KR100850771B1 - Method for preparation of nano-metal ink - Google Patents

Method for preparation of nano-metal ink Download PDF

Info

Publication number
KR100850771B1
KR100850771B1 KR1020070017270A KR20070017270A KR100850771B1 KR 100850771 B1 KR100850771 B1 KR 100850771B1 KR 1020070017270 A KR1020070017270 A KR 1020070017270A KR 20070017270 A KR20070017270 A KR 20070017270A KR 100850771 B1 KR100850771 B1 KR 100850771B1
Authority
KR
South Korea
Prior art keywords
metal
catalyst
nanoparticles
source solution
nanoparticle
Prior art date
Application number
KR1020070017270A
Other languages
Korean (ko)
Inventor
변정훈
박재홍
김상윤
윤기영
황정호
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020070017270A priority Critical patent/KR100850771B1/en
Application granted granted Critical
Publication of KR100850771B1 publication Critical patent/KR100850771B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

A method for preparing a nano-metal ink is provided to simplify the manufacturing process, to improve production yield, to allow the production velocity, stability and physical properties to be controlled easily. A method for preparing a nano-metal ink comprises the steps of applying high voltage between electrodes made of catalyst metal to produce spark, thereby forming some of the catalyst metal into a catalyst nanoparticle; carrying the catalyst nanoparticle with a carrier gas to supply to a source solution containing a metal ion; and initiating and accelerating the reduction of a metal ion of the source solution by the catalyst nanoparticle so as to produce a metal nanoparticle of high purity and to disperse the produced metal nanoparticle uniformly in the solution. The size of the catalyst nanoparticle is controlled by the flux of the carrier gas; the agglomeration of the metal nanoparticle is inhibited by the application of ultrasonic wave to the source solution; the source solution comprises a metal salt, a reducing agent, a stabilizer, a pH controller, a dispersion controller and a viscosity controller; the catalyst metal is at least one selected from Ni, Cu, Fe, Pd, Pr, Au and Ag; and the metal ion is at least one selected from Ag^+, Cu^2+, Pd^2+, Ni^+ and Au^3+.

Description

나노금속잉크 제조방법{Method for preparation of nano-metal ink}Method for preparation of nano-metal ink

도 1은 본 발명의 바람직한 실시예에 따른 나노금속잉크 제조방법을 도시한 개념도.1 is a conceptual diagram showing a nanometal ink manufacturing method according to a preferred embodiment of the present invention.

도 2는 도 1에서 촉매금속의 일부가 촉매나노입자로 형성되는 과정을 도시한 개념도.FIG. 2 is a conceptual diagram illustrating a process in which a portion of a catalyst metal is formed of catalyst nanoparticles in FIG. 1. FIG.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 금속전극 20 : 공급관10 metal electrode 20 supply pipe

30 : 이온대전장치 40 : 초음파 발생기30: ion charging device 40: ultrasonic generator

N : 촉매나노입자 M : 금속나노입자N: catalytic nanoparticles M: metal nanoparticles

S : 소스용액S: Sauce Solution

본 발명은 나노금속잉크 제조방법에 관한 것이다.The present invention relates to a nanometal ink production method.

일반적으로 금속나노입자는 마스크가 부착된 특정 기판(Substrate) 위에 균일분산시킨 후 마스크를 제거하는 형태(리소그래피 및 무전해 또는 전해도금) 또는 최근에 와서는 마스크가 없는 기판 위에 직접패턴하는 형태로 활용하고 있다. 이 에 금속나노입자는 분사 또는 분무가 가능한 형태로 조정되어야 하며, 이를 위하여 종래에는 기제조된 금속나노입자를 분산제가 주입된 용매에 고르게 분산시키는 방법이 주로 사용되고 있다.Generally, metal nanoparticles are used in the form of uniform dispersion on a specific substrate (substrate) to which a mask is attached and then removing the mask (lithography and electroless or electroplating) or in recent years directly patterning onto a maskless substrate. Doing. The metal nanoparticles should be adjusted to a form that can be sprayed or sprayed, and for this purpose, a method of uniformly dispersing the prepared metal nanoparticles in a solvent injected with a dispersant is mainly used.

그러나 종래기술은 금속나노입자의 생성과 나노금속잉크 제조라는 별개의 공정으로 나뉘어져 공정이 매우 복잡하고 공정에서 유해한 가스, 폐수, 폐기물 등이 발생하여 환경친화적이지 못함에 따른 비경제적 공정이란 한계가 있으므로 공정의 단순화와 친환경화가 지속적으로 요구되어 오고 있다.However, the prior art is divided into separate processes such as the production of metal nanoparticles and the production of nano metal ink, so that the process is very complicated and harmful gases, waste water, wastes, etc. are generated in the process, which is an uneconomical process due to being unfriendly to the environment. Process simplification and eco-friendliness are constantly required.

본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로, 금속나노입자의 생성과 동시에 생성된 금속나노입자가 잉크화 되는 나노금속잉크 제조방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a nano-metal ink in which the generated metal nanoparticles are inkized at the same time as the production of the metal nanoparticles.

전술한 목적을 달성하기 위한 본 발명의 나노금속잉크 제조방법은, (a) 촉매금속을 전극으로 하고, 상기 전극 사이에 고전압을 인가하여 스파크가 생성되도록 하며, 상기 촉매금속의 일부가 촉매나노입자로 형성되는 단계; (b) 운반가스에 의해 상기 촉매나노입자를 운반하여 금속이온이 포함된 소스용액으로 공급하는 단계; 및 (c) 상기 소스용액 내의 상기 금속이온의 환원이 촉매입자에 의해 개시촉진되어 고순도의 금속나노입자로 생성된 즉시 용액 내에 균일분산되는 단계;를 포함한다.Nanometal ink production method of the present invention for achieving the above object, (a) using a catalyst metal as an electrode, by applying a high voltage between the electrodes to generate a spark, a portion of the catalyst metal catalyst nanoparticles Formed with; (b) transporting the catalyst nanoparticles by a carrier gas and supplying the catalyst nanoparticles to a source solution containing metal ions; And (c) homogeneously dispersing in the solution immediately after the reduction of the metal ions in the source solution is initiated by the catalyst particles to produce high purity metal nanoparticles.

상기에 있어서, 상기 소스용액은 금속염, 환원제, 안정제, pH조정제, 분산 및 점도조절제로 구성되는 것이 바람직하다.In the above, the source solution is preferably composed of a metal salt, a reducing agent, a stabilizer, a pH adjusting agent, a dispersion and a viscosity adjusting agent.

상기에 있어서, 상기 (c)단계에서, 생성되는 금속나노입자의 엉김(Coagulation)을 억제하여, 금속나노입자의 입도를 균일하게 조절할 수 있도록 상기 소스용액에 초음파를 인가하는 것이 바람직하다.In the above, in the step (c), it is preferable to apply ultrasonic waves to the source solution so as to suppress the coagulation of the metal nanoparticles produced, to uniformly control the particle size of the metal nanoparticles.

이하, 본 발명의 바람직한 일실시예를 첨부도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 바람직한 실시예에 따른 나노금속잉크 제조방법을 도시한 개념도이고, 도 2는 도 1에서 촉매금속의 일부가 촉매나노입자로 형성되는 과정을 도시한 개념도이다.FIG. 1 is a conceptual diagram illustrating a method of preparing a nanometal ink according to a preferred embodiment of the present invention, and FIG. 2 is a conceptual diagram illustrating a process in which a portion of the catalyst metal is formed of catalyst nanoparticles in FIG. 1.

도 1을 참조하여 설명하면, 본 실시예의 나노금속잉크 제조방법은 다음과 같은 단계로 이루어진다.Referring to Figure 1, the nanometal ink manufacturing method of the present embodiment consists of the following steps.

먼저, 촉매금속을 전극(10)으로 하고, 전극(10) 사이를 수 mm의 거리를 두어 전극 사이에 고전압을 인가하여 스파크가 생성되도록 한다. (a 단계) First, a catalyst metal is used as the electrode 10, and a distance of several mm is placed between the electrodes 10 so that a high voltage is applied between the electrodes to generate sparks. (step a)

이와 같이 스파크가 생성되도록 하면, 전자충돌(Electron collision or Electron avalanche)에 의해 국부적으로 형성되는 6000K 이상의 고열과 이온폭발(Ionic bombardment) 등으로, 도 2에 도시한 바와 같이, 전극인 촉매금속의 일부가 대부분 기화(Evaporation) 후 응축(Condensation or Nucleation)되어 촉매나노입자(N)화된다.When sparks are generated as described above, part of the catalytic metal serving as an electrode is shown in FIG. 2 with high heat and ion bombardment of 6000 K or more, which are locally formed by an electron collision or an electron avalanche. Most of them are condensation (condensation or nucleation) after the evaporation to be catalytic nanoparticles (N).

본 실시예에서 촉매금속은 전이금속(Ni, Cu, Fe, Pd, Pt, Au, Ag 등) 등의 순수금속과 상기금속의 합금 및 금속 복합체 물질 등이 두루 사용될 수 있다.In the present embodiment, the catalytic metal may be a pure metal such as a transition metal (Ni, Cu, Fe, Pd, Pt, Au, Ag, etc.), an alloy of the metal, and a metal composite material.

다음으로, 운반가스에 의해 촉매나노입자(N)를 운반하여 금속이온이 포함된 소스용액(S)으로 공급된다. (b 단계) Next, the catalyst nanoparticles (N) are transported by the carrier gas and supplied to the source solution (S) containing metal ions. (step b)

여기에서, 운반가스는 비활성기체(Ar, Ne, He, Kr, Xe, Ra), 질소(N2), 공기(Air) 등이 될 수 있으며, 운반가스를 통하여 촉매나노입자(N)가 에어로졸 형태로 소스용액으로 운반된다. Here, the carrier gas may be an inert gas (Ar, Ne, He, Kr, Xe, Ra), nitrogen (N 2 ), air (Air), etc., the catalyst nanoparticles (N) through the carrier gas aerosol In form of a source solution.

촉매나노입자(N)의 크기는 운반가스의 유량에 의해 다양한 크기로 제어할 수 있으며, 이를 상세히 설명하면 다음과 같다.The size of the catalyst nanoparticles (N) can be controlled to various sizes by the flow rate of the carrier gas, which will be described in detail as follows.

(a)단계에서 기화-응축에 의해 나노입자화된 촉매금속의 1차크기(Primary size)는 구형(Spherical)의 입자 기준으로 10nm 이하이다. 이렇게 생성된 고농도의 1차크기의 촉매나노입자(N)는 브라운 운동(Brownian motion)에 의해 움직이고, 상기 1차크기의 촉매나노입자(N)가 상호간 충돌에 의해 응집(Agglomeration or Coagulation)이 이루어져 보다 큰 입자크기를 갖게 된다. The primary size of the catalytic metal nanoparticles granulated by vaporization-condensation in step (a) is 10 nm or less, based on spherical particles. The high concentration of primary catalyst nanoparticles (N) thus produced is moved by Brownian motion, and the primary nanoparticles of catalytic nanoparticles (N) are agglomerated or coagulated by collision with each other. It will have a larger particle size.

이러한 응집의 제어는 1차크기의 촉매나노입자(N)의 농도를 낮춰줌으로써 용이하게 수행할 수 있는데, 본 실시예에서는 운반가스의 유량을 증가시켜 생성된 1차크기의 촉매나노입자(N)의 농도를 줄임으로써 응집을 효과적으로 억제할 수 있다. The control of the aggregation can be easily carried out by lowering the concentration of the catalyst nanoparticles (N) of the primary size, in this embodiment, the primary size of the catalyst nanoparticles (N) generated by increasing the flow rate of the carrier gas By reducing the concentration of, aggregation can be effectively suppressed.

결과적으로 촉매나노입자(N)의 크기는 수 나노미터에서 수백 나노미터로 광범위한 입경으로 공급이 가능해지고, 사용 목적에 적합한 크기를 제조하여 소스용액에 공급할 수 있다.As a result, the size of the catalyst nanoparticles (N) can be supplied in a wide range of particle diameters from several nanometers to several hundred nanometers, and can be supplied to the source solution by preparing a size suitable for the intended use.

나아가 소스용액(S)으로 상기 촉매나노입자(N)가 공급관(20)에서의 손실없이 모든 촉매나노입자(N)가 소스용액(S)에 효율적으로 수용입자화(Hydrosolization)되도록 공급관(20)의 선단에 이온대전장치(30)를 설치하여 공급관(20)으로 유입되는 촉매나노입자(N)에 이온을 부착시켜 전기적 극성을 갖도록 한 후 소스용액(S)에 유입시킨다. 여기서 대전된 촉매나노입자(N)의 운송관 손실(Wall loss)을 최소화하기 위해 운송관(20) 표면을 가열하거나 촉매나노입자(N)의 대전극성과 동일한 극성을 운송관 (20) 표면에 인가하는 열영동(Thermophoresis) 또는 전기영동(Electrophoresis) 효과를 부여하는 것이 바람직하다.Further, the supply pipe 20 is a source solution (S) so that all of the catalyst nanoparticles (N) in the source solution (S) efficiently solubilized in the source solution (S) without loss in the supply pipe (20) The ion charging device 30 is installed at the tip of the ion nanoparticles (N) attached to the catalyst nanoparticles flowing into the supply pipe 20 to have electrical polarity, and then introduced into the source solution S. In order to minimize the wall loss of the charged catalytic nanoparticles (N), the surface of the transport tube 20 is heated or the same polarity as the counter electrode of the catalytic nanoparticles (N) is applied to the surface of the transport tube 20. It is desirable to impart an applied thermophoresis or electrophoresis effect.

또한, 상기 촉매나노입자(N)의 효율적인 공급을 위한 또 다른 방법으로 운송관 말단을 임핀져(Impinger)(미도시) 형태로 구성하고 충돌판(Impaction plate)(미도시)를 상기 임핀져 말단과 수 또는 수십 밀리미터(mm) 정도의 간격을 두고 설치할 수 있다.In addition, as another method for efficient supply of the catalyst nanoparticles (N), the end of the transport pipe is configured in the form of an impinger (not shown) and the impingement plate (not shown) the end of the impinger It can be installed at intervals of several or tens of millimeters (mm).

이와 같이 이온대전장치(30)에 열영동 또는 전기영동 효과가 부가되면, 소스용액(S)으로의 촉매나노입자(N) 주입을 촉진할 수 있으며, 거의 모든 촉매나노입자(N)가 소스용액으로 공급되어 수용입자화 (Hydrosolization) 또는 콜로이드화(Colloidization) 될 수 있다. As such, when the thermophoretic or electrophoretic effect is added to the ion charging device 30, the catalyst nanoparticles (N) may be promoted into the source solution (S), and almost all of the catalyst nanoparticles (N) are source solutions. It can be supplied in the form of hydrosolization or colloidization.

또한, 촉매나노입자(N)의 수용입자화를 촉진시키기 위해 촉매나노입자(N)가 소스용액(S)으로 공급될 때 공급기류와 소스용액(S) 상에 난류(Turbulence)를 강하게 조성하여 수용입자화를 극대화 할 수 있다.In addition, when catalyst nanoparticles (N) are supplied to the source solution (S) in order to promote the reception of the particles of the catalyst nanoparticles (N) by forming a strong turbulence (Turbulence) on the feed stream and the source solution (S) Maximize the acceptance particle size.

나아가, 장시간 운전으로 인하여 촉매나노입자(N)가 공급되는 공급관(20)에 촉매나노입자(N)가 다량 침착되었을 경우 간헐적인 추타, 진동 또는 제트분사 등을 통해 촉매나노입자(N)를 회수하여 소스용액(S)에 그대로 공급할 수 있다. Furthermore, when a large amount of catalyst nanoparticles (N) is deposited in the supply pipe 20 to which the catalyst nanoparticles (N) is supplied due to long operation, the catalyst nanoparticles (N) are recovered through intermittent thrust, vibration, or jet spraying. Can be supplied as it is to the source solution (S).

소스용액(S)은 두 가지 역할로 구분되는 용액군으로 나뉜다. 즉, 금속나노입자(M)가 생성되도록 하는 용액군과, 생성된 금속나노입자(M)가 잉크로서 바로 활용될 수 있도록 분산도 및 점도를 개선하여 잉크화 하는 용액군으로 나뉜다.Source solution (S) is divided into a solution group divided into two roles. That is, it is divided into a solution group for producing the metal nanoparticles (M) and a solution group for improving the dispersibility and viscosity so that the produced metal nanoparticles (M) can be utilized as ink immediately.

금속나노입자(M)가 생성되도록 하는 용액군은 금속나노입자(M) 생성에는 금속이온을 공급하는 금속염 (Metal salt)과, 금속이온에 전자를 공급하는 환원제 (Reduction agent)와, 보조제로 이루어져 있다. 여기에서, 보조제는 안정제, pH 조정제 등이 될 수 있다.The solution group for generating the metal nanoparticles (M) is composed of a metal salt (metal salt) for supplying metal ions, a reduction agent for supplying electrons to the metal ions, and an auxiliary agent to generate metal nanoparticles (M) have. Here, the adjuvant may be a stabilizer, a pH adjuster and the like.

잉크화 하는 용액군은 금속나노입자(M)의 소스용액 내 균분산을 유도하는 분산조절제 (Surfactantsn or Dispersants)와, 잉크의 점도를 조정하는 점도조절제(Viscosity control agent)로 이루어져 있다.The solution group to be inked is composed of a dispersion regulator (Surfactantsn or Dispersants) to induce a uniform dispersion in the source solution of the metal nanoparticles (M), and a viscosity control agent (Viscosity control agent) to adjust the viscosity of the ink.

다음으로, 소스용액(S) 내의 금속이온(Ag+, Cu2 +, Pd2 +, Ni+, Au3 + 등)이 전자(Electron)를 받아 환원되어 중성의 금속나노입자(M)로 생성된다. (c 단계) 이때, 촉매나노입자(N)는 촉매역할을 하며, 금속이온이 금속나노입자(M)로 생성되는 것을 개시촉진시킨다.Next, metal ions (Ag + , Cu 2 + , Pd 2 + , Ni + , Au 3 +, etc.) in the source solution S are received by electrons and reduced to form neutral metal nanoparticles (M). do. (Step c) At this time, the catalytic nanoparticle (N) serves as a catalyst, and promotes the start of the production of metal ions to the metal nanoparticles (M).

여기서 금속이온의 금속나노입자(M)로의 생성되는 속도 및 형상특성을 조절하기 위해 소스용액의 온도, 압력 및 반응시간을 조절할 수 있음은 물론이다.Here, it is a matter of course that the temperature, pressure and reaction time of the source solution can be adjusted to control the rate and shape characteristics of the metal ions to the metal nanoparticles (M).

금속나노입자(M) 생성은 초기에 촉매나노입자(N)의 표면에서 이루어지며, 그 이후 생성된 금속나노입자(M)가 자가촉매(Self catalysis)가 되어 금속나노입자(M) 생성이 지속되며, 반응시간 증가에 따라 생성되는 금속나노입자(M)의 농도가 증가한다.The production of metal nanoparticles (M) is initially performed on the surface of the catalytic nanoparticles (N), and since the metal nanoparticles (M) produced thereafter are self catalysis, the production of metal nanoparticles (M) continues. As the reaction time increases, the concentration of metal nanoparticles (M) generated increases.

이 단계에서, 생성되는 금속나노입자(M)의 엉김(Coagulation or Flocculation)을 억제하고, 금속나노입자(M)의 입도를 균일하게 조절할 수 있도록 소스용액(S)에 초음파 발생기(40)를 이용하여 초음파를 인가할 수 있다. 이렇게 소스용액(S)에 초음파가 인가되면, 균일한 단분산(Monodisperse)의 금속나노입자(M)로 조절될 수 있다.In this step, the ultrasonic generator 40 is used in the source solution S to suppress coagulation or flocculation of the generated metal nanoparticles M and to uniformly adjust the particle size of the metal nanoparticles M. Ultrasonic waves may be applied. When ultrasonic waves are applied to the source solution (S), it can be controlled to a uniform monodispersion (Monodisperse) metal nanoparticles (M).

이후 크기 조절된 금속나노입자(M)는 소스용액(S) 내에 포함되어 있는 분산조절제 및 점도조절제에 의해 소스용액(S) 내에 고르게 분산된 안정적인 나노금속잉크로 제조된다.Then, the scaled metal nanoparticles (M) is prepared as a stable nano-metal ink evenly dispersed in the source solution (S) by a dispersion regulator and a viscosity control agent contained in the source solution (S).

여기서 나노금속잉크의 제조는 원료가 반응조에 주입된 후 일정시간 후에 제조가 마무리되어 새로운 원료를 넣고 다시 일정시간 제조시키는 회분형(Batch type) 제조방법 및 지속적으로 원료가 주입되고 반응조에서 일정 제조시간을 거친 후 나노금속잉크로 지속적으로 배출되는 연속형(Continuous type)으로 모두 수행가능하다.Here, the production of nano metal ink is a batch type manufacturing method in which the production is finished after a certain time after the raw material is injected into the reaction tank, and a new raw material is put in again for a predetermined time, and the raw material is continuously injected and the predetermined manufacturing time in the reaction tank. It can be performed in a continuous type that is continuously discharged to the nano-metal ink after passing through.

상기와 같이 제조된 나노금속잉크는 운반시스템(Delivery system) 등을 통하여 이송되어 저장되거나 즉시 분사 또는 분무하여 사용될 수 있다.The nanometal ink prepared as described above may be transported and stored through a delivery system, or immediately sprayed or sprayed.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당기술분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art various modifications of the present invention without departing from the spirit and scope of the invention described in the claims below. Or it may be modified.

이상에서 설명한 바와 같은 본 발명의 나노금속잉크 제조방법에 따르면, 다음과 같은 효과가 있다.According to the nano-metal ink manufacturing method of the present invention as described above, has the following effects.

금속나노입자의 생성과 동시에 생성된 금속나노입자가 잉크화 됨으로써, 공정이 보다 간단해지고 그 생성수율을 높일 수 있는 동시에, 생성특성 제어가 용이한 나노금속잉크의 제조를 보다 경제적이고 친환경적으로 수행할 수 있다.The metal nanoparticles produced at the same time as the formation of the metal nanoparticles are inkized, thereby making the process simpler and increasing the production yield, and at the same time, the production of nanometal ink with easy control of production characteristics can be more economically and environmentally friendly. Can be.

즉, 금속나노입자의 생성과 금속나노입자의 잉크화가 유해물질의 배출이 없이 수행됨에 따라 환경오염을 최소화하여 친환경적이다.In other words, as the production of metal nanoparticles and the inkization of metal nanoparticles are performed without releasing hazardous substances, it is environmentally friendly by minimizing environmental pollution.

나아가, 운반가스의 유량을 조절함으로써, 촉매나노입자의 크기를 다양한 크기로 제조할 수 있으며, 운반가스에 의해 촉매나노입자의 운반이 용이하다.Further, by adjusting the flow rate of the carrier gas, the size of the catalyst nanoparticles can be produced in various sizes, it is easy to transport the catalyst nanoparticles by the carrier gas.

또한, 전기적 및 유체역학적 방법으로 반응의 정도 및 특성의 제어가 용이하며, 나노금속잉크의 생성속도 및 안정성 등의 제어가 매우 용이하다.In addition, it is easy to control the degree and characteristics of the reaction by electrical and hydrodynamic methods, and very easy to control the production rate and stability of the nano-metal ink.

나아가, 촉매로 사용되는 금속의 제한 없이 순수금속, 합금, 금속 복합체 물질을 두루 적용할 수 있다.Furthermore, pure metals, alloys, and metal composite materials may be applied throughout without limiting the metals used as catalysts.

Claims (3)

(a) 촉매금속을 전극으로 하고, 상기 전극 사이에 고전압을 인가하여 스파크가 생성되도록 하며, 상기 촉매금속의 일부가 촉매나노입자로 형성되는 단계;(a) using a catalyst metal as an electrode, applying a high voltage between the electrodes to generate a spark, and forming a portion of the catalyst metal into catalyst nanoparticles; (b) 운반가스에 의해 상기 촉매나노입자를 운반하여 금속이온이 포함된 소스용액으로 공급하는 단계; 및(b) transporting the catalyst nanoparticles by a carrier gas and supplying the catalyst nanoparticles to a source solution containing metal ions; And (c) 상기 소스용액 내의 상기 금속이온의 환원이 촉매나노입자에 의해 개시촉진되어 고순도의 금속나노입자로 생성 즉시 용액 내에 균일분산 되는 단계;를 포함하며,(c) the reduction of the metal ions in the source solution is initiated by the catalyst nanoparticles to be uniformly dispersed in the solution upon generation into high purity metal nanoparticles; and 상기 (b)단계에서, 상기 촉매나노입자의 크기는 상기 운반가스의 유량에 의해 조절되며,In the step (b), the size of the catalyst nanoparticles is controlled by the flow rate of the carrier gas, 상기 (c)단계에서, 생성되는 금속나노입자의 엉김을 억제하고, 금속나노입자의 입도를 조절할 수 있도록 상기 소스용액에 초음파를 인가하며,In the step (c), to suppress the entanglement of the resulting metal nanoparticles, and to apply ultrasonic waves to the source solution to control the particle size of the metal nanoparticles, 상기 소스용액은, 금속염, 환원제, 안정제, pH조정제, 분산조절제 및 점도조절제로 구성되며,The source solution is composed of a metal salt, a reducing agent, a stabilizer, a pH adjuster, a dispersion regulator and a viscosity regulator, 상기 촉매금속은, 전이금속인 Ni, Cu, Fe, Pd, Pt, Au, Ag 중 선택된 하나 또는 복수 개의 조합이며,The catalyst metal is one or a combination of transition metals selected from Ni, Cu, Fe, Pd, Pt, Au, Ag, 상기 금속이온은, Ag+, Cu2+, Pd2+, Ni+, Au3+ 중 선택된 하나인 것을 특징으로 하는 나노금속잉크 제조방법.The metal ion is Ag + , Cu 2+ , Pd 2+ , Ni + , Au 3 + nano metal ink manufacturing method, characterized in that one selected from. 삭제delete 삭제delete
KR1020070017270A 2007-02-21 2007-02-21 Method for preparation of nano-metal ink KR100850771B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070017270A KR100850771B1 (en) 2007-02-21 2007-02-21 Method for preparation of nano-metal ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070017270A KR100850771B1 (en) 2007-02-21 2007-02-21 Method for preparation of nano-metal ink

Publications (1)

Publication Number Publication Date
KR100850771B1 true KR100850771B1 (en) 2008-08-06

Family

ID=39881303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070017270A KR100850771B1 (en) 2007-02-21 2007-02-21 Method for preparation of nano-metal ink

Country Status (1)

Country Link
KR (1) KR100850771B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840948B1 (en) * 2016-12-23 2018-05-04 영남대학교 산학협력단 Nanocomposite, composition for coating comprising the same, apparatus for manufacturing nanocomposite, and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247905A (en) * 2004-03-01 2005-09-15 Sumitomo Electric Ind Ltd Metallic inkjet ink
KR20050101101A (en) * 2004-04-14 2005-10-20 (주)석경에이.티 Conducting metal nano particle and nano-metal ink containing it
JP2005531679A (en) 2002-07-03 2005-10-20 ナノパウダーズ インダストリーズ リミテッド Low temperature sintered conductive nano ink and method for producing the same
KR20060080077A (en) * 2005-01-04 2006-07-07 삼성전자주식회사 Apparatus for producing nano-particles
EP1696006A1 (en) 2005-02-28 2006-08-30 Samsung SDI Germany GmbH metal ink and substrate for a display and method for manufacturing the same
KR20060116556A (en) * 2005-05-10 2006-11-15 삼성전기주식회사 Metal nano particle, method for producing thereof and conductive ink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531679A (en) 2002-07-03 2005-10-20 ナノパウダーズ インダストリーズ リミテッド Low temperature sintered conductive nano ink and method for producing the same
JP2005247905A (en) * 2004-03-01 2005-09-15 Sumitomo Electric Ind Ltd Metallic inkjet ink
KR20050101101A (en) * 2004-04-14 2005-10-20 (주)석경에이.티 Conducting metal nano particle and nano-metal ink containing it
KR20060080077A (en) * 2005-01-04 2006-07-07 삼성전자주식회사 Apparatus for producing nano-particles
EP1696006A1 (en) 2005-02-28 2006-08-30 Samsung SDI Germany GmbH metal ink and substrate for a display and method for manufacturing the same
KR20060116556A (en) * 2005-05-10 2006-11-15 삼성전기주식회사 Metal nano particle, method for producing thereof and conductive ink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840948B1 (en) * 2016-12-23 2018-05-04 영남대학교 산학협력단 Nanocomposite, composition for coating comprising the same, apparatus for manufacturing nanocomposite, and method for manufacturing the same
WO2018117742A1 (en) * 2016-12-23 2018-06-28 영남대학교 산학협력단 Nano-composite, coating composition including same, and device and method for producing nano-composite

Similar Documents

Publication Publication Date Title
RU2242532C1 (en) Method of production of nanoparticles
EP1373137B1 (en) Process and apparatus for synthesis of nanotubes
JP5052291B2 (en) Alloy fine particles and method for producing the same
Lei et al. Synthesis of tungsten nanoparticles by sonoelectrochemistry
WO2021136059A1 (en) Preparation system and method capable of controlling size of nano-conductor/semiconductor material
US6989083B2 (en) Method for preparing carbon nano-fine particle, apparatus for preparing the same and mono-layer carbon nanotube
CN111687425B (en) Core-shell structure nano material and preparation method thereof
KR20190067658A (en) Method for manufacturing spherical high purity metal powder
JP2010173884A (en) Carbon nanotube dispersion, film using the same and method of producing the same
RU2380195C1 (en) Method for production of metal or semiconductor nanoparticles deposited on carrier
KR100850771B1 (en) Method for preparation of nano-metal ink
Nominé et al. Synthesis of nanomaterials by electrode erosion using discharges in liquids
CN111822728B (en) Strawberry-shaped composite material and preparation method thereof
EP3907183B1 (en) Method for mass synthesis of carbon nanotubes and carbon nanotubes synthesized thereby
CN108249429B (en) Method for modifying nano or micro particles continuously by plasma
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
Lee et al. Effect of the surfactant on size of nickel nanoparticles generated by liquid-phase plasma method
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
KR101166986B1 (en) Method for manufacturing silver powder from silver nitrate
Bensebaa Dry production methods
Panomsuwan et al. Solution plasma reactions and materials synthesis
Dadras et al. Ultrasound assisted synthesis of nanomaterials
KR20080077730A (en) Method for micro/nano scale metal patterning
RU2265076C1 (en) Method of obtaining nanoparticles
CN110666263A (en) Surface treatment method of metal workpiece

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120503

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee