape parameter xave. Of the graphite powder is 125 or less, but preferably 2 or more and 115 or less, more preferably 2 or more and 100 or less.

【0031】また、比表面積が9m2 /g以下の材料を
用いた場合、さらに長いサイクル寿命を得ることができ
る。これは、黒鉛粒子に付着したサブミクロンの微粒子
が嵩密度の低下に影響していると考えられ、微粒子が付
着した場合に比表面積が増加することから、同様の粒度
であっても比表面積の小さい黒鉛粉末を用いたほうが微
粒子の影響がなく、高い嵩密度が得られ、結果としてサ
イクル特性が向上する。
When a material having a specific surface area of 9 m 2 / g or less is used, a longer cycle life can be obtained. It is considered that the submicron particles adhering to the graphite particles influence the decrease in bulk density, and the specific surface area increases when the particles adhere, so even if the particle size is similar, the specific surface area The use of small graphite powder is not affected by the fine particles, a high bulk density is obtained, and as a result, cycle characteristics are improved.

【0032】但し、ここでいう比表面積とは、BET法
によって測定され求められたものを言う。黒鉛粉末の比
表面積が9m2 /g以下であれば上記効果は十分得られ
るが、好ましくは7m2 /g以下、更に好ましくは5m
2 /g以下がよい。
However, the specific surface area referred to here means that measured and determined by the BET method. If the specific surface area of the graphite powder is 9 m 2 / g or less, the above effect is sufficiently obtained, but preferably 7 m 2 / g or less, more preferably 5 m
2 / g or less is preferable.

【0033】また、実用電池として高い安全性および信
頼性を得るためには、レーザ回折法により求められる粒
度分布において、累積10%粒径が3μm以上であり、
且つ累積50%粒径が10μm以上であり、且つ累積9
0%粒径が70μm以下である黒鉛粉末を用いることが
望ましい。
In order to obtain high safety and reliability as a practical battery, the cumulative 10% particle size is 3 μm or more in the particle size distribution obtained by the laser diffraction method,
And the cumulative 50% particle size is 10 μm or more, and the cumulative 9%
It is desirable to use graphite powder having a 0% particle size of 70 μm or less.

【0034】電極に充填される黒鉛粉末は、粒度分布に
幅をもたせたほうが効率よく充填でき、正規分布により
近いほうが好ましい。但し、過充電等の異常事態に電池
が発熱することがあり、粒径の小さな粒子の分布数が多
い場合には発熱温度が高くなる傾向にあるため好ましく
ない。
The graphite powder with which the electrode is filled can be packed more efficiently if the particle size distribution has a width, and it is preferable that the graphite powder is closer to the normal distribution. However, the battery may generate heat in an abnormal situation such as overcharging, and if the number of particles with small particle size is large, the heat generation temperature tends to be high, which is not preferable.

【0035】また、電池を充電する際、黒鉛層間ヘリウ
ムイオンが挿入されるため結晶格子が約10%膨張し、
電池内において正極やセパレータを圧迫して、初充電時
に内部ショート等の初期不良が起こりやすい状態となる
が、大きな粒子の分布が多い場合には不良の発生率が高
くなる傾向にあるため好ましくない。
Further, when the battery is charged, intercalated graphite helium ions cause the crystal lattice to expand by about 10%,
The positive electrode and the separator are squeezed in the battery, and initial defects such as internal short circuit are likely to occur at the time of initial charging, but if the distribution of large particles is large, the defect occurrence rate tends to be high, which is not preferable. .

【0036】従って、粒径の大きな粒子から小さい粒子
までバランス良く配合された粒度分布を有する黒鉛粉末
を用いることにより、高い信頼性を有する実用電池が可
能となる。粒度分布の形状はより正規分布に近いほうが
効率よく充填できるが、レーザ回折法により求められる
粒度分布において、累積10%粒径が3μm以上であ
り、且つ累積50%粒径が10μm以上であり、且つ累
積90%粒径が70μm以下である黒鉛粉末を用いるこ
とが望ましく、特に累積90%粒径が60μm以下の場
合、初期不良が大きく低減される。
Therefore, by using a graphite powder having a particle size distribution in which particles having a large particle size to particles having a small particle size are well-balanced, a practical battery having high reliability can be obtained. If the shape of the particle size distribution is closer to the normal distribution, the particles can be packed more efficiently, but in the particle size distribution obtained by the laser diffraction method, the cumulative 10% particle size is 3 μm or more, and the cumulative 50% particle size is 10 μm or more, In addition, it is desirable to use graphite powder having a cumulative 90% particle size of 70 μm or less, and especially when the cumulative 90% particle size is 60 μm or less, initial defects are greatly reduced.

【0037】また、実用電池としての重負荷特性を向上
させるためには、黒鉛粒子の破壊強度の平均値が6.0
kgf/mm2 以上であることが望ましい。負荷特性に
は放電時のイオンの動きやすさが影響するが、特に電極
中に空孔が多く存在するには、電解液も十分に量が存在
し、良好な特性を示すことになる。一方、結晶性が高い
黒鉛材料はa軸方向に黒鉛六角網面が発達しており、そ
の積み重なりによってc軸の結晶が成り立っているが、
炭素六角網面同志の結合はファンデルワールス力という
弱い結合であるため、応力に対して変形しやすく、その
ため、黒鉛粉末の粒子を圧縮成形して電極に充填する
際、低温で焼成された炭素質材料よりも潰れやすく、空
孔を確保することが難しい。従って、黒鉛粉末粒子の破
壊強度が高いほど潰れにくく、空孔を作りやすくなるた
め、負荷特性を向上することが可能となる。
In order to improve the heavy load characteristics of a practical battery, the average value of the breaking strength of graphite particles is 6.0.
It is desirable to be kgf / mm 2 or more. The load characteristics are affected by the ease of movement of ions during discharge, but especially when there are many pores in the electrode, a sufficient amount of the electrolytic solution is present and good characteristics are exhibited. On the other hand, a graphite material with high crystallinity has a hexagonal graphite net surface developed in the a-axis direction, and c-axis crystals are formed by stacking them.
The carbon hexagonal mesh plane bonds are weak bonds called van der Waals forces, and are therefore easily deformed by stress. Therefore, when the graphite powder particles are compression-molded and filled in the electrode, carbon fired at a low temperature is used. It is easier to crush than quality materials, and it is difficult to secure pores. Therefore, the higher the fracture strength of the graphite powder particles, the less likely they are to be crushed, and the easier it is to create voids, which makes it possible to improve the load characteristics.

【0038】但し、ここでいう黒鉛粒子の破壊強度の平
均値とは、以下のような実測によって求められるものを
言う。破壊強度の測定装置として島津製作所製島津微小
圧縮試験機(MCTM−500)を用いる。まず、付属
の光学顕微鏡にて黒鉛試料粉末を観察し、最も長さの長
い部分の長さが平均粒径の±10%であるような粉末を
10個選択する。そして、選択した10個の粉末それぞ
れについて荷重を掛け粒子の破壊強度を測定しその平均
を算出する。この算出された平均値が黒鉛粒子の破壊強
度の平均値である。良好な負荷特性を得るには、黒鉛粒
子の破壊強度の平均値が6kgf/mm2 以上であるこ
とが好ましい。
However, the average value of the breaking strength of the graphite particles as used herein means the value obtained by the following actual measurement. A Shimadzu micro compression tester (MCTM-500) manufactured by Shimadzu Corporation is used as a breaking strength measuring device. First, the graphite sample powder is observed with an attached optical microscope, and 10 powders in which the length of the longest part is ± 10% of the average particle size are selected. Then, a load is applied to each of the 10 selected powders, the breaking strength of the particles is measured, and the average thereof is calculated. This calculated average value is the average value of the breaking strength of the graphite particles. In order to obtain good load characteristics, it is preferable that the average breaking strength of the graphite particles is 6 kgf / mm 2 or more.

【0039】黒鉛化繊維状炭素としては、以上のような
物性値を有するものが好ましく、繊維径やアスペクト比
は前記物性値に合わせて適宜選択可能であるが、繊維径
については5μm以上100μm以下が好ましく、アス
ペクト比については20以下が好ましい。繊維径が小さ
いほど比表面積が大きくなり、また、繊維径が大きいほ
ど繊維形状を付与する効果が低くなるためである。
As the graphitized fibrous carbon, those having the above physical properties are preferable, and the fiber diameter and aspect ratio can be appropriately selected according to the above physical properties, but the fiber diameter is 5 μm or more and 100 μm or less. Is preferable, and the aspect ratio is preferably 20 or less. This is because the smaller the fiber diameter, the larger the specific surface area, and the larger the fiber diameter, the lower the effect of imparting the fiber shape.

【0040】前記繊維状炭素を生成するに際して、出発
原料となる有機物としてポリアクリロニトリルやレイヨ
ン等のポリマー類や、石油系ピッチ、石炭系ピッチ、合
成ピッチ、更にこれらを最高400℃程度で任意の時間
保持するか、または酸等の添加によって重合促進するな
どして、芳香環同士を縮合、多環化して積層配向させた
メソフェースピッチ等のピッチ類が使用可能である。
When the fibrous carbon is produced, polymers such as polyacrylonitrile and rayon as starting materials, petroleum-based pitch, coal-based pitch, synthetic pitch, etc., and these at a maximum of about 400 ° C. for any time. Pitches such as mesophase pitch in which aromatic rings are condensed or polycyclic to have a laminated orientation by holding or accelerating the polymerization by adding an acid or the like can be used.

【0041】特に、メソフェースピッチを使用する場合
には、紡糸性、繊維状炭素の物理特性、また電気、化学
特性に対し、メソフェース含有率が大きく影響を与え
る。メソフェース含有率は60%以上が好ましく、95
%以上が更に好ましい。この範囲以下であれば結晶の配
向性に劣り、材料自身の容量などの低下をきたすので好
ましくない。
In particular, when the mesophase pitch is used, the mesophase content greatly affects the spinnability, the physical properties of fibrous carbon, and the electrical and chemical properties. The mesophase content is preferably 60% or more, and 95
% Or more is more preferable. If it is less than this range, the crystal orientation is poor and the capacity of the material itself is lowered, which is not preferable.

【0042】本発明の繊維状炭素前駆体である有機物炭
素を作製する場合には、前記ポリマー類やピッチ類は加
熱されて、溶融状態とされ吐出等により成形紡糸され
る。この場合、各有機物によって融点は様々であり、そ
れぞれについて適宜最適紡糸温度が選択可能である。
When the organic carbon which is the fibrous carbon precursor of the present invention is produced, the above-mentioned polymers and pitches are heated to be in a molten state and molded and spun by discharge or the like. In this case, the melting point varies depending on each organic substance, and the optimum spinning temperature can be appropriately selected for each.

【0043】本発明の繊維状炭素の構造は、前駆体であ
る有機物繊維の構造を大きく反映し、断面形状は紡糸す
る際の形状、即ち、押し出し成形であれば最適な吐出孔
の形状を選択することが重要である。
The structure of the fibrous carbon of the present invention largely reflects the structure of the precursor organic fiber, and the sectional shape is the shape at the time of spinning, that is, the optimum shape of the discharge hole is selected in the case of extrusion molding. It is important to.

【0044】本発明の繊維状炭素の断面構造は、図1に
示すように同心円状の分割された少なくとも2種類の違
った構造を取るが、この構造を持つ繊維状炭素を作製す
るためには、有機物繊維作製時における吐出孔出口近傍
での溶融されたピッチ等の構造を制御する必要がある。
The cross-sectional structure of the fibrous carbon of the present invention has at least two different structures divided into concentric circles as shown in FIG. 1. In order to produce fibrous carbon having this structure, It is necessary to control the structure such as the melted pitch in the vicinity of the outlet of the discharge hole during the production of the organic fiber.

【0045】前記制御方法としては、吐出孔内において
空気等を吹き出しピッチ等の配向状態の流れを変える等
の方法、吐出孔の外部から磁場を加えピッチ等の配向状
態の流れを変える等の方法、また、吐出孔自身構造を同
心円状に少なくとも2つ以上に分割し、ピッチの流れを
変えて配向状態を変える等、その他いかなる方法の適用
も可能である。
As the control method, air or the like is blown into the discharge hole to change the flow of the alignment state such as pitch, or a method of changing the flow of the alignment state such as pitch by applying a magnetic field from the outside of the discharge hole. Further, any other method such as dividing the structure of the discharge hole itself into at least two concentric circles and changing the flow of the pitch to change the orientation state can be applied.

【0046】繊維状炭素の前駆体である前記有機物繊維
は、紡糸後、熱処理の前に不融化される。その具体的な
手段は限定されないが、例えば硝酸、混酸、硫酸、次亜
塩素酸等の水溶液による湿式法、或いは酸化性ガス(空
気、酸素)による乾式法、更に硫黄、硝酸アンモニア、
過硫酸アンモニア、塩化第二鉄等の固体試薬による反応
などが用いられる。また、前記処理を行う際、繊維に延
伸、或いは緊張操作を行ってもよい。
The organic fiber, which is a precursor of fibrous carbon, is infusibilized after spinning and before heat treatment. Although the specific means is not limited, for example, a wet method using an aqueous solution of nitric acid, mixed acid, sulfuric acid, hypochlorous acid, or the like, or a dry method using an oxidizing gas (air, oxygen), sulfur, ammonia nitrate,
A reaction with a solid reagent such as ammonium persulfate or ferric chloride is used. Moreover, when performing the said process, you may draw or tension a fiber.

【0047】以上の不融化処理された有機物繊維は窒素
等の不活性ガス気流中で熱処理されるが、その条件とし
ては300〜700℃で炭化した後、不活性ガス気流
中、昇温速度毎分1〜100℃、到達温度900〜15
00℃、到達温度での保持時間0〜30時間程度の条件
でか焼し、更に黒鉛化品を得るためには2000℃以
上、好ましくは2500℃以上で熱処理を行うことが好
ましい。勿論、場合によっては炭化やか焼操作を省略し
てもよい。
The above infusibilized organic fibers are heat-treated in a stream of inert gas such as nitrogen. The conditions are as follows: carbonization at 300 to 700 ° C. Min 1-100 ° C, ultimate temperature 900-15
Calcination is performed at a temperature of 00 ° C. for a holding time of about 0 to 30 hours, and in order to obtain a graphitized product, it is preferable to perform heat treatment at 2000 ° C. or higher, preferably 2500 ° C. or higher. Of course, in some cases, the carbonization and calcination operations may be omitted.

【0048】尚、生成される繊維状炭素は分級、或いは
粉砕・分級して負極材料に供されるが、粉砕は炭化、か
焼の前後、或いは黒鉛化前の昇温過程の間、いずれで行
ってもよく、この場合最終的に粉末状態で黒鉛化のため
の熱処理が行われる。
The produced fibrous carbon is classified or crushed and classified to be used as a negative electrode material. Grinding may be carried out before or after carbonization, calcination, or during the temperature rising process before graphitization. In this case, the heat treatment for graphitization is finally performed in the powder state.

【0049】一方、このような繊維状炭素または黒鉛化
繊維状炭素よりなる負極と組み合わせて用いられる正極
材料は特に限定されないが、十分な量のLiを含んでい
ることが好ましく、例えば一般式LiMO2 (但し、M
はCo,Ni,Mn,Fe,Al,V,Tiの少なくと
も一種を表す。)で表されるリチウムと遷移金属からな
る複合金属酸化物やLiを含んだ層間化合物等が好適で
ある。
On the other hand, the positive electrode material used in combination with the negative electrode composed of such fibrous carbon or graphitized fibrous carbon is not particularly limited, but preferably contains a sufficient amount of Li, for example, the general formula LiMO. 2 (However, M
Represents at least one of Co, Ni, Mn, Fe, Al, V, and Ti. ), A composite metal oxide composed of lithium and a transition metal, an intercalation compound containing Li, and the like are preferable.

【0050】特に、本発明は、高容量を達成することを
狙ったものであるので、正極は、定常状態(例えば5回
程度充放電を繰り返した後)で負極炭素材料1g当たり
250mAh以上の充放電容量相当分のLiを含むこと
が必要で、300mAh以上の充放電容量相当分のLi
を含むことがより好ましい。
In particular, the present invention is aimed at achieving a high capacity, and therefore the positive electrode is charged in a steady state (for example, after repeating charging / discharging about 5 times) at a charging capacity of 250 mAh or more per 1 g of the negative electrode carbon material. It is necessary to contain Li corresponding to the discharge capacity, and Li corresponding to the charge / discharge capacity of 300 mAh or more.
It is more preferred to include

【0051】尚、Liは必ずしも正極材からすべて供給
される必要はなく、要は電池系内に炭素材料1g当たり
250mAh以上の充放電容量相当分のLiが存在すれ
ばよい。また、このLiの量は、電池の放電容量を測定
することによって判断することとする。
It is not always necessary that Li is supplied from the positive electrode material, and the point is that Li corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of carbon material should be present in the battery system. Further, the amount of Li will be determined by measuring the discharge capacity of the battery.

【0052】本発明の非水電解液二次電池に用いる非水
電解液において、電解液としては電解質が非水溶媒に溶
解されて成る非水電解液が用いられる。ここで、本発明
では負極に黒鉛材料を用いるので、非水溶媒の主溶媒と
しては従来のPCを用いることができず、それ以外の溶
媒を用いることが前提となる。その主溶媒として好適な
のはECがまず挙げられるが、ECの水素元素をハロゲ
ン元素で置換した構造の化合物も好適である。
In the non-aqueous electrolytic solution used in the non-aqueous electrolytic solution secondary battery of the present invention, a non-aqueous electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent is used as the electrolytic solution. Here, in the present invention, since the graphite material is used for the negative electrode, conventional PC cannot be used as the main solvent of the non-aqueous solvent, and it is premised that other solvents are used. EC is most preferred as the main solvent, but compounds having a structure in which the hydrogen element of EC is replaced with a halogen element are also suitable.

【0053】また、PCのように黒鉛材料と反応性があ
るものの、主溶媒としてのECやECの水素原子をハロ
ゲン元素で置換した構造の化合物等に対して、その一部
をごく小量第二成分溶媒で置換することにより、良好な
特性が得られる。その第二成分溶媒としては、PC、ブ
チレンカーボネート、1,2−ジメトキシエタン、1,
2−ジエトキシメタン、γ−ブチロラクトン、バレロラ
クトン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1,3−ジオキソラン、4−メチル−1,3−
ジオキソラン、スルホラン、メチルスルホラン等が使用
可能であり、その添加量としては10Vol%未満が好
ましい。
Although it is reactive with a graphite material such as PC, a small amount of EC is used as a main solvent or a compound having a structure in which a hydrogen atom of EC is replaced with a halogen element. Good properties are obtained by substituting with a binary solvent. As the second component solvent, PC, butylene carbonate, 1,2-dimethoxyethane, 1,
2-diethoxymethane, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-
Dioxolane, sulfolane, methylsulfolane and the like can be used, and the addition amount thereof is preferably less than 10 Vol%.

【0054】更に本発明を完成させるには、主溶媒に対
して、或いは主溶媒と第二成分溶媒の混合溶媒に対し
て、第三の溶媒を添加し、導電率の向上、ECの分解抑
制、低温特性の改善を図るとともにリチウム金属との反
応性を低め、安全性を改善するようにしてもよい。
To further complete the present invention, a third solvent is added to the main solvent or a mixed solvent of the main solvent and the second component solvent to improve the conductivity and suppress the decomposition of EC. The low temperature characteristics may be improved and the reactivity with lithium metal may be lowered to improve the safety.

【0055】第三成分の溶媒としては、まず、DEC
(ジエチルカーボネート)やDMC(ジメチルカーボネ
ート)等の鎖状炭酸エステルが好適である。また、ME
C(メチルエチルカーボネート)やMPC(メチルプロ
ピルカーボネート)等の非対称鎖状炭酸エステルが好適
である。主溶媒、或いは主溶媒と第二成分溶媒の混合溶
媒に対する第三成分となる鎖状炭酸エステルの混合比
(主溶媒、または主溶媒と第二成分溶媒の混合溶媒:第
三成分溶媒)は容量比で10:90から60:40が好
ましく、15:85から40:60が更に好ましい。
As the solvent for the third component, first, DEC
A chain ester carbonate such as (diethyl carbonate) or DMC (dimethyl carbonate) is suitable. Also, ME
Asymmetric chain ester carbonate such as C (methyl ethyl carbonate) or MPC (methyl propyl carbonate) is preferable. The volume ratio of the main solvent or the mixed solvent of the main solvent and the second component solvent of the chain carbonate as the third component (main solvent or the mixed solvent of the main solvent and the second component solvent: the third component solvent) is the volume. The ratio is preferably 10:90 to 60:40, more preferably 15:85 to 40:60.

【0056】更に、第三成分の溶媒としてはMECとD
MCとの混合溶媒であってもよい。MEC−DMC混合
比率は、MEC容量をm、DMC容量をdとしたとき
に、1/9≦d/m≦8/2で示される範囲とすること
が好ましい。また、主溶媒、或いは主溶媒と第二成分溶
媒の混合溶媒と第三成分の溶媒となるMEC−DMC混
合比率は、MEC容量をm、DMC容量をd、溶媒全量
をTとしたときに、3/10≦(m+d)/T≦7/1
0で示される範囲とすることが好ましい。
Further, as the solvent of the third component, MEC and D
It may be a mixed solvent with MC. The MEC-DMC mixing ratio is preferably in a range represented by 1/9 ≦ d / m ≦ 8/2, where MEC capacity is m and DMC capacity is d. Further, the MEC-DMC mixing ratio of the main solvent, or the mixed solvent of the main solvent and the second component solvent and the solvent of the third component, when the MEC capacity is m, the DMC capacity is d, and the total amount of the solvent is T, 3/10 ≦ (m + d) / T ≦ 7/1
The range shown by 0 is preferable.

【0057】このような非水溶媒に溶解する電解質とし
ては、この種の電池に用いられるものであればいずれも
一種以上混合し使用可能である。例えばLiPF6 が好
適であるが、その他LiClO4 、LiAsF6 、Li
BF4 、LiB(C6 5 4 、CH3 SO3 Li、C
3 SO3 Li、LiN(CF3 SO2 2 、LiC
(CF3 SO2 3 、LiCl、LiBr等も使用可能
である。
As the electrolyte which can be dissolved in such a non-aqueous solvent, it is possible to mix and use one or more kinds of electrolytes as long as they are used in this type of battery. For example, LiPF 6 is preferable, but LiClO 4 , LiAsF 6 , Li
BF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, C
F 3 SO 3 Li, LiN ( CF 3 SO 2) 2, LiC
(CF 3 SO 2 ) 3 , LiCl, LiBr and the like can also be used.

【0058】つぎに本発明の実施例について説明する
が、本発明がこの実施例に限定されるものでなく、本発
明の技術的思想を具現化するものであればよいことは論
を待たない。
Next, an embodiment of the present invention will be described, but it is needless to say that the present invention is not limited to this embodiment and may be any one that embodies the technical idea of the present invention. .

【0059】実施例1 まず、負極材料は以下のように生成した。石炭系ピッチ
を不活性ガス雰囲気中425℃にて5時間保持し、軟化
点220℃の石炭系メソフェースピッチを得た。この
時、メソフェース含有量は92%であった。得られた石
炭系メソフェースピッチを300℃にて図2に示す吐出
外管15aと吐出内管15bの二重構造の吐出管15を
用いて紡糸し、前駆体繊維を得た。この例では吐出外管
15aの直径Aを20μm、吐出内管15bの直径Bを
10μmとした(B/A=0.5)。
Example 1 First, a negative electrode material was produced as follows. The coal-based pitch was maintained at 425 ° C for 5 hours in an inert gas atmosphere to obtain a coal-based mesophase pitch having a softening point of 220 ° C. At this time, the mesophase content was 92%. The obtained coal-based mesophase pitch was spun at 300 ° C. using a discharge pipe 15 having a dual structure of a discharge outer pipe 15a and a discharge inner pipe 15b shown in FIG. 2 to obtain a precursor fiber. In this example, the diameter A of the outer discharge tube 15a was 20 μm, and the diameter B of the inner discharge tube 15b was 10 μm (B / A = 0.5).

【0060】その後、260℃で不融化処理し、不活性
雰囲気中、温度1000℃でか焼して繊維状炭素を得
た。更に、不活性雰囲気中、温度3000℃で熱処理
し、風力粉砕分級し、黒鉛化繊維状炭素の試料粉末を得
た。得られた試料粉末は図1に示すように電子顕微鏡観
察による断面形状を有するものである。
After that, infusibilization treatment was performed at 260 ° C., and calcination was performed at a temperature of 1000 ° C. in an inert atmosphere to obtain fibrous carbon. Further, heat treatment was carried out at a temperature of 3000 ° C. in an inert atmosphere, and pulverization by air classification was carried out to obtain a sample powder of graphitized fibrous carbon. The obtained sample powder has a cross-sectional shape observed by an electron microscope as shown in FIG.

【0061】つぎに、試料粉末を負極材料として用い、
図3に示すような円筒型の非水電解液二次電池を作製し
た。
Next, using the sample powder as a negative electrode material,
A cylindrical non-aqueous electrolyte secondary battery as shown in FIG. 3 was produced.

【0062】負極1は次のように作製した。前記黒鉛粉
末を90重量部と、結着材としてポリフッ化ビニリデン
(PVDF)10重量部を混合して負極合剤を調製し、
溶剤となるN−メチルピロリドンに分散させてスラリー
(ペースト状)にした。負極集電体10として厚さ10
μmの帯状の銅箔を用い、負極合剤スラリーをこの集電
体の両面に塗布、乾燥させた後、一定圧力で圧縮成型し
て帯状の負極1を作製した。
The negative electrode 1 was produced as follows. 90 parts by weight of the graphite powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are mixed to prepare a negative electrode mixture,
It was dispersed in N-methylpyrrolidone as a solvent to form a slurry (paste form). The negative electrode current collector 10 has a thickness of 10
A band-shaped negative electrode 1 was prepared by applying a negative electrode mixture slurry on both sides of this current collector using a band-shaped copper foil having a thickness of μm, drying it, and then compression molding it at a constant pressure.

【0063】正極2は次のように作製した。まず、正極
活性物を以下のようにして作製した。炭酸リチウム0.
5モルと炭酸コバルト1モルとを混合し、この混合物
を、空気中、温度900℃で5時間焼成する。得られた
材料についてX線回折測定を行った結果、JCPDSフ
ァイルに登録されたLiCoO2 のピークと良く一致し
ていた。
The positive electrode 2 was manufactured as follows. First, a positive electrode active material was prepared as follows. Lithium carbonate 0.
5 mol and 1 mol of cobalt carbonate are mixed and the mixture is calcined in air at a temperature of 900 ° C. for 5 hours. As a result of X-ray diffraction measurement of the obtained material, it was in good agreement with the peak of LiCoO 2 registered in the JCPDS file.

【0064】このLiCoO2 を粉砕し、レーザ回折法
で得られる累積50%粒径が15μmのLiCoO2
末とした。そして、このLiCoO2 粉末95重量部と
炭酸リチウム粉末5重量部を混合し、この混合物の91
重量部、導電剤としてグラファイト6重量部、結着剤と
してポリフッ化ビニリデン3重量部を混合して正極合剤
を調製し、N−メチルピロリドンに分散させてスラリー
(ペースト状)にした。正極集電体11として厚さ20
μmの帯状のアルミニウム箔を用い、前記正極合剤スラ
リーをこの集電体の両面に均一に塗布、乾燥させた後、
圧縮成型して帯状の正極2を作製した。
This LiCoO 2 was crushed to obtain a LiCoO 2 powder having a cumulative 50% particle size of 15 μm obtained by a laser diffraction method. Then, 95 parts by weight of this LiCoO 2 powder and 5 parts by weight of lithium carbonate powder were mixed to obtain 91 parts of this mixture.
By weight, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, which was dispersed in N-methylpyrrolidone to form a slurry (paste form). Thickness 20 as the positive electrode current collector 11
Using a strip-shaped aluminum foil of μm, the positive electrode mixture slurry is uniformly applied to both surfaces of the current collector and dried,
A band-shaped positive electrode 2 was produced by compression molding.

【0065】ついで、以上のようにして作製された帯状
の負極1、帯状の正極2を図3に示すように厚さ25μ
mの微多孔性ポリプロピレンフィルムよりなるセパレー
タ3を介して、負極1、セパレータ3、正極2、セパレ
ータ3の順に積層してから多数回巻回し、外径18mm
の渦巻型電極体を作製した。
Then, the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 produced as described above were made to have a thickness of 25 μm as shown in FIG.
A negative electrode 1, a separator 3, a positive electrode 2, and a separator 3 are laminated in this order through a separator 3 made of a microporous polypropylene film of m and then wound many times to have an outer diameter of 18 mm.
A spirally wound electrode body was prepared.

【0066】このようにして作製した渦巻型電極体を、
ニッケルめっきを施した鉄製の電池缶5に収納した。そ
して、渦巻式電極上下両面には絶縁板4を配設し、アル
ミニウム製の正極リード13を正極集電体11から導出
して電池蓋7に、ニッケル製の負極リード12を負極集
電体10から導出して電池缶5に溶接した。
The spirally wound electrode body thus produced was
It was housed in a nickel-plated iron battery can 5. Then, the insulating plates 4 are arranged on the upper and lower surfaces of the spiral type electrode, and the positive electrode lead 13 made of aluminum is led out from the positive electrode current collector 11 to the battery lid 7, and the negative electrode lead 12 made of nickel is connected to the negative electrode current collector 10. Was welded to the battery can 5.

【0067】この電池缶5の中に、ECとDMCとの等
容量混合溶媒中に、LiPF6 を1mol/lの割合で
溶解した電解液を注入した。ついでアスファルトで表面
を塗布した封口ガスケット6を介して電池缶5をかしめ
ることにより、電流遮断機構を有する安全弁装置8、P
TC素子9並びに電池蓋7を固定し、電池内の気密性を
保持させ、直径18mm、高さ65mmの円筒型非水電
解液二次電池を作製した。
Into the battery can 5, an electrolytic solution in which LiPF 6 was dissolved at a ratio of 1 mol / l in a mixed solvent of EC and DMC in an equal volume was injected. Then, by caulking the battery can 5 through a sealing gasket 6 whose surface is coated with asphalt, a safety valve device 8 having a current interruption mechanism, P
The TC element 9 and the battery lid 7 were fixed, the airtightness inside the battery was maintained, and a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm was produced.

【0068】実施例2 B/A=0.7の吐出孔を用いて前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。
Example 2 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the precursor fiber was obtained by using the discharge hole of B / A = 0.7.

【0069】実施例3 B/A=0.3の吐出孔を用いて前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。
Example 3 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the precursor fiber was obtained by using the discharge hole of B / A = 0.3.

【0070】実施例4 B/A=0.1の吐出孔を用いて前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。
Example 4 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the precursor fiber was obtained using the discharge holes of B / A = 0.1.

【0071】比較例1 B/A=1の吐出孔を用いてランダムラジアル構造10
0%の断面を有する前駆体繊維を得たこと以外は実施例
1と同様にして円筒型非水電解液二次電池を作製した。
Comparative Example 1 Random radial structure 10 using discharge holes of B / A = 1
A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a precursor fiber having a cross section of 0% was obtained.

【0072】比較例2 メソフェース含有率は98%のメソフェースピッチを用
い、且つB/A=1の吐出孔を用いてランダムラジアル
構造100%の断面を有する前駆体繊維を得たこと以外
は実施例1と同様にして円筒型非水電解液二次電池を作
製した。
Comparative Example 2 Except that a precursor fiber having a cross section with a random radial structure of 100% was obtained using a mesophase pitch of 98% mesophase content and using B / A = 1 discharge holes. A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.

【0073】各実施例および比較例で用いた繊維状炭素
について充放電能力を測定した結果および断面形状につ
いて表1に示した。断面形状は電子顕微鏡にて観察し
た。
Table 1 shows the results of measuring the charge / discharge capacity and the cross-sectional shape of the fibrous carbon used in each of the examples and comparative examples. The cross-sectional shape was observed with an electron microscope.

【表1】 [Table 1]

【0074】充放電能力測定方法 以下に充放電能力測定方法について説明する。測定は以
下に述べるテストセルを作製して行った。テストセルの
作製に際しては、まず前記試料粉末に対し、Ar雰囲気
中で昇温速度約30℃/分、到達温度600℃、到達温
度保持時間1時間なる条件で前熱処理を施した。この
後、バインダーとして10重量%相当量のポリフッ化ビ
ニリデンを加え、ジメチルホルムアミドを溶媒として混
合、乾燥して試料ミックスを調製した。その37mgを
秤量し、集電体であるNiメッシュと共に直径15.5
mmのペレットに成形し、作用電極を作製した。
Charging / Discharging Capacity Measuring Method The charging / discharging capacity measuring method will be described below. The measurement was performed by making a test cell described below. In producing the test cell, first, the sample powder was preheated in an Ar atmosphere under the conditions of a temperature rising rate of about 30 ° C./minute, an ultimate temperature of 600 ° C., and an ultimate temperature holding time of 1 hour. Then, polyvinylidene fluoride in an amount equivalent to 10% by weight was added as a binder, dimethylformamide was mixed as a solvent, and dried to prepare a sample mix. The 37 mg was weighed, and the diameter was 15.5 with the Ni mesh as the current collector.
mm pellets were formed to prepare a working electrode.

【0075】テストセルの構成は次の通りである。 セル形状:コイン型セル(直径20mm、厚さ2.5m
m) 対極:Li金属 セパレータ:ポリプロピレン多孔質膜 電解液:ECとDECの混合溶媒(容量比で1:1)に
LiPF6 を1mol/lの濃度で溶解したもの
The structure of the test cell is as follows. Cell shape: coin type cell (diameter 20 mm, thickness 2.5 m
m) Counter electrode: Li metal Separator: Polypropylene porous membrane Electrolyte: LiPF 6 dissolved in a mixed solvent of EC and DEC (volume ratio 1: 1) at a concentration of 1 mol / l

【0076】上記構成のテストセルを用いて炭素材料1
g当たりの容量を測定した。尚、作用電極へのリチウム
のドープ(充電:厳密に言うとこの試験方法では炭素材
料にリチウムがドープされる過程では充電ではなく放電
であるが、実電池での実態に合わせて便宜上このドーピ
ング過程を充電、脱ドープ過程を放電と呼ぶことにす
る。)はセル当たり1mAの定電流、0V(Li/Li
+ )の定電流定電圧法で充電し、放電(脱ドープ過程)
は、セル当たり1mAの定電流で、端子電圧1.5Vま
で行い、このときの容量を算出した。
Using the test cell having the above structure, the carbon material 1
The capacity per gram was measured. Doping of lithium into the working electrode (charging: strictly speaking, in this test method, discharging is not charging in the process of doping the carbon material with lithium, but this doping process is convenient for the actual battery. Is charged, and the dedoping process is called discharge.) Is a constant current of 1 mA per cell, 0 V (Li / Li
+ ) Constant current constant voltage method for charging and discharging (de-doping process)
Was carried out at a constant current of 1 mA per cell up to a terminal voltage of 1.5 V, and the capacity at this time was calculated.

【0077】各実施例および比較例で作製した筒形電池
について、充電電流1A、最大充電電圧4.2Vで2.
5h定電流定電圧充電を行い、その後、放電電流700
mAで2.75Vまで放電し、電池初期容量を測定し
た。その結果を表1および図4に示した。
The cylindrical batteries produced in each of the examples and comparative examples were charged with a charging current of 1 A and a maximum charging voltage of 4.2 V.2.
5h constant current constant voltage charging, then discharge current 700
The battery was discharged to 2.75 V at mA and the initial capacity of the battery was measured. The results are shown in Table 1 and FIG.

【0078】つぎに、充放電サイクルを繰り返し行い、
2サイクル目の容量に対する200サイクル目の容量の
比(容量維持率)を求めた。サイクル試験は最大電圧
4.2V,充電電流1Aで2.5h充電を行い、300
mAで2.75Vまで放電を行った。2サイクル目の容
量と2サイクル目に対する200サイクル目の容量維持
率を前掲の表1および図5に示した。
Next, the charge / discharge cycle is repeated,
The ratio of the capacity at the 200th cycle to the capacity at the 2nd cycle (capacity retention rate) was determined. In the cycle test, the maximum voltage was 4.2V and the charging current was 1A for 2.5 hours.
It was discharged to 2.75 V at mA. The capacity at the second cycle and the capacity retention rate at the 200th cycle relative to the second cycle are shown in Table 1 and FIG.

【0079】以上の結果より、本発明の繊維状炭素は従
来の比較例に比べ電池容量とサイクル特性のバランスが
よく、高エネルギー密度でサイクル特性の優れた、信頼
性の高い電池が得られることが分かった。
From the above results, the fibrous carbon of the present invention has a good balance between battery capacity and cycle characteristics as compared with the conventional comparative example, and it is possible to obtain a highly reliable battery having high energy density and excellent cycle characteristics. I understood.

【0080】[0080]

【発明の効果】以上の説明からも明らかなように、本発
明の繊維状炭素はその中心部に高結晶性で高容量が得ら
れるラジアル型構造を有し、且つ表層部に充放電時の膨
張収縮による繊維構造破壊に強いランダムラジアル型構
造を有する断面高次構造を採用し、これを負極に用いる
ことで高エネルギー密度で高信頼性の二次電池の作製が
可能となった。
As is apparent from the above description, the fibrous carbon of the present invention has a radial type structure in the center of which highly crystalline and high capacity can be obtained, and the surface layer of the fibrous carbon during charging and discharging. By adopting a high-order cross-section structure with a random radial type structure that is resistant to fiber structure destruction due to expansion and contraction, and using this for the negative electrode, it has become possible to fabricate a highly reliable secondary battery with high energy density.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による繊維状炭素の断面であって、
(a)はその断面写真であり、(b)はその模式図であ
る。
1 is a cross section of a fibrous carbon according to the present invention,
(A) is the photograph of the cross section, (b) is the schematic diagram.

【図2】 本発明による繊維状炭素の作製装置の要部を
示す図であって、(a)は吐出管の吐出孔から見た図で
あり、(b)は吐出管の側面断面図である。
FIG. 2 is a view showing a main part of a device for producing fibrous carbon according to the present invention, in which (a) is a view seen from a discharge hole of a discharge pipe and (b) is a side sectional view of the discharge pipe. is there.

【図3】 本発明による繊維状炭素を用いた筒形電池の
側面断面図である。
FIG. 3 is a side sectional view of a tubular battery using fibrous carbon according to the present invention.

【図4】 本発明による繊維状炭素のラジアル型構造と
容量の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the radial type structure of fibrous carbon and the capacity according to the present invention.

【図5】 本発明による繊維状炭素のラジアル型構造と
容量維持率の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the radial structure of fibrous carbon and the capacity retention rate according to the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレータ、4…絶縁板、5
…電池缶 6…封口ガスケット、7…電池蓋、8…安全弁装置、9
…PTC素子 10…負極集電体、11…正極集電体、12…負極リー
ド、13…正極リード 14…センターピン、15…吐出管、15a…吐出外
管、15b…吐出内管
1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulating plate, 5
... Battery can 6 ... Sealing gasket, 7 ... Battery lid, 8 ... Safety valve device, 9
... PTC element 10 ... Negative electrode current collector, 11 ... Positive electrode current collector, 12 ... Negative electrode lead, 13 ... Positive electrode lead 14 ... Center pin, 15 ... Discharge pipe, 15a ... Discharge outer pipe, 15b ... Discharge inner pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムのドープ脱ドープ可能な炭素材
料よりなる負極、正極および非水溶媒に電解質が溶解さ
れた非水電解液を有してなる非水電解液二次電池におい
て、 前記負極は、繊維状の炭素材料であって、 且つ、前記炭素材料の断面の高次構造は、中心部がラジ
アル型構造で表層部がランダムラジアル型構造であるこ
とを特徴とする非水電解液二次電池用負極材料。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary structure characterized by a fibrous carbon material, and a higher-order structure of a cross section of the carbon material, wherein the central part has a radial type structure and the surface part has a random radial type structure Negative electrode material for batteries.
【請求項2】 前記炭素材料からなる繊維の半径をRと
し、これと同心円状にラジアル部を形成する部位の半径
をLとしたとき、L/Rが1未満であることを特徴とす
る、請求項1に記載の非水電解液二次電池用負極材料。
2. When the radius of the fiber made of the carbon material is R and the radius of a portion forming a radial portion concentrically with this is L, L / R is less than 1. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 リチウムのドープ脱ドープ可能な炭素材
料よりなる負極、正極および非水溶媒に電解質が溶解さ
れた非水電解液を有してなる非水電解液二次電池におい
て、 請求項1に記載の非水電解液二次電池用負極材料を用い
たことを特徴とする非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery comprising the negative electrode material for a non-aqueous electrolyte secondary battery as described in 1.
JP8118004A 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material Pending JPH09306476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8118004A JPH09306476A (en) 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8118004A JPH09306476A (en) 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material

Publications (1)

Publication Number Publication Date
JPH09306476A true JPH09306476A (en) 1997-11-28

Family

ID=14725678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8118004A Pending JPH09306476A (en) 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material

Country Status (1)

Country Link
JP (1) JPH09306476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716557B2 (en) * 1996-06-28 2004-04-06 Sony Corporation Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using such anode material
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
WO2020125282A1 (en) * 2018-12-21 2020-06-25 浙江伏打科技有限公司 Carbon-bound lithium ion conductor-carbon composite cathode material having carbon fiber structure and fabrication method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716557B2 (en) * 1996-06-28 2004-04-06 Sony Corporation Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using such anode material
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
WO2020125282A1 (en) * 2018-12-21 2020-06-25 浙江伏打科技有限公司 Carbon-bound lithium ion conductor-carbon composite cathode material having carbon fiber structure and fabrication method therefor

Similar Documents

Publication Publication Date Title
US7498101B2 (en) Non-aqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP3556270B2 (en) Lithium secondary battery
EP0573266B1 (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JP4144038B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JPH06318459A (en) Lithium secondary battery
JPH0785888A (en) Lithium secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP4354723B2 (en) Method for producing graphite particles
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP3727666B2 (en) Lithium secondary battery
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JP2001148241A (en) Non-aqueous electrolyte battery
JP3863514B2 (en) Lithium secondary battery
JPH09306476A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JPH11111297A (en) Lithium secondary battery
JPH09306488A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JPH09293504A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2001185149A (en) Lithium secondary battery
JPH08180873A (en) Manufacture of negative electrode material and nonaqueous electrolytic secondary battery
KR0161633B1 (en) Manufacturing method of pitch coke for carbon anode and manufacturing method for battery
JPH10270080A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040818

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040910