KR100515029B1 - A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof - Google Patents

A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof Download PDF

Info

Publication number
KR100515029B1
KR100515029B1 KR10-2003-0029068A KR20030029068A KR100515029B1 KR 100515029 B1 KR100515029 B1 KR 100515029B1 KR 20030029068 A KR20030029068 A KR 20030029068A KR 100515029 B1 KR100515029 B1 KR 100515029B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
electrode active
cathode
conductive material
Prior art date
Application number
KR10-2003-0029068A
Other languages
Korean (ko)
Other versions
KR20040096203A (en
Inventor
조병원
이중기
조원일
박달근
우주만
김현중
오승석
유운형
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2003-0029068A priority Critical patent/KR100515029B1/en
Publication of KR20040096203A publication Critical patent/KR20040096203A/en
Application granted granted Critical
Publication of KR100515029B1 publication Critical patent/KR100515029B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 표면에 도전성 물질과 금속 산화물의 층이 단독으로 또는 서로 혼합된 상태로 1 - 300 ㎚ 두께의 클러스터 또는 균일한 박막으로 형성된, 전도성, 고율 충방전 특성, 전극용량, 고온특성 및 싸이클 수명 특성등이 우수한 리튬전지용 양극 활물질, 이를 이용한 양극과 리튬전지 및 그 제조방법에 관한 것이다. The present invention provides a conductive, high-rate charge-discharge characteristic, electrode capacity, high temperature characteristic and cycle life, which are formed as a cluster or uniform thin film having a thickness of 1 to 300 nm in a state in which a layer of a conductive material and a metal oxide are alone or mixed with each other. The present invention relates to a cathode active material for lithium batteries having excellent characteristics, a cathode and a lithium battery using the same, and a method of manufacturing the same.

Description

도전성 물질, 금속 산화물 또는 이들의 혼합물로 표면 처리된 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그 제조방법{A CATHODE ACTIVE MATERIAL TREATED WITH A CONDUCTIVE MATERIAL, METALLIC OXIDE OR MIXTURES THEREOF, A CATHODE AND LITHIUM BATTERY USING THE SAME, AND PREPARATION METHOD THEREOF}A positive electrode active material surface-treated with a conductive material, a metal oxide or a mixture thereof, a positive electrode and a lithium battery using the same, and a method for manufacturing the same THE SAME, AND PREPARATION METHOD THEREOF}

본 발명은 표면에 도전성 물질, 금속 산화물 또는 이들의 혼합물로 이루어진 안정한 피막 층이 형성된 양극 활물질, 이를 이용한 양극 및 리튬전지, 및 그 제조방법에 관한 것이다. The present invention relates to a positive electrode active material having a stable coating layer made of a conductive material, a metal oxide or a mixture thereof, a positive electrode and a lithium battery using the same, and a method of manufacturing the same.

현재 사용되는 리튬이차전지용 양극 활물질 재료로는 LiCoO2, LiMn2O4, LiMnO2, LiNiO2, LiNiCoO2, V6O13, V2O 5, LiFePO4, Li3Fe2(PO4)3 등이 있고, 리튬일차전지용 양극 활물질로는 MnO2가 있다. 그러나, 이들은 전기 전도도가 낮기 때문에 이들을 전극으로 사용하기 위해서는 아세틸렌블랙, 카본블랙, 흑연 등과 같은 도전재를 다량으로 첨가하는 것이 필요하다. 하지만, 전극 중에 첨가되는 도전재의 양이 증가하면 결합제의 양도 함께 증가되어야 하므로, 도전재와 결합제의 첨가량을 최적화하는 것이 필요하며, 이에 따라 전극 성능에 차이가 발생하게 된다. 예를 들어, 활물질, 도전재 및 결합제의 혼합 상태가 균일하지 않은 경우에는 전극 내부의 활물질 사이에 성능차이가 나타나고, 결과적으로 전극 성능이 균일하지 못하게 되므로 전지의 신뢰성이 나쁘다는 문제가 있다. 결합제는 활물질의 탈리를 막고 활물질 사이의 결합력을 높이는 역할을 하지만, 필요 이상으로 첨가되면 전극 활물질의 양이 줄어들게 되고, 전극의 내부저항이 커져서 전지성능이 저하된다. 따라서 도전재의 양을 증가시키는 것만으로 전지의 성능을 향상시키는 데에는 한계가 있다 (D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York, pp36.1-36.77, 1995).LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 , LiNiCoO 2 , V 6 O 13 , V 2 O 5 , LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 Etc., and a cathode active material for a lithium primary battery includes MnO 2 . However, since they have low electrical conductivity, in order to use them as electrodes, it is necessary to add a large amount of conductive materials such as acetylene black, carbon black, graphite and the like. However, when the amount of the conductive material added to the electrode increases, the amount of the binder must also increase, so it is necessary to optimize the addition amount of the conductive material and the binder, thereby causing a difference in electrode performance. For example, when the mixed state of the active material, the conductive material, and the binder is not uniform, a performance difference appears between the active materials inside the electrode, and as a result, the electrode performance is not uniform, resulting in poor battery reliability. The binder serves to prevent the detachment of the active material and increase the bonding force between the active materials. However, when the binder is added more than necessary, the amount of the electrode active material is reduced, and the internal resistance of the electrode is increased, thereby degrading battery performance. Therefore, there is a limit to improving the performance of the battery only by increasing the amount of conductive material (D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York, pp. 36.1-36.77, 1995).

그 외에, 고온 특성 및 싸이클 수명 특성을 향상시키기 위하여 졸-겔법이나 침전법으로 Al2O3, MgO 등의 금속 산화물을 양극 활물질에 피복하는 방법이 알려져 있지만, 이 방법은 복합금속 산화물을 피복하는 것이 쉽지 않고, 제조 공정이 복잡하며, 제조비용이 비싸다는 단점을 갖고 있다 (Z. Wang et al., Solid State Ionics, 148, pp335 -342(2002), M.Mladenov et al., Electrochemistry Communications, 3, pp410-416(2001)).In addition, in order to improve high temperature characteristics and cycle life characteristics, a method of coating metal oxides such as Al 2 O 3 and MgO on the cathode active material by a sol-gel method or precipitation method is known. It is not easy, the manufacturing process is complicated, and the manufacturing cost is expensive (Z. Wang et al., Solid State Ionics, 148, pp335-342 (2002), M.Mladenov et al., Electrochemistry Communications, 3, pp 410-416 (2001).

따라서, 고율 충방전 과정에서 나타나는 내부 임피던스 증가에 의한 전극용량의 감소 및 이에 따른 도전재와 결합제 첨가량 최적화의 어려움을 해결하는 것이 필요하다. Therefore, it is necessary to solve the difficulty of optimizing the addition amount of the conductive material and the binder and the reduction of the electrode capacity due to the increase in the internal impedance during the high rate charge and discharge process.

본 발명의 목적은 상술한 것과 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 고율 충방전 과정에서 나타나는 내부 임피던스 증가에 의한 전극 용량의 감소 및 이에 따른 도전재와 결합제 첨가량 최적화의 어려움을 해결할 수 있는, 표면에 도전성 물질, 금속 산화물 또는 이들의 혼합물의 안정한 피막이 형성된 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그 제조방법을 제공하는 것이다. An object of the present invention is to solve the problems of the prior art as described above, it is possible to solve the difficulty of optimizing the amount of addition of the conductive material and the binder according to the reduction of the electrode capacity by the increase of the internal impedance appearing in the high rate charge and discharge process, A cathode active material having a stable coating of a conductive material, a metal oxide, or a mixture thereof formed on a surface thereof, a cathode and a lithium battery using the same, and a method of manufacturing the same.

상술한 본 발명의 목적은 가스 분산 코팅 기술에 의하여, 양극 활물질 재료의 표면에, 도전성 물질과 금속 산화물 층이 단독 또는 서로 혼합된 상태로 1 - 300 nm 두께의 클러스터 또는 균일한 박막으로 형성된 리튬전지용 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그 제조방법을 제공하는 것에 의하여 달성된다. An object of the present invention described above is for a lithium battery formed of a cluster or uniform thin film having a thickness of 1-300 nm on the surface of the positive electrode active material material by a gas dispersion coating technique, in which a conductive material and a metal oxide layer are singly or mixed with each other. It is achieved by providing a positive electrode active material, a positive electrode and a lithium battery using the same, and a method of manufacturing the same.

우선, 본 발명에 따른 표면 처리된 양극 활물질은 표면에 도전성 물질과 금속 산화물이 단독 또는 서로 혼합된 상태의 클러스터 또는 균일한 박막이 1 - 300 nm 두께로 형성되어 있는 것을 특징으로 한다. 양극 활물질 표면에 1 - 300 ㎚ 두께로 형성된 도전성 물질, 금속 산화물 또는 이들의 혼합물 층의 일부는 전극용 금속 산화물인 양극 활물질의 내부에 삽입되어 도펀트 역할을 함으로써 전극용량의 증가를 가져오며, 전극과 전해질 사이에 새로운 계면막(피막)을 형성하게 되므로 전극-전해질의 계면특성을 향상시킨다.First, the surface-treated positive electrode active material according to the present invention is characterized in that the surface of the conductive material and the metal oxide alone or mixed with each other, a cluster or uniform thin film is formed to a thickness of 1-300 nm. A portion of the conductive material, metal oxide, or a mixture layer formed on the surface of the positive electrode active material having a thickness of 1 to 300 nm is inserted into the positive electrode active material, which is a metal oxide for the electrode, to act as a dopant, resulting in an increase in electrode capacity. Since a new interfacial film (film) is formed between the electrolytes, the interfacial properties of the electrode-electrolyte are improved.

본 발명에 따라 표면 처리되는 양극 활물질은 리튬이차전지와 리튬일차전지용 양극 활물질이 모두 가능하며, 그 예로는 리튬이차전지인 경우 LiCoO2, LiMn2O4 , LiMnO2, LiNiO2, LiNiCoO2, V6O13, V2O 5, LiFePO4 및 Li3Fe2(PO4)3를, 리튬일차전지의 경우 MnO2를 들 수 있다.The cathode active material surface-treated according to the present invention may be both a lithium secondary battery and a cathode active material for a lithium primary battery, and examples thereof include LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 , LiNiCoO 2 , V in the case of a lithium secondary battery. 6 O 13 , V 2 O 5 , LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , and MnO 2 in the case of a lithium primary battery.

양극 활물질의 표면에 피복되는 도전성 물질과 금속 산화물에는 제한이 없다. 도전성 물질의 예로는 1 - 300 nm 범위의 입자 크기를 갖는 아세틸렌블랙, 카본블랙, 흑연, 탄소 나노튜브. 탄소 나노파이버, 금속 및 이들의 혼합물을, 상기 금속의 예로는 Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Ag, Zr, Zn, Mo, Au, Ru, Pd, In, Pt, Ir 또는 이들의 합금을 들 수 있다. 한편, 상기 금속 산화물로는 1 - 300 nm 범위의 입자 크기를 갖는 Al2O3, MgO, CoO, NiO, Li2O, Li2CO3, TiO2, ZrO2, ZnO, Co3O4, BaTiO 3, CuO, V2O5, V2O3, V2O4, RuO 2, SiO2, SnO2, Bi2O3, Sb2O3, Fe2O3, Fe3O4, Cr2 O3, Ag2O, MoO3 및 이들의 혼합물을 들 수 있다.There is no limitation on the conductive material and the metal oxide coated on the surface of the positive electrode active material. Examples of conductive materials include acetylene black, carbon black, graphite, carbon nanotubes having particle sizes in the range of 1-300 nm. Carbon nanofibers, metals, and mixtures thereof include, for example, Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Ag, Zr, Zn, Mo, Au, Ru, Pd, In, Pt, Ir or their alloys are mentioned. Meanwhile, the metal oxide may be Al 2 O 3 , MgO, CoO, NiO, Li 2 O, Li 2 CO 3 , TiO 2 , ZrO 2, ZnO, Co 3 O 4 , having a particle size in the range of 1 to 300 nm. BaTiO 3 , CuO, V 2 O 5 , V 2 O 3, V 2 O 4, RuO 2, SiO 2 , SnO 2 , Bi 2 O 3, Sb 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 , Ag 2 O, MoO 3, and mixtures thereof.

다음으로는, 본 발명에 따른 표면 처리된 양극 활물질의 제조방법에 관하여 설명한다. 본 발명에서 도전성 물질, 금속 산화물 또는 이들의 혼합물로 양극 활물질을 표면 처리하는 데에는 가스 분산 코팅기술이 이용된다. 본 발명을 위한 가스 분산 코팅 장치는 코팅용액 성분을 공급하기 위한 시스템, 전극재료를 기상에 부유된 상태로 유지하여 균일한 코팅효과를 가능하게 하는 고속회전 로터(rotor), 및 교반기 시스템으로 구성되어 있다. 이러한 장치를 사용함으로써, ① 전극재료를 반응기에서 효과적으로 분산시키고, ② 반응기 내부로 공급된 코팅용액 중의 도전성 물질, 금속 산화물 또는 이들의 혼합물이 기상에 부유된 전극재료의 표면에 균일하게 피복되도록 할 수 있다.Next, the manufacturing method of the surface-treated positive electrode active material which concerns on this invention is demonstrated. In the present invention, a gas dispersion coating technique is used to surface-treat the positive electrode active material with a conductive material, a metal oxide, or a mixture thereof. Gas dispersion coating apparatus for the present invention is composed of a system for supplying a coating solution component, a high-speed rotation rotor (tortor), and a stirrer system to maintain the electrode material in a suspended state in the gas phase to enable a uniform coating effect have. By using such a device, the electrode material can be effectively dispersed in the reactor, and the conductive material, metal oxide or mixture thereof in the coating solution supplied into the reactor can be uniformly coated on the surface of the electrode material suspended in the gas phase. have.

보다 구체적으로는, 상기 가스 분산 코팅 장치는 코팅용액을 유동층에 손실 없이 효과적으로 분사시킬 수 있는 노즐, 반응기 온도를 코팅용액의 건조 온도로 유지시켜줄 수 있는 반응기 벽면 가열 시스템, 비산 전극재료를 재포집할 수 있는 싸이클론과 스테인레스 스틸 망으로 제조된 필터, 및 반응기와 외부의 압력차를 제어하는 압력조절기와 압력센서 등으로 구성되어 있다.More specifically, the gas dispersion coating apparatus may recapture a nozzle which can effectively spray the coating solution into the fluidized bed without loss, a reactor wall heating system that can maintain the reactor temperature at the drying temperature of the coating solution, and scattering electrode material. It consists of a cyclone filter and a stainless steel mesh filter, and a pressure regulator and a pressure sensor to control the pressure difference between the reactor and the outside.

이와 같은 장치를 사용함으로써, 본 발명에서는 다양한 도전성 물질, 금속 산화물 또는 이들의 혼합물을 전극재료에 박막 형태로 코팅할 수 있을 뿐 아니라, 박막의 표면 덮임도(surface coverage), 두께 등을 자유롭게 제어할 수도 있다. 또한 한 종류의 도전성 물질 또는 금속 산화물 성분 뿐 아니라, 여러 가지 복합 금속 또는 금속 산화물 성분을 순차적으로 또는 동시에 전극재료에 코팅하는 것도 가능하다. By using such a device, the present invention can not only coat various conductive materials, metal oxides, or mixtures thereof in the form of a thin film on the electrode material, but also freely control the surface coverage and thickness of the thin film. It may be. It is also possible to coat not only one kind of conductive material or metal oxide component, but also various composite metal or metal oxide components on the electrode material sequentially or simultaneously.

따라서 본 발명은 가스 분산기술의 단일 공정을 이용하여 리튬전지용 양극 활물질을 효과적으로 표면 개질할 수 있다는 데에 그 특징이 있다. 본 발명의 다른 중요한 특징은 공정이 단순하여 운전이 간편하고, 반응기에 다양한 반응조건을 입력할 수 있기 때문에 다양한 양극 활물질 재료에 대하여 효과적인 표면 개질 조건을 쉽게 도출할 수 있고, 스케일-업(sacle-up) 시에도 층상 내에서의 열전달 및 물질전달 특성이 변하지 않으므로 표면을 처리하려는 양극 활물질의 용량 설정에 제한이 없다는 장점을 갖는다.Therefore, the present invention is characterized in that it can effectively surface-modify the positive electrode active material for lithium batteries using a single process of gas dispersion technology. Another important feature of the present invention is that the process is simple, the operation is simple, and various reaction conditions can be input to the reactor, so that the effective surface modification conditions for various cathode active material materials can be easily derived, and the scale-up Up) also has the advantage that there is no limit to the capacity setting of the positive electrode active material to treat the surface because the heat transfer and mass transfer properties in the layer does not change.

도 1은 본 발명에 사용되는 가스 분산 코팅 장치의 개략도로서, 도면에 표시된 부호는 다음과 같다. FIG. 1 is a schematic diagram of a gas dispersion coating apparatus used in the present invention, in which the symbols shown in the drawings are as follows.

① 가스 분산 코팅조① Gas Dispersion Coating Tank

② 히터② heater

③ 코팅용액 공급 펌프③ Coating solution supply pump

④ 코팅용액 저장조④ Coating solution reservoir

⑤ 배플(baffle)⑤ baffle

⑥ 가스공급 시스템⑥ Gas supply system

⑦ 고속회전 로터⑦ High speed rotation rotor

⑧ 필터⑧ Filter

⑨ 가스 후처리 시스템⑨ Gas aftertreatment system

이하에서는 도 1을 참조하여 본 발명에 사용되는 가스 분산 코팅 장치의 구성을 구체적으로 설명한다.Hereinafter, with reference to Figure 1 will be described in detail the configuration of the gas dispersion coating apparatus used in the present invention.

1) 가스 분산 코팅조1) Gas Dispersion Coating Tank

코팅용액의 분사와 전극재료의 가스 분산화가 동시에 진행되어 전극재료의 표면 개질이 진행되는 부분으로서, 코팅용액 분사를 위한 노즐관, 층내 물질인 전극재료 공급부, 층내 물질의 혼합과 가스 분산을 위한 고속회전 로터(⑦), 용액의 건조에 필요한 에너지를 공급하기 위한 히터 (②)가 코팅조 외벽에 설치되어 있다. 또한 층내 물질의 교반상태를 더욱 향상시키기 위해서 코팅조 내에는 배플(⑤)이 설치되어 있다. It is the part that the surface of the electrode material is reformed by spraying the coating solution and the gas dispersion of the electrode material at the same time.The nozzle tube for spraying the coating solution, the electrode material supply part of the layer material, the high speed for the mixing and gas dispersion of the layer material. A rotary rotor (⑦) and a heater (②) for supplying energy for drying the solution are installed on the outer wall of the coating tank. In addition, in order to further improve the stirring state of the material in the layer, a baffle (⑤) is provided in the coating bath.

2) 코팅용액 공급 시스템2) Coating solution supply system

코팅용액의 용매로 사용되는 에틸 알콜, 아세톤 또는 증류수 등에 수십 나노미터 크기의 코팅물질이 잘 분산된 상태로 코팅조에 공급되도록 하기 위하여 코팅용액 저장조(④)에 교반기를 설치하였고, 코팅용액의 정량공급을 위한 펌프(③)가 설치되어 있다. 가스 분산된 전극재료 분말의 표면에 코팅물질이 균일하게 코팅되기 위해서는 코팅용액의 온도가 중요하므로 코팅용액 저장조(④)에는 항온조를 사용하여 온도를 20 - 150℃ 범위로 제어할 수 있도록 한다.An agitator was installed in the coating solution reservoir (④) to supply the coating tank in a state in which the coating material of several tens of nanometers was well dispersed in ethyl alcohol, acetone, or distilled water used as the solvent of the coating solution. Pump (③) is installed. In order to uniformly coat the coating material on the surface of the gas dispersed electrode material powder, the temperature of the coating solution is important, so that the coating solution storage tank (④) can be controlled to a temperature range of 20 to 150 ° C.

3) 가스공급 시스템3) gas supply system

전극재료의 가스 분산에 필요한 유량의 가스를 정확하게 공급하기 위해 질량 유량계를 사용하였으며, 용매의 역류를 방지하기 위하여 질량 유량계와 코팅용액 공급부 중간에 체크 밸브(check valve)가 설치되어 있다. 공급 가스를 예열하기 위한 시스템이 코팅조 하단에 설치되어 있으며, 이 예열기는 막대형 열교환기 형태로 구성되어 최고 온도 95℃ 까지 제어될 수 있다. A mass flow meter was used to accurately supply gas at the flow rate required for gas dispersion of the electrode material. A check valve was installed between the mass flow meter and the coating solution supply to prevent backflow of solvent. A system for preheating the feed gas is installed at the bottom of the coating bath, which is configured in the form of a rod heat exchanger and can be controlled up to a maximum temperature of 95 ° C.

한편, 반응기 내부의 압력 제어는 표면 처리되는 재료의 세공 특성과 다소 밀접한 관련이 있다. 입자의 세공 내부까지 도전성 물질, 금속 산화물 또는 이들의 혼합물을 증착시키려는 경우에는 50 토르 미만의 저압에서, 표면에만 코팅하려는 경우에는 상압에 가까운 760 토르 근처에서 반응기 압력을 유지한다. On the other hand, the pressure control inside the reactor is somewhat closely related to the pore properties of the material being surface treated. The reactor pressure is maintained at low pressures of less than 50 Torr if the conductive material, metal oxides or mixtures thereof are to be deposited inside the pores of the particles, and near 760 Torr close to normal pressure if only the surface is to be coated.

4) 비산 물질 및 가스 후처리 시스템4) fugitive and gas aftertreatment system

가스 분산 코팅 반응 시에 비정상 혹은 정상 조업에서 비산되어 날아가는 미세 전극물질을 재포집하고 반응압력 제어에 필요한 밸브를 보호하기 위하여 필터(⑧)가 설치되었다. 필터에 재응축된 용액이 비산된 미세입자와 엉키어서 막을 형성하여 차압이 증가되는 것을 방지하기 위하여 필터 외벽에는 히터가 설치되어 있다. 또한 필터 하단에는 미반응 가연성 용매를 처리하기 위한 시스템이 설치되어 있으며, 연소와 세척을 통하여 폐가스를 안전하게 처리하여 방출한다. 이 처리 시스템에 관한 사항은 대한민국 특허 제0238387호에 상세하게 설명되어 있다.In the gas dispersion coating reaction, a filter (8) was installed to recapture the fine electrode material flying out of the abnormal or normal operation and to protect the valve for controlling the reaction pressure. In order to prevent the solution condensed on the filter from entangled with scattered fine particles to form a film to increase the differential pressure, a heater is installed on the outer wall of the filter. In addition, at the bottom of the filter, a system for treating unreacted flammable solvent is installed, and waste gas is safely treated and discharged through combustion and washing. Details regarding this treatment system are described in detail in Korean Patent No. 0238387.

상술한 것과 같은 장치를 이용하는 본 발명에 따른 표면 처리된 리튬전지용 양극 활물질의 제조방법은, Method for producing a surface-treated lithium active material positive electrode active material according to the present invention using the device as described above,

(a) 가스 분산 코팅 반응기에 양극 활물질을 투입하고, 질소 또는 아르곤과 같은 불활성 기체를 반응기 내로 유입시켜 상기 양극 활물질 재료 입자를 유동화하는 공정, 및(a) injecting a cathode active material into a gas dispersion coating reactor and introducing an inert gas such as nitrogen or argon into the reactor to fluidize the cathode active material particles; and

(b) 도전성 물질 또는 금속 산화물의 용액을 양극 활물질 재료가 분산된 가스 분산 코팅 반응기에 분사시켜, 상기 양극 활물질 재료 입자의 표면에 도전성 물질 또는 금속 산화물 층을 단독으로 또는 서로 혼합된 박막 또는 클러스터 형태로 1 - 300 ㎚ 두께로 형성시키는 공정을 포함한다. (b) spraying a solution of a conductive material or a metal oxide into a gas dispersion coating reactor in which a cathode active material is dispersed, so as to form a thin film or cluster in which a conductive material or a metal oxide layer is alone or mixed with each other on the surface of the cathode active material material particle; To 1 to 300 nm thick.

한편 양극의 고용량화, 안정성, 고온특성, 싸이클 특성 등을 추가적으로 향상시키기 위하여, 상기 공정 (b)에서 얻어지는 금속 산화물이 피복된 양극 활물질을 공기 분위기 하에서 200 - 900℃에서 1 - 24 시간 동안 열처리함으로써, 그 표면에 복합 산화물을 형성시키는 것이 바람직하다. On the other hand, in order to further improve the capacity, stability, high temperature, cycle characteristics, etc. of the positive electrode, by heating the metal oxide-coated positive electrode active material obtained in the step (b) for 1 to 24 hours at 200-900 ℃ under an air atmosphere, It is preferable to form a composite oxide on the surface.

상기와 같이 열처리된 양극 활물질 재료의 표면에 상술한 공정 (a) 및 (b)에 의하여 도전성 물질을 다시 피복시킴으로써, 고율 충방전 특성, 고용량화, 안정성, 고온특성, 싸이클 수명 특성 등을 추가적으로 향상시킬 수 있다. By re-coating the conductive material on the surface of the positive electrode active material heat-treated as described above by the above steps (a) and (b), it is possible to further improve high rate charge / discharge characteristics, high capacity, stability, high temperature characteristics, cycle life characteristics, and the like. Can be.

필요한 경우, 도전성 물질, 금속 산화물 또는 이들의 혼합물이 분산된 용액에 폴리비닐 알콜 (PVA), 소듐 카르복시메틸셀룰로오스 (CMC), 히드록시프로필메틸셀룰로오스 (HPMC), 젤라틴, 폴리비닐리덴플루오라이드 (PVdF), 폴리메틸메타크릴레이트 (PMMA) 또는 스틸렌부틸렌러버 (SBR) 등과 같은 결합제를 추가로 용해시킨 용액을 코팅 용액으로 사용함으로써, 양극 활물질 표면에 도전성 물질이나 금속 산화물이 잘 코팅되도록 할 수 있다. If necessary, polyvinyl alcohol (PVA), sodium carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), gelatin, polyvinylidene fluoride (PVdF) in a solution in which conductive materials, metal oxides or mixtures thereof are dispersed ), By using a solution in which a binder such as polymethyl methacrylate (PMMA) or styrene butylene rubber (SBR) is further dissolved as a coating solution, the conductive material or metal oxide can be well coated on the surface of the positive electrode active material. .

실시예Example

이하에서는 실시예 및 비교예를 통하여 본 발명을 상세히 설명한다. 그러나 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. However, the embodiments are only examples of the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

가스 분산 코팅 반응기에 10 - 100 ㎛ 의 입자크기를 갖는 LiCoO2 전극재료 (100℃ vacuum oven에서 2시간 전처리) 500g을 장입하고, 질소를 반응기 내로 유입시켜 전극재료 입자를 유동화시켰다. LiCoO2 입자들이 서로 응집되는 것을 방지하고, 반경 방향의 입자들 사이의 혼합효과를 향상시키기 위하여, 양날의 교반기로 200 - 300 rpm에서 교반하였다. 반응기 온도를 상승시켜 코팅용액의 건조에 필요한 온도인 100℃가 되도록 조절하였으며, 반응기 압력을 760 토르 근처로 유지하였다.500 g of LiCoO 2 electrode material (2 hours pretreatment in a 100 ° C. vacuum oven) having a particle size of 10-100 μm was charged into a gas dispersion coating reactor, and nitrogen was introduced into the reactor to fluidize the electrode material particles. In order to prevent LiCoO 2 particles from agglomerating with each other and to improve the mixing effect between the particles in the radial direction, the stirring was performed at 200-300 rpm with a double blade stirrer. The reactor temperature was increased to adjust the temperature to 100 ° C., which is a temperature required for drying the coating solution.

그 다음, 수십 nm 크기의 아세틸렌블랙(AB) 50g을 에틸 알콜 1000 ml에 넣고, 아세틸렌블랙이 잘 분산될 수 있도록 교반하여 코팅용액을 준비하였다. 준비된 코팅용액을 LiCoO2 전극재료가 분산된 유동층 코팅 반응기의 코팅용액 공급 시스템을 통하여 LiCoO2 분말의 표면에 피복될 수 있도록 반응기 내부로 분사시켜, LiCoO2에 대하여 아세틸렌블랙이 10 중량%의 비율로 피복되도록 하였다.Then, 50 g of acetylene black (AB) having a size of several tens of nm was placed in 1000 ml of ethyl alcohol, and stirred so that the acetylene black could be dispersed well, to prepare a coating solution. The prepared coating solution was sprayed into the reactor to be coated on the surface of the LiCoO 2 powder through the coating solution supply system of the fluidized bed coating reactor in which the LiCoO 2 electrode material was dispersed, whereby acetylene black was 10% by weight relative to LiCoO 2 . To be coated.

아세틸렌블랙이 피복된 LiCoO2 5.7 g과 PVdF 0.4 g을 20 ml의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 LiCoO2 양극을 제조하였다.LiCoO 2 coated with acetylene black 5.7 g and 0.4 g PVdF were mixed in 20 ml of NMP and acetone, and cast on a thin aluminum sheet when dried to obtain a suitable viscosity, followed by rolling to prepare a LiCoO 2 positive electrode.

흑연 6 g, 아세틸렌블랙(AB) 0.3 g 및 PVdF 0.4 g을 20 ml의 NMP 및 아세톤에 혼합한 후 수만 cp의 적당한 점도가 얻어졌을 때 구리 박판 위에 캐스팅하여 건조시킨 후 압연하여 탄소음극을 제조하였다. 6 g of graphite, 0.3 g of acetylene black (AB) and 0.4 g of PVdF were mixed in 20 ml of NMP and acetone, and then cast on a thin copper sheet, dried, and rolled when a suitable viscosity of tens of thousands of cp was obtained, thereby preparing a carbon cathode. .

LiCoO2 양극, PP 분리막 및 탄소음극을 적층하여 리튬이차전지를 구성하고 1M LiPF6가 용해된 EC:DMC 용액을 주입한 후에 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하여, 그 결과를 도 2에 나타내었다.LiCoO 2 positive electrode, PP separator and carbon negative electrode were laminated to construct a lithium secondary battery, and after the injection of EC: DMC solution in which 1M LiPF 6 was dissolved, the electrode capacity and cycle life based on the positive and negative charges were measured at C / 3. The results are shown in FIG.

실시예 2Example 2

수십 nm의 Al2O3 분말 10g을 실시예 1에서와 동일한 방법으로 LiCoO2 분말에 피복하였다. 다만, 여기서는 LiCoO2 분말에 대하여 Al2O3가 2 중량%의 비율로 피복되도록 하였다. 여기서 얻은 Al2O3로 피복된 LiCoO2를 양극 활물질로 사용한 것 이외에는 실시예 1에서와 동일한 방법으로 양극 및 음극을 제조하고, 이를 사용하여 리튬이차전지를 구성한 다음, 1M LiPF6가 용해된 EC:DMC 용액을 주입한 후에 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하여, 그 결과를 도 2에 나타내었다.Ten grams of several tens of nm of Al 2 O 3 powder was coated on the LiCoO 2 powder in the same manner as in Example 1. However, here, Al 2 O 3 was coated at a ratio of 2% by weight based on the LiCoO 2 powder. Except for using LiCoO 2 coated with Al 2 O 3 obtained as a positive electrode active material in the same manner as in Example 1 to prepare a positive electrode and a negative electrode, using this to configure a lithium secondary battery, EC 1M LiPF 6 dissolved : After injecting the DMC solution, the electrode capacity and cycle life based on the positive electrode were examined at charge / discharge rate C / 3, and the results are shown in FIG. 2.

실시예 3Example 3

실시예 1에서 설명한 것과 같은 방법으로 LiCoO2 분말에 Al2O3 분말을 2 중량%로 피복한 다음, 다시 실시예 1에서와 동일한 방법으로 아세틸렌블랙을 10 중량%가 되도록 피복하였다. 이와 같은 방법으로 Al2O3와 아세틸렌블랙이 함께 피복된 LiCoO2를 양극 활물질로 사용한 것 이외에는, 실시예 1에서와 동일한 방법으로 전극을 제조하고, 이를 이용하여 리튬이차전지를 구성한 다음, 1M LiPF6가 용해된 EC:DMC 용액을 주입한 후에 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하여, 그 결과를 도 2에 나타내었다.LiCoO 2 powder was coated with 2% by weight of Al 2 O 3 powder in the same manner as described in Example 1, and then acetylene black was coated with 10% by weight in the same manner as in Example 1. In this manner, except that LiCoO 2 coated with Al 2 O 3 and acetylene black was used as the positive electrode active material, an electrode was manufactured in the same manner as in Example 1, and a lithium secondary battery was constructed using the same, followed by 1M LiPF. After injecting the 6 dissolved EC: DMC solution, the electrode capacity and cycle life based on the positive electrode were examined at charge / discharge rate C / 3, and the results are shown in FIG. 2.

실시예 4Example 4

실시예 1에서와 동일한 방법으로 Al2O3 분말을 LiCoO2 분말에 대하여 2 중량%가 되도록 피복한 다음, 공기 중에서 600℃로 5 시간 동안 열처리하여 양극 활물질 재료를 얻었다. 이를 양극 활물질로 사용하여, 실시예 1에서와 동일한 방법으로 전극을 제조하고, 이를 이용하여 리튬이차전지를 구성한 다음, 1M LiPF6가 용해된 EC:DMC 용액을 주입한 후에 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하여, 그 결과를 도 2에 나타내었다.Al 2 O 3 powder was coated with 2 wt% of LiCoO 2 powder in the same manner as in Example 1, and then heat-treated at 600 ° C. for 5 hours in air to obtain a positive electrode active material. Using this as a positive electrode active material, an electrode was prepared in the same manner as in Example 1, and a lithium secondary battery was constructed using the same, followed by injecting an EC: DMC solution in which 1M LiPF 6 was dissolved to charge / discharge rate C / 3. The electrode capacity and cycle life based on the positive electrode were investigated, and the results are shown in FIG. 2.

실시예 5Example 5

실시예 1에서와 동일한 방법으로 Al2O3 분말을 LiCoO2 분말에 대하여 2 중량%가 되도록 피복한 다음, 공기 중에서 600℃로 5 시간 동안 열처리하고, 다시 실시예 1에서와 동일한 방법으로 아세틸렌블랙을 10 중량%가 되도록 피복하여 양극 활물질 재료를 얻었다. 이를 양극 활물질로 사용하여, 실시예 1에서와 동일한 방법으로 전극을 제조하고, 이를 이용하여 리튬이차전지를 구성한 다음, 1M LiPF6가 용해된 EC:DMC 용액을 주입한 후에 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하여, 그 결과를 도 2에 나타내었다.Al 2 O 3 powder was coated to 2% by weight relative to LiCoO 2 powder in the same manner as in Example 1, and then heat-treated at 600 ° C. for 5 hours in air, and then acetylene black in the same manner as in Example 1. Was coated to 10 wt% to obtain a positive electrode active material. Using this as a positive electrode active material, an electrode was prepared in the same manner as in Example 1, and a lithium secondary battery was constructed using the same, followed by injecting an EC: DMC solution in which 1M LiPF 6 was dissolved to charge / discharge rate C / 3. The electrode capacity and cycle life based on the positive electrode were investigated, and the results are shown in FIG. 2.

비교예 1Comparative Example 1

LiCoO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 LiCoO2 양극을 얻었다. 흑연 6 g, AB 0.3 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 구리박판 위에 캐스팅하여 건조시킨 후 압연하여 탄소음극을 얻었다. LiCoO2 양극, PP분리막 및 탄소음극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC:DMC 용액을 주입한 후, 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하여, 그 결과를 도 2에 나타내었다.5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF were mixed in an appropriate amount of NMP and acetone, and then cast on an aluminum sheet, dried, and rolled to obtain a LiCoO 2 anode when an appropriate viscosity was obtained. 6 g of graphite, 0.3 g of AB, and 0.4 g of PVdF were mixed with an appropriate amount of NMP and acetone, and then cast on a copper foil, dried, and rolled to obtain a carbon cathode when an appropriate viscosity was obtained. LiCoO 2 positive electrode, PP separator and carbon negative electrode were laminated to form a lithium secondary battery, 1M LiPF 6 dissolved EC: DMC solution was injected, and the electrode capacity and cycle life based on the positive and negative electrode at C / 3 Was investigated and the result is shown in FIG.

도 2로부터, 본 발명의 실시예에서 제조된 전지들은 전극용량 및 싸이클 수명 특성이 비교예 1에서 제조된 전지에 비하여 우수하다는 것을 알 수 있다. 본 발명에 따른 양극의 전극 용량이 높은 것은 양극 활물질의 표면에 형성된 도전성 물질, 금속 산화물 또는 이들의 혼합물 층의 일부가 양극 활물질 입자의 내부에 삽입되어 도펀트 역할을 하여 전극용량의 증가를 가져오기 때문이다. From FIG. 2, it can be seen that the batteries manufactured in Examples of the present invention have superior electrode capacity and cycle life characteristics compared to the batteries prepared in Comparative Example 1. The high electrode capacity of the positive electrode according to the present invention is because a portion of the conductive material, metal oxide, or a mixture layer formed on the surface of the positive electrode active material is inserted into the positive electrode active material particles to act as a dopant, resulting in an increase in electrode capacity. to be.

도 3은 실시예 5와 비교예 1에서 제조된 리튬이차전지의 고율방전 1C 특성을 나타낸 것이다. 이로부터 실시예 5에서 제조된 본 발명의 리튬이차전지의 고율방전 특성이 비교예의 전지에 비하여 우수하다는 것을 알 수 있다.Figure 3 shows the high-rate discharge 1C characteristics of the lithium secondary battery prepared in Example 5 and Comparative Example 1. From this, it can be seen that the high rate discharge characteristics of the lithium secondary battery of the present invention prepared in Example 5 are superior to those of the battery of Comparative Example.

본 발명에 따라 가스 분산 코팅기술을 양극 활물질 입자 표면에 1 - 300 ㎚ 두께로 도전성 물질, 금속 산화물 또는 이들의 혼합물이 박막 또는 클러스터 형태로 형성된 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그 제조방법이 제공되었다. In accordance with the present invention, the gas dispersion coating technique is a cathode active material in which a conductive material, a metal oxide, or a mixture thereof is formed in a thin film or cluster form on a surface of a cathode active material particle having a thickness of 1 to 300 nm, a cathode and a lithium battery using the same, and a method of manufacturing the same. This was provided.

도 2에서 확인할 수 있는 것과 같이, 본 발명의 전지들은 전극용량 및 싸이클 수명 특성에 있어서 비교예 1의 전지에 비하여 우수하다. 이는 본 발명의 양극은 전극 성형성, 집전체와의 결합력 및 전극 활물질 입자들 사이의 결합력 또한 우수하고, 이러한 결합력의 증가는 국부적인 전극 내부 저항을 감소시켜, 결과적으로 전극의 전도성을 향상시킬 뿐 아니라, 양극 활물질이 전자전도 통로에서 이탈되는 것을 억제함으로써, 지속적으로 일어나는 전극 용량의 감소를 줄여 전극 특성을 향상시키기 때문에 나타나는 결과이다.As can be seen in Figure 2, the battery of the present invention is superior to the battery of Comparative Example 1 in the electrode capacity and cycle life characteristics. This is because the anode of the present invention has excellent electrode formability, binding strength with the current collector, and bonding strength between the electrode active material particles, and the increase in the bonding force decreases the local electrode internal resistance, and consequently only improves the conductivity of the electrode. Rather, by suppressing the positive electrode active material from leaving the electron conduction passage, the result is because the reduction in the electrode capacity that occurs continuously to improve the electrode characteristics.

도 3에서 확인할 수 있는 것과 같이, 본 발명의 리튬이차전지의 고율방전 특성 또한 비교예의 전지에 비하여 우수하다. 이는 본 발명에 따른 표면 처리된 양극 활물질을 포함하는 양극의 전도성이 비교예의 양극에 비하여 우수하기 때문에 나타나는 현상이다.As can be seen in Figure 3, the high rate discharge characteristics of the lithium secondary battery of the present invention is also superior to the battery of the comparative example. This is a phenomenon that occurs because the conductivity of the positive electrode including the surface-treated positive electrode active material according to the present invention is superior to the positive electrode of the comparative example.

한편, 실시예 및 비교예에서 제조된 전지의 고온 특성을 전지를 만충전하여 90℃ 오븐에서 4시간 방치한 후 꺼내어 상온에서 방전하였을 경우의 전지의 보존 용량을 측정하는 것을 통하여 확인하였다. 실시예에서 제조된 전지들은 98% 이상의 우수한 용량보존 특성을 나타낸 데 반하여, 비교예의 전지는 90%로 나타났다. 따라서 본 발명의 전지가 비교예의 전지에 비하여 고온 특성 또한 우수하다는 것을 알 수 있다. On the other hand, the high temperature characteristics of the batteries prepared in Examples and Comparative Examples were confirmed by measuring the storage capacity of the battery when the battery was fully charged, left for 4 hours in an oven at 90 ° C. and then taken out and discharged at room temperature. The batteries prepared in Examples showed excellent capacity retention characteristics of 98% or higher, whereas the batteries of the comparative examples were 90%. Therefore, it can be seen that the battery of the present invention is also excellent in high temperature characteristics as compared with the battery of the comparative example.

그러므로 본 발명에 따른 양극 활물질을 이용한 양극은 전도성, 고율 충방전 특성, 전극용량, 고온특성, 싸이클 수명 특성 등이 모두 우수하다. 따라서 본 발명에 따른 양극 활물질을 이용하는 리튬전지는 각종 소형 전자기기, 통신기기 및 전기자동차의 전원용 등 다양한 산업분야에 응용될 수 있고, 각종 기기의 국산화, 수입대체 및 수출증대 효과를 기할 수 있을 것으로 기대된다.Therefore, the positive electrode using the positive electrode active material according to the present invention has excellent conductivity, high rate charge / discharge characteristics, electrode capacity, high temperature characteristics, cycle life characteristics, and the like. Therefore, the lithium battery using the positive electrode active material according to the present invention can be applied to various industrial fields such as power supplies for various small electronic devices, communication devices, and electric vehicles, and it is possible to effect localization, import substitution, and export increase of various devices. It is expected.

도 1은 본 발명에 사용되는 가스 분산 코팅 장치의 개략도이다. 1 is a schematic diagram of a gas dispersion coating apparatus used in the present invention.

도 2는 본 발명에 의하여 표면 처리된 양극 활물질을 포함하는 양극의 용량 및 사이클 성능 시험 결과를 보여주는 그래프이다. Figure 2 is a graph showing the capacity and cycle performance test results of the positive electrode including a positive electrode active material surface-treated by the present invention.

도 3은 본 발명에 의하여 표면 처리된 양극 활물질을 포함하는 양극의 고율 방전 특성 시험 결과를 보여주는 그래프이다. 3 is a graph showing the results of a high rate discharge characteristic test of a positive electrode including a positive electrode active material surface treated according to the present invention.

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (a) 가스 분산 코팅 반응기에 양극 활물질 재료를 투입하고, 질소 및 아르곤으로 구성된 군에서 선택되는 불활성 기체를 반응기 내로 유입시켜 상기 양극 활물질 재료 입자를 유동화하는 공정, 및(a) injecting a positive electrode active material into a gas dispersion coating reactor and introducing an inert gas selected from the group consisting of nitrogen and argon into the reactor to fluidize the positive electrode active material particles; and (b) 아세틸렌블랙, 카본블랙, 흑연, 탄소 나노튜브, 탄소 나노파이버, Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Ag, Zr, Zn, Mo, Au, Ru, Pd, In, Pt, Ir 또는 이들의 합금 중 어느 하나로부터 선택되는 금속 및 이들의 혼합물로 구성되는 군에서 선택되는 도전성 물질, 또는 Al2O3, MgO, CoO, NiO, Li2O, Li2CO3, TiO2, ZrO2, ZnO, Co3O4, BaTiO3, CuO, V2O5, V2O3, V2O4, RuO2, SiO2, SnO2, Bi2O3, Sb2O3, Fe2O3, Fe3O4, Cr2O3, Ag2O, MoO3 및 이들의 혼합물로 구성되는 군에서 선택되는 금속 산화물의 용액을, 양극 활물질 재료가 분산된 가스 분산 코팅 반응기에 분사시켜, 상기 양극 활물질 재료 입자의 표면에 도전성 물질 또는 금속 산화물 층을 단독으로 또는 서로 혼합된 박막 또는 클러스터 형태로 1 - 300 ㎚ 두께로 형성시키는 공정을 포함하는, 표면 처리된 리튬전지용 양극 활물질의 제조방법.(b) Acetylene black, carbon black, graphite, carbon nanotubes, carbon nanofibers, Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Ag, Zr , Zn, Mo, Au, Ru, Pd, In, Pt, Ir, or a conductive material selected from the group consisting of a metal selected from any one of these alloys, or mixtures thereof, or Al 2 O 3 , MgO, CoO , NiO, Li 2 O, Li 2 CO 3 , TiO 2 , ZrO 2, ZnO, Co 3 O 4 , BaTiO 3 , CuO, V 2 O 5 , V 2 O 3, V 2 O 4, RuO 2, SiO 2 , A solution of a metal oxide selected from the group consisting of SnO 2 , Bi 2 O 3, Sb 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 , Ag 2 O, MoO 3 and mixtures thereof By spraying a gas dispersion coating reactor in which a cathode active material material is dispersed, so as to form a conductive material or a metal oxide layer on the surface of the cathode active material material alone or in a thin film or cluster form mixed with each other in a thickness of 1 to 300 nm. Surface-treated lithium battery, including process Method for producing a positive electrode active material. 제 6 항에 있어서, 공정 (b)에서 금속 산화물로 표면 처리된 양극 활물질을 공기 분위기 하에서 200 - 900℃로 1 - 24 시간 동안 열처리하여, 양극 활물질 표면에 복합 산화물 층을 형성시키는 공정 (c)를 추가로 포함하는 것을 특징으로 하는, 표면 처리된 리튬전지용 양극 활물질의 제조방법.7. The process according to claim 6, wherein the positive electrode active material surface-treated with the metal oxide in step (b) is heat treated at 200-900 ° C for 1-24 hours under an air atmosphere to form a composite oxide layer on the surface of the positive electrode active material. Method for producing a positive electrode active material for a surface-treated lithium battery, characterized in that it further comprises. 제 7 항에 있어서, 공정 (c)에서 얻어진 표면 처리된 양극 활물질을 가스 분산 코팅 반응기에 재투입하고, 불활성 기체를 반응기 내로 유입시켜 유동화한 다음, 도전성 물질의 용액을 가스 분산 코팅 반응기에 분사시키는 것을 특징으로 하는, 표면 처리된 리튬전지용 양극 활물질의 제조방법.8. The method of claim 7, wherein the surface-treated positive electrode active material obtained in step (c) is reintroduced into the gas dispersion coating reactor, inert gas is introduced into the reactor to fluidize, and then a solution of the conductive material is sprayed into the gas dispersion coating reactor. Method for producing a positive electrode active material for surface treatment lithium, characterized in that. 제 6 항에 있어서, 상기 용매가 알코올, 아세톤 및 증류수로 구성된 군에서 선택되는 것인, 표면 처리된 리튬전지용 양극 활물질의 제조방법.The method of claim 6, wherein the solvent is selected from the group consisting of alcohol, acetone, and distilled water. 제 6 항에 있어서, 상기 도전성 물질 또는 금속 산화물의 용액이 폴리비닐 알콜, 소듐 카르복시메틸셀룰로오스, 히드록시프로필메틸셀룰로오스, 젤라틴, 폴리비닐리덴플루오라이드, 폴리메틸메타크릴레이트 및 스틸렌부틸렌러버(SBR)로 구성된 군에서 선택되는 결합제를 추가적으로 함유하는 것인, 표면 처리된 리튬전지용 양극 활물질의 제조방법.7. The solution of claim 6 wherein the solution of conductive material or metal oxide is polyvinyl alcohol, sodium carboxymethylcellulose, hydroxypropylmethylcellulose, gelatin, polyvinylidene fluoride, polymethylmethacrylate and styrenebutylene rubber (SBR). Method for producing a positive electrode active material for a surface-treated lithium battery that further comprises a binder selected from the group consisting of). 양극 활물질 재료의 표면에 도전성 물질, 금속 산화물 또는 이들의 혼합물의 층이 1 - 300 ㎚ 두께의 박막 또는 클러스터 형태로 형성되어 있는 것을 특징으로 하는, 제 6 항 내지 제 10항 중 어느 하나의 항에 따른 방법으로 제조되는 리튬전지용 양극 활물질을 포함하는 양극. The layer of the conductive material, the metal oxide, or a mixture thereof is formed in the form of a thin film or cluster having a thickness of 1 to 300 nm on the surface of the positive electrode active material material, according to any one of claims 6 to 10. A cathode comprising a cathode active material for a lithium battery prepared by the method. 흑연, 코크스, 하드카본, 주석산화물, 이들을 리튬화한 것, 리튬 및 리튬 합금으로 구성된 군에서 선택되는 음극 활물질을 포함하는 음극과 제 11 항에 따른 양극으로 구성된 리튬전지.A lithium battery comprising a negative electrode comprising a negative electrode active material selected from the group consisting of graphite, coke, hard carbon, tin oxide, lithiated ones thereof, lithium and a lithium alloy, and a positive electrode according to claim 11.
KR10-2003-0029068A 2003-05-07 2003-05-07 A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof KR100515029B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0029068A KR100515029B1 (en) 2003-05-07 2003-05-07 A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0029068A KR100515029B1 (en) 2003-05-07 2003-05-07 A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20040096203A KR20040096203A (en) 2004-11-16
KR100515029B1 true KR100515029B1 (en) 2005-09-15

Family

ID=37374968

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0029068A KR100515029B1 (en) 2003-05-07 2003-05-07 A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100515029B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960137B1 (en) 2007-12-12 2010-05-27 주식회사 에너세라믹 Positive active material and rechargeable lithium battery comprising same
CN102479953A (en) * 2010-11-25 2012-05-30 三星Sdi株式会社 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR101312265B1 (en) * 2011-07-04 2013-09-25 삼성에스디아이 주식회사 Cathod slurry composition, cathode prepared from the slurry, and lithium battery comprising the cathode
CN103794763A (en) * 2014-03-03 2014-05-14 中信国安盟固利电源技术有限公司 Lithium ion cell anode material coated with nanometer metal and manufacturing method of lithium ion cell anode material
KR20140081741A (en) 2012-12-21 2014-07-01 삼성정밀화학 주식회사 a fabricating method of metal oxide coated cathode material, metal oxide coated cathode material fabricated thereby, an electrode for lithium secondary battery and a lithium secondary battery including the same
KR20150081968A (en) 2014-01-07 2015-07-15 동국대학교 산학협력단 Surface Treatment Method of Lithium Manganese Oxide and Lithium Manganese Oxide manufactured using the same
KR20150112338A (en) 2014-03-27 2015-10-07 한국과학기술연구원 Cathode active material having core-shell structure and manufacturing method therof
CN105810881A (en) * 2015-01-19 2016-07-27 丰田自动车株式会社 Method of manufacturing electrode
WO2019004731A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery comprising same
KR20190001573A (en) * 2017-06-27 2019-01-04 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including the same
US11342557B2 (en) 2018-08-24 2022-05-24 Lg Energy Solution, Ltd. Positive electrode active material for lithium rechargeable battery, method of producing the same, and lithium rechargeable battery including the same

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146870B1 (en) * 2004-10-21 2012-05-16 에보니크 데구사 게엠베하 Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries
KR100845688B1 (en) * 2004-11-24 2008-07-11 삼성전기주식회사 Method for Surface treatment of Ni nano particle with Organic solution
KR100756927B1 (en) * 2005-02-22 2007-09-07 주식회사 코캄 Cathod material for lithium second battery, manufacturing method thereof and lithium second battery using the same
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
KR100796687B1 (en) 2005-11-30 2008-01-21 삼성에스디아이 주식회사 Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
KR100728160B1 (en) 2005-11-30 2007-06-13 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP5188677B2 (en) * 2005-12-21 2013-04-24 三星エスディアイ株式会社 Lithium secondary battery and method for producing lithium secondary battery
KR100897180B1 (en) * 2006-02-06 2009-05-14 주식회사 엘지화학 Cathode Material Containing Ag Nano Particle as Conductive Material and Lithium Secondary Battery Comprising the Same
CN100371110C (en) * 2006-02-20 2008-02-27 浙江大学 Method for synthesizing carbon covered stannum nanowire
US7906239B2 (en) * 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
KR100893227B1 (en) * 2006-07-28 2009-04-16 주식회사 엘지화학 Anode for improving storage performance at a high temperature and lithium secondary battery comprising the same
KR101225941B1 (en) * 2006-11-30 2013-01-24 주식회사 엘지화학 Surface-coated electrode active material
KR100834054B1 (en) * 2007-05-11 2008-06-02 한양대학교 산학협력단 Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
US8993051B2 (en) * 2007-12-12 2015-03-31 Technische Universiteit Delft Method for covering particles, especially a battery electrode material particles, and particles obtained with such method and a battery comprising such particle
KR20090106841A (en) 2008-04-07 2009-10-12 삼성에스디아이 주식회사 Electrode assembly and secondary battery using the same
KR100945036B1 (en) * 2008-07-31 2010-03-05 한국세라믹기술원 Cathode active material and Preparation method, Lithium secondary battery and Preparation method
KR101013938B1 (en) * 2008-07-31 2011-02-14 한양대학교 산학협력단 Positive active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery using same
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
JP5347522B2 (en) * 2009-01-20 2013-11-20 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
WO2011105832A2 (en) * 2010-02-24 2011-09-01 주식회사 엘지화학 High-capacity positive electrode active material and lithium secondary battery comprising same
KR101127616B1 (en) * 2010-09-13 2012-03-22 삼성에스디아이 주식회사 Positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
KR101235596B1 (en) * 2010-10-14 2013-02-21 한국과학기술연구원 Lithium transition-metal phosphate nanoparticle, dispersion solution, thin film and lithium sencondary battery using them and fabrication method thereof
KR101288743B1 (en) * 2011-06-30 2013-07-23 주식회사 엘지화학 Electrode active agent, lithium secondary battery comprising the same
KR101414955B1 (en) * 2011-09-26 2014-07-07 주식회사 엘지화학 positive-electrode active material with improved safety and Lithium secondary battery including them
KR101452699B1 (en) * 2011-09-27 2014-10-23 주식회사 엘지화학 Cathode Active Material and Method for Preparing the Same
RU2522918C2 (en) * 2012-11-14 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") METHOD OF NANOCRYSTALLINE COMPOSITE CATHODE MATERIALS LixFeyMzSiO4/C
KR101470090B1 (en) * 2012-11-30 2014-12-05 삼성정밀화학 주식회사 Positive active material composite for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR101460414B1 (en) * 2012-12-06 2014-11-10 삼성정밀화학 주식회사 Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101406512B1 (en) * 2012-12-14 2014-06-12 삼성정밀화학 주식회사 Positive active material, method of preparing the same, and lithium secondary battery using the same
DE102013202144A1 (en) * 2013-02-08 2014-08-14 Bayer Materialscience Ag Electrocatalyst, electrode coating and electrode for the production of chlorine
KR102183997B1 (en) 2014-02-07 2020-11-27 삼성에스디아이 주식회사 Positive active material, positive electrode and lithium battery including the same and method of manufacture thereof
KR102204701B1 (en) * 2014-02-07 2021-01-18 삼성에스디아이 주식회사 Positive electrode active material for rechargeable lithium battery, manufacturing method of the same, and rechargeable lithium battery including the same
KR101758992B1 (en) * 2014-10-02 2017-07-17 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP6206421B2 (en) 2015-01-14 2017-10-04 トヨタ自動車株式会社 Electrode manufacturing method
CN105369475B (en) * 2015-08-27 2017-10-20 新疆大学 Tin antimony and carbon nano-fiber active material and preparation method thereof
CN110890228B (en) * 2019-11-29 2022-04-08 福州大学 Ruthenium-doped MoO in acidic aqueous solution3Cathode material and preparation method thereof
CN110890542B (en) * 2020-01-14 2020-06-26 桑顿新能源科技有限公司 Lithium ion battery anode material and preparation method thereof, lithium ion battery anode, lithium ion battery and power utilization equipment
WO2021172933A1 (en) * 2020-02-26 2021-09-02 주식회사 엘지에너지솔루션 Irreversible additive, cathode comprising irreversible additive, and lithium secondary battery comprising cathode
CN113000047B (en) * 2021-03-25 2023-05-26 辽宁大学 Fenton reagent Fe 3 O 4 C, preparation method and application thereof
CN112978870B (en) * 2021-03-25 2022-06-14 辽宁大学 MoO3-xPreparation method and application of/C/CoO nano composite material
CN114272926B (en) * 2021-12-29 2023-06-23 济南大学 Difunctional catalytic type yin-yang ball micromotor and preparation method and application thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960137B1 (en) 2007-12-12 2010-05-27 주식회사 에너세라믹 Positive active material and rechargeable lithium battery comprising same
US9705132B2 (en) 2010-11-25 2017-07-11 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
CN102479953A (en) * 2010-11-25 2012-05-30 三星Sdi株式会社 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
US10218001B2 (en) 2010-11-25 2019-02-26 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
KR101312265B1 (en) * 2011-07-04 2013-09-25 삼성에스디아이 주식회사 Cathod slurry composition, cathode prepared from the slurry, and lithium battery comprising the cathode
KR20140081741A (en) 2012-12-21 2014-07-01 삼성정밀화학 주식회사 a fabricating method of metal oxide coated cathode material, metal oxide coated cathode material fabricated thereby, an electrode for lithium secondary battery and a lithium secondary battery including the same
KR20150081968A (en) 2014-01-07 2015-07-15 동국대학교 산학협력단 Surface Treatment Method of Lithium Manganese Oxide and Lithium Manganese Oxide manufactured using the same
CN103794763A (en) * 2014-03-03 2014-05-14 中信国安盟固利电源技术有限公司 Lithium ion cell anode material coated with nanometer metal and manufacturing method of lithium ion cell anode material
KR20150112338A (en) 2014-03-27 2015-10-07 한국과학기술연구원 Cathode active material having core-shell structure and manufacturing method therof
CN105810881A (en) * 2015-01-19 2016-07-27 丰田自动车株式会社 Method of manufacturing electrode
WO2019004731A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery comprising same
KR20190001573A (en) * 2017-06-27 2019-01-04 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP2020505719A (en) * 2017-06-27 2020-02-20 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and lithium secondary battery including the same
US20200227729A1 (en) * 2017-06-27 2020-07-16 Lg Chem, Ltd. Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
US10910637B2 (en) 2017-06-27 2021-02-02 Lg Chem, Ltd. Positive electrode for lithium secondary battery and lithium secondary battery including the same
KR102268082B1 (en) * 2017-06-27 2021-06-23 주식회사 엘지에너지솔루션 Positive electrode for lithium secondary battery and lithium secondary battery including the same
US11342557B2 (en) 2018-08-24 2022-05-24 Lg Energy Solution, Ltd. Positive electrode active material for lithium rechargeable battery, method of producing the same, and lithium rechargeable battery including the same

Also Published As

Publication number Publication date
KR20040096203A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
KR100515029B1 (en) A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof
JP7027413B2 (en) Cathode slurry for lithium-ion batteries
US6896706B2 (en) Carbonaceous materials coated with a metal or metal oxide, a preparation method thereof, and a composite electrode and lithium secondary battery comprising the same
JP7209780B2 (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
EP2833448B1 (en) Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
CN103797621B (en) Bimodal pattern negative electrode active material and lithium secondary battery comprising it
CN111864207B (en) All-solid battery
JP5888418B2 (en) Negative electrode active material, method for producing negative electrode active material, negative electrode and secondary battery
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
JP7238003B2 (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
CN111092202B (en) High-nickel ternary cathode material and preparation method and application thereof
CN102376927B (en) Lithium ion battery protecting film and lithium ion battery current collector applying same as well as lithium ion battery
EP3813174A1 (en) Lithium secondary battery comprising inorganic electrolyte solution
JP2023508021A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
CN102479932B (en) Using method of lithium ion battery modifying agent, lithium ion battery diaphragm, and battery
JP7106702B2 (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
JP7130911B2 (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
KR102314042B1 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP6109488B2 (en) Anode active material including composite material, anode including anode active material, and lithium secondary battery employing anode
JP7184685B2 (en) secondary battery
CN109904404B (en) Lithium secondary battery negative electrode active material, method for preparing the same, and lithium secondary battery comprising the same
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
CN116014104A (en) Lithium-rich nickel positive electrode material, preparation method thereof, positive electrode sheet and secondary battery
US20230231125A1 (en) Method for activating electrochemical property of cathode active material for lithium secondary battery and cathode active material for lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120903

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130910

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140829

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee