KR100717336B1 - A plating method of metal layer by a galvanic displacement - Google Patents

A plating method of metal layer by a galvanic displacement Download PDF

Info

Publication number
KR100717336B1
KR100717336B1 KR1020050115544A KR20050115544A KR100717336B1 KR 100717336 B1 KR100717336 B1 KR 100717336B1 KR 1020050115544 A KR1020050115544 A KR 1020050115544A KR 20050115544 A KR20050115544 A KR 20050115544A KR 100717336 B1 KR100717336 B1 KR 100717336B1
Authority
KR
South Korea
Prior art keywords
semiconductor
gold
iii
electroless plating
plating method
Prior art date
Application number
KR1020050115544A
Other languages
Korean (ko)
Inventor
임현의
김완두
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020050115544A priority Critical patent/KR100717336B1/en
Application granted granted Critical
Publication of KR100717336B1 publication Critical patent/KR100717336B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Abstract

본 발명은 Ⅲ-Ⅴ족 반도체 표면을 세정하는 단계와; 상기 세정된 Ⅲ-Ⅴ족 반도체 표면의 산화물층을 제거하기 위한 식각단계와; 상기 식각된 Ⅲ-Ⅴ족 반도체를 금속이온이 함유된 용액에 담가 갈바니 치환을 이용하여 표면에 금속입자를 증착하는 단계;를 포함하는 갈바니 치환을 이용한 금속층의 무전해 도금방법에 관한 것으로,The present invention comprises the steps of cleaning the III-V semiconductor surface; Etching to remove the oxide layer on the cleaned III-V semiconductor surface; The method relates to an electroless plating method of a metal layer using galvanic substitution, comprising: immersing the etched III-V semiconductor in a solution containing metal ions and depositing metal particles on a surface by using galvanic substitution.

상기 도금방법은 Ⅲ-Ⅴ족 반도체, 그 중에서도 갈륨-비소(Ga-As), 인듐-안티몬(In-Sb) 및 인듐-인(In-P) 반도체를 대상으로 그 특성에 맞춰 비교적 간단하고 저가의 공정으로 금 또는 은과 같은 금속층을 박막증착함에 있으며, 용매로서 이소프로필알코올을 함유시켜 반도체 표면에 나노구조를 갖는 금 입자를 형성시 이를 이용하여 바이오센서나 검출기에 사용하여 감도를 높일 수 있다.The plating method is relatively simple and inexpensive according to the characteristics of group III-V semiconductors, especially gallium-arsenic (Ga-As), indium-antimony (In-Sb) and indium-in (In-P) semiconductors. In the process of thin film deposition of a metal layer, such as gold or silver, by using isopropyl alcohol as a solvent to form gold particles having a nanostructure on the semiconductor surface can be used in biosensors or detectors to increase the sensitivity. .

무전해 도금, 금, 은, 이소프로필 알콜, 인산, 황산, 염화플로오르 Electroless plating, gold, silver, isopropyl alcohol, phosphoric acid, sulfuric acid, fluorochloride

Description

갈바니 치환을 이용한 금속층의 무전해 도금방법{A plating method of metal layer by a galvanic displacement} A plating method of metal layer by a galvanic displacement

도 1은 In-Sb 반도체 위에 금 나노입자가 증착된 것을 나타낸 AFM 사진1 is an AFM photograph showing that gold nanoparticles are deposited on an In-Sb semiconductor.

도 2는 Ga-As 반도체 위에 금 나노입자가 증착된 것을 나타낸 SEM 사진2 is a SEM photograph showing that the gold nanoparticles are deposited on the Ga-As semiconductor

도 3은 Ga-As 반도체 위에 금 나노입자가 연성성형법으로 점과 선의 형태로 패터닝된 것을 나타낸 SEM 사진FIG. 3 is a SEM photograph showing that gold nanoparticles are patterned in the form of dots and lines by a flexible molding method on a Ga-As semiconductor.

도 4a 내지 4c는 Ga-As, In-Sb, In-P 반도체 위에 은 나노입자가 증착된 것을 나타낸 AFM 사진4A to 4C are AFM photographs showing deposition of silver nanoparticles on Ga-As, In-Sb, and In-P semiconductors.

도 5는 금 이온 수용액에 이소프로필알코올을 첨가하여 금 나노입자가 형성된 것을 나타낸 SEM 사진5 is a SEM photograph showing that gold nanoparticles were formed by adding isopropyl alcohol to an aqueous gold ion solution.

본 발명은 갈바니 치환을 이용한 금속층의 무전해 도금방법에 관한 것으로, 좀 더 상세하게는 갈륨-비소(Ga-As), 인듐-안티몬(In-Sb) 및 인듐-인(In-P)과 같은 Ⅲ-Ⅴ족 반도체 표면 위에 금속층으로서 금 또는 은 입자를 박막증착하고자 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법에 관한 것이다.The present invention relates to an electroless plating method of a metal layer using galvanic substitution, and more particularly, such as gallium arsenide (Ga-As), indium antimony (In-Sb), and indium-phosphorus (In-P). The present invention relates to an electroless plating method of a metal layer using galvanic substitution to deposit thin films of gold or silver particles as a metal layer on a III-V semiconductor surface.

통상적으로 직접회로(IC:Integrated Circuit)나 마이크로머신(MEMS:Micro- Electro- Mechanical System) 분야에서 전기접촉을 위해 반도체 표면 위에 금속층을 증착하는 것은 필수공정으로, 이와 같이 금속층을 증착하는 방법으로는 스퍼터링 방법과 열 증착방법, 화학 기상 증착방법, 무전해 도금방법 등이 사용되고 있다.In general, in the integrated circuit (IC) or micro-electromechanical system (MEMS), depositing a metal layer on a semiconductor surface for electrical contact is an essential process. Sputtering methods, thermal evaporation methods, chemical vapor deposition methods, electroless plating methods and the like are used.

이와 같은 증착방법 중에서 스퍼터링 방법과 열 증착방법, 화학 기상 증착방법들은 금속층과 기질층(substrate) 사이의 접착력이 좋아야 접촉저항이 적고 ohmic contact를 보이며 이종계면간의 박리현상을 나타내지 않기 때문에, 접착력을 증가시키기 위하여 중간층으로 금속과 기질간의 접착을 강화시킬 수 있는 500℃ 정도의 또 다른 금속을 형성하여야 한다. 예를 들어 실리콘(Si)위에 금(Au)을 증착시키기 위해서는 크롬(Cr)층을, 파라듐(Pd)을 증착시키기 위해서는 티타늄(Ti)층을 사용하고 있다. Among these deposition methods, sputtering method, thermal vapor deposition method, and chemical vapor deposition method have good adhesion between metal layer and substrate layer, so it has low contact resistance, shows ohmic contact, and does not show delamination between different interfaces. In order to make the intermediate layer, another metal of about 500 ° C. should be formed to enhance the adhesion between the metal and the substrate. For example, a chromium (Cr) layer is used to deposit gold (Au) on silicon (Si), and a titanium (Ti) layer is used to deposit palladium (Pd).

따라서, 상기한 스퍼터링 방법과 열 증착방법, 화학 기상 증착 방법은 금속층과 기질층 사이에 중간층을 형성하기 위한 별도의 공정이 필요하기 때문에 작업공정의 복잡화와 인건비 및 제품의 가격 상승화를 가져오게 문제점이 있었다. Therefore, the sputtering method, the thermal vapor deposition method, and the chemical vapor deposition method require a separate process for forming an intermediate layer between the metal layer and the substrate layer, which leads to the complexity of the work process, the labor cost, and the price of the product. There was this.

이에 반하여 무전해 도금방법은 산화.환원반응에 의하여 금속입자를 기질층 표면에 바로 증착할 수 있어 전술한 다른 증착방법들에 비해 공정이 단순하고 비용이 저렴하며 저온공정에서 진행되어 기판의 손상이 적을 뿐만 아니라 별도의 중간 층의 형성없이도 좋은 접착력을 가진 금속층의 증착이 가능하다.On the other hand, the electroless plating method can deposit metal particles directly on the surface of the substrate layer by oxidation / reduction reaction, which makes the process simple and inexpensive compared to the other deposition methods described above. Not only is it possible to deposit metal layers with good adhesion without forming a separate intermediate layer.

또한, 최근에는 환원제나 촉매제를 사용하여 박막증착을 하는 통상적인 무전해 도금방법과 달리, 환원제나 촉매제 없이 환원이 잘 되는 노블메탈(noble metal:Au, Pt, Pd)이나 구리(Cu) 등이 포함된 화합물을 갈바니치환시켜 실리콘(Si) 또는 게르마늄(Ge) 반도체에 증착시키는 기술이 선보인바 있다.(Chyan et al., Electrochem. Soc., 143:92 (1996); J. Phy. Chem. B, 106:401 (2002)).In addition, recently, unlike conventional electroless plating methods of thin film deposition using a reducing agent or a catalyst, noble metals such as noble metals (Au, Pt, Pd), copper (Cu), etc., which are well reduced without a reducing agent or a catalyst, are used. A technique for galvanic substitution of a compound included in a silicon (Si) or germanium (Ge) semiconductor has been demonstrated (Chyan et al., Electrochem. Soc., 143: 92 (1996); J. Phy. Chem. B, 106: 401 (2002)).

상기와 같은 갈바니 치환을 이용한 무전해 도금방법은 실리콘 반도체 표면에 박막증착과정에서 기질층 표면에 이산화규소(SiO2)와 같은 절연층이 형성되기 때문에, 이러한 절연층을 제거할 수 있도록 플로오르(F-)를 포함한 산 용액에 금속이온을 녹인 다음, 상기 산 용액에 기질층을 일정시간 침지시켜 금속이온이 기질층의 valence bond로부터 전자를 공급받아 금속입자로 환원되어 기질층 표면에 증착되도록 하는 것이다. 이러한 증착방법은 포텐셜 에너지(potential energy)의 차이에 의한 산화·환원반응일 것이라 추측되고 있지만 아직 정확한 메카니즘은 밝혀지지 않고 있다. In the electroless plating method using the galvanic substitution as described above, since an insulating layer such as silicon dioxide (SiO 2 ) is formed on the surface of the substrate layer during the thin film deposition process on the silicon semiconductor surface, it is possible to remove the insulating layer. After dissolving the metal ions in an acid solution containing F ), the substrate layer is immersed in the acid solution for a predetermined time so that the metal ions are supplied with electrons from the valence bond of the substrate layer to be reduced to metal particles and deposited on the surface of the substrate layer. will be. Such a deposition method is supposed to be an oxidation / reduction reaction due to a difference in potential energy, but the exact mechanism is not known yet.

한편, 실리콘 반도체가 주종을 이루던 IC나 MEMS 분야에 근래에 들어서는 좀 더 빠르고 광소자에도 응용가능한 Ⅲ-Ⅴ족 반도체가 개발되어 이에 대한 다양한 연구가 개발되고 있으며, 대표적으로는 갈륨-비소(Ga-As), 인듐-안티몬(In-Sb), 인듐-인(In-P) 반도체가 차세대 반도체로 각광받고 있다. On the other hand, in the IC or MEMS field where silicon semiconductors predominantly developed recently, group III-V semiconductors, which are faster and applicable to optical devices, have been developed and various researches are being developed. As), indium antimony (In-Sb), and indium-in (In-P) semiconductors are spotlighted as next generation semiconductors.

그러나, 상기와 같은 Ⅲ-Ⅴ족 반도체에 금속층을 형성하는 방법은 별도의 연 구가 아직까지 미진한 상태이므로 종래 실리콘 반도체의 증착방법을 그대로 사용하고 있으며, 이에 Ⅲ-Ⅴ족 반도체는 실리콘 반도체와 분명 다른 특성을 지님에도 불구하고 실리콘 반도체를 대상으로 연구되어온 증착방법을 사용해야 하는 문제점이 있었다. However, the method of forming the metal layer on the group III-V semiconductor as described above has not been studied yet, so the conventional method of depositing a silicon semiconductor is used as it is. Despite having other characteristics, there was a problem of using a deposition method that has been studied for silicon semiconductors.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, Ⅲ-Ⅴ족 반도체, 그 중에서도 갈륨-비소(Ga-As), 인듐-안티몬(In-Sb) 및 인듐-인(In-P) 반도체를 대상으로 금 또는 은과 같은 금속층을 박막증착함에 있어, 상기 Ⅲ-Ⅴ족 반도체의 특성에 맞춰 특정화된 갈바니 치환을 이용한 금속층의 무전해 도금방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the above problems, the group III-V semiconductor, among them gallium-arsenic (Ga-As), indium-antimony (In-Sb) and indium-in (In-P) semiconductor An object of the present invention is to provide an electroless plating method of a metal layer using galvanic substitution specified according to the characteristics of the group III-V semiconductor in thin film deposition of a metal layer such as gold or silver.

상기와 같은 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,

Ⅲ-Ⅴ족 반도체 표면을 세정하는 단계와;Cleaning the III-V semiconductor surface;

상기 세정된 Ⅲ-Ⅴ족 반도체 표면의 산화물층을 제거하기 위한 식각단계와;Etching to remove the oxide layer on the cleaned III-V semiconductor surface;

상기 식각된 Ⅲ-Ⅴ족 반도체를 금속이온이 함유된 용액에 담가 갈바니 치환을 이용하여 표면에 금속입자를 증착하는 단계;를 포함하는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법을 제공함으로써 달성된다. Providing an electroless plating method of a metal layer using galvanic substitution, comprising immersing the etched III-V semiconductor in a solution containing metal ions and depositing metal particles on a surface by using galvanic substitution. Is achieved.

본 발명은 갈륨-비소(Ga-As) 또는 인듐-안티몬(In-Sb), 인듐-인(In-P)와 같은 Ⅲ-Ⅴ족 반도체 표면에 전기접촉을 높이기 위한 전극층으로 금 또는 은 입자를 갈바니 치환을 이용하여 증착하는 무전해 도금방법에 관한 것이다.The present invention provides gold or silver particles as an electrode layer for enhancing electrical contact with the surface of group III-V semiconductors such as gallium-arsenide (Ga-As), indium-antimony (In-Sb), and indium-phosphorus (In-P). The present invention relates to an electroless plating method which deposits using galvanic substitution.

우선적으로 Ⅲ-Ⅴ족 반도체 표면에 금 입자를 증착하는 방법을 좀 더 상세하게 살펴보면 하기와 같다.First, a method of depositing gold particles on the III-V semiconductor surface will be described in more detail.

금 입자 박막에 바람직하게 사용되는 Ⅲ-Ⅴ족 반도체로는 갈륨-비소(Ga-As) 또는 인듐-안티몬(In-Sb)으로써, 먼저 상기 Ⅲ-Ⅴ족 반도체 표면을 아세톤과 오존으로 깨끗이 세정한 다음, 1:1(v/v)의 염화플로오르(HF)나 10%의 염산(HCl)을 이용하여 절연층인 산화물을 5분간 식각하여 제거한다.Group III-V semiconductors which are preferably used in the gold particle thin film are gallium arsenide (Ga-As) or indium antimony (In-Sb). First, the surface of the group III-V semiconductors is cleaned with acetone and ozone. Next, by using a 1: 1 (v / v) fluoro chloride (HF) or 10% hydrochloric acid (HCl) to remove the oxide oxide is etched for 5 minutes.

상기 식각된 Ⅲ-Ⅴ족 반도체를 금 이온이 함유된 용액에 담가 갈바니 치환을 이용하여 표면에 금 입자 박막을 증착하게 되는데, 상기 금 입자를 얻기 위해 사용되는 화합물은 염화금산칼륨(KAuCl4), 또는 염화금산(HAuCl4)를 사용하는 것이 바람직하며, 이러한 금 화합물은 용액 내에 금 이온이 1 ~ 20mM이 되도록 첨가되어 혼합용액을 형성한다. The etched group III-V semiconductor is immersed in a solution containing gold ions to deposit a thin film of gold particles on the surface by using galvanic substitution, and the compound used to obtain the gold particles is potassium chloride (KAuCl 4 ), Or it is preferable to use a gold chloride (HAuCl 4 ), this gold compound is added so that the gold ions in the solution 1 ~ 20mM to form a mixed solution.

상기한 용액 내에 금 이온의 농도가 1mM보다 적으면 증착하는데 시간이 너무 많이 소요되며, 금 이온의 농도가 20mM을 초과하면 금증착속도가 너무 빨라 계면 특성이 나빠지며, 반응을 통제하기가 어렵기 때문에 상기한 범위내에 첨가하는 것이 바람직하다. If the concentration of gold ions in the solution is less than 1mM, it takes too much time to deposit. If the concentration of gold ions is more than 20mM, the deposition rate is too fast and the interfacial properties are poor, and the reaction is difficult to control. For this reason, it is preferable to add in the said range.

이와 같이 증착된 금 입자 박막은 반도체표면에 좋은 접착력을 갖고 있어 추 후 실시예를 통해 밝혀진 실험결과, 3M 스카치테잎으로 박막부위를 떼어내어도 아무런 변화가 없음을 확인할 수 있었다. The gold particle thin film deposited as described above has a good adhesion to the semiconductor surface, and as a result of experiments revealed through the following examples, it was confirmed that there was no change even when the thin film portion was removed with 3M scotch tape.

이와 같이 반도체 표면에 금 입자가 형성되면 추가적으로 100 ~ 300℃에서 열처리를 통하여 박막의 접착강도를 높일 수 있다. 이러한 열처리는 금 박막이 증착된 반도체를 전기로나 진공챔버에 넣고 불활성기체나 진공분위기에서, 기판에 따라 온도를 조절한 뒤 1 ~ 10분간 행하는 것으로 이루어진다. As such, when gold particles are formed on the surface of the semiconductor, the adhesive strength of the thin film may be increased by heat treatment at 100 to 300 ° C. The heat treatment is performed by placing the semiconductor film on which the gold thin film is deposited in an electric furnace or a vacuum chamber, and then controlling the temperature according to the substrate in an inert gas or vacuum atmosphere for 1 to 10 minutes.

아울러, 상기 Ⅲ-Ⅴ족 반도체에 있어서, 갈륨-비소(Ga-As) 반도체의 경우 금 이온 용액 내에 포화농도의 인산(H3PO4) 또는 포화농도의 황산(H2SO4)가 0.15 ~ 2.0M이 함유되도록 첨가하면 박막의 접착강도를 더욱 높일 수 있음을 실험적으로 확인하였다. In addition, in the group III-V semiconductor, in the case of gallium arsenide (Ga-As) semiconductor, saturated phosphoric acid (H 3 PO 4 ) or saturated sulfuric acid (H 2 SO 4 ) in the gold ion solution is 0.15 to It was experimentally confirmed that addition of 2.0M may further increase the adhesive strength of the thin film.

상기 산의 농도는 전술한 범위보다 더 적게 첨가되면 접착력의 향상효과가 미비하게 나타나며, 반대로 전술한 범위를 초과하여 첨가하면 산의 농도가 너무 높아 증착속도가 빠르게 진행되어 용액의 산도와 점도가 달라져 반도체와 금막의 거칠기에 영향을 미칠 수 있다. When the acid concentration is less than the above-mentioned range, the effect of improving adhesion is insignificant. On the contrary, when the acid concentration is added above the above-mentioned range, the acid concentration is too high, so that the deposition rate proceeds rapidly, resulting in a change in acidity and viscosity of the solution. This may affect the roughness of the semiconductor and the gold film.

한편, 상기 Ⅲ-Ⅴ족 반도체에 금 입자를 증착함에 있어서, 갈륨-비소(Ga-As) 반도체의 경우 상기 박막 증착되는 금 입자가 나노구조를 갖도록 하기 위하여, 금 이온 용액의 용매로 이소프로필알코올을 선택적으로 혼합할 수 있다. 이는 염화금산칼륨(KAuCl4), 또는 염화금산(HAuCl4)화합물을 이소프로필 알콜과 물의 혼합용매에 투입할 경우 금 나노입자가 합성되는 것을 기반으로 하며, 이와 같이 합성된 금 나노 입자가 갈바니 치환을 이용한 무전해 도금방법을 통해 Ⅲ-Ⅴ족 반도체 표면에 그대로 증착되는 것이다.Meanwhile, in depositing gold particles on the III-V semiconductor, in the case of gallium-arsenide (Ga-As) semiconductor, in order to make the gold particles deposited on the thin film have a nanostructure, isopropyl alcohol is used as a solvent of a gold ion solution. Can optionally be mixed. It is potassium chloride (KAuCl 4 ), Alternatively, when gold chloride (HAuCl 4 ) compound is added to a mixed solvent of isopropyl alcohol and water, gold nanoparticles are synthesized, and thus the gold nanoparticles are synthesized through electroless plating using galvanic substitution. It is deposited on the surface of the Group-V semiconductor as it is.

상기 금 나노입자를 생성하기 위한 용매 내에 이소프로필 알콜의 혼합비율은 1 ~ 99중량%로서, 용매 내에 이소프로필 알콜의 비율이 높을수록 나노입자의 크기가 작아지기 때문에 그 배합비율은 사용자가 적절한 크기의 나노입자를 얻기 위하여 임의적으로 지정이 가능하다.The mixing ratio of isopropyl alcohol in the solvent for producing the gold nanoparticles is 1 to 99% by weight, and the higher the ratio of isopropyl alcohol in the solvent, the smaller the size of the nanoparticles, so the blending ratio is appropriate for the user. It can be arbitrarily designated to obtain nanoparticles of.

또한, Ⅲ-Ⅴ족 반도체 표면에 금 입자를 박막증착시 미세접촉인쇄법이나 딥펜리소그래피, 연성성형등과 같은 패터닝 방법을 적용하면 반도체위에 나노급의 미세금속 패턴도 형성할 수 있다. In addition, when a thin film is deposited on the III-V semiconductor surface by applying a thin film deposition method such as a microcontact printing method, deep penlithography, flexible molding, it is possible to form a nano-grade fine metal pattern on the semiconductor.

다음으로는 Ⅲ-Ⅴ족 반도체 표면에 은 입자를 증착하는 방법을 좀 더 상세하게 살펴보면 하기와 같다.Next, the method of depositing silver particles on the III-V semiconductor surface will be described in more detail.

은 입자 박막에 바람직하게 사용되는 Ⅲ-Ⅴ족 반도체로는 갈륨-비소(Ga-As), 인듐-안티몬(In-Sb) 및 인듐-인(In-P) 반도체로써, 먼저 상기 Ⅲ-Ⅴ족 반도체 표면을 아세톤과 오존으로 깨끗이 세정한 다음, 1:1(v/v)의 염화플오르(HF)나 10%의 염산(HCl)을 이용하여 절연층인 산화물을 5분간 식각하여 제거한다.Group III-V semiconductors preferably used for silver particle thin films include gallium arsenide (Ga-As), indium antimony (In-Sb), and indium-in (In-P) semiconductors. After cleaning the semiconductor surface with acetone and ozone, the oxide, the insulating layer, is removed by etching for 5 minutes using 1: 1 (v / v) chloride (HF) or 10% hydrochloric acid (HCl).

상기 식각된 Ⅲ-Ⅴ족 반도체를 은 이온이 함유된 용액에 담가 갈바니 치환을 이용하여 표면에 은 입자를 증착하게 되는데, 상기 은 입자를 얻기 위해 사용되는 화합물은 질산은(AgNO3)를 사용하는 것이 바람직하며, 이러한 질산은은 물과 49%의 염화플로오르(HF)가 9 : 1의 부피비율로 혼합된 용매 내에 은 이온이 1 ~ 20mM이 함유되도록 첨가되어 혼합용액을 형성한다. The etched III-V semiconductor is immersed in a solution containing silver ions to deposit silver particles on the surface by using galvanic substitution. The compound used to obtain the silver particles is silver nitrate (AgNO 3 ). Preferably, such silver nitrate is added to contain 1-20 mM of silver ions in a solvent in which water and 49% of chloro chloride (HF) are mixed at a volume ratio of 9: 1 to form a mixed solution.

상기 혼합용액 내에 은 이온의 농도가 1mM보다 작으면 증착하는데 시간이 너무 많이 소요되며, 은 이온의 농도가 20mM이 넘으면 금증착속도가 너무 빨라 계면 특성이 나빠지고 반응을 통제하기가 어렵다. If the concentration of silver ions in the mixed solution is less than 1mM, it takes too much time to deposit. If the concentration of silver ions is more than 20mM, the deposition rate is too fast and the interface properties are poor and it is difficult to control the reaction.

상기 Ⅲ-Ⅴ족 반도체에 은 입자를 증착함에 있어서, 은 이온 용액의 용매로 이소프로필 알코올을 선택적으로 혼합할 수 있으며, 이러한 이소프로필 알코올은 용매의 표면장력을 낮춰 은 입자의 증착이 용이하게 이루어지도록 한다. 상기 이소프로필 알콜은 용매 내에 30 ~ 50부피%가 함유되도록 첨가하는 것이 바람직하다.In depositing silver particles on the III-V semiconductor, isopropyl alcohol may be selectively mixed with a solvent of a silver ion solution, and the isopropyl alcohol lowers the surface tension of the solvent to facilitate deposition of silver particles. To lose. The isopropyl alcohol is preferably added to contain 30 to 50% by volume in the solvent.

또한, Ⅲ-Ⅴ족 반도체 표면에 은 입자를 박막증착시 미세접촉인쇄법이나 딥펜리소그래피, 연성성형등과 같은 패터닝 방법을 적용하면 반도체위에 나노급의 미세금속 패턴도 형성할 수 있다. In addition, when a thin film is deposited on the III-V semiconductor surface by applying a microcontact printing method, such as a deep contact lithography, flexible molding, etc., patterning methods such as nano-scale fine metal pattern can also be formed on the semiconductor.

이상 설명한 바와 같이 본 발명에 따라 Ⅲ-Ⅴ족 반도체 표면에 금이나 은 입자 박막증착을 비교적 간단하고 저가의 공정으로 시행이 가능하여 기존의 금속화공정을 대신하여 사용될 수 있다.As described above, according to the present invention, the deposition of gold or silver particles on the III-V semiconductor surface can be performed in a relatively simple and inexpensive process, and can be used instead of the existing metallization process.

아울러, 본 발명에서는 이소프로필알코올과 물의 혼합용매에 금이온을 녹여 금 입자를 합성하는 방법을 제공한다.In addition, the present invention provides a method for synthesizing gold particles by melting gold ions in a mixed solvent of isopropyl alcohol and water.

이는 앞에서 언급한 바와 같이, 염화금산칼륨(KAuCl4), 또는 염화금산 (HAuCl4)화합물을 이소프로필 알콜과 물의 혼합용매에 투입할 경우 금 나노입자가 합성되는 것을 기반으로 하며, 상기 금 입자를 생성하기 위한 용매 내에 이소프로필 알콜의 혼합비율은 1 ~ 99중량%로서, 용매 내에 이소프로필 알콜의 비율이 높을수록 금입자가 3차원의 입체적인 모양을 지닌다.As mentioned earlier, this is potassium chloride (KAuCl 4 ), Alternatively, when gold chloride (HAuCl 4 ) compound is added to a mixed solvent of isopropyl alcohol and water, gold nanoparticles are synthesized, and the mixing ratio of isopropyl alcohol in the solvent for producing the gold particles is 1 to 99. As a weight percent, the higher the proportion of isopropyl alcohol in the solvent, the more three-dimensional three-dimensional shape the gold particles have.

따라서 물과 이소프로필알코올로 반도체 표면에 금박막이 아닌 나노구조를 갖는 금입자를 형성시켜 이를 이용하면 바이오센서나 검출기에 사용하여 감도를 높일 수 있다. Therefore, by forming gold particles having nanostructures instead of gold thin films on the surface of the semiconductor with water and isopropyl alcohol, it can be used in biosensors or detectors to increase sensitivity.

이하 실시예에 의하여 본 발명을 더욱 자세하게 설명하기는 하나. 하기의 실시예는 본 발명의 예시일 뿐, 본 발명이 하기의 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following examples are merely illustrative of the present invention, and the present invention is not limited by the following examples.

<제조예 1><Manufacture example 1>

갈륨-비소(Ga-As) 반도체를 아세톤과 오존으로 박막을 증착할 표면을 세정하고, 1:1(v/v)의 염화플로오르를 이용하여 5분간 식각한 다음, 상기 반도체를 KAuCl4 0.0075g이 함유된 물 10mL에 1분간 침지시키고 잘 저어주면서 갈바니치환을 이용한 무전해 도금방법에 의해 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.The gallium-arsenic (Ga-As) semiconductor is cleaned with acetone and ozone to deposit a thin film, and then etched with a 1: 1 (v / v) fluorochloride for 5 minutes, and then the semiconductor is KAuCl 4 0.0075 A semiconductor having a thin film deposited with 60 nm thick gold was immersed in 10 mL of water containing g for 1 minute and stirred by electroless plating using galvanic substitution.

<제조예 2><Manufacture example 2>

제조예 1과 동일한 방법으로 제조하되, 상기 KAuCl4이 함유된 물 10mL에 포화농도의 염화플로오르 1mL가 추가로 함유된 것을 사용하여 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.Prepared in the same manner as in Preparation Example 1, a thin film of a 60nm thick gold film was prepared using an additional 1mL of saturated fluoride chloride in 10mL of water containing KAuCl 4 .

<제조예 3><Manufacture example 3>

제조예 1과 동일한 방법으로 제조하되, 상기 KAuCl4이 함유된 물 10mL에 포화농도의 황산 1mL가 추가로 함유된 것을 사용하여 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.Prepared in the same manner as in Preparation Example 1, a semiconductor with a thin film of 60 nm thick gold was prepared using 10 mL of water containing KAuCl 4 additionally containing 1 mL of saturated sulfuric acid.

<제조예 4><Manufacture example 4>

제조예 1과 동일한 방법으로 제조하되, 상기 KAuCl4이 함유된 물 10mL에 포화농도의 인산 1mL가 추가로 함유된 것을 사용하여 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.Prepared in the same manner as in Preparation Example 1, a semiconductor with a thin film of 60 nm thick gold was prepared using 10 mL of water containing KAuCl 4 additionally containing 1 mL of saturated phosphoric acid.

<제조예 5>Production Example 5

제조예 1과 동일한 방법으로 제조된 상기 반도체를 200℃, 진공분위기에서 1분간 열처리하여 최종제품화하였다. The semiconductor prepared in the same manner as in Preparation Example 1 was heat-treated for 1 minute in a vacuum atmosphere at 200 ℃ to produce a final product.

<제조예 6><Manufacture example 6>

제조예 1과 동일한 방법으로 제조하되, 상기 박막증착시 연성성형법으로 나노급의 금 입자가 점과 선의 형태로 패터닝되도록 하여 최종제품화하였다. Prepared in the same manner as in Preparation Example 1, the nano-grade gold particles were patterned in the form of dots and lines by the flexible molding method when the thin film was deposited into a final product.

<제조예 7><Manufacture example 7>

인듐-안티몬(In-Sb) 반도체를 아세톤과 오존으로 박막을 증착할 표면을 세정하고, 10%의 염산을 이용하여 5분간 식각한 다음, 상기 반도체를 HAuCl4 0.0075g이 함유된 물 10mL에 2분간 침지시켜 갈바니치환을 이용한 무전해 도금방법에 의해 80 ㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.After cleaning the surface where the In-Sb semiconductor is deposited with acetone and ozone, and etching for 5 minutes with 10% hydrochloric acid, the semiconductor was immersed in 10 mL of water containing 0.0075 g of HAuCl 4. Immersion was carried out for a minute to prepare a semiconductor on which thin films of 80 nm thick gold were deposited by electroless plating using galvanic substitution.

<제조예 8><Manufacture example 8>

제조예 7과 동일한 방법으로 제조하되, 상기 KAuCl4이 함유된 물 10mL에 포화농도의 염화플로오르 1mL가 추가로 함유된 것을 사용하여 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.Prepared in the same manner as in Preparation Example 7, a semiconductor with a thin film of 60 nm thick gold was prepared using 10 mL of water containing KAuCl 4 additionally containing 1 mL of saturated fluoro chloride.

<제조예 9><Manufacture example 9>

제조예 7과 동일한 방법으로 제조하되, 상기 KAuCl4이 함유된 물 10mL에 포화농도의 황산 1mL가 추가로 함유된 것을 사용하여 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.Prepared in the same manner as in Preparation Example 7, except that 10mL of water containing KAuCl 4 additionally containing 1mL of sulfuric acid in a saturated concentration to prepare a semiconductor with a thin film of 60nm thick gold.

<제조예 10>Production Example 10

제조예 7과 동일한 방법으로 제조하되, 상기 KAuCl4이 함유된 물 10mL에 포화농도의 인산 1mL가 추가로 함유된 것을 사용하여 60㎚ 두께의 금 입자가 박막증착된 반도체를 제조하였다.It was prepared in the same manner as in Preparation Example 7, except that 10mL of water containing KAuCl 4 additionally containing 1mL of saturate phosphoric acid to prepare a semiconductor with a thin film of 60nm thick gold.

<제조예 11>Production Example 11

제조예 7과 동일한 방법으로 제조된 상기 반도체를 300℃, 진공분위기에서 1분간 열처리하여 최종제품화하였다. The semiconductor prepared in the same manner as in Preparation Example 7 was heat-treated for 1 minute at 300 ° C. in a vacuum atmosphere to produce a final product.

<실시예 1><Example 1>

상기 제조예 1 내지 제조예 11을 통해 제조된 반도체를 선별하여 SEM과 AFM을 통해 도 1 내지 도 3과 같이 촬영하여 그 박막의 증착유무를 확인하였으며, 이 와 함께 박막의 접착력 테스르로서 3M 스카치테잎을 붙였다가 떼었다가를 10회 반복 측정하여 그 결과를 하기 표 1에 나타내었다.The semiconductors prepared in Preparation Examples 1 to 11 were selected and photographed as shown in FIGS. 1 to 3 through SEM and AFM to confirm the deposition of the thin film, and 3M Scotch as the adhesive force test of the thin film. The tape was attached and detached and then repeated 10 times, and the results are shown in Table 1 below.

-접착력 테스트-Adhesion Test

× : 도막이 스카치테잎에 의해 박리되어 박막상태가 매우 불량함.X: The coating film is peeled off by the scotch tape and the thin film state is very poor.

0 : 도막이 스카치테잎에 의해 박리되지 않고 박막상태가 양호함.0: The coating film was not peeled off by the scotch tape and the thin film state was good.

◎ : 도막이 스카치테잎에 의해 거의 박리되지 않고 박막상태가 매우 우수함.(Double-circle): A coating film is hardly peeled off by a scotch tape, and its thin film state is very excellent.

용매/열처리Solvent / heat treatment Ga-As 반도체Ga-As Semiconductor In-Sb 반도체In-Sb Semiconductor 박막증착여부Thin film deposition 접착여부Adhesion 박막증착여부Thin film deposition 접착여부Adhesion water OO OO OO OO 2.7M HF 첨가2.7 M HF added 00 ×× 00 ×× 1.5M H3PO4 첨가1.5MH 3 PO 4 added 00 00 00 ×× 1.8M H2SO4 첨가1.8MH 2 SO 4 added 00 00 00 ×× 열처리 후After heat treatment 00 00

<제조예 12>Production Example 12

갈륨-비소(Ga-As) 반도체를 아세톤과 오존으로 박막을 증착할 표면을 세정하고, 1:1(v/v)의 염화플로오르를 이용하여 5분간 식각한 다음, 상기 반도체를 질산은(AgNO3) 0.003g이 함유된 용매(물 6mL, 50%농도의 이소프로필 알콜 4mL, 49%농도의 염화플로오르 1mL가 혼합됨) 10mL에 5분간 침지시키고 잘 저어주면서 갈바니치환을 이용한 무전해 도금방법에 의해 50㎚ 두께의 은 입자가 박막증착된 반도체를 제조하였다.The gallium-arsenic (Ga-As) semiconductor is cleaned with acetone and ozone to deposit a thin film, and then etched using a 1: 1 (v / v) fluorochloride for 5 minutes, and the semiconductor is then replaced with silver nitrate (AgNO). 3 ) Electroless plating method using galvanic substitution while immersing in 10 mL of 0.003 g of solvent (6 mL of water, 4 mL of 50% isopropyl alcohol, 1 mL of 49% concentration of fluoro chloride) for 5 minutes and stirring well Thus, a semiconductor in which thin particles of 50 nm thickness were deposited was prepared.

<제조예 13>Production Example 13

인듐-안티몬(In-Sb) 반도체를 아세톤과 오존으로 박막을 증착할 표면을 세정하고, 1:1(v/v)의 염화플로오르를 이용하여 5분간 식각한 다음, 상기 반도체를 질산은(AgNO3) 0.003g이 함유된 용매(물 6mL, 50%농도의 이소프로필 알콜 4mL, 49%농도의 염화플로오르 1mL가 혼합됨) 10mL에 5분간 침지시키고 잘 저어주면서 갈바니치환을 이용한 무전해 도금방법에 의해 60㎚ 두께의 은 입자가 박막증착된 반도체를 제조하였다.The surface of the indium antimony (In-Sb) semiconductor to be deposited with acetone and ozone was cleaned and etched using a 1: 1 (v / v) fluorochloride for 5 minutes, and the semiconductor was then replaced with silver nitrate (AgNO). 3 ) Electroless plating method using galvanic substitution while immersing in 10 mL of 0.003 g of solvent (6 mL of water, 4 mL of 50% isopropyl alcohol, 1 mL of 49% concentration of fluoro chloride) for 5 minutes and stirring well Thus, the semiconductor in which the thin film of silver particle of 60 nm thickness was deposited was produced.

<제조예 14>Production Example 14

인듐-인(In-P) 반도체를 아세톤과 오존으로 박막을 증착할 표면을 세정하고, 1:1(v/v)의 염화플로오르를 이용하여 5분간 식각한 다음, 상기 반도체를 질산은(AgNO3) 0.003g이 함유된 용매(물 6mL, 50%농도의 이소프로필 알콜 4mL, 49%농도의 염화플로오르 1mL가 혼합됨) 10mL에 5분간 침지시키고 잘 저어주면서 갈바니치환을 이용한 무전해 도금방법에 의해 40㎚ 두께의 은 입자가 박막증착된 반도체를 제조하였다Indium-phosphorus (In-P) semiconductors were cleaned with acetone and ozone to deposit a thin film, and then etched for 5 minutes using 1: 1 (v / v) fluorochloride. 3 ) Electroless plating method using galvanic substitution while immersing in 10 mL of 0.003 g of solvent (6 mL of water, 4 mL of 50% isopropyl alcohol, 1 mL of 49% concentration of fluoro chloride) for 5 minutes and stirring well To fabricate a semiconductor on which thin particles of 40 nm thickness were deposited.

<실시예 2><Example 2>

상기 제조예 12 내지 제조예 14를 통해 제조된 각각의 반도체를 AFM을 통해 도 4a 내지 도 4C와 같이 촬영하여 박막의 정착유무를 확인하였으며, 이와 함께 박막의 접착력 테스트로서 실시예 1과 동일하게 3M 스카치테잎을 붙였다가 떼었다가를 10회 반복 측정하여 그 결과를 하기 표 2에 나타내었다.Each of the semiconductors prepared in Preparation Examples 12 to 14 were photographed through AFM as shown in FIGS. 4A to 4C to confirm the fixation of the thin film, and 3M was the same as in Example 1 as the adhesion test of the thin film. Attaching and detaching the scotch tape was measured 10 times and the results are shown in Table 2 below.

Ga-As 반도체Ga-As Semiconductor In-Sb 반도체In-Sb Semiconductor In-P 반도체In-P Semiconductor 박막증착여부Thin film deposition 접착여부Adhesion 박막증착여부Thin film deposition 접착여부Adhesion 박막증착여부Thin film deposition 접착여부Adhesion 00 00 00 00 00 00

<실시예 3><Example 3>

이소프로필알코올과 물의 혼합용매를 용매 내에 이소프로필 알콜의 혼합비율은 50중량%이 되도록 만들고, KAuCl4 0.0075g을 녹인 다음, 1일 동안 침지시켜 20um크기의 육면체모양의 금 입자를 제조하였으며, 상기 시간에 따른 금 입자의 생성과정을 SEM을 통해 촬영한 사진을 도 5에 나타내었다.A mixed solvent of isopropyl alcohol and water was made to have a mixing ratio of isopropyl alcohol in the solvent to 50% by weight, dissolved 0.0075 g of KAuCl 4 , and then immersed for 1 day to prepare 20 um cube-shaped gold particles. 5 shows a photograph taken through SEM of the production process of gold particles over time.

상술한 바와 같이 본 발명의 갈바니 치환을 이용한 금속층의 무전해 도금방법은 Ⅲ-Ⅴ족 반도체, 그 중에서도 갈륨-비소(Ga-As), 인듐-안티몬(In-Sb) 및 인듐-인(In-P) 반도체를 대상으로 그 특성에 맞춰 비교적 간단하고 저가의 공정으로 금 또는 은과 같은 금속층을 박막증착함에 있으며, 용매로서 이소프로필알코올을 함유시켜 반도체 표면에 나노구조를 갖는 금 입자를 형성시 이를 이용하여 바이오센서나 검출기에 사용하여 감도를 높일 수 있는 효과를 가져온다.As described above, the electroless plating method of the metal layer using galvanic substitution of the present invention is a group III-V semiconductor, among which gallium-arsenic (Ga-As), indium-antimony (In-Sb), and indium-in (In-). P) It is a relatively simple and inexpensive process for thin film deposition of a metal layer such as gold or silver in accordance with its characteristics, and it is used when forming gold particles having nanostructure on the semiconductor surface by containing isopropyl alcohol as a solvent. It can be used in biosensor or detector to increase the sensitivity.

Claims (10)

삭제delete 삭제delete Ⅲ-Ⅴ족 반도체 표면을 세정하는 단계와; 상기 세정된 Ⅲ-Ⅴ족 반도체 표면의 산화물층을 제거하기 위한 식각단계와; 상기 식각된 Ⅲ-Ⅴ족 반도체를 금속이온이 함유된 용액에 담가 갈바니 치환을 이용하여 표면에 금속입자를 증착하는 단계;를 포함하는 갈바니 치환을 이용한 금속층의 무전해 도금방법에 있어서,Cleaning the III-V semiconductor surface; Etching to remove the oxide layer on the cleaned III-V semiconductor surface; In the electroless plating method of the metal layer using a galvanic substitution comprising a; immersing the etched III-V semiconductor in a solution containing metal ions to deposit metal particles on the surface by using galvanic substitution; 상기 Ⅲ-Ⅴ족 반도체는 갈륨-비소(Ga-As) 또는 인듐-안티몬(In-Sb) 반도체이며, 금속이온을 함유하는 용액으로서 염화금산칼륨(KAuCl4) 또는 염화금산(HAuCl4) 중에 하나가 금 이온이 1 ~ 20mM의 농도가 되도록 첨가된 수용액을 사용하여 금 입자가 박막 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The group III-V semiconductor is a gallium arsenide (Ga-As) or indium-antimony (In-Sb) semiconductor, and potassium chloride (KAuCl 4 ) as a solution containing metal ions. Or electrolytic plating of a metal layer using galvanic substitution, wherein the gold particles are deposited by using an aqueous solution in which one of the gold chlorides (HAuCl 4 ) is added such that gold ions have a concentration of 1 to 20 mM. 청구항 3에 있어서, 상기 Ⅲ-Ⅴ족 반도체가 갈륨-비소(Ga-As) 반도체이며, 금 이온 용액 내에 포화농도의 인산(H3PO4) 또는 포화농도의 황산(H2SO4)가 0.15 ~ 2.0M의 농도가 되도록 첨가되어 금 입자가 박막 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The III-V semiconductor of claim 3 is a gallium-arsenide (Ga-As) semiconductor, and saturated phosphoric acid (H 3 PO 4 ) or saturated sulfuric acid (H 2 SO 4 ) is 0.15 in a gold ion solution. Electroless plating method of the metal layer using the galvanic substitution, characterized in that the gold particles are added to a concentration of ~ 2.0M to deposit a thin film. 청구항 4에 있어서, 상기 Ⅲ-Ⅴ족 반도체 표면에 금 입자를 증착한 후 불활성기체나 진공분위기에서 100 ~ 300℃의 온도로 열처리를 하는 단계가 포함하여 금 입자가 박막 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The method according to claim 4, wherein the gold particles are deposited on the surface of the III-V semiconductor layer and the heat treatment at a temperature of 100 ~ 300 ℃ in an inert gas or vacuum atmosphere, the gold particles are characterized in that the thin film is deposited Electroless plating method of metal layer using substitution. 청구항 5에 있어서, 상기 금 이온 용액의 용매 내에 이소프로필 알콜이 1 ~ 99중량%가 함유되어 금 나노입자가 합성된 후 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The electroless plating method of claim 5, wherein 1 to 99% by weight of isopropyl alcohol is contained in the solvent of the gold ion solution, and gold nanoparticles are synthesized and deposited. Ⅲ-Ⅴ족 반도체 표면을 세정하는 단계와; 상기 세정된 Ⅲ-Ⅴ족 반도체 표면의 산화물층을 제거하기 위한 식각단계와; 상기 식각된 Ⅲ-Ⅴ족 반도체를 금속이온이 함유된 용액에 담가 갈바니 치환을 이용하여 표면에 금속입자를 증착하는 단계;를 포함하는 갈바니 치환을 이용한 금속층의 무전해 도금방법에 있어서, Cleaning the III-V semiconductor surface; Etching to remove the oxide layer on the cleaned III-V semiconductor surface; In the electroless plating method of the metal layer using a galvanic substitution comprising a; immersing the etched III-V semiconductor in a solution containing metal ions to deposit metal particles on the surface by using galvanic substitution; 상기 Ⅲ-Ⅴ족 반도체는 갈륨-비소(Ga-As) 또는 인듐-안티몬(In-Sb), 인듐-인(In-P) 반도체이며, 금속이온을 함유하는 용액으로서 49%농도의 염화플로오르가 10부피% 함유된 물에 질산은(AgNO3)이 첨가된 용액을 사용하여 은 입자가 박막 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The group III-V semiconductors are gallium arsenide (Ga-As) or indium antimony (In-Sb), indium-phosphorus (In-P) semiconductors, and contain 49% concentration of fluorochloride as a solution containing metal ions. The electroless plating method of a metal layer using galvanic substitution, characterized in that the silver particles are deposited in a thin film using a solution containing silver nitrate (AgNO 3 ) in water containing 10% by volume. 청구항 7에 있어서, 상기 질산은(AgNO3)은 용액 내에 은 이온이 1 ~ 20mM의 농도가 되도록 첨가되어 은 입자가 박막 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The electroless plating method of claim 7, wherein the silver nitrate (AgNO 3 ) is added in a solution such that silver ions are in a concentration of 1 to 20 mM, and silver particles are deposited by thin film. 청구항 7 또는 청구항 8에 있어서, 상기 용매 내에 이소프로필 알콜이 30 ~ 50부피%가 함유되도록 첨가되어 은 입자가 박막 증착되는 것을 특징으로 하는 갈바니 치환을 이용한 금속층의 무전해 도금방법.The electroless plating method of claim 7 or 8, wherein the isopropyl alcohol is added so as to contain 30 to 50% by volume in the solvent to deposit a thin film of silver particles. 삭제delete
KR1020050115544A 2005-11-30 2005-11-30 A plating method of metal layer by a galvanic displacement KR100717336B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050115544A KR100717336B1 (en) 2005-11-30 2005-11-30 A plating method of metal layer by a galvanic displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050115544A KR100717336B1 (en) 2005-11-30 2005-11-30 A plating method of metal layer by a galvanic displacement

Publications (1)

Publication Number Publication Date
KR100717336B1 true KR100717336B1 (en) 2007-05-10

Family

ID=38270478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050115544A KR100717336B1 (en) 2005-11-30 2005-11-30 A plating method of metal layer by a galvanic displacement

Country Status (1)

Country Link
KR (1) KR100717336B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087501B1 (en) 2010-02-24 2011-11-29 이화여자대학교 산학협력단 Method for manufacturing of high-density nano-pattern metal nanostructure and metal nanostructure thereby
KR101617657B1 (en) 2013-08-23 2016-05-03 숭실대학교 산학협력단 Manufacturing method of gold thin films using electroless-plating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139213B2 (en) * 1993-05-26 2001-02-26 日立化成工業株式会社 Replacement gold plating solution
WO2001049898A1 (en) * 2000-01-07 2001-07-12 Nikko Materials Co., Ltd. Method for metal plating, pre-treating agent, and semiconductor wafer and semiconductor device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139213B2 (en) * 1993-05-26 2001-02-26 日立化成工業株式会社 Replacement gold plating solution
WO2001049898A1 (en) * 2000-01-07 2001-07-12 Nikko Materials Co., Ltd. Method for metal plating, pre-treating agent, and semiconductor wafer and semiconductor device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087501B1 (en) 2010-02-24 2011-11-29 이화여자대학교 산학협력단 Method for manufacturing of high-density nano-pattern metal nanostructure and metal nanostructure thereby
KR101617657B1 (en) 2013-08-23 2016-05-03 숭실대학교 산학협력단 Manufacturing method of gold thin films using electroless-plating

Similar Documents

Publication Publication Date Title
TWI631241B (en) Novel adhesion promoting process for metallisation of substrate surfaces
EP2823084B1 (en) Method for promoting adhesion between dielectric substrates and metal layers
US9932676B2 (en) Pretreatment solution for electroless plating and electroless plating method
IE922078A1 (en) Improved method of applying metal coatings on diamond and¹articles made therefrom
EP1606431A1 (en) Solution for etching copper surfaces and method of depositing metal on copper surfaces
KR20110027487A (en) Composition for metal pattern and method of forming metal pattern using the same
KR101180158B1 (en) Electroless niwp adhesion and capping layers for tft copper gate process
US20090162681A1 (en) Activation solution for electroless plating on dielectric layers
JP2009007634A (en) Etching method for silver alloy film, and etching solution
KR100717336B1 (en) A plating method of metal layer by a galvanic displacement
JP2001152045A (en) Gold-plated silica and method for producing the same
TW200848550A (en) Etchant and etching method
US20080311414A1 (en) Method of forming thin metal film and thin metal film manufactured by the forming method
JP4628914B2 (en) Circuit pattern forming method
JP3959044B2 (en) Pretreatment method for plating aluminum and aluminum alloy
US20080248194A1 (en) Method for producing a copper layer on a substrate in a flat panel display manufacturing process
JP4081625B2 (en) Preparation method of transparent zinc oxide film
US10829846B2 (en) Process for producing nanostructured metal substrates for use in Surface Enhanced Raman Spectroscopy or similar applications
WO2020046429A1 (en) Process for producing nanostructured metal substrates for use in surface enhanced raman spectroscopy or similar applications
KR101507155B1 (en) Method of Preparing Ag Seed Layer for copper electroless ow Resistance Metal Line
JP6688183B2 (en) Pretreatment liquid for electroless plating
WO2018212345A1 (en) Method for producing conductor, method for producing wiring board, and composition for forming conductor
JP2006342402A (en) Method for producing structure
JP2015021167A (en) Electroless plating method
KR100406592B1 (en) Fabricating method of Semiconductor Matal film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110504

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee