WO2004038063A1 - Substitution type electroless gold plating bath - Google Patents

Substitution type electroless gold plating bath Download PDF

Info

Publication number
WO2004038063A1
WO2004038063A1 PCT/JP2003/013243 JP0313243W WO2004038063A1 WO 2004038063 A1 WO2004038063 A1 WO 2004038063A1 JP 0313243 W JP0313243 W JP 0313243W WO 2004038063 A1 WO2004038063 A1 WO 2004038063A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
gold
plating solution
plating
solder
Prior art date
Application number
PCT/JP2003/013243
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Shimizu
Ryuji Takasaki
Yoshizou Kiyohara
Kenji Yoshiba
Original Assignee
Nihon Koujundo Kagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koujundo Kagaku Co., Ltd. filed Critical Nihon Koujundo Kagaku Co., Ltd.
Priority to AU2003301573A priority Critical patent/AU2003301573A1/en
Priority to JP2004546414A priority patent/JPWO2004038063A1/en
Publication of WO2004038063A1 publication Critical patent/WO2004038063A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76874Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroless plating

Definitions

  • the present invention relates to a substitution type electroless plating solution.
  • Replacement plating solutions are applied to electronic components and are typically used to form sub-0.2 micron thin films. This is to protect the joint at the time of mounting the electronic component with a thin gold film.
  • the gold-coated part of the electronic component that has been subjected to the replacement plating in the plating process is replaced with another electronic component using solder or the like in the mounting process. After being joined with components, they are eventually assembled as electronic devices such as personal computers and mobile phones.
  • solder joint characteristics of replacement metal plating has often been taken up as a problem. This is because the area of the solder joints has been reduced in order to meet the demand for smaller and lighter electronic devices, as well as increased opportunities for electronic devices to move, resulting in mechanical shocks such as falling and compression. And exposure to deformation pressure. In order to prevent disconnection of electronic circuits, higher solder joint strength is required than before.
  • the displacement metal plating is mainly used to prevent the corrosion of the underlying metal (for example, copper, nickel, cobalt, metal, radium, etc.) and to ensure the wettability when the solder is melted. If the mold is not correctly attached, the solder joint strength will be reduced. In other words, if the replacement metal plating is not performed correctly, the underlying metal (eg, copper, nickel, etc.) may be oxidized. The adhesive layer formed between the solder and the solder may not provide sufficient strength. The gold thin film formed on the base metal diffuses into the solder when the solder is melted, and the interfacial alloy layer is formed by the metal and the solder. Conventionally, how to prevent oxidation of the underlying metal during the displacement Technical considerations are being made.
  • the underlying metal for example, copper, nickel, cobalt, metal, radium, etc.
  • substitutional plating is a plating method that uses the difference in ionization tendency between gold in the plating solution and the underlying metal (eg, copper or nickel).
  • the underlying metal eg, copper or nickel.
  • the underlying metal which has a large ionization tendency, becomes ions and dissolves in the plating solution.
  • the replacement plating method does not require a reducing agent.
  • electroless gold plating that requires a reducing agent is also called reduction plating, and is used when a thicker film than the substitution type is required, usually when it is 0.2 microns or more. ing.
  • substitution reduction plating in which a reducing agent is added to a substitution plating solution to cause a substitution reaction and a reduction reaction to proceed simultaneously. It is interpreted that this method not only deposits gold due to the action of the reducing agent, but also prevents oxidation of the underlying metal, resulting in improved solder joint strength.
  • Japanese Patent Application Laid-Open No. 2000-210973 introduces an electroless plating solution to which a reducing agent such as hydrazine and hydroxylamine is added.
  • No. 59 discloses an electroless gold plating solution to which a reducing agent for hypophosphite and a hydrazine compound is added.
  • the displacement reducing plating solution to which such a reducing agent is added has a problem in that the analysis and replenishment of the reducing agent in the plating solution must be constantly performed during the plating operation. Since the reducing agent is a substance that decomposes by heating the plating bath and emits electrons at this time, this decomposition reaction is a necessary chemical reaction to be used by being added to the plating solution. This indicates that the reducing agent decomposes as plating proceeds, and the amount of effective reducing agent gradually decreases. Therefore, the work of analyzing the amount of the reducing agent remaining in the plating bath and replenishing the decomposed amount is an indispensable work for the displacement reduction type plating solution.
  • Japanese Unexamined Patent Publication No. 2001-144144 discloses an undercoat metal in a plating solution. Techniques related to electroless plating solutions that contain a complexing agent that does not dissolve metal and a gold deposition inhibitor that suppresses excessive etching of the underlying metal are introduced. This technique aims at suppressing excessive etching of the underlying metal, and no study has been made on preventing oxidation of the underlying metal.
  • the underlying metal eluted by the substitution reaction cannot be stably dissolved, and the underlying metal tends to re-deposit together with the gold. It may take on a brownish hue and no longer show the original lemon yellow hue.
  • the present invention provides an electroless metal plating solution that effectively prevents oxidation of a metal surface to be coated without using a reducing agent and forms a gold film having good solder joint characteristics.
  • an object of the present invention is to provide a substitutional electroless plating solution that does not require analysis and replenishment of the reducing agent at the time of use.
  • the substitutional electroless gold plating solution according to the present invention comprises a water-soluble gold salt, a conductive improver, an iminodiacetate type chelating agent, and an organic compound containing two or more nitrogen atoms in the main chain or ring.
  • a surface oxidation inhibitor, and a solvent as a balance.
  • the present inventors added various compounds to a plating solution comprising a water-soluble gold salt, a conductivity improver and a complexing agent to obtain a substitution type electroless gold plating solution, and formed the plating solution with the plating solution. Solder bonding was performed on the gold-plated film, and the bonding strength was measured.
  • the present inventors have found that an organic compound containing two or more nitrogen atoms in its main chain or ring is effective as a surface oxidation inhibitor on the surface of copper, Huckel and the like widely used for electronic components.
  • the present invention has been reached.
  • the substitutional electroless gold plating solution according to the present invention which contains these series of surface oxidation inhibitors as essential components, has good soldering properties of the resulting gold-plated film despite not containing a reducing agent. It is. Since the plating solution does not contain a reducing agent, it has excellent thermal stability and does not need to constantly analyze and capture the reducing agent during the plating operation. 03 013243
  • the plating solution of the present invention chelates and stably dissolves the underlying metal, the displacement reaction product (the underlying metal ion eluted when gold is deposited) accumulated by using the plating solution. However, it does not impair the color of the gold plating (lemon yellow) by being mixed into the gold-plated deposition layer, so that the plating solution can be used for a long time.
  • the gold plating solution according to the present invention is hardly affected by metal ions such as copper, nickel, cobalt, and palladium, which are accumulated in the plating solution.
  • the plating layer can be formed stably over a long period of time.
  • FIG. 1 is a diagram showing a substrate for evaluating solder joint characteristics.
  • FIGS. 2A and 2B are cross-sectional views showing a plating substrate according to the present invention.
  • FIG. 3 is a diagram showing the solder balls used for evaluating the solder joint characteristics.
  • Figure 4 is a diagram showing the outline of the shear-strength measurement of a solder pole.
  • FIG. 5 is a diagram showing a peeled state when bonding is good.
  • FIG. 6 is a diagram showing a peeled state in a case where bonding is defective.
  • FIG. 7A and 7B are diagrams showing the results of the Auger measurement of Example 1.
  • FIG. 7A and 7B are diagrams showing the results of the Auger measurement of Example 1.
  • FIG. 8A and 8B are diagrams showing the results of the Auger measurement of Comparative Example 1.
  • FIG. 8A and 8B are diagrams showing the results of the Auger measurement of Comparative Example 1.
  • FIG. 9 is a diagram showing the ESC A measurement results of Example 3.
  • the main components of the plating solution according to the present invention include a water-soluble gold salt, a conductivity improver, a chelating agent having an imino diacetate structure, and two or more nitrogen atoms in the main chain or ring.
  • a surface oxidation inhibitor composed of an organic compound.
  • gold plating means 24K gold plating (purity 98% or more) and various metal species ranging from 24K gold plating to 14K (purity 56-60%) (for example, Ni, (Co, Ag, In, etc.).
  • Water-soluble gold salts include potassium gold (I) cyanide, potassium gold (II) cyanide, sodium gold (I) chloride, titanium (II) chloride, ammonium ammonium sulfite, and gold sulfite. Potassium, sodium gold sulfite, and gold thiosulfate A mixture of sodium and gold thiosulfate has good properties. Particularly preferred in the present invention are cinnamate primary gold reamers and sodium gold sulfite. As a concentration of the water-soluble gold salt in the plating solution, a range of 0.1 to 10 gZL can be used, and a particularly preferable range is 0.5 to 5 g / L.
  • Examples of the conductivity improver include inorganic compounds such as boric acid, borate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, nitrate, and chloride salt, citric acid, quinate, and malic acid.
  • inorganic compounds such as boric acid, borate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, nitrate, and chloride salt, citric acid, quinate, and malic acid.
  • Organic compounds such as benzoate, glycine, glycine salts, glutamic acid, glutamate, and mixtures thereof exhibit good properties.
  • the compound is a salt compound
  • the compound
  • Particularly preferred conductivity improvers in the present invention are aliphatic polycarboxylic acids and their potassium, sodium and ammonium salts.
  • the concentration of the conductivity improver in the plating solution can be in the range of 5 to 500 gZL ', and particularly preferred is in the range of 10 to 200 g / L.
  • a chelating agent having an iminodiacetic acid structure is used as the chelating agent in the plating solution according to the present invention.
  • Such chelating agents reduce the surface metal of the substrate to be plated, such as copper, nickel, cobalt, iron, and other metals (including alloys) to gold. JP2003 / 013243
  • a chelating agent having an iminodiacetate structure capable of dissolving metals such as copper, nickel, cobalt, and iron (including alloys) as an essential component, the surface of the substrate to be plated with gold Dissolution of the metal (eg, copper, nickel, cobalt, iron, etc.) in the plating solution is promoted, and reprecipitation of these metals can be prevented.
  • Chelating agents having such an iminodiacetic acid structure include ethylenediaminetetraacetic acid, hydroxyethyliminodiacetic acid, ethrotriacetic acid, hydroxyethylethylenediamine3acetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexacetic acid, and dicarboxymethyl.
  • chelating agents having a strong action of stably dissolving Ni and Cu, and those containing three or more acetate units in the molecule are particularly preferred. That is, Utrilo triacetic acid, hydroxyethylethylene diamine triacetic acid, ethylene diamine tetraacetic acid, diethylene triamine pentaacetic acid, triethylene tetraamine hexaacetic acid, and water-soluble salts thereof are particularly preferable.
  • the concentration of the chelating agent having an iminodiacetic acid structure in the plating solution is used in the range of 1 to 200 gZL, particularly preferably in the range of 2 to 100 gZL.
  • other chelating agents can be used in combination with the chelating agent having such an iminodiacetic acid structure, if necessary.
  • those which do not substantially dissolve the underlying metal eg, copper, nickel, cobalt, etc.
  • organic phosphonic acid compounds cannot stably dissolve the underlying metal eluted by the replacement reaction, and This is not suitable for the present invention because re-precipitation occurs together with gold and the resulting gold plating has poor color tone and insufficient solder joint strength.
  • the surface oxidation inhibitor used in the present invention is an organic compound containing two or more, preferably three or more nitrogen atoms in the main chain or ring.
  • the surface oxidation inhibitor is preferably an electron-donating compound, in which case the electron-donating property of the compound is P2003 / 013243
  • the nitrogen atom present in the chain or ring has a mono-NH structure, that is, the presence of one or more mono-NH groups in the main chain or ring Is preferred.
  • Such a surface oxidation inhibitor of the present invention include an aliphatic compound represented by the following formula [I] and a heterocyclic compound represented by the following formula [II]. (I)
  • To shaku 4 each independently represent hydrogen, an alkyl group having 1 to 3 carbon atoms, one (C 2 H 4 ) m — NH 2 , one (C 2 H 4 ) n — OH (where m is 0 or 1 and n is 0 or 1). p is an integer of 0-4. ]
  • R 5 represents hydrogen bonded to a carbon atom in the heterocyclic ring, an alkyl group having 1 to 3 carbon atoms, an amino group, or an alkylamino group having 1 to 3 carbon atoms.
  • ⁇ ⁇ 4 are preferably hydrogen and methyl groups, m is 0 or 1, n is 0 or 1, and p is preferably 1-3.
  • R 5 is preferably hydrogen, methyl group or amino group.
  • heterocycle having a nitrogen atom and a carbon atom of one NH— group in the ring a 5-membered ring is preferable.
  • the remaining four atoms of this five-membered heterocycle ie, the atoms other than the nitrogen atom of the above-mentioned NH— group
  • R 5 can be bonded to this carbon atom.
  • the heterocyclic compound represented by the above formula [II] may be a heteromonocyclic compound consisting of one “heterocyclic ring having a nitrogen atom or a carbon atom of one NH— group in the ring”. It may be a condensed complex ring compound in which two or more rings are formed in such a manner that the two carbon atoms therein are shared. Benzimidazole and benzotriazole are preferred specific examples of the fused heterocyclic compound.
  • the surface oxidation inhibitor of the present invention is preferably an electron-donating compound
  • at least one nitrogen atom containing at least three nitrogen atoms in the main chain or ring has at least one nitrogen atom.
  • Compounds having one NH— structure, among them, ⁇ electron excess type aromatic compounds are particularly preferable.
  • Preferred specific examples of the surface oxidation inhibitor of the present invention include the following compounds.
  • Aliphatic compounds include ethylenediamine, ⁇ , ⁇ , -bis (beta-hydroxyl-ethylene-diamine, diethylenetriamine, ⁇ , ⁇ , -bis (beta-hydroxyl-oxethyl) -diethylenetriamine, triethylenetetramine, ⁇ , N'-bis (beta-hydroxixeti) ⁇ ⁇ )-triethylenetetramine, tetraethylenepentamine, ⁇ , ⁇ , -bis (betahydroxyshethyl) -tetraethylenepentamine, etc.
  • Particularly preferred are those having 3 or more nitrogen atoms and at least 1 ⁇ Nitrogen is an aliphatic compound with a secondary amine structure.
  • aromatic compounds examples include 2-aminovirol, 3-aminovirol, 2-aminoinodole, 3-aminoinodole, pyrazole, 3-aminovirazole, 4-aminopyrazole, 5-aminopyrazole, imidazole, and 2-aminoimida.
  • Zonolle 4-amino-imidazonole, 5-amino-imidazonole, 1,2,3-triazole, 4-amino- 1,2,3-triazole, 5-amino- 1,2,3-triazonole , 1, 2, 4-triazole, 3-amino-1,2,4-triazo , 5-amino-1,2,4-triazole, tetrazole, 5-amino-tetrazonole, benzimidazonole, 2-amino-benzimidazonole, benztriazol and the like.
  • aromatic heterocyclic compounds having 3 or more nitrogen atoms and a ⁇ -electron excess type.
  • the ⁇ -electron excess type and the deficiency type of the heterocyclic compound are described in detail in a companion book, “Heterocyclic Chemistry, by Adrian Albert, The Anthon Press University of London, 1959,” JP-A-2000-14441. In the gazette, various nitrogen-containing compounds are listed as gold deposition inhibitors. Among them, pi-electron-deficient aromatic compounds such as pyridine and triazine cannot be used in the present invention.
  • the concentration of the surface oxidation inhibitor in the plating solution can be used in the range of 5 to 50,000 ppm, particularly preferably in the range of 10 to 10,000 ppm.
  • a crystallization modifier, a surfactant, and / or a buffer may be appropriately selected and added to the plating solution according to the present invention.
  • Preferred crystal modifiers in the present invention include, for example, thallium and lead.
  • the concentration of the crystal modifier in the plating solution is preferably 0.1 to 100 ppm, particularly preferably 1 to 50 ppm.
  • Surfactants are mainly used to adjust the wettability of the plating solution to the substrate to be plated.
  • a neutral, a cationic, or cationic surfactant can be used.
  • the concentration of the surfactant in the plating solution can be appropriately used in the range of 1 to 1000 ppm.
  • a compound having a buffering action may be used as a conductive salt component, but may be added separately.
  • Phthalate, phosphate, borate, tartrate, lactate, acetate, etc. can be used in the range of 10-200 gZL.
  • the substitutional electroless plating solution according to the present invention comprising the above components is placed in a bath, adjusted to a predetermined ⁇ , heated, and used.
  • the pH is usually in the range 4-8, and the bath temperature is usually in the range 60-100 ° C.
  • the material to be immersed in the plating solution preferably has copper or a copper alloy on the metal portion, or a nickel plating film formed on copper. Copper or a copper alloy formed by various methods such as mechanical processing such as rolling, an electroplating method, an electroless plating method, and a vapor phase plating method can be used as the covered portion.
  • the nickel plating film a film formed by electroplating or electroless plating with a thickness of 0.2 to 10 ⁇ m on copper can be used as a covering portion.
  • the thickness of the gold-plated thin film formed on these covered portions is usually from 0.02 to 0.4 ⁇ , preferably from 0.03 to 0.2 / zm.
  • Solder balls mounted on this gold film have diameters in the range of 100 ⁇ m to 1 mm, depending on the size of the connection (pad).
  • solder composition besides the conventional Sn-Pb system, various solder compositions generally referred to as Pb-free solder can be used.
  • FIG. 1 shows an outline of a substrate used for evaluating solder joint characteristics in the present invention.
  • the coated substrate shown in Fig. 1 has a glass epoxy substrate 1 with a length of 4 OmmX and a width of 4 OmmX and a thickness of 1 mm, and circular copper pads 2 with a diameter of 0.76 mm arranged in a grid pattern.
  • the periphery of each copper pad is covered with a photo solder resist 3.
  • Each copper pad 2 is formed of 12 / xm thick copper, the resist coating 3 has a thickness of 20 microns, and the opening of the copper pad 2 has a diameter of 0.62 mm.
  • a substrate la (hereinafter referred to as a directly plated substrate 1a) having a 0.06 / zm-thick plating film 4 directly formed on the copper surface at the opening was obtained (Fig. 2 (a)). ).
  • a nickel plating film 5 having a thickness of 5 ⁇ is formed on the copper surface of each copper pad 2 according to the conditions shown in Table 2 below, and further a thickness of 0.06 is formed on the nickel plating film 5.
  • a substrate 1b on which a gold-plated film 4 of 1 m / m was formed (hereinafter, referred to as a substrate-brick-plated substrate 1b) was obtained (FIG. 2 (b)).
  • Fig. 2 (a) shows a cross section of the directly plated metal substrate 1a obtained above
  • Fig. 2 (b) shows a cross section of the base nickel-plated substrate 1 b obtained above.
  • Solder poles 6 with a diameter of 0.76 mm are respectively placed on the surfaces of the plating films 4 on the pads of the above-mentioned direct plating substrate 1a and the base nickel plating substrate 1b. It was mounted, fused and soldered (Fig. 3), and its bonding strength was evaluated by the following method.
  • solder pole 6 Pb solder and Pb free solder were used.
  • Solder balls 6 were placed on the pads of the above-mentioned direct plating substrate 1a and the underlying nickel-plated substrate 1b, and the reflow soldering device (In this study, the reflow soldering device "RF-4 3 0 ”, manufactured by Nippon Pulse Giken Co., Ltd.), and the solder balls were melted, and the solder balls 6 were bonded to the plating 4 on the pads (FIG. 3). At this time, a part of the gold film 4 is dissolved in the solder ball, an alloy layer with copper or nickel as a base is formed, and the solder pole is fixed.
  • the reflow soldering device “RF-4 3 0 ”, manufactured by Nippon Pulse Giken Co., Ltd.
  • the reflow temperature and the reflow time were appropriately set in the range of 200 to 300 ° C. in consideration of the composition of the solder to be used, and the evaluation was performed.
  • solder joint characteristics were evaluated by using a shear strength measuring device (in this study, “Bond Tester 400”, Digi Co., Ltd.), peeling the solder pole 6 from the pad (Fig. 4) and peeling it off. This was done by observing the surface conditions.
  • a plating solution having the composition described in Example 1 in Table 3 was prepared in a 50-mL beaker, the pH was adjusted to 7.0, and the mixture was heated to 85 ° C in a water bath. After the substrate of Fig. 1 was plated with nickel under the conditions shown in Table 2 (Fig. 2 (b)), it was immersed in the prepared plating bath for 10 minutes to form a 0.06 micron thick gold film. . Pb solder balls were mounted on the 20 gold-plated pads, and after being fused with a reflow device at 230 ° C, 20 solder poles were peeled off with a shearing device. Observed.
  • the plating solution was placed in an oven at 90 ° C, left for 80 hours, and then removed. However, no gold deposition was observed in the plating solution, and the plating bath had good thermal stability. Was.
  • the pH was adjusted to 7.0 again, heated to 85 ° C in a hot water bath, and then the substrate shown in Fig. 1 was coated with nickel under the conditions shown in Table 2 (Fig. 2 (b)) was immersed for 10 minutes to obtain a plating film having a thickness of 0.06 ⁇ m.
  • solder peeling mode was measured.95% of the pads in the solder were exposed and 5% of the pads with Ni interface exposed. It was just a mistake.
  • a plating solution having the composition shown in Example 2 in Table 3 was prepared, and plated with a nickel-plated substrate (FIG. 2 (b)) in the same manner as in Example 1 to obtain a plating solution.
  • a micron-thick gold-plated film was formed.
  • the cut in the solder was as good as 100%.
  • this plating solution was placed in an open at 90 ° C, gold deposition did not occur even after 80 hours and was stable.
  • a plating solution having the composition described in Example 3 in Table 3 was prepared in a 50-mL beaker, the pH was adjusted to 5.0, and the mixture was heated to 85 ° C in a water bath. After pre-treating the substrate shown in Fig. 1 under the conditions shown in Table 1 (Fig. 2 (a)), it was immersed in the prepared plating bath for 10 minutes to form a coating having a thickness of 0.06 micron.
  • Fig. 9 shows the results of analysis of the obtained gold-plated film in the depth direction using ESCA (QUANTUM2000, manufactured by ULVAC). No oxidation of the underlying copper was observed, and no carbon was detected in the plating film.
  • the surface oxidation inhibitor suppresses the oxidation of the copper surface, but indicates that it is not incorporated into the plating film.
  • a solder pole test was performed. Pb-free solder poles (Sn-Ag3.0-CuO.5) are mounted on the 2 2 pads that have been gold-plated, fused by a reflow device at 255 ° C, and then shared by a single device. Twenty solder balls were peeled off, and each peeled part was observed.
  • the plating solution was placed in an oven at 90 ° C., left for 100 hours, and then taken out. However, no gold deposition was observed in the plating solution, and the thermal stability was good. .
  • the pH was adjusted to 5.0 again, heated to 85 ° C in a hot water bath, and the substrate in Fig. 1 was pretreated under the conditions in Table 1 (Fig. a)) was immersed for 10 minutes to obtain a plating film having a thickness of 0.06 ⁇ m.
  • the color of the gold-plated film was bright lemon yellow.
  • solder peeling mode was measured. Only 5% of the pads had exposed Cu interface.
  • the plating solution described in Example 3 was mixed at 50 OmL and placed in a 100 OmL beaker to perform a plating run-length test. A number of 5 cm square copper plates were prepared and plated under the conditions described in Example 3 to form a plated film of about 0.06 microns. The operation for the formation was repeated. The gold concentration in the plating solution was measured by ICP (SPS 3000, manufactured by Seiko Instruments Inc.) during Runjung, and the same amount of gold (1) gold cyanide was added every time the gold concentration decreased by 0.2 g ZL. The plating operation was repeated while replenishing, and the running was terminated when a total amount of 4.0 gZL of gold was consumed. The test took five days.
  • the concentration of the surface oxidation inhibitor in the plating solution after the test was analyzed using a capillary electrophoresis device (CAP 13200, manufactured by Otsuka Electronics Co., Ltd.). The concentration was the same as before running. It was found that the surface oxidation inhibitor of the present invention did not decompose even under a long-time heating condition (85 ° C, between 53) and was not consumed during the plating reaction. -(Comparative Example 1)
  • a plating solution having the composition shown in Comparative Example 1 in Table 3 was prepared and plated in the same manner as in Example 1 to form a plating film having a thickness of 0.07 ⁇ m. Twenty Pb solder balls were mounted on this gold-plated board in the same manner as in Example 1, and when the solder release mode was measured, the cut in the solder was only 10% and the remaining 90% was nickel The interface was exposed and the solder connection characteristics were unsatisfactory.
  • a plating solution having the composition shown in Comparative Example 2 in Table 3 was prepared, and plated in the same manner as in Example 1 to form a plating film having a thickness of 0.07 ⁇ m. Twenty Pb solder balls were mounted on the gold-plated board in the same manner as in Example 1, and the solder peeling mode was measured. The cut in the solder was only 5%, and the remaining 95 ° / 0 was The nickel interface was exposed and the solder connection characteristics were unsatisfactory.
  • FIG. 7 shows the Auger measurement result of Example 1
  • FIG. 8 shows Comparative Example 1.
  • Comparative Example 1 in which the surface oxidation inhibitor was not added, the Ni underlayer was severely oxidized. (Comparative Example 3).
  • a plating solution having the composition shown in Comparative Example 3 in Table 3 was prepared, and a plating process was performed on a substrate treated in the same manner as in Example 3 to form a plating film having a thickness of 0.05 ⁇ m.
  • 20 Pb-free solders (same composition as in Example 3) of this gold-plated board were measured for the ball peeling mode. %Met.
  • gold deposition gold precipitation on the bottom of the beaker
  • This plating solution had poor thermal stability due to the addition of the reducing agent ascorbic acid.
  • a plating solution having the composition shown in Comparative Example 4 in Table 3 was prepared, and plating was performed in the same manner as in Example 3 to form a plating film having a thickness of 0.07 ⁇ m.
  • Twenty Pb-free solder balls (same composition as in Example 3) were mounted on this gold-plated board in the same manner as in Example 3, and the solder peeling mode was measured. At 0%, the remaining 90. /. The Cu interface was exposed and had unsatisfactory solder connection characteristics.
  • a plating solution having the composition shown in Comparative Example 5 in Table 3 was prepared and plated in the same manner as in Example 3.However, a black plating deposition layer was formed, and a lemon-yellow plating was performed. No film was obtained.
  • the copper solubility of the chelating agent using phosphonic acid is low, and it is considered that copper was co-deposited with gold.
  • the plating solution shown in Comparative Example 6 in Table 3 was prepared and plated in the same manner as in Example 3 to form a plating film having a thickness of 0.06 ⁇ m.
  • the color of the gold-plated film was lemon yellow.
  • Twenty Pb-free solder balls (same composition as in Example 3) were mounted on this gold-plated board in the same manner as in Example 3, and the solder peeling mode was measured. %, And the Cu interface was exposed in the remaining 80% of the pads, indicating unsatisfactory solder connection characteristics. Table 3

Abstract

A substitution type electroless gold plating bath that can prevent the oxidation of the surface of metal to be gold plated without the use of any reducing agent and can form a gold plating of excellent soldering characteristics. The substitution type electroless gold plating bath comprises a water-soluble gold salt, a conductivity enhancer, a chelating agent of imino diacetic acid structure, a surface oxidation inhibitor constituted of an organic compound having two or more nitrogen atoms in its main chain or ring and, as remainder, a solvent.

Description

置換型無電解金めつき液 [発 明 の 背 景 ]  Substitution type electroless plating solution [Background of the invention]
発明の分野 Field of the invention
本発明は、 置換型無電解金めつき液に関するものである。  The present invention relates to a substitution type electroless plating solution.
明 背景技術  Akira Background technology
置換型金めつき液は、 電子部品に施さ田れ、 通常 0 . 2 ミクロン以下の薄膜を形 成させるのに使われている。 これは電子部品実装時の接合部を金薄膜で保護する 為で、 めっき工程で置換金めつきが施された電子部品の金めつき被覆部は、 実装 工程においてはんだ等を用いて別の電子部品と接合されて、 最終的にはパソコン、 携帯電話等の電子装置として組み上げられている。  Replacement plating solutions are applied to electronic components and are typically used to form sub-0.2 micron thin films. This is to protect the joint at the time of mounting the electronic component with a thin gold film.The gold-coated part of the electronic component that has been subjected to the replacement plating in the plating process is replaced with another electronic component using solder or the like in the mounting process. After being joined with components, they are eventually assembled as electronic devices such as personal computers and mobile phones.
近年、 電子装置が小型化、 軽量化されるにつれ、 置換型金めつきのはんだ接合 特性が問題として採り上げられることが多くなつた。 これは、 電子装置の小型化、 軽量化への要求に応えるためにはんだ接合部の面積が小さくなっていることに加 え、 電子装置の移動機会の増加によって、 落下等の機械的衝撃、 圧迫や変形圧力 に曝される機会が多くなってきていることによる。 電子回路の断線を防止するた めに、 従来よりさらに高いはんだ接合強度が必要になってきている。  In recent years, as electronic devices have become smaller and lighter, the problem of solder joint characteristics of replacement metal plating has often been taken up as a problem. This is because the area of the solder joints has been reduced in order to meet the demand for smaller and lighter electronic devices, as well as increased opportunities for electronic devices to move, resulting in mechanical shocks such as falling and compression. And exposure to deformation pressure. In order to prevent disconnection of electronic circuits, higher solder joint strength is required than before.
置換型金めつきは、 主として、 下地金属 (例えば銅、 ニッケル、 コバルト、 ノ、。 ラジウム等) の腐食を防止し、 はんだ溶融時の濡れ性を確保するために用いられ ているが、 この置換型金めつきが正しく行われないと、 はんだの接合強度が低下 する。 すなわち、 置換型金めつきが正しく行われなかった場合、 下地金属 (例え ば銅、 ニッケル等) の酸化が起きていることがあり、 このような金めつき表面を はんだ接合すると、 下地金属とはんだとの間に形成される接着層が十分な強度を 与えないことがある。 下地金属の上に形成された金の薄膜は、 はんだ溶融時には んだ内部に拡散してゆき、 界面合金層が被めつき金属とはんだとで形成される。 従来より、 置換型金めつき工程中の下地金属の酸化を如何に防止するか多くの 技術検討がなされている。 ここで、 置換型金めつきとは、 めっき液中の金と、 下 地金属 (例えば銅やニッケル等) とのイオン化傾向の差異を利用した金めつき法 であって、 最もイオン化しにくい金属である金をイオンとしてめつき液に溶解さ せ、 ここに被めつき基板として下地金属を設けた基板を浸漬すると、 イオン化傾 向の大きい下地金属がイオンとなってめっき液に溶解し、 代わりにめっき液中の 金イオンが金属として下地金属上に析出して、 金皮膜を形成することを利用した ものである。 従って、 置換金めつき法では、 還元剤を必要としない。 The displacement metal plating is mainly used to prevent the corrosion of the underlying metal (for example, copper, nickel, cobalt, metal, radium, etc.) and to ensure the wettability when the solder is melted. If the mold is not correctly attached, the solder joint strength will be reduced. In other words, if the replacement metal plating is not performed correctly, the underlying metal (eg, copper, nickel, etc.) may be oxidized. The adhesive layer formed between the solder and the solder may not provide sufficient strength. The gold thin film formed on the base metal diffuses into the solder when the solder is melted, and the interfacial alloy layer is formed by the metal and the solder. Conventionally, how to prevent oxidation of the underlying metal during the displacement Technical considerations are being made. Here, substitutional plating is a plating method that uses the difference in ionization tendency between gold in the plating solution and the underlying metal (eg, copper or nickel). When gold is dissolved in the plating solution as ions, and the substrate with the underlying metal is immersed here, the underlying metal, which has a large ionization tendency, becomes ions and dissolves in the plating solution. In addition, it utilizes the fact that gold ions in the plating solution are deposited as metal on the underlying metal to form a gold film. Therefore, the replacement plating method does not require a reducing agent.
一方、 還元剤を必要とする無電解金めつきは、 還元型めつきとも言われており、 置換型よりも厚い膜厚が必要な場合、 通常は 0 . 2ミクロン以上の場合、 に使わ れている。  On the other hand, electroless gold plating that requires a reducing agent is also called reduction plating, and is used when a thicker film than the substitution type is required, usually when it is 0.2 microns or more. ing.
最近、 還元剤を置換めつき液に添加して置換反応と還元反応とを同時に進行さ せる置換還元めつきと呼ばれるめっき液が紹介されている。 この方法では、 還元 剤の作用により金が析出するだけでなく、 下地金属の酸化が防止され、 結果とし てはんだ接合強度が改良されると解釈されている。 特開 2 0 0 0— 2 1 9 9 7 3 号公報では、 ヒドラジン、 ヒドロキシルァミン等の還元剤を添加した無電解金め つき液が紹介され、 特開 2 0 0 1— 1 0 7 2 5 9号公報では、 次亜リン酸塩、 ヒ ドラジン化合物の還元剤を添加した無電解金めっき液が紹介されている。  Recently, a plating solution called substitution reduction plating, in which a reducing agent is added to a substitution plating solution to cause a substitution reaction and a reduction reaction to proceed simultaneously, has been introduced. It is interpreted that this method not only deposits gold due to the action of the reducing agent, but also prevents oxidation of the underlying metal, resulting in improved solder joint strength. Japanese Patent Application Laid-Open No. 2000-210973 introduces an electroless plating solution to which a reducing agent such as hydrazine and hydroxylamine is added. No. 59 discloses an electroless gold plating solution to which a reducing agent for hypophosphite and a hydrazine compound is added.
しかし、 このような還元剤を添加した置換還元めつき液には、 めっき液中の還 元剤の分析 ·補充をめつき作業中に常時行なわなければならないという問題点が ある。 還元剤は、 めっき浴の加熱により分解しこの際電子を放出する物質である から、 めっき液中に添加されて使用されるためにはこの分解反応は必要な化学反 応である。 このことから、 めっきの進行につれて還元剤が分解し、 有効な還元剤 の量は次第に減少している。 よって、 めっき浴中に残存している還元剤の量を分 析し、 分解した分を補給する作業は置換還元型のめっき液には不可欠の作業とい える。 還元剤の捕給が良好に行われない場合には、 めっき液中の還元剤'濃度の変 化や分解等による金析出状態の変化が生じて、 良好なめっきを安定して行うこと が困難になる結果、 はんだ接合強度も不安定になりがちだった。  However, the displacement reducing plating solution to which such a reducing agent is added has a problem in that the analysis and replenishment of the reducing agent in the plating solution must be constantly performed during the plating operation. Since the reducing agent is a substance that decomposes by heating the plating bath and emits electrons at this time, this decomposition reaction is a necessary chemical reaction to be used by being added to the plating solution. This indicates that the reducing agent decomposes as plating proceeds, and the amount of effective reducing agent gradually decreases. Therefore, the work of analyzing the amount of the reducing agent remaining in the plating bath and replenishing the decomposed amount is an indispensable work for the displacement reduction type plating solution. If the supply of the reducing agent is not carried out well, changes in the concentration of the reducing agent in the plating solution and changes in the gold deposition state due to decomposition, etc., will make it difficult to perform good plating stably. As a result, the solder joint strength tends to be unstable.
一方、 通常の置換めつき液には還元剤が含有されていないので、 このような作 業は不要となる。 特開 2 0 0 1— 1 4 4 4 4 1号公報には、 めっき液中に下地金 属を溶解しない錯化剤および下地金属の過剰なエッチングを抑制する金析出防止 剤を必須成分とする無電解金めつき液に関する技術が紹介されている。 この技術 は、 下地金属の過度のエッチング抑制を目的とするものであって、 下地金属の酸 化防止については検討がなされていない。 On the other hand, such a work is not necessary because the ordinary replacement plating liquid does not contain a reducing agent. Japanese Unexamined Patent Publication No. 2001-144144 discloses an undercoat metal in a plating solution. Techniques related to electroless plating solutions that contain a complexing agent that does not dissolve metal and a gold deposition inhibitor that suppresses excessive etching of the underlying metal are introduced. This technique aims at suppressing excessive etching of the underlying metal, and no study has been made on preventing oxidation of the underlying metal.
また、 下地金属を溶解しない錯化剤を使用すると、 置換反応により溶出する下 地金属を安定に溶解させることが出来ず、 下地金属も金と一緒に再析出を起こし やすくなり、 得られる金メッキは茶色がかった色調となり、 金本来のレモンイエ ローの色調を示さなくなることがある。  In addition, if a complexing agent that does not dissolve the underlying metal is used, the underlying metal eluted by the substitution reaction cannot be stably dissolved, and the underlying metal tends to re-deposit together with the gold. It may take on a brownish hue and no longer show the original lemon yellow hue.
[発 明 の概要 ] [Outline of the invention]
本発明は、 還元剤を使うことなく、 被めつき金属表面の酸化を有効に防止して、 はんだ接合特性の良好な金皮膜を形成させる無電解金めつき液を提供する。 換言 すれば、 使用時の還元剤の分析 ·補充が不要な置換型無電解金めつき液を提供す ることである。  The present invention provides an electroless metal plating solution that effectively prevents oxidation of a metal surface to be coated without using a reducing agent and forms a gold film having good solder joint characteristics. In other words, an object of the present invention is to provide a substitutional electroless plating solution that does not require analysis and replenishment of the reducing agent at the time of use.
したがって、 本発明による置換型無電解金めつき液は、 水溶性金塩、 電導性向 上剤、 ィミノ 2酢酸型キレート剤、 主鎖または環中に窒素原子を 2個以上含む有 機化合物からなる表面酸化抑制剤、 および残部としての溶媒を含んでなること、 を特徴とするものである。  Therefore, the substitutional electroless gold plating solution according to the present invention comprises a water-soluble gold salt, a conductive improver, an iminodiacetate type chelating agent, and an organic compound containing two or more nitrogen atoms in the main chain or ring. A surface oxidation inhibitor, and a solvent as a balance.
本発明者らは、 水溶性金塩、 電導性向上剤および錯化剤からなるめっき液に各 種化合物を添加して置換型無電解金めっき液を得て、 この金めつき液によって形 成させた金めつき皮膜にはんだ接合を行って、 その接合強度を測定した。  The present inventors added various compounds to a plating solution comprising a water-soluble gold salt, a conductivity improver and a complexing agent to obtain a substitution type electroless gold plating solution, and formed the plating solution with the plating solution. Solder bonding was performed on the gold-plated film, and the bonding strength was measured.
本発明者らは、 電子部品に広く用いられている銅、 ュッケル等の表面には、 主 鎖または環中に窒素原子を 2個以上含む有機化合物が表面酸化抑制剤として有効 であることを見出し、 本発明に到達した。  The present inventors have found that an organic compound containing two or more nitrogen atoms in its main chain or ring is effective as a surface oxidation inhibitor on the surface of copper, Huckel and the like widely used for electronic components. The present invention has been reached.
これらの一連の表面酸化抑制剤を必須成分とする本発明による置換型無電解金 めっき液は、 還元剤を含有しないにもかかわらず、 得られる金めつき皮膜のはん だ特性が良好なものである。 そして、 この金めつき液は、 還元剤を含有しない為、 熱安定性に優れかつめつき作業中に常時還元剤の分析 ·捕充等を行わなくても良 いものである。 03 013243 The substitutional electroless gold plating solution according to the present invention, which contains these series of surface oxidation inhibitors as essential components, has good soldering properties of the resulting gold-plated film despite not containing a reducing agent. It is. Since the plating solution does not contain a reducing agent, it has excellent thermal stability and does not need to constantly analyze and capture the reducing agent during the plating operation. 03 013243
4 また、 本発明のめっき液は下地金属をキレートし安定に溶解させるので、 めつ き液を使用することによって蓄積される置換反応生成物 (金が析出する際、 溶出 した下地金属イオン) 力、 金めつき析出層に混入して、 金メッキの色調 (レモン イェロー) を損なうこともなく、 長時間のめっき液の使用に耐えられることにな る。  4 In addition, since the plating solution of the present invention chelates and stably dissolves the underlying metal, the displacement reaction product (the underlying metal ion eluted when gold is deposited) accumulated by using the plating solution. However, it does not impair the color of the gold plating (lemon yellow) by being mixed into the gold-plated deposition layer, so that the plating solution can be used for a long time.
本発明によれば、 還元剤を使うことなく、 被めつき金属表面の酸化を防止して、 はんだ接合特性の良好な金皮膜を形成させる置換型無電解金めつき液を提供する ことができる。 この金めつき液は、 保存安定性が良好なものであって、 かつ還元 剤量の分析および補給作業を全く必要としないものである。  Advantageous Effects of Invention According to the present invention, it is possible to provide a substitution type electroless gold plating solution that forms a gold film having good solder joint characteristics by preventing oxidation of a metal surface to be coated without using a reducing agent. . This plating solution has good storage stability and does not require any analysis of the amount of the reducing agent and no replenishment work.
そして、 本発明による金めつき液は、 めっき液中に蓄積される溶出金属、 例え ば、 銅およびニッケル、 コバルト、 パラジウム等の金属イオンの影響を受けにく いものなので、 良好な特性の金めつき層を安定的かつ長期にわたつて形成可能な ものである。  The gold plating solution according to the present invention is hardly affected by metal ions such as copper, nickel, cobalt, and palladium, which are accumulated in the plating solution. The plating layer can be formed stably over a long period of time.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 はんだ接合特性を評価するための基板を示す図である。  FIG. 1 is a diagram showing a substrate for evaluating solder joint characteristics.
図 2 Aおよび Bは、 本発明によるめつき処理基板を示す断面図である。  2A and 2B are cross-sectional views showing a plating substrate according to the present invention.
図 3は、 はんだ接合特性の評価に用いたはんだボールを示す図である。  FIG. 3 is a diagram showing the solder balls used for evaluating the solder joint characteristics.
図 4は、 はんだポールのシェア一強度測定の概要を示す図である。  Figure 4 is a diagram showing the outline of the shear-strength measurement of a solder pole.
図 5は、 接合が良好な場合の剥離状態を示す図である。  FIG. 5 is a diagram showing a peeled state when bonding is good.
図 6は、 接合が不良の場合の剥離状態を示す図である。  FIG. 6 is a diagram showing a peeled state in a case where bonding is defective.
図 7 Aおよび Bは、 実施例 1の A u g e r測定結果を示す図である。  7A and 7B are diagrams showing the results of the Auger measurement of Example 1. FIG.
図 8 Aおよび Bは、 比較例 1の A u g e r測定結果を示す図である。  8A and 8B are diagrams showing the results of the Auger measurement of Comparative Example 1. FIG.
図 9は、 実施例 3の E S C A測定結果を示す図である。  FIG. 9 is a diagram showing the ESC A measurement results of Example 3.
[発明の具体的な説明] [Specific description of the invention]
<構成成分 >  <Components>
本発明による金めつき液の主要構成成分は、 水溶性金塩、 電導性向上剤、 イミ ノ 2酢酸構造を有するキレート剤、 および主鎖または環中に窒素原子を 2個以上 含む有機化合物からなる表面酸化抑制剤である。 ここで、 「金めつき」 とは、 2 4K金めつき (純度 98%以上) および 24K金めつきから 14K (純度 56 ~ 60%) 程度に至るまでの各種金属種 (例えば、 N i、 Co、 Ag、 I n等) と の任意の合金比率の合金金めつきをも言うものである。 The main components of the plating solution according to the present invention include a water-soluble gold salt, a conductivity improver, a chelating agent having an imino diacetate structure, and two or more nitrogen atoms in the main chain or ring. Is a surface oxidation inhibitor composed of an organic compound. Here, "gold plating" means 24K gold plating (purity 98% or more) and various metal species ranging from 24K gold plating to 14K (purity 56-60%) (for example, Ni, (Co, Ag, In, etc.).
( 1 ) 水溶性金塩  (1) Water-soluble gold salt
水溶性金塩としては、 シアン化第 1金カリウム、 シアン化第 2金カリウム、 塩 化第 1金ナトリウム、 塩化第 2金チトリウム、 亜硫酸金アンモニゥム、 亜硫酸金. カリウム、 亜硫酸金ナトリウム、 チォ硫酸金ナトリウム、 チォ硫酸金力リゥムぉ ょぴこれらの混合物が良好な性質を示す。 本発明において特に好ましいものは、 シァン化第 1金力リゥムおよび亜硫酸金ナトリゥムである。 金めつき液中の水溶 性金塩の濃度としては、 0. 1~10 gZLの範囲が使用可能であり、 特に望ま しいのは 0. 5〜 5 g/Lの範囲である。  Water-soluble gold salts include potassium gold (I) cyanide, potassium gold (II) cyanide, sodium gold (I) chloride, titanium (II) chloride, ammonium ammonium sulfite, and gold sulfite. Potassium, sodium gold sulfite, and gold thiosulfate A mixture of sodium and gold thiosulfate has good properties. Particularly preferred in the present invention are cinnamate primary gold reamers and sodium gold sulfite. As a concentration of the water-soluble gold salt in the plating solution, a range of 0.1 to 10 gZL can be used, and a particularly preferable range is 0.5 to 5 g / L.
(2) 電導性向上剤  (2) Conductivity improver
電導性向上剤としては、 ホウ酸、 ホウ酸塩、 リン酸、 リン酸塩、 硫酸、 硫酸塩、 チォ硫酸塩、 硝酸塩、 塩化物塩などの無機化合物、 クェン酸、 クニン酸塩、 リン ゴ酸、 リンゴ酸塩、 コハク酸、 コハク酸塩、 乳酸、 乳酸塩、 マロン酸、 マロン酸 塩、 マレイン酸、 マレイン酸塩、 蓚酸、 蓚酸塩、 酒石酸、 酒石酸塩、 フタル酸、 フタル酸塩、 安息香酸、 安息香酸塩、 グリシン、 グリシン塩、 グルタミン酸、 グ ルタミン酸塩などの有機化合物、 およびこれらの混合物が良好な性質を示す。 塩 化合物である場合、 該化合物はカリウム塩、 ナトリウム塩またはアンモニゥム塩 であることが好ましい。  Examples of the conductivity improver include inorganic compounds such as boric acid, borate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, nitrate, and chloride salt, citric acid, quinate, and malic acid. , Malate, succinic acid, succinate, lactic acid, lactate, malonic acid, malonate, maleic acid, maleate, oxalic acid, oxalate, tartaric acid, tartrate, phthalic acid, phthalate, benzoic acid Organic compounds such as benzoate, glycine, glycine salts, glutamic acid, glutamate, and mixtures thereof exhibit good properties. When the compound is a salt compound, the compound is preferably a potassium salt, a sodium salt or an ammonium salt.
本発明において特に好ましい電導性向上剤は、 脂肪族多価カルボン酸およびこ れらのカリウム塩、 ナトリウム塩、 アンモニゥム塩である。 金めつき液中の電導 性向上剤の濃度は、 5〜500 gZLの範囲が使用可能であり'、 特に好ましいの は 10〜200 g/Lの範囲である。  Particularly preferred conductivity improvers in the present invention are aliphatic polycarboxylic acids and their potassium, sodium and ammonium salts. The concentration of the conductivity improver in the plating solution can be in the range of 5 to 500 gZL ', and particularly preferred is in the range of 10 to 200 g / L.
(3) キレート剤  (3) Chelating agent
本発明による金めつき液におけるキレート剤としては、 ィミノ 2酢酸構造を有 するキレート剤を使用する。 このようなキレート剤は、 金めつきが施される基板 の表面金属、 例えば銅、 -ッケル、 コバルト、 鉄等 (合金を含む) の金属を、 金 JP2003/013243 As the chelating agent in the plating solution according to the present invention, a chelating agent having an iminodiacetic acid structure is used. Such chelating agents reduce the surface metal of the substrate to be plated, such as copper, nickel, cobalt, iron, and other metals (including alloys) to gold. JP2003 / 013243
6 めっき処理の際にめつき液中に安定に溶解可能なものである。 このような銅、 二 ッケル、 コバルト、 鉄等 (合金を含む) の金属を溶解可能なィミノ 2酢酸構造を 有するキレート剤を必須成分として使用することによって、 金めつきが施される 基板の表面金属 (例えば銅、 ニッケル、 コバルト、 鉄等) のめつき液中への溶解 を促進するとともに、 これらの金属が再析出するのを防止することができる。 このようなィミノ 2酢酸構造を有するキレート剤としては、 エチレンジァミン 4酢酸、 ヒドロキシェチルイミノ 2酢酸、 エトリロ 3酢酸、 ヒドロキシェチルェ チレンジァミン 3酢酸、 ジエチレントリアミン 5酢酸、 トリエチレンテトラミン 6酢酸、 ジカルボキシメチルグルタミン酸、 プロパンジァミン 4酢酸、 1 , 3 - ジァミノ - 2 -ヒドロキシプロパン 4酢酸、 およびこれらの水溶性塩 (例えば、 好ましくはナトリウム塩、 カリウム塩、 アンモニゥム塩) 、 およびこれらの混合 物等を挙げることができる。  6 It can be stably dissolved in plating solution during plating. By using a chelating agent having an iminodiacetate structure capable of dissolving metals such as copper, nickel, cobalt, and iron (including alloys) as an essential component, the surface of the substrate to be plated with gold Dissolution of the metal (eg, copper, nickel, cobalt, iron, etc.) in the plating solution is promoted, and reprecipitation of these metals can be prevented. Chelating agents having such an iminodiacetic acid structure include ethylenediaminetetraacetic acid, hydroxyethyliminodiacetic acid, ethrotriacetic acid, hydroxyethylethylenediamine3acetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexacetic acid, and dicarboxymethyl. Glutamic acid, propanediamine tetraacetic acid, 1,3-diamino-2-hydroxypropane tetraacetic acid, and their water-soluble salts (for example, preferably, sodium, potassium, and ammonium salts), and mixtures thereof, and the like. it can.
ィミノ 2酢酸タイプの錯化剤のなかでも好ましいのは N iや C uを安定に溶解 させる作用の強いキレート剤であり、 酢酸ュニットを分子内に 3個以上含むもの が特に好ましい。 即ち、 ユトリロ 3酢酸、 ヒドロキシェチルエチレンジァミン 3 酢酸、 エチレンジァミン 4酢酸、 ジエチレントリアミン 5酢酸、 トリエチレンテ トラミン 6酢酸、 およびこれらの水溶性塩が特に好ましい。  Among the iminodiacetic acid type complexing agents, preferred are chelating agents having a strong action of stably dissolving Ni and Cu, and those containing three or more acetate units in the molecule are particularly preferred. That is, Utrilo triacetic acid, hydroxyethylethylene diamine triacetic acid, ethylene diamine tetraacetic acid, diethylene triamine pentaacetic acid, triethylene tetraamine hexaacetic acid, and water-soluble salts thereof are particularly preferable.
金めつき液中におけるィミノ 2酢酸構造を有するキレート剤の濃度は、 1〜2 0 0 g Z Lの範囲で使用され、 特に好ましいのは 2〜 1 0 0 g Z Lの範囲である。 なお、 このようなィミノ 2酢酸構造を有するキレート剤には、 必要に応じて他 のキレート剤を併用することができる。 但し、 有機ホスホン酸化合物等のように 下地金属 (例えば銅、 ニッケル、 コバルト等) を実質的に溶解しないものは、 置 換反応により溶出する下地金属を安定に溶解させることが出来ず、 下地金属も金 と一緒に再析出を起こしゃすくなって、 得られる金メツキの色調が不良になった り、 はんだ接合強度が不足する場合があるので、 本発明では適さない。  The concentration of the chelating agent having an iminodiacetic acid structure in the plating solution is used in the range of 1 to 200 gZL, particularly preferably in the range of 2 to 100 gZL. In addition, other chelating agents can be used in combination with the chelating agent having such an iminodiacetic acid structure, if necessary. However, those which do not substantially dissolve the underlying metal (eg, copper, nickel, cobalt, etc.), such as organic phosphonic acid compounds, cannot stably dissolve the underlying metal eluted by the replacement reaction, and This is not suitable for the present invention because re-precipitation occurs together with gold and the resulting gold plating has poor color tone and insufficient solder joint strength.
( 4 ) 表面酸化抑制剤  (4) Surface oxidation inhibitor
本発明において使用される表面酸化抑制剤は、 主鎮または環中に窒素原子を 2 個以上、 好ましくは 3個以上、 含む有機化合物である。 この表面酸化抑制剤は、 電子供与性化合物で.あることが好ましく、 その場合の電子供与性が該化合物の主 P2003/013243 The surface oxidation inhibitor used in the present invention is an organic compound containing two or more, preferably three or more nitrogen atoms in the main chain or ring. The surface oxidation inhibitor is preferably an electron-donating compound, in which case the electron-donating property of the compound is P2003 / 013243
7 鎖または環中に存在する窒素原子が一 NH—構造であることによって、 即ち、 主 鎖または環中に 1または 2個以上の一 NH—基が存在することによって、 付与さ れているものが好ましい。  7 Provided by the fact that the nitrogen atom present in the chain or ring has a mono-NH structure, that is, the presence of one or more mono-NH groups in the main chain or ring Is preferred.
このような本発明の表面酸化抑制剤の具体例としては、 下記の式 〔I〕 で示さ れる脂肪族化合物および式 〔II〕 で示される複素環化合物を挙げることができる。 〔 I ) Specific examples of such a surface oxidation inhibitor of the present invention include an aliphatic compound represented by the following formula [I] and a heterocyclic compound represented by the following formula [II]. (I)
Figure imgf000009_0001
Figure imgf000009_0001
〔ここで、 !^〜尺4は、 それぞれ独立に、 水素、 炭素数 1~ 3のアルキル基、 一 (C2H4) m— NH2、 一 (C2H4) n— OHを示す (ここで、 mは 0または 1で あり、 nは 0または 1である) 。 pは 0〜4の整数である。 〕 〔here, ! ^ To shaku 4 each independently represent hydrogen, an alkyl group having 1 to 3 carbon atoms, one (C 2 H 4 ) m — NH 2 , one (C 2 H 4 ) n — OH (where m is 0 or 1 and n is 0 or 1). p is an integer of 0-4. ]
Figure imgf000009_0002
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0003
は、 一 NH—基の窒素原子および炭素原子を環中に有する複素環を示す。 R5は、 この複素環中の炭素原子に結合した水素、 炭素数 1〜3のアルキル基、 アミノ基、 炭素数 1〜 3のアルキルアミノ基を示す。 〕 Represents a heterocyclic ring having a nitrogen atom and a carbon atom of one NH— group in the ring. R 5 represents hydrogen bonded to a carbon atom in the heterocyclic ring, an alkyl group having 1 to 3 carbon atoms, an amino group, or an alkylamino group having 1 to 3 carbon atoms. ]
上記式 〔1〕. の化合物において、 !^〜 4としては水素、 メチル基が好ましく、 mとしては 0または 1、 nとしては 0または 1、 pとしては 1〜 3が好ましい。 上記式 〔II〕 の化合物において、 R5としては水素、 メチル基、 ァミノ基が好 T JP2003/013243 In the compound represented by the above formula [1]. ^ ~ 4 are preferably hydrogen and methyl groups, m is 0 or 1, n is 0 or 1, and p is preferably 1-3. In the compound of the above formula [II], R 5 is preferably hydrogen, methyl group or amino group. T JP2003 / 013243
8 ましい。 「一 N H—基の窒素原子および炭素原子を環中に有する複素環」 として は 5員環のものが好ましい。 この五員環の複素環の残りの 4原子 (即ち、 上記一 N H—基の窒素原子以外の原子) は、 4個の炭素原子、 3個の炭素原子と 1個の 窒素原子、 2個の炭素原子と 2個の窒素原子、 1個の炭素原子と 3個の窒素原子 であることができる。 この炭素原子には R 5が結合することができる。 上記式 〔II〕 の複素環化合物は、 1つの 「一 N H—基の窒素原子おょぴ炭素原子を環中 に有する複素環」 からなる複素単環化合物であっても、 この複素単環化合物中の 2つの炭素原子を共有した形で 2つまたはそれ以上の環が形成されている縮合複 素環系化合物であってもよい。 ベンズィミダゾールおよびべンズトリァゾールは この縮合複素環系化合物の好ましい具体例である。 8 good. As the “heterocycle having a nitrogen atom and a carbon atom of one NH— group in the ring”, a 5-membered ring is preferable. The remaining four atoms of this five-membered heterocycle (ie, the atoms other than the nitrogen atom of the above-mentioned NH— group) have four carbon atoms, three carbon atoms and one nitrogen atom, and two nitrogen atoms. It can be carbon and two nitrogen atoms, one carbon and three nitrogen atoms. R 5 can be bonded to this carbon atom. The heterocyclic compound represented by the above formula [II] may be a heteromonocyclic compound consisting of one “heterocyclic ring having a nitrogen atom or a carbon atom of one NH— group in the ring”. It may be a condensed complex ring compound in which two or more rings are formed in such a manner that the two carbon atoms therein are shared. Benzimidazole and benzotriazole are preferred specific examples of the fused heterocyclic compound.
前記のように、 本発明における表面酸化抑制剤は電子供与性化合物であること が好ましいことから、 主鎖または環中に窒素原子を 3個以上含みかっこのうちの 少なくとも 1個以上の窒素原子が一 N H—構造のものである化合物、 その中でも 特に π電子過剰タイプの芳香族化合物が好ましい。  As described above, since the surface oxidation inhibitor of the present invention is preferably an electron-donating compound, at least one nitrogen atom containing at least three nitrogen atoms in the main chain or ring has at least one nitrogen atom. Compounds having one NH— structure, among them, π electron excess type aromatic compounds are particularly preferable.
本発明の表面酸化抑制剤の好ましい具体例としては、 下記化合物を例示するこ とができる。  Preferred specific examples of the surface oxidation inhibitor of the present invention include the following compounds.
脂肪族化合物としては、 エチレンジァミン、 Ν, Ν, - ビス (ベータヒ ドロキ シェチ -エチレンジァミン、 ジエチレントリアミン、 Ν, Ν, - ビス (ベー タヒ ドロキシェチル) -ジエチレントリアミン、 トリエチレンテトラミン、 Ν , N ' - ビス (ベータヒ ドロキシェチ Λ^) - トリエチレンテトラミン、 テトラェチ レンペンタミン、 Ν, Ν, - ビス (ベータヒ ドロキシェチル) -テトラエチレン ペンタミン等が挙げられる。 特に好ましいものは、 窒素原子数が 3個以上で、 力 つ少なくとも 1锢の窒素原子が 2級ァミン構造の脂肪族化合物である。  Aliphatic compounds include ethylenediamine, Ν, Ν, -bis (beta-hydroxyl-ethylene-diamine, diethylenetriamine, Ν, Ν, -bis (beta-hydroxyl-oxethyl) -diethylenetriamine, triethylenetetramine, Ν, N'-bis (beta-hydroxixeti) Λ ^)-triethylenetetramine, tetraethylenepentamine, Ν, Ν, -bis (betahydroxyshethyl) -tetraethylenepentamine, etc. Particularly preferred are those having 3 or more nitrogen atoms and at least 1 锢Nitrogen is an aliphatic compound with a secondary amine structure.
芳香族化合物としては、 2 -アミノビロール、 3 -アミノビロール、 2 -アミ ノインドール、 3 -ァミノインドール、 ピラゾール、 3 -アミノビラゾール、 4 -ァミノピラゾール、 5 -アミノピラゾール、 ィミダゾール、 2 -ァミノイミダ ゾーノレ、 4 -ァミノイミダゾーノレ、 5 -ァミノイミダゾーノレ、 1, 2 , 3 - トリ ァゾール、 4 -ァミノ - 1, 2, 3 - トリァゾール、 5 -ァミノ - 1 , 2, 3 - トリアゾーノレ、 1, 2 , 4 - トリァゾール、 3 -ァミノ - 1, 2 , 4 - トリァゾ ール、 5 -ァミノ - 1, 2, 4 - トリアゾール、 テトラゾール、 5 -アミノ -テ トラゾーノレ、 ベンズィミダゾーノレ、 2 -ァミノ -ベンズィミダゾーノレ、 ベンズト リアゾール等が挙げられる。 この中で特に好ましいものは、 窒素原子数が 3個以 上で、 かつ π電子過剰タイプの芳香族複素環化合物である。 複素環化合物の π電 子過剰タイプと欠乏タイプについては、 成書 " Heterocyclic Chemistry, by Ad rien Albert, The Anthon Press University of London, 1959 ,, に詳細に解説 ざれている。 特開 2000— 14441号公報には、 金析出抑制剤として多様な 窒素含有化合物が列挙されているが、 このうちパイ電子欠乏タイプのピリジン、 トリァジン等の芳香族化合物は本発明では使用できない。 Examples of aromatic compounds include 2-aminovirol, 3-aminovirol, 2-aminoinodole, 3-aminoinodole, pyrazole, 3-aminovirazole, 4-aminopyrazole, 5-aminopyrazole, imidazole, and 2-aminoimida. Zonolle, 4-amino-imidazonole, 5-amino-imidazonole, 1,2,3-triazole, 4-amino- 1,2,3-triazole, 5-amino- 1,2,3-triazonole , 1, 2, 4-triazole, 3-amino-1,2,4-triazo , 5-amino-1,2,4-triazole, tetrazole, 5-amino-tetrazonole, benzimidazonole, 2-amino-benzimidazonole, benztriazol and the like. Among them, particularly preferred are aromatic heterocyclic compounds having 3 or more nitrogen atoms and a π-electron excess type. The π-electron excess type and the deficiency type of the heterocyclic compound are described in detail in a companion book, “Heterocyclic Chemistry, by Adrian Albert, The Anthon Press University of London, 1959,” JP-A-2000-14441. In the gazette, various nitrogen-containing compounds are listed as gold deposition inhibitors. Among them, pi-electron-deficient aromatic compounds such as pyridine and triazine cannot be used in the present invention.
金めつき液中の表面酸化抑制剤の濃度は、 5〜50000 p p mの範囲で使用 可能であり、 特に好ましいのは 10〜10000 p pmの範囲である。  The concentration of the surface oxidation inhibitor in the plating solution can be used in the range of 5 to 50,000 ppm, particularly preferably in the range of 10 to 10,000 ppm.
(5) 他の成分 (任意成分)  (5) Other components (optional components)
本発明による金めつき液には、 必要に応じて、 結晶調整剤、 界面活性剤および (または) 緩衝剤などを適宜選択して添加することが出来る。 本発明において好 ましい結晶調整剤としては、 例えばタリゥムおよび鉛を例示することができる。 結晶調整剤のめっき液中の濃度は、 0. 1〜100 p pm、 特に 1〜50 p pm、 が好ましい。  If necessary, a crystallization modifier, a surfactant, and / or a buffer may be appropriately selected and added to the plating solution according to the present invention. Preferred crystal modifiers in the present invention include, for example, thallium and lead. The concentration of the crystal modifier in the plating solution is preferably 0.1 to 100 ppm, particularly preferably 1 to 50 ppm.
界面活性剤は、 主としてめつき液の被めつき基材への濡れ性を調節するために 使用されるものである。 本発明では、 中性、 ァユオン性、 カチオン性の界面活性 剤を使用することができる。 界面活性剤のめっき液中の濃度は、 l〜1000 p p mの範囲で適宜使用することができる。  Surfactants are mainly used to adjust the wettability of the plating solution to the substrate to be plated. In the present invention, a neutral, a cationic, or cationic surfactant can be used. The concentration of the surfactant in the plating solution can be appropriately used in the range of 1 to 1000 ppm.
緩衝剤に関しては、 電導塩成分として緩衝作用を持つ化合物 (緩衝剤) が使わ れることもあるが、 別途添加することも可能である。 フタル酸塩、 燐酸塩、 ホウ 酸塩、 酒石酸塩、 乳酸塩、 酢酸塩などを 10〜200 gZLの範囲で使用するこ とが出来る。  As for the buffer, a compound having a buffering action (buffer) may be used as a conductive salt component, but may be added separately. Phthalate, phosphate, borate, tartrate, lactate, acetate, etc. can be used in the range of 10-200 gZL.
(6) 金めつき液の使用  (6) Use of gold plating liquid
上記の成分からなる本発明による置換型無電解金めつき液は、 浴槽に入れられ、 所定の ρΗに調整された後、 加熱され、 使用される。 P Hは通常 4〜 8の範囲で、 浴温は通常 60〜100°Cの範囲である。 めっき液に浸漬される被めつき材は、 金属部に好ましくは銅または銅合金、 ま たは銅上の形成されたニッケルめっき皮膜を有するものである。 銅または銅合金 として圧延等の機械的加工、 電気めつき法、 無電解めつき法、 気相めつき法など の各種方法で形成されたものを被めつき部分とすることが出来る。 ニッケルめつ き皮膜としては、 銅の上に 0. 2〜10ミクロンの厚さで電気めつきまたは無電 解めつきにて形成されたものを被めつき部分とすることが出来る。 The substitutional electroless plating solution according to the present invention comprising the above components is placed in a bath, adjusted to a predetermined ρΗ, heated, and used. The pH is usually in the range 4-8, and the bath temperature is usually in the range 60-100 ° C. The material to be immersed in the plating solution preferably has copper or a copper alloy on the metal portion, or a nickel plating film formed on copper. Copper or a copper alloy formed by various methods such as mechanical processing such as rolling, an electroplating method, an electroless plating method, and a vapor phase plating method can be used as the covered portion. As the nickel plating film, a film formed by electroplating or electroless plating with a thickness of 0.2 to 10 μm on copper can be used as a covering portion.
これらの被めつき部に形成される金めつき薄膜は、 通常 0. 02〜0. 4 μπι、 好ましくは 0. 03~0. 2 /zmの厚さである。 この金皮膜上に搭載されるはん だボールは、 接続部 (パッド) の大きさに応じて直径が 100 μ m〜 1 mmの範 囲内のものが使われる。  The thickness of the gold-plated thin film formed on these covered portions is usually from 0.02 to 0.4 μπι, preferably from 0.03 to 0.2 / zm. Solder balls mounted on this gold film have diameters in the range of 100 µm to 1 mm, depending on the size of the connection (pad).
はんだ組成は、 旧来の S n— P b系以外に、 Pbフリーはんだと総称される多 様な組成のものが使用可能である。  As the solder composition, besides the conventional Sn-Pb system, various solder compositions generally referred to as Pb-free solder can be used.
<はんだ接合特性の評価法 >  <Evaluation method for solder joint characteristics>
図 1は、 本発明において、 はんだ接合特性評価に用いた基板の概要を示すもの である。 . 図 1に示される被めつき処理基板は、 縦 4 OmmX横 4 OmmX厚さ 1 mmの ガラスエポキシ基板 1に、 直径 0. 76mmの円形の銅パッド 2が碁盤目状に配 列されているものであって、 各銅パッド周辺がフォトソルダーレジスト 3で被覆 されているものである。 それぞれの銅パッド 2は厚さ 1 2 /xmの銅により形成さ れ、 レジスト被覆 3の厚みは 20ミクロン、 銅パッド 2の開口部の直径は 0. 6 2 mmである。  FIG. 1 shows an outline of a substrate used for evaluating solder joint characteristics in the present invention. The coated substrate shown in Fig. 1 has a glass epoxy substrate 1 with a length of 4 OmmX and a width of 4 OmmX and a thickness of 1 mm, and circular copper pads 2 with a diameter of 0.76 mm arranged in a grid pattern. The periphery of each copper pad is covered with a photo solder resist 3. Each copper pad 2 is formed of 12 / xm thick copper, the resist coating 3 has a thickness of 20 microns, and the opening of the copper pad 2 has a diameter of 0.62 mm.
上記基板を下記の表 1の条件に従い、 脱脂処理、 ソフトエッチングおよび酸活 性化 (酸洗) からなる前処理を行なった後に、 置換型無電解金めつきを行って、 各銅パッド部 2の開口部の銅表面上に厚さ 0. 06 /zmの金めつき皮膜 4が直接 形成された基板 l a (以下、 直接金めつき処理基板 1 aという) を得た (図 2 (a) ) 。 表 1 After performing the pretreatment of degreasing, soft etching, and acid activation (pickling) according to the conditions shown in Table 1 below, the substrate is subjected to substitutional electroless gold plating. A substrate la (hereinafter referred to as a directly plated substrate 1a) having a 0.06 / zm-thick plating film 4 directly formed on the copper surface at the opening was obtained (Fig. 2 (a)). ). table 1
Figure imgf000013_0001
別に、 上記基板を下記の表 2の条件に従って、 各銅パッド 2の銅表面上に厚さ 5 μ ΐηのニッケルめっき皮膜 5が形成され、 さらにこのニッケルめっき皮膜 5上 に厚さ 0 . 0 6 / mの金めつき皮膜 4が形成された基板 1 b (以下、 下地-ッケ ルめっき処理基板 1 bという) を得た (図 2 ( b ) ) 。
Figure imgf000013_0001
Separately, a nickel plating film 5 having a thickness of 5 μΐη is formed on the copper surface of each copper pad 2 according to the conditions shown in Table 2 below, and further a thickness of 0.06 is formed on the nickel plating film 5. Thus, a substrate 1b on which a gold-plated film 4 of 1 m / m was formed (hereinafter, referred to as a substrate-brick-plated substrate 1b) was obtained (FIG. 2 (b)).
表 2  Table 2
ェ 程 処理薬剤 処理条件  Process Treatment agent Treatment condition
脱 脂 PAC-200 (ムラタ) 5 0 °C X 5分  Degreasing PAC-200 (Murata) 50 ° C X 5 minutes
水 洗  Washing with water
ソフトエッチング ME0X (ムラタ) 5 0 °C X 5分  Soft etching ME0X (Murata) 50 ° C X 5 minutes
水 洗  Washing with water
酸 洗 1 0 %硫酸 室温 X 6 0秒  Pickling 10% sulfuric acid Room temperature X 60 seconds
P b付与 KAT 450 (上村) 室温 X 1分  Pb grant KAT 450 (Uemura) Room temperature X 1 minute
水 洗  Washing with water
無電解ニッケルめっき NPR-4 (上村) 8 0 °C X 2 5分  Electroless nickel plating NPR-4 (Uemura) 80 ° C X 25 minutes
水 洗  Washing with water
酸活性化 ' 1 0 %硫酸 室温 X 6 0秒  Acid activation '10% sulfuric acid room temperature X 60 seconds
水 洗  Washing with water
置換金めつき 実施例本文中に記載実施例本文中に記載 図 2 ( a ) は、 上記で得られた直接金めつき処理基板 1 aの断面を、 図 2 ( b ) は、 上記で得られた下地ニッケルめっき処理基板 1 bの断面を、 示すものIn the text of the examples described in the text of the examples Fig. 2 (a) shows a cross section of the directly plated metal substrate 1a obtained above, and Fig. 2 (b) shows a cross section of the base nickel-plated substrate 1 b obtained above.
'である。 '.
上記の直接金めつき処理基板 1 aおよび下地ニッケルめっき処理基板 1 bのそ れぞれのパッド部の金めつき皮膜 4の表面に、 それぞれ直径 0 . 7 6 mmのはん だポール 6を搭載し、 これを融着してはんだ接合し (図 3 ) 、 その接合強度を下 記方法によって評価した。  Solder poles 6 with a diameter of 0.76 mm are respectively placed on the surfaces of the plating films 4 on the pads of the above-mentioned direct plating substrate 1a and the base nickel plating substrate 1b. It was mounted, fused and soldered (Fig. 3), and its bonding strength was evaluated by the following method.
はんだポール 6は、 P bはんだおよび P bフリ一はんだを使用した。  As the solder pole 6, Pb solder and Pb free solder were used.
はんだ搭載プロセスおよびはんだ接合特性の評価は、 次のように行った。  The evaluation of the solder mounting process and solder joint characteristics was performed as follows.
上記の直接金めつき処理基板 1 aおよび下地ニッケルめっき処理基板 1 bの各 パッド部にはんだボール 6を設置し、 リフロ一装置 (本検討では、 リフロ一はん だ付け装置 「R F— 4 3 0」 、 日本パルス技研社製を使用した) にて、 はんだポ ールを溶解させ、 はんだボール 6をパッド部の金めつき皮膜 4に接合させた (図 3 ) 。 このとき、 金皮膜 4は、 その一部がはんだボール中に溶解し、 下地の銅ま たは二ッケルとの合金層が形成させ、 はんだポールは固定される。  Solder balls 6 were placed on the pads of the above-mentioned direct plating substrate 1a and the underlying nickel-plated substrate 1b, and the reflow soldering device (In this study, the reflow soldering device "RF-4 3 0 ”, manufactured by Nippon Pulse Giken Co., Ltd.), and the solder balls were melted, and the solder balls 6 were bonded to the plating 4 on the pads (FIG. 3). At this time, a part of the gold film 4 is dissolved in the solder ball, an alloy layer with copper or nickel as a base is formed, and the solder pole is fixed.
リフロー温度およびリフロー時間を、 使用するはんだの組成等を考慮して 2 0 0〜3 0 0 °Cの範囲にて適宜設定し、 評価を行った。  The reflow temperature and the reflow time were appropriately set in the range of 200 to 300 ° C. in consideration of the composition of the solder to be used, and the evaluation was performed.
はんだ接合特性の評価は、 シェア一強度測定装置 (本検討では、 「ボンドテス ター 4 0 0 0」 、 ディジ社を使用した) を用い、 はんだポール 6をパッドから剥 離し (図 4 ) 、 その剥離面の状況を観察することによって行った。  The solder joint characteristics were evaluated by using a shear strength measuring device (in this study, “Bond Tester 400”, Digi Co., Ltd.), peeling the solder pole 6 from the pad (Fig. 4) and peeling it off. This was done by observing the surface conditions.
剥離面 7がはんだボールのボール部内 (即ち、 レジス ト 3の表面より上方) に できる場合 (図 5 ) が接合信頼性が高く、 剥離面 7がパッド部内 (即ち、 レジス ト 3の表面より下方) にできる場合 (図 6 ) は接合信頼性が低いと判断した。 はんだ接合特性を評価する際は、 はんだが接合されるパッド上の金めつき皮膜 の厚さも厳密にコントロールして行う必要があることから、 金めつき厚の測定は、 蛍光 X線膜厚計 ( 「S E A 5 1 2 0」 、 セイコーインスツルメンッ社製) を使用 して精密に行って、 評価結果にパラツキがないようにした。  When the peeled surface 7 can be formed inside the ball portion of the solder ball (ie, above the surface of the resist 3) (FIG. 5), the bonding reliability is high, and the peeled surface 7 is within the pad portion (ie, below the surface of the resist 3). (Fig. 6), it was judged that the joint reliability was low. When evaluating the solder joint characteristics, it is necessary to strictly control the thickness of the plating film on the pad to which the solder is to be joined. (“SEA 512,” manufactured by Seiko Instruments Inc.) was used to make the evaluation results consistent.
[実 施 例] TJP2003/013243 丄 [Example] TJP2003 / 013243 丄
(実施例 1 ) (Example 1)
表 3の実施例 1に記載の組成の金めつき液を 50 OmLビーカーに用意し、 p Hを 7. 0に調整後、 湯浴にて 85 °Cに加熱した。 図 1の基板を、 表 2の条件に てニッケルめつきした後 (図 2 (b) ) 、 用意した金めつき浴に 10分間浸潰し、 0. 06ミクロンの厚みの金皮膜を形成させた。 P bはんだボールを金めつきさ れた 20個のパッド部に搭載し、 230°Cのリフロー装置にて融着後、 シェア一 装置にて 20個のはんだポールを剥離し、 各剥離部を観察した。  A plating solution having the composition described in Example 1 in Table 3 was prepared in a 50-mL beaker, the pH was adjusted to 7.0, and the mixture was heated to 85 ° C in a water bath. After the substrate of Fig. 1 was plated with nickel under the conditions shown in Table 2 (Fig. 2 (b)), it was immersed in the prepared plating bath for 10 minutes to form a 0.06 micron thick gold film. . Pb solder balls were mounted on the 20 gold-plated pads, and after being fused with a reflow device at 230 ° C, 20 solder poles were peeled off with a shearing device. Observed.
はんだ內の切断によるもの (即ち、 剥離面がはんだボールのボール部内にでき たもの) が 100%で、 N i界面が露出したパッドは皆無で、 良好なはんだ接続 適性を示した。  100% was caused by cutting the solder (ie, the peeled surface was formed in the ball portion of the solder ball), and there was no pad with the Ni interface exposed, indicating good solder connection suitability.
次に、 この金めつき液を 90°Cのオーブンに入れ、 80時間放置後、 取り出し たが、 金めつき液中に金の析出は認めらず、 めっき浴の熱安定性は良好であった。 めっき液を室温に戻してから、 再度 pHを 7. 0に調整し、 湯浴にて 85°Cに 加熱後、 図 1の基板を、 表 2の条件にてニッケルめつきしたもの (図2 (b) ) を 10分間浸漬し、 0. 06ミクロンの金めつき皮膜を得た。 P bはんだボール を 20個搭載し、 230 °Cのリフロ一温度にて融着後、 はんだ剥離モードを測定 したところ、 はんだ内の剥離が 95 %で、 N i界面が露出したパッドは 5 %に過 ぎなかった。 Next, the plating solution was placed in an oven at 90 ° C, left for 80 hours, and then removed. However, no gold deposition was observed in the plating solution, and the plating bath had good thermal stability. Was. After the plating solution was returned to room temperature, the pH was adjusted to 7.0 again, heated to 85 ° C in a hot water bath, and then the substrate shown in Fig. 1 was coated with nickel under the conditions shown in Table 2 (Fig. 2 (b)) was immersed for 10 minutes to obtain a plating film having a thickness of 0.06 μm. After mounting 20 Pb solder balls and fusing them at a reflow temperature of 230 ° C, the solder peeling mode was measured.95% of the pads in the solder were exposed and 5% of the pads with Ni interface exposed. It was just a mistake.
(実施例 2)  (Example 2)
表 3の実施例 2に示した組成の金めつき液を用意し、 実施例 1と同様な方法で、 ニッケルめっき処理した基板 (図 2 (b) ) にてめっき処理を行い、 0. 05ミ クロンの厚みの金めつき皮膜を形成させた。 この金めつき基板にて、 20個の P bはんだポールの剥離モードを測定したところ、 はんだ内切断が 100 %と良好 であった。 次に、 この金めつき液を 90°Cのオープンに入れると、 80時間後も、 金の析出は起こらず安定であった。  A plating solution having the composition shown in Example 2 in Table 3 was prepared, and plated with a nickel-plated substrate (FIG. 2 (b)) in the same manner as in Example 1 to obtain a plating solution. A micron-thick gold-plated film was formed. When the peeling mode of 20 Pb solder poles was measured on this gold-plated substrate, the cut in the solder was as good as 100%. Next, when this plating solution was placed in an open at 90 ° C, gold deposition did not occur even after 80 hours and was stable.
めっき液を室温に戻してから、 再度 pHを 7. 0に調整し、 湯浴にて 85°Cに 加熱後、 図 1の基板を、 表 2の条件にてニッケルめつきしたもの (図 2 (b) ) を 10分間浸漬し、 0. 05ミクロンの金めつき皮膜を得た。 P bはんだポール を 20個搭載し、 230 °Cのリフロ一温度にて融着後、 はんだ剥離モードを測定 PC漏 00聽 243 After the plating solution was returned to room temperature, the pH was adjusted to 7.0 again, heated to 85 ° C in a hot water bath, and then the substrate shown in Fig. 1 was plated with nickel under the conditions shown in Table 2 (Fig. 2). (b)) was immersed for 10 minutes to obtain a 0.05 micron plated film. Mount 20 Pb solder poles and measure the solder peeling mode after fusing at a reflow temperature of 230 ° C PC leak 00 listen 243
- 14 したところ、 はんだ内の剥離が 9 5%で、 N i界面が露出したパッドは 5 %に過 ぎなかった。  As a result, the exfoliation in the solder was 95%, and only 5% of the pad exposed the Ni interface.
(実施例 3 )  (Example 3)
表 3の実施例 3に記載の組成の金めつき液を 50 OmLビーカーに用意し、 p Hを 5. 0に調整後、 湯浴にて 85 °Cに加熱した。 図 1の基板を、 表 1の条件に て前処理した後 (図 2 (a) ) 、 用意した金めつき浴に 10分間浸漬し、 0. 06 ミクロンの厚みの皮膜を形成させた。 得られた金めつき皮膜の深さ方向の分析を ESCA (ULVAC製、 QUANTUM2000) にて行なった結果を図 9に 示す。 下地の銅の酸化は認められず、 金めつき皮膜中に炭素も検出されていない。 表面酸化抑制剤は銅表面の酸化を抑制するが、 金めつき皮膜中には取り込まれな いことを示している。 次に、 はんだポールテストを行なった。 P bフリーはんだ ポール (Sn- Ag3.0- CuO.5) を金めつきされた 2 Ό個のパッド部に搭載し、 25 5 °Cのリフロー装置にて融着後、 シェア一装置にて 20個のはんだボールを剥離し、 各剥離部を観察した。  A plating solution having the composition described in Example 3 in Table 3 was prepared in a 50-mL beaker, the pH was adjusted to 5.0, and the mixture was heated to 85 ° C in a water bath. After pre-treating the substrate shown in Fig. 1 under the conditions shown in Table 1 (Fig. 2 (a)), it was immersed in the prepared plating bath for 10 minutes to form a coating having a thickness of 0.06 micron. Fig. 9 shows the results of analysis of the obtained gold-plated film in the depth direction using ESCA (QUANTUM2000, manufactured by ULVAC). No oxidation of the underlying copper was observed, and no carbon was detected in the plating film. The surface oxidation inhibitor suppresses the oxidation of the copper surface, but indicates that it is not incorporated into the plating film. Next, a solder pole test was performed. Pb-free solder poles (Sn-Ag3.0-CuO.5) are mounted on the 2 2 pads that have been gold-plated, fused by a reflow device at 255 ° C, and then shared by a single device. Twenty solder balls were peeled off, and each peeled part was observed.
はんだ内の切断によるものが 95%で、 Cu界面が露出したパッドは 5%のみ で、 良好なはんだ接続適性を示した。  Cuts in the solder accounted for 95%, and only 5% of the pads had exposed Cu interfaces, indicating good solder connection suitability.
次に、 この金めつき液を 90°Cのオーブンに入れ、 1 00時間放置後、 取り出 したが、 金めつき液中に金の析出は認めらず、 熱安定性は良好であった。  Next, the plating solution was placed in an oven at 90 ° C., left for 100 hours, and then taken out. However, no gold deposition was observed in the plating solution, and the thermal stability was good. .
めっき液を室温に戻してから、 再度 pHを 5. 0に調整し、 湯浴にて 85°Cに 加熱後、 図 1の基板を、 表 1の条件にて前処理したもの (図 2 (a) ) を 10分 間浸漬し、 0. 06ミクロンの金めつき皮膜を得た。 金めつき皮膜の色調は鮮ゃ かなレモンイエローであつた。  After the plating solution was returned to room temperature, the pH was adjusted to 5.0 again, heated to 85 ° C in a hot water bath, and the substrate in Fig. 1 was pretreated under the conditions in Table 1 (Fig. a)) was immersed for 10 minutes to obtain a plating film having a thickness of 0.06 μm. The color of the gold-plated film was bright lemon yellow.
P bフリ一はんだポール (Sn_Ag3.0-CuO.5) を 20個搭載し、 255 °Cのリフ ロー温度にて融着後、 はんだ剥離モードを測定したところ、 はんだ内の剥離が 9 5%で、 Cu界面が露出したパッドは 5%に過ぎなかった。  After mounting 20 Pb free solder poles (Sn_Ag3.0-CuO.5) and fusing at a reflow temperature of 255 ° C, the solder peeling mode was measured. Only 5% of the pads had exposed Cu interface.
(実施例 4)  (Example 4)
実施例 3に記載の金めつき液を 50 OmL調合し、 100 OmLのビーカーに 入れてめっきランエングテス トを行なった。 5 cm角の銅板を多数用意し、 実施 例 3に記載の条件で金めつきを行い、 0. 06ミクロン付近の金めつき皮膜を形 成させる作業を繰り返し行なった。 ランユング中にめっき液中の金濃度を I CP (セイコーインスツルメンッ製、 SP S 3000) に測定し、 金濃度が 0. 2 g ZL減少するたびに同量のシアン化第 1金カリゥムを補充しながら、 めっき作業 を繰り返し、 総量 4. 0 gZLの金が消費された時点でランニングを終了した。 このテストに要した日数は 5日間であった。 The plating solution described in Example 3 was mixed at 50 OmL and placed in a 100 OmL beaker to perform a plating run-length test. A number of 5 cm square copper plates were prepared and plated under the conditions described in Example 3 to form a plated film of about 0.06 microns. The operation for the formation was repeated. The gold concentration in the plating solution was measured by ICP (SPS 3000, manufactured by Seiko Instruments Inc.) during Runjung, and the same amount of gold (1) gold cyanide was added every time the gold concentration decreased by 0.2 g ZL. The plating operation was repeated while replenishing, and the running was terminated when a total amount of 4.0 gZL of gold was consumed. The test took five days.
テスト終了後の金めつき液中の表面酸化抑制剤の濃度をキヤピラリー電気泳動 装置 (大塚電子製、 CAP 1 3200) にて分析したところ、 1 24トリァゾー ルの濃度は 1000±40 p pmであり、 ランニング前の濃度と同じであった。 本発明の表面酸化抑制剤は長時間の加温条件下 (85°C、 53間) でも分解せ ず、 かつ、 めっき反応時に消費もされていなことがわかった。 -- (比較例 1 )  The concentration of the surface oxidation inhibitor in the plating solution after the test was analyzed using a capillary electrophoresis device (CAP 13200, manufactured by Otsuka Electronics Co., Ltd.). The concentration was the same as before running. It was found that the surface oxidation inhibitor of the present invention did not decompose even under a long-time heating condition (85 ° C, between 53) and was not consumed during the plating reaction. -(Comparative Example 1)
表 3の比較例 1に示した組成の金めつき液を用意し、 実施例 1と同様な方法で めっき処理を行い、 0. 07ミクロンの厚みの金めつき皮膜を形成させた。 この 金めつき基板に 20個の P bはんだボールを実施例 1と同様に搭載し、 はんだ剥 離モ ドを測定したところ、 はんだ内切断はわずかに 10 %で、 残りの 90 %は 二ッケル界面が露出し、 不満足なはんだ接続特性であった。  A plating solution having the composition shown in Comparative Example 1 in Table 3 was prepared and plated in the same manner as in Example 1 to form a plating film having a thickness of 0.07 μm. Twenty Pb solder balls were mounted on this gold-plated board in the same manner as in Example 1, and when the solder release mode was measured, the cut in the solder was only 10% and the remaining 90% was nickel The interface was exposed and the solder connection characteristics were unsatisfactory.
(比較例 2 )  (Comparative Example 2)
表 3の比較例 2に示した組成の金めつき液を用意し、 実施例 1と同様な方法で めっき処理を行い、 0. 07ミクロンの厚みの金めつき皮膜を形成させた。 この 金めつき基板に 20個の P bはんだボールを実施例 1と同様に搭載し、 はんだ剥 離モードを測定したところ、 はんだ内切断はわずかに 5 %で、 残りの 95 °/0は二 ッケル界面が露出し、 不満足なはんだ接続特性であった。 A plating solution having the composition shown in Comparative Example 2 in Table 3 was prepared, and plated in the same manner as in Example 1 to form a plating film having a thickness of 0.07 μm. Twenty Pb solder balls were mounted on the gold-plated board in the same manner as in Example 1, and the solder peeling mode was measured. The cut in the solder was only 5%, and the remaining 95 ° / 0 was The nickel interface was exposed and the solder connection characteristics were unsatisfactory.
(深さ Au g e r測定)  (Depth Au g e r measurement)
本発明の金めつき液の表面酸化抑制の効果を調べる為、 実施例 1で作成した金 めっき皮膜と比較例 1で作成した金めつき皮膜の、 下地金属 (エッケル) の酸化 の度合い深さ A u g e r測定 (Microlab3 10— F、 英国 VG社、 電子源: フィ ールドエミツション) にて行なつた。  In order to investigate the effect of suppressing the surface oxidation of the plating solution of the present invention, the degree of oxidation of the underlying metal (Eckel) between the gold plating film produced in Example 1 and the plating film produced in Comparative Example 1 was investigated. Auger measurement (Microlab3 10-F, VG, UK, electron source: field emission) was performed.
実施例 1の A u g e r測定結果を図 7に、 比較例 1を図 8に示す。 表面酸化抑 制剤が添加されてない比較例 1の方が、 N i下地が激し.く酸化されている。 (比較例 3 ) . FIG. 7 shows the Auger measurement result of Example 1, and FIG. 8 shows Comparative Example 1. In Comparative Example 1 in which the surface oxidation inhibitor was not added, the Ni underlayer was severely oxidized. (Comparative Example 3).
表 3の比較例 3に示した組成の金めつき液を用意し、 実施例 3と同様な方法で 処理した基板にてめつき処理を行い、 0 . 0 5ミクロンの厚みの金めつき皮膜を 形成させた。 .この金めつき基板にて、 2 0個の P bフリーはんだ (実施例 3と同 一組成) ボールの剥離モードを測定したところ、 はんだ内切断が 6 0 %、 C u界 面露出 4 0 %であった。 次にこの金めつき液を 9 0 °Cのオーブンに入れると 8時 間後には、 金の析出 (ビーカー底への金の沈殿) が起こり、 金めつき液は分解し た。 この金めつき液は還元剤のァスコルビン酸が添加されているため熱安定性が 劣っていた。  A plating solution having the composition shown in Comparative Example 3 in Table 3 was prepared, and a plating process was performed on a substrate treated in the same manner as in Example 3 to form a plating film having a thickness of 0.05 μm. Was formed. 20 Pb-free solders (same composition as in Example 3) of this gold-plated board were measured for the ball peeling mode. %Met. Next, when this plating solution was placed in an oven at 90 ° C, after 8 hours, gold deposition (gold precipitation on the bottom of the beaker) occurred, and the plating solution was decomposed. This plating solution had poor thermal stability due to the addition of the reducing agent ascorbic acid.
(比較例 4 )  (Comparative Example 4)
表 3の比較例 4に示した組成の金めつき液を用意し、 実施例 3と同様な方法で めっき処理を行い、 0 . 0 7ミクロンの厚みの金めつき皮膜を形成させた。 この 金めつき基板に 2 0個の P bフリーはんだ (実施例 3と同一組成) ボールを実施 例 3と同様に搭載し、 はんだ剥離モードを測定したところ、 はんだ内切断はわず かに 1 0 %で、 残りの 9 0。/。は C u界面が露出し、 不満足なはんだ接続特性であ つた。  A plating solution having the composition shown in Comparative Example 4 in Table 3 was prepared, and plating was performed in the same manner as in Example 3 to form a plating film having a thickness of 0.07 μm. Twenty Pb-free solder balls (same composition as in Example 3) were mounted on this gold-plated board in the same manner as in Example 3, and the solder peeling mode was measured. At 0%, the remaining 90. /. The Cu interface was exposed and had unsatisfactory solder connection characteristics.
(比較例 5 )  (Comparative Example 5)
表 3の比較例 5に示した組成の金めつき液を用意し、 実施例 3と同様な方法で めっき処理を行ったが、 黒色の金めつき析出層となり、 レモンイエローの金めつ き皮膜は得られなかった。 ホスホン酸を用いたキレート剤の銅溶解性が低く、 銅 が金と一緒に共析したものと思われる。  A plating solution having the composition shown in Comparative Example 5 in Table 3 was prepared and plated in the same manner as in Example 3.However, a black plating deposition layer was formed, and a lemon-yellow plating was performed. No film was obtained. The copper solubility of the chelating agent using phosphonic acid is low, and it is considered that copper was co-deposited with gold.
(比較例 6 )  (Comparative Example 6)
表 3の比較例 6に示した金めつき液を用意し、 実施例 3と同様な方法でめっき 処理を行い、 0 . 0 6 ミクロンの金めつき皮膜.を形成させた。 金めつき皮膜の色 調はレモンイエローであった。 この金めつき基板に 2 0個の P bフ'リ一はんだ (実施例 3と同一組成) ボールを実施例 3と同様に搭載し、 はんだ剥離モードを 測定したところ、 はんだ内切断は 2 0 %しかなく、 残りの 8 0 %のパッドで C u 界面が露出し、 不満足なはんだ接続特性であった。 表 3 The plating solution shown in Comparative Example 6 in Table 3 was prepared and plated in the same manner as in Example 3 to form a plating film having a thickness of 0.06 μm. The color of the gold-plated film was lemon yellow. Twenty Pb-free solder balls (same composition as in Example 3) were mounted on this gold-plated board in the same manner as in Example 3, and the solder peeling mode was measured. %, And the Cu interface was exposed in the remaining 80% of the pads, indicating unsatisfactory solder connection characteristics. Table 3
水溶性金塩 電導性向上剤 キレート剤 表面酸化抑制剤 還元剤 シアン化第 1  Water-soluble gold salt Conductivity improver Chelating agent Surface oxidation inhibitor Reducing agent Cyanide No. 1
金カリゥム マレイン酸 クェン酸力 ァスコルビン酸 (金換算) リゥム (* 2) 実施例 E D T A力 5アミノテ トラ  Gold potassium Maleic acid Quenoic acid Ascorbic acid (converted to gold) Ream (* 2) Example E D T A force 5 aminotetra
1 一 リゥム ゾール (* 1) ―  1 Rmizol (* 1) ―
2.0 g/L 25.0 g/L 10.0 g/L 0.5 g/L 2.0 g / L 25.0 g / L 10.0 g / L 0.5 g / L
実施例 E D T A力 ジエチレントリ Example E D T A force Diethylene tri
2 一 リゥム ァミン (* 1) ―  2 Real estate (* 1) ―
2.0 g/L 25.0 g/L 10.0 g/L 0.5 g/L 2.0 g / L 25.0 g / L 10.0 g / L 0.5 g / L
実施例 E D T A 3 1, 2, 4-トリァゾ Example E D T A 3 1,2,4-triazo
3 カリウム ール ( * 1 ) ―  3 Potassium (* 1) ―
2.0 g/L 25.0 g/L 45.0 g/L 20.0 g/L 1.0 g/L 2.0 g / L 25.0 g / L 45.0 g / L 20.0 g / L 1.0 g / L
比較例 E D T A力 Comparative example E D T A force
1 — リウム 一 ―  1 — Lium I
' 2.0 g/L ■ 25.0 g/L 10.0 g/L '' 2.0 g / L ■ 25.0 g / L 10.0 g / L
比較例 E D T A力 トリァジン Comparative example E D T A force Triazine
2 一 リウム (* 2) —  2 1 lium (* 2) —
2.0 g/L 25.0 g/L 10.0 g/L 2.0 g / L 25.0 g / L 10.0 g / L
比較例 E D T A 3 Comparative example E D T A 3
3 カリウム 一  3 Potassium
2.0 g/L 25.0 g/L 45.0 g/L 20.0 g/L 1.0 g/L 比較例 E D T A 3 2.0 g / L 25.0 g / L 45.0 g / L 20.0 g / L 1.0 g / L Comparative Example EDTA 3
4 カリ ウム 一 一  4 Potassium
2.0· g/L 25.0 g/L 45.0 g/L 20.0 g/L 2.0g / L 25.0 g / L 45.0 g / L 20.0 g / L
比較例 エチレンシ'、アミンテ 1, 2, 4-トリア Comparative Example Ethylene 1, 'amine 1,2,4-tria
5 トラメチレンホスホン ゾール (* 1) 一  5 Tramethylenephosphon sol (* 1)
1  1
2.0 g/L 25.0 g/L 45.0 g/L 20.0 g/L 1.0 g/L 比較例 E D T A力 ピリジン  2.0 g / L 25.0 g / L 45.0 g / L 20.0 g / L 1.0 g / L Comparative Example E D T A Force Pyridine
6 リ ゥム (* 2) ―  6 room (* 2) ―
2.0 g/L 25.0 g/L 45.0 g/L 20.0 g/L 1.0 g/L 2.0 g / L 25.0 g / L 45.0 g / L 20.0 g / L 1.0 g / L
NH—結合有り NH—結合無し  NH—with bond NH—without bond

Claims

19 請 求 の 範 囲 19 Scope of Claim
1 . 水溶性金塩、 電導性向上剤、 ィミノ 2酢酸構造を有するキレート剤、 主 鎖または環中に窒素原子を 2個以上含む有機化合物からなる表面酸化抑制剤、 お よぴ残部としての溶媒を含んでなる、 置換型無電解金めっき液。 1. Water-soluble gold salt, conductivity improver, chelating agent having iminodiacetic acid structure, surface oxidation inhibitor consisting of an organic compound containing two or more nitrogen atoms in the main chain or ring, and solvent as the rest A substitution type electroless gold plating solution.
2 . 水溶性金塩が、 シァン化第 1金カリウム、 シァン化第 2金カリウム、 塩 化第 1金力リゥム、 塩化第 2金力リゥム、 亜硫酸金力リゥム、 亜硫酸金ナトリウ ム、 チォ硫酸金カリウム、 チォ硫酸金ナトリウム、 およびこれらの混合物からな る群から選ばれたものである、 請求項 1に記載の置換型無電解金めつき液。  2. The water soluble gold salt is gold (I) potassium, potassium (II) cyanide, gold (II) chloride, gold (II) chloride, gold (II) sulfite, gold sodium sulfite, gold sodium sulfite, gold thiosulfate. The substitution-type electroless plating solution according to claim 1, which is selected from the group consisting of potassium, sodium gold thiosulfate, and a mixture thereof.
3 . 電導性向上剤が、 ホウ酸、 リン酸、 硫酸、 チォ硫酸、 硝酸、 塩化物、 ク ェン酸、 リンゴ酸、 コハク酸、 乳酸、 マロン酸、 マレイン酸、 蓚酸、 酒石酸、 フ タル酸、 安息香酸、 グリシン、 グルタミン酸、 'これらのカリウム塩、 ナトリウム 塩またはアンモニゥム塩、 およびこれらの混合物からなる群から選ばれたもので ある、 請求項 1または 2に記載の置換型無電解金めつき液。  3. The conductivity improver is boric acid, phosphoric acid, sulfuric acid, thiosulfuric acid, nitric acid, chloride, citric acid, malic acid, succinic acid, lactic acid, malonic acid, maleic acid, oxalic acid, tartaric acid, phthalic acid 3. The substitutional electroless metal plating according to claim 1, wherein the metal is selected from the group consisting of benzoic acid, glycine, glutamic acid, a potassium salt, a sodium salt or an ammonium salt thereof, and a mixture thereof. liquid.
4 . キレート剤が、 エチレンジァミン 4酢酸、 ヒドロキシェチルイミノ 2酢 酸、 二トリ口 3酢酸、 ヒ ドロキシェチノレエチレンジァミン 3酢酸、 ジエチレント リアミン 5酢酸、 トリエチレンテトラミン 6酢酸、 ジカルボキシメチルダルタミ ン酸、 プロパンジァミン 4酢酸、 1, 3 -ジァミノ - 2 - ヒ ドロキシプロパン 4 酢酸、 これらのナトリウム塩、 カリウム塩またはアンモ-ゥム塩、 およびこれら の混合物混合物からなる群から選ばれたものである、 請求項 1〜 3のいずれか 1 項に記載の無電解置換型金めつき液。  4. The chelating agent is ethylenediamine tetraacetic acid, hydroxyethylimino diacetic acid, nitric acid triacetic acid, hydroxyxetinole ethylene diamine triacetic acid, diethylenetriamine acetic acid, triethylenetetramine hexaacetic acid, dicarboxymethyl. Selected from the group consisting of daltamic acid, propanediamine tetraacetic acid, 1,3-diamino-2-hydroxypropane tetraacetic acid, their sodium, potassium or ammodim salts, and mixtures thereof. The electroless displacement type plating solution according to any one of claims 1 to 3, which is a liquid.
5 . 表面酸化抑制剤が、 電子供与性化合物である、 請求項 1〜4のいずれか 1項に記載の置換型無電解金めっき液。  5. The substitution type electroless gold plating solution according to any one of claims 1 to 4, wherein the surface oxidation inhibitor is an electron donating compound.
6 . 表面酸化抑制剤が、 主鎖または環中に窒,,素原子を 3個以上含みかっこの うちの少なくとも 1個以上の窒素原子が一 N H—構造のものである、 請求項 1〜 5のいずれか 1項に記載の置換型無電解金めつき液。  6. The surface oxidation inhibitor contains three or more nitrogen, element atoms in the main chain or ring, and at least one of the nitrogen atoms has a mono-NH— structure. The substitution-type electroless plating solution according to any one of the above.
7 . 表面酸化抑制剤が、 下記の式 〔I〕 で示される脂肪族化合物または式 〔II〕 で示される複素環化合物である、 請求項 1〜 5のいずれか 1項に記載の置 換型無電解金めつき液。
Figure imgf000022_0001
7. The replacement type according to any one of claims 1 to 5, wherein the surface oxidation inhibitor is an aliphatic compound represented by the following formula [I] or a heterocyclic compound represented by the following formula [II]. Electroless plating solution.
Figure imgf000022_0001
〔ここで、 1^〜1 4は、 それぞれ独立に、 水素、 炭素数 1〜 3のアルキル基、 一 (C2H4) m—NH2、 - (C2H4) n— OHを示す (ここで、 mは 0または 1で あり、 nは 0または 1である) 。 pは 0〜4の整数である。 〕 [Here, 1 ^ to 1 4 are each independently hydrogen, alkyl of 1-3 carbon atoms, one (C2H4) m -NH 2, - (C 2 H 4) n - shows the OH (here , M is 0 or 1, and n is 0 or 1.). p is an integer of 0-4. ]
Figure imgf000022_0002
Figure imgf000022_0002
Figure imgf000022_0003
Figure imgf000022_0003
は、 一 NH—基の窒素原子および炭素原子を環中に有する複素環を示す。 R5は、 この複素環中の炭素原子に結合した水素、 炭素数 1〜 3のアルキル基、 アミノ基、 炭素数 1〜 3のアルキルアミノ基を示す。 〕 Represents a heterocyclic ring having a nitrogen atom and a carbon atom of one NH— group in the ring. R 5 represents hydrogen bonded to a carbon atom in the heterocyclic ring, an alkyl group having 1 to 3 carbon atoms, an amino group, or an alkylamino group having 1 to 3 carbon atoms. ]
8. 表面酸化抑制剤が、 エチレンジァミン、 N, N, - ビス (ベータヒ ドロ キシェチル) -エチレンジァミン、 ジエチレントリアミン、 N, N' - ビス (ベ ータヒ ドロキシェチル) -ジエチレントリアミン、 トリエチレンテトラミン、 N, N' - ビス (ベータヒ ドロキシェチノレ) - トリエチレンテトラミン、 テトラェチ レンペンタミン、 N, N, - ビス (ベータヒ ドロキシェチノレ) -テトラエチレン ペンタミン、 2 -アミノビロール、 3 -アミノピロール、 2 -ァミノインドーノレ、 3 -ァミノインドール、 ピラゾール、 3 -アミノビラゾール、 4 -アミノビラゾ ール、 5 -ァミノビラゾール、 ィミダゾール、 2 - ァミノイミダゾール、 4 -了 ミノイミダゾール、 5 -ァミノイミダゾール、 1 , 2, 3 - トリァゾール、 4 - ァミノ - 1, 2, 3 - トリアゾール、 5 -ァミノ - 1, 2, 3 - トリァゾール、 1 , 2, 4 - トリァゾール、 3 -ァミノ - 1, 2, 4 - トリァゾール、 5 -アミ ノ - 1, 2, 4 - トリアゾール、 テトラゾーノレ、 5 -ァミノ -テトラゾーノレ、 ベ ンズィミダゾーノレ、 2 -ァミノ -ベンズィミダゾーノレ、 ベンズトリアゾーノレおよ びこれらの混合物からなる群から選ばれたものである、 請求項 1〜 7のいずれか 1項に記載の置換型無電解金めつき液。 8. If the surface oxidation inhibitor is ethylenediamine, N, N, -bis (beta-hydroxyxethyl) -ethylenediamine, diethylenetriamine, N, N'-bis (beta-hydroxyxethyl) -diethylenetriamine, triethylenetetramine, N, N'-bis (Beta-hydroxicetinole)-triethylenetetramine, tetraethylenpentamine, N, N, -bis (beta-hydroxicetinole)-tetraethylenepentamine, 2-aminovirol, 3-aminopyrrole, 2-aminopyrrole, 3-aminoinodole, pyrazole , 3-aminovirazole, 4-aminovirazole, 5-aminoviazole, imidazole, 2-aminoimidazole, 4-end Minoimidazole, 5-aminoimidazole, 1,2,3-triazole, 4-amino-1,2,3-triazole, 5-amino-1,2,3-triazole, 1,2,4-triazole, 3 -Amino-1,2,4-triazole, 5-Amino-1,2,4-triazole, tetrazonole, 5-Amino-tetrazonole, Benzimidazonole, 2-Amino-benzimidazonole, Benz The substitution-type electroless plating solution according to any one of claims 1 to 7, which is selected from the group consisting of triazonole and a mixture thereof.
9. 水溶性金塩の濃度が.、 0. l〜10 g/L、 電導性向上剤の濃度が 5〜 500 g/L, キレート剤の濃度が 1〜200 gZL、 表面酸化抑制剤の濃度が 5〜50000 p pmである、 請求項 1〜 8のいずれか 1項に記載の置換型無電 解金めつき液。 9. Concentration of water soluble gold salt, 0.1 to 10 g / L, conductivity improver concentration of 5 to 500 g / L, chelating agent concentration of 1 to 200 gZL, surface oxidation inhibitor concentration The substitution type electroless plating solution according to any one of claims 1 to 8, wherein is 5 to 50000 ppm.
10. 水溶性金塩の濃度が、 0. 5〜5. 0 gZL、 電導性向上剤の濃度が 10〜200 gZL、 キレート剤の濃度が 5〜 100 gZL、 表面酸化抑制剤の 濃度が 10〜10000 p pmである、 請求項 1〜 9のいずれか 1項に記載の置 換型無電解金めつき液。  10. The concentration of the water-soluble gold salt is 0.5-5.0 gZL, the concentration of the conductivity improver is 10-200 gZL, the concentration of the chelating agent is 5-100 gZL, and the concentration of the surface oxidation inhibitor is 10- The replacement electroless plating solution according to any one of claims 1 to 9, which is 10000 ppm.
PCT/JP2003/013243 2002-10-22 2003-10-16 Substitution type electroless gold plating bath WO2004038063A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003301573A AU2003301573A1 (en) 2002-10-22 2003-10-16 Substitution type electroless gold plating bath
JP2004546414A JPWO2004038063A1 (en) 2002-10-22 2003-10-16 Replacement type electroless gold plating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002306826 2002-10-22
JP2002-306826 2002-10-22

Publications (1)

Publication Number Publication Date
WO2004038063A1 true WO2004038063A1 (en) 2004-05-06

Family

ID=32170918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013243 WO2004038063A1 (en) 2002-10-22 2003-10-16 Substitution type electroless gold plating bath

Country Status (5)

Country Link
JP (1) JPWO2004038063A1 (en)
KR (1) KR100797515B1 (en)
AU (1) AU2003301573A1 (en)
TW (1) TWI275663B (en)
WO (1) WO2004038063A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023382A (en) * 2005-06-16 2007-02-01 Ne Chemcat Corp Electroless gold plating liquid for forming gold plating film for wire bonding
US8124174B2 (en) 2007-04-16 2012-02-28 C. Uyemura & Co., Ltd. Electroless gold plating method and electronic parts
US20150340714A1 (en) * 2012-12-07 2015-11-26 Toyo Kohan Co., Ltd. Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161968B1 (en) * 2010-07-19 2012-07-04 롯데알미늄 주식회사 Liquid for improving conductivity and process of forming conductive pattern using thereof by gravure printing method
WO2017122959A1 (en) 2016-01-13 2017-07-20 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
KR101857596B1 (en) * 2018-01-31 2018-05-14 (주)엠케이켐앤텍 Substitution type electroless gold plating bath using a nitrogen-containing heteroarylcarboxylic acid and substitution type electroless gold plating using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398856B1 (en) * 1999-10-04 2002-06-04 Shinko Electric Industries Co., Ltd. Substitutional electroless gold plating solution, electroless gold plating method and semiconductor device
JP2003277942A (en) * 2002-03-25 2003-10-02 Okuno Chem Ind Co Ltd Electroless gold plating solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148428B2 (en) * 1992-11-13 2001-03-19 関東化学株式会社 Electroless gold plating solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398856B1 (en) * 1999-10-04 2002-06-04 Shinko Electric Industries Co., Ltd. Substitutional electroless gold plating solution, electroless gold plating method and semiconductor device
JP2003277942A (en) * 2002-03-25 2003-10-02 Okuno Chem Ind Co Ltd Electroless gold plating solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023382A (en) * 2005-06-16 2007-02-01 Ne Chemcat Corp Electroless gold plating liquid for forming gold plating film for wire bonding
US8124174B2 (en) 2007-04-16 2012-02-28 C. Uyemura & Co., Ltd. Electroless gold plating method and electronic parts
KR101431491B1 (en) 2007-04-16 2014-08-20 우에무라 고교 가부시키가이샤 Electroless gold plating method and electronic parts
US20150340714A1 (en) * 2012-12-07 2015-11-26 Toyo Kohan Co., Ltd. Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
US10629917B2 (en) * 2012-12-07 2020-04-21 Toyo Kohan Co., Ltd. Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells

Also Published As

Publication number Publication date
AU2003301573A1 (en) 2004-05-13
KR20050067181A (en) 2005-06-30
TW200422430A (en) 2004-11-01
JPWO2004038063A1 (en) 2006-02-23
TWI275663B (en) 2007-03-11
KR100797515B1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
TWI716868B (en) Substitution type electroless gold plating bath containing purine or pyrimidine-based compound having carbonyl oxygen and substitution type electroless gold plating using the same
EP1930472B1 (en) Electroless palladium plating bath and electroless palladium plating method
EP0795043B1 (en) Silver plating
US6395329B2 (en) Printed circuit board manufacture
JP5013077B2 (en) Electroless gold plating method and electronic component
JP5526459B2 (en) Electroless gold plating bath and electroless gold plating method
CN106399983B (en) Cyanide-free electroless gold plating bath and electroless gold plating method
US7300501B2 (en) Electroless gold plating liquid
KR102041850B1 (en) Gold-strike plating method corresponding to pretreatment process for electroless palladium plating on copper surface of printed circuit board, composition of gold-strike plating solution and electroless plating method of palladium and gold
JP2007009305A (en) Electroless palladium plating liquid, and three layer-plated film terminal formed using the same
WO2004038063A1 (en) Substitution type electroless gold plating bath
JP3948737B2 (en) Replacement type electroless gold plating solution
JP4831710B1 (en) Electroless gold plating solution and electroless gold plating method
JP2003277942A (en) Electroless gold plating solution
TWI284157B (en) Electroless gold plating solution
JP4421367B2 (en) Replacement type electroless gold plating solution
TW202043546A (en) Electroless gold plating bath
JP2007023382A (en) Electroless gold plating liquid for forming gold plating film for wire bonding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004546414

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057006374

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057006374

Country of ref document: KR

122 Ep: pct application non-entry in european phase