KR100715155B1 - Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers - Google Patents

Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers Download PDF

Info

Publication number
KR100715155B1
KR100715155B1 KR1020050037214A KR20050037214A KR100715155B1 KR 100715155 B1 KR100715155 B1 KR 100715155B1 KR 1020050037214 A KR1020050037214 A KR 1020050037214A KR 20050037214 A KR20050037214 A KR 20050037214A KR 100715155 B1 KR100715155 B1 KR 100715155B1
Authority
KR
South Korea
Prior art keywords
nanocomposite
carbon
fuel cell
carbon fiber
catalyst
Prior art date
Application number
KR1020050037214A
Other languages
Korean (ko)
Other versions
KR20050048579A (en
Inventor
김찬
Original Assignee
주식회사 아모메디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모메디 filed Critical 주식회사 아모메디
Priority to KR1020050037214A priority Critical patent/KR100715155B1/en
Publication of KR20050048579A publication Critical patent/KR20050048579A/en
Application granted granted Critical
Publication of KR100715155B1 publication Critical patent/KR100715155B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 탄소나노섬유 지지체에 담지된 Pt 및 Pt/Ru 합금 고분자 전해질형 연료전지 및 직접메탄올 연료전지용 전극촉매의 제조방법에 관한 것으로, 전기방사방법에 의해 얻어진 나노섬유 및 카본나노튜브 등이 함유된 나노복합체 섬유를 산화안정화, 탄소화 공정을 거쳐 탄소나노섬유를 제조하고, 이를 볼밀 등의 방법에 의해 미립화시켜 체적대비 비표면적 및 전도성이 크고, Pt 및 Pt/Ru 등을 고분산시켜 촉매활성 및 전도성이 우수하면서 반응물과 생성물의 이동이 원활하여 성능이 월등히 향상된 신규 고분자 전해질형 연료전지 및 직접메탄올 연료전지용 전극(촉매)의 제조방법을 제공하고 있다. The present invention relates to a method for producing electrode catalysts for Pt and Pt / Ru alloy polymer electrolyte fuel cells and direct methanol fuel cells supported on a carbon nanofiber support, containing nanofibers and carbon nanotubes obtained by an electrospinning method. Carbon nanofibers are prepared by oxidative stabilization and carbonization process, and the particles are atomized by methods such as ball milling, so that the specific surface area and conductivity are high, and Pt and Pt / Ru are highly dispersed and catalytically active. And it provides a method for producing a novel polymer electrolyte fuel cell and direct methanol fuel cell electrode (catalyst) with excellent conductivity and smooth movement of the reactants and products to improve performance.

전기방사, 탄소나노섬유, 카본나노튜브, 연료전지, 전극촉매, 백금, 루테튬 Electrospinning, carbon nanofibers, carbon nanotubes, fuel cells, electrode catalysts, platinum, lutetium

Description

나노 복합체 탄소섬유 지지체를 이용한 연료전지용 전극촉매의 제조방법 {Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers }Preparation method of electrocatalyst for fuel cell using nanocomposite carbon fiber support {Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers}

도 1은 본 발명의 실시예에 따라 전기방사법에 의해 제조된 나노복합체 섬유의 전자현미경 사진 카본나노튜브의 함량에 따라(a) 0.5 wt.% MWCNT, (b) 1.0 wt.% MWCNT, (c) 3.0 wt% MWCNT, (d) 5.0 wt.% MWCNT1 is (a) 0.5 wt.% MWCNT, (b) 1.0 wt.% MWCNT, (c) according to the content of the electron micrograph carbon nanotubes of the nanocomposite fiber prepared by the electrospinning method according to an embodiment of the present invention ) 3.0 wt% MWCNT, (d) 5.0 wt.% MWCNT

도 2는 본 발명의 실시예에 따라 제조된 카본나노튜브가 함유된 나노복합체 섬유의 열중량 그래프Figure 2 is a thermogravimetric graph of the nanocomposite fibers containing carbon nanotubes prepared according to an embodiment of the present invention

도 3은 본 발명의 실시예에 따라 제조된 탄소섬유 및 나노복합체 탄소섬유의 볼밀한 경우의 전자현미경 사진 Figure 3 is an electron micrograph of the ball mill of the carbon fiber and nanocomposite carbon fiber prepared according to an embodiment of the present invention

도 4는 본 발명의 실시예에 따라 제조된 20%의 백금이 함유된 상용촉매(a), PAN계 탄소섬유(b), 나노복합체 탄소섬유(c)의 투과전자현미경 사진 Figure 4 is a transmission electron micrograph of a commercial catalyst (a), PAN-based carbon fiber (b), nanocomposite carbon fiber (c) containing 20% platinum prepared according to an embodiment of the present invention

도 5는 본 발명의 실시예에 따라 제조된 고체고분자 전해질형 연료전지의 단위 셀 성능을 나타낸 그래프5 is a graph showing unit cell performance of a solid polymer electrolyte fuel cell manufactured according to an embodiment of the present invention.

도 6은 본 발명의 실시예에 따라 제조된 나노복합체 탄소섬유의 모델6 is a model of the nanocomposite carbon fiber prepared according to an embodiment of the present invention

도 7은 본 발명의 실시예에 따라 제조된 Pt/Ru 함유 탄소나노섬유의 투과전자 현미경 사진FIG. 7 is a transmission electron micrograph of a Pt / Ru-containing carbon nanofiber prepared according to an embodiment of the present invention.

도 8은 본 발명의 실시예에 따라 제조된 (a)Pt/Ru 함유 나노복합체 탄소섬유와 (b)상용촉매(Vulcan XC-72)를 사용하여 직접메탄올 연료전지의 단위셀 측정 결과8 is a unit cell measurement result of a direct methanol fuel cell using (a) Pt / Ru-containing nanocomposite carbon fiber and (b) a commercial catalyst (Vulcan XC-72) prepared according to an embodiment of the present invention.

본 발명은 연료전지용 전극촉매에 관한 것으로서, 보다 구체적으로는 전기방사법에 의한 나노 복합체 탄소섬유 지지체를 이용한 연료전지용 전극촉매에 관한 것이다.
휴대전자기기의 급속한 발달과 더불어 유한의 화석자원 및 환경문제의 유력한 해결수단의 하나인 연료 전지는 유해 가스의 발생이 거의 없는 무공해 에너지원이면서 화학반응을 직접 전기에너지로 변화시켜주는 고효율 신 에너지원으로써 매우 활발하게 연구되고 있는 분야이다.
연료전지는 사용하는 전해질 및 온도에 따라 크게 고체산화물형 연료전지(solid oxide fuel cell, SOFC), 용융탄산염형 연료전지(molten carbonate fuel cell, MCFC), 인산형 연료전지(phosphoric acid fuel cell, PAFC), 고분자 전해질형 연료전지(polymer electrolyte membrane fuel cell, PEMFC), 알카리 수용액형 연료전지(alkaline fuel cell, AFC)로 구분할 수 있으며, 비교적 저온에서 작동하는 고체고분자 전해질형 연료전지는 연료극(anode)의 연료공급 방식에 따라 연료를 수소가스로 전환시켜 공급하는 외부개질형 연료전지와 액체 및 기체상태의 연료를 연료극에 직접 공급하는 내부개질형 연료전지로 구분할 수 있다.
내부개질형 연료전지의 대표적인 예인 직접메탄올 연료전지(direct methanol fuel cell, DMFC)는 연료의 취급이 간편하고, 소형, 경량화가 가능해 휴대용 전자기기의 전원으로 크게 각광을 받을 전망이다. 특히, 고분자 전해질형 연료전지는 이산화 탄소(CO2)의 배출을 획기적으로 저감시킬 수 있는 유효한 수단으로써 저가격, 컴팩트화, 상온, 상압에서 1A/㎠ 이상의 고출력을 얻을 수 있는 고효율 발전시스템 등으로 차세대 연료전지 자동차의 동력원으로 기대되고 있다.
고분자 전해질형 연료전지의 기본적인 구성은 수소이온 전도성 전해질막 양측에 다공성 연료극과 공기극을 설치하고, 전극 반응에 이용되는 수소 및 산소의 반응 가스는 발수처리된 가스 확산층(카본페이퍼, 탄소천, 탄소종이)의 틈새를 경유해서 공급되고, 전해질과 접촉한 촉매층의 연료극에서 수소연료가 수소이온과 전자로 분해되어 수소이온은 고분자 이온교환막(고분자 전해질)을 통과하고, 전자는 촉매담체인 전도성 카본블랙, 전도성 다공질 가스 확산층 및 집전 가스 분리막(bipolar plate)을 경유 외부회로를 통해 공기극으로 이동하며, 공기극에서는 산소, 전자 및 수소이온이 반응해서 물이 생성된다.
고분자 전해질형 연료전지의 기전반응은 다음 식과 같다.
연료극 (Anode) : H2 →2H+ + 2e-
공기극 (cathode) :1/2O2 + 2H+ + e- →H2O
전반응 (total reaction) :H2 + 1/2O2 → H2O
연료전지는 물의 전기분해의 역반응이기 때문에 이론적으로 1.2V의 전압이 얻어지지만, 공기극에서의 손실 및 막 저항 등에 의해 실제 0.8 - 0.6V 정도에서 운전된다.
일반적으로 연료전지의 성능(출력 특성)을 향상시키기 위해서는 높은 교환전류밀도를 갖는 전극촉매의 사용과 표면적이 큰 활성촉매를 사용하여 활성화 과전압을 낮추어야 하며, 이온전도성이 높은 막과 전극 두께를 최소화하여 저항이나 과전압을 낮추어야 한다. 또한, 전기화학 반응시 반응물과 생성물의 이동을 쉽게 하기위해 전극, 막 MEA의 구조를 최적화 시킬 필요가 있다.
전자의 전도채널을 담당하는 탄소재료는 입자크기, 모폴러지 등의 미세구조에 의해 촉매의 담지량, 분산상태 등이 달라져 촉매활성이 변하며, 반응물과 생성물의 원활한 공급과 배출을 담당하도록 최적의 구조를 갖는 것이 필요하다. 입자가 너무 커 비표면적이 작은 경우, 촉매 담지량과 분산도가 저하하는 한편, 입자크기가 너무 작은 경우 촉매 담지량 및 분산도는 좋으나 반응가스와 생성물의 이동 및 탄소재료간의 전도채널이 불량하고, 미세공내 고체고분자 전해질의 함침이 나빠 촉매의 이용효율이 저하하여 연료전지 전체 성능을 저하시키는 경향이 있다.
현재 사용되고 있는 담체 물질로는 여러 산화물 계통과 탄소재료가 사용되고 있지만, 열적, 화학적, 전기적, 기계적 특성면에서 우수한 탄소계 물질이 주로 이용되고 있다. 상업화되어 있는 Vulcan XC-72의 경우 비표면적이 250 ㎡/g 이면서 비정질구조를 가지고 있어 기계적 강도가 낮아 고정층 반응기에서 담체의 구조가 부서지는 등 문제점이 있어 기계적 강도와 전기전도성이 우수한 신규 탄소재료를 이용할 경우 더 높은 활성을 기대할 수 있다. 담체를 이용하면 촉매의 분산효과외에도 촉매와 담체간의 상호작용이 촉매의 활성에 영향을 미친다고 알려져 있다. 이는 담체가 촉매입자의 전자적 성질을 바뀌게 하는 효과와 촉매입자의 형태를 변경하는 기하학적 효과로 구분할 수 있다.
따라서, 탄소재료의 입자크기, 형상 등의 미세구조를 최적화하지 않으면 고분자 전해질형 연료전지의 성능을 최대화시키는데 곤란한 경향이 있다. 지금까지 카본블랙 등과 같은 상용촉매를 비롯하여 나노카본재료 (카본나노튜브, 나노혼, 컵스택 카본나노튜브) 등의 각종 탄소재료의 미세구조에 따른 연료전지 성능이 검토되고 있지만, 최적의 특성은 아직 얻어지지 않는 것이 현실이다.
The present invention relates to an electrode catalyst for a fuel cell, and more particularly to an electrode catalyst for a fuel cell using a nanocomposite carbon fiber support by an electrospinning method.
Along with the rapid development of portable electronic devices, fuel cells, which are one of the potential solutions to finite fossil resources and environmental problems, are a pollution-free energy source with little generation of harmful gases and a highly efficient new energy source that converts chemical reactions directly into electrical energy. It is a very active area of research.
Fuel cells are classified into solid oxide fuel cells (SOFC), molten carbonate fuel cells (MCFC), and phosphoric acid fuel cells (PAFC) depending on the electrolyte and temperature used. ), Polymer electrolyte membrane fuel cell (PEMFC), alkaline aqueous fuel cell (ACC), and solid polymer electrolyte fuel cell operating at relatively low temperature. According to the fuel supply method of the present invention can be divided into an external reforming fuel cell that converts the fuel into hydrogen gas and supplies an internal reforming fuel cell that directly supplies the liquid and gaseous fuel to the anode.
Direct methanol fuel cell (DMFC), a representative example of an internally reformed fuel cell, is expected to attract great attention as a power source for portable electronic devices because it is easy to handle fuel, small, and lightweight. In particular, the polymer electrolyte fuel cell is an effective means to drastically reduce the emission of carbon dioxide (CO2), and is a next generation fuel such as a high-efficiency power generation system capable of achieving high output of 1 A / cm2 or more at low cost, compactness, room temperature, and atmospheric pressure. It is expected to be a power source for battery cars.
The basic composition of the polymer electrolyte fuel cell is a porous anode and a cathode on both sides of the hydrogen-ion conductive electrolyte membrane, and the reaction gas of hydrogen and oxygen used in the electrode reaction is a gas diffusion layer (carbon paper, carbon cloth, carbon paper) Is supplied via a gap of), hydrogen fuel is decomposed into hydrogen ions and electrons at the anode of the catalyst layer in contact with the electrolyte, and the hydrogen ions pass through the polymer ion exchange membrane (polymer electrolyte), and the electrons are conductive carbon black, which is a catalyst carrier, The conductive porous gas diffusion layer and the current collector gas bipolar plate move through the external circuit via the external circuit, where water, oxygen, electrons and hydrogen ions react with each other.
The mechanism reaction of a polymer electrolyte fuel cell is as follows.
A fuel electrode (Anode): H2 → 2H + + 2e -
An air electrode (cathode): 1 / 2O 2 + 2H + + e - → H 2 O
Total reaction: H 2 + 1 / 2O 2 → H 2 O
Since the fuel cell is a reverse reaction of water electrolysis, a voltage of 1.2 V is theoretically obtained, but it is actually operated at about 0.8-0.6 V due to loss in the air electrode and membrane resistance.
In general, in order to improve the performance (output characteristics) of the fuel cell, the activation overvoltage should be reduced by using an electrode catalyst having a high exchange current density and an active catalyst having a large surface area, and by minimizing the thickness of the membrane and the electrode having high ion conductivity. Lower the resistance or overvoltage. In addition, it is necessary to optimize the structure of the electrode and membrane MEA to facilitate the movement of reactants and products during the electrochemical reaction.
The carbon material in charge of the conduction channel of the electrons changes the catalytic activity due to the change in catalyst loading amount and dispersion state by the microstructure such as particle size and morphology, and has an optimum structure for smooth supply and discharge of reactants and products. It is necessary to have. If the particles are too large and the specific surface area is small, the catalyst loading amount and dispersion degree decrease. On the other hand, if the particle size is too small, the catalyst loading amount and dispersion degree are good. Since the impregnation of the solid polymer electrolyte in the cavity is poor, there is a tendency that the utilization efficiency of the catalyst is lowered and the overall performance of the fuel cell is lowered.
Various oxide systems and carbon materials are used as the carrier materials, but carbon materials having excellent thermal, chemical, electrical, and mechanical properties are mainly used. The commercialized Vulcan XC-72 has a specific surface area of 250 m2 / g and has an amorphous structure.Therefore, there is a problem that the carrier structure is broken in the fixed bed reactor due to its low mechanical strength. If used, higher activity can be expected. The use of a carrier is known to affect the activity of the catalyst, in addition to the effect of dispersing the catalyst. This can be classified into an effect of changing the electronic properties of the catalyst particles and a geometric effect of changing the shape of the catalyst particles.
Therefore, there is a tendency that it is difficult to maximize the performance of the polymer electrolyte fuel cell unless the microstructure such as particle size and shape of the carbon material is optimized. Until now, the performance of fuel cells according to the microstructure of various carbon materials such as commercial catalysts such as carbon black and nano carbon materials (carbon nanotubes, nano horns, cup stack carbon nanotubes) has been examined. It is a reality that is not obtained.

본 발명은 촉매활성이 우수한 연료전지용 전극촉매를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위한 본 발명자의 연구에서, 전기방사에 의해 카본나노튜브가 분산된 나노복합체 섬유를 산화안정화, 탄소화 처리하여 나노복합체 탄소섬유를 제조하고, 상기 재료를 분쇄하여 여기에 촉매활성물질이 분산하면 촉매활성물질이 고도로 분산 담지된 연료전지용 전극촉매를 제조할 수 있고, 제조된 촉매는 높은 촉매활성을 나타내며, 전자전도성 채널을 형성하는 동시에 반응물 및 생성물의 이동채널이 우수한 연료전지용 전극의 제조를 가능하게 한다는 사실을 알게되어 본 발명을 완성하게 된 것이다.
An object of the present invention is to provide an electrode catalyst for a fuel cell excellent in catalytic activity.
In the research of the present inventors for achieving the above object, the nanocomposite fibers in which carbon nanotubes are dispersed by electrospinning are oxidatively stabilized and carbonized to produce nanocomposite carbon fibers, and the material is pulverized to a catalyst When the active materials are dispersed, an electrode catalyst for a fuel cell in which the catalytically active materials are highly dispersed and supported can be prepared, and the prepared catalyst exhibits high catalytic activity, and forms an electron conductive channel and has excellent moving channels for reactants and products. It has been found that the manufacture of the electrode enables the present invention to be completed.

그러므로 본 발명에 의하면, 연료전지용 전극촉매의 제조에 있어서,
탄소섬유 전구체 고분자에 카본나노튜브가 분산, 혼합된 방사용액을 전기방사하여 제조한 나노복합체 섬유를 산화안정화처리하여 불융화 나노복합체섬유를 제조하고, 제조된 불융화 나노복합체섬유를 탄소화처리하여 나노복합체 탄소섬유를 제조한 다음, 이를 분쇄하여 미립화된 나노복합체 탄소섬유를 제조하는 지지체 제조공정, 및
미립화된 나노복합체 탄소섬유 지지체에 백금계 촉매활성물질을 분산, 담지시키는 촉매제조공정을 포함하는 것을 특징으로 하는 연료전지용 전극촉매의 제조방법이 제공된다.
이하, 본 발명을 보다 상세하게 설명하기로 한다.
본 발명의 연료전지용 전극촉매 제조방법은 나노복합체 탄소섬유 지지체 제조공정과, 상기 지지체에 백금계 촉매활성물질을 분산, 담지시키는 촉매제조공정으로 대별할 수 있다.
본 발명에 따라 지지체를 제조하는 공정을 바람직한 구현의 방법으로 설명하면,
먼저 정제처리된 카본나노튜브를 섬유성형성 탄소섬유 전구체 고분자와 혼합하여 방사용액을 제조한다. 상기 섬유성형성 탄소섬유 전구체 고분자의 예로는 폴리아크릴로나이트릴, 셀룰로오스, 페놀, 피치 등을 사용할 수 있으며, 상기 탄소나노튜브로는 단층카본나노튜브(single walled carbon nanotube, SWCNT), 다층카본나노튜브(multi-walled carbon nanotube, MWCNT), 나노혼(nano hone), 컵스택 카본나노튜브(cup stacked carbon nanotube), 기상성장 탄소섬유(vapor grown carbon fiber, VGCF) 등을 사용할 수 있다. 이때, 카본나노튜브가 탄소섬유전구체 고분자와 잘 혼합되고 분산될 수 있도록 하기 위해서는 N,N-디메틸포름아미드 또는 이들의 혼합유기용액 등과 같은 유기용액에 나노튜브를 넣고 초음파나 분산제를 이용하여 분산시킨다음, 나노튜브가 분산된 용액에 탄소섬유전구체 고분자를 혼합하여 방사용액을 제조하는 것이 바람직하다.
다음, 상기 방사용액을 고전압하에서 전기방사하여 탄소섬유 전구체 고분자와 카본나노튜브가 혼합된 형태의 나노복합체 섬유를 제조한다. 이때 전기방사는 통상의 전기방사 장치를 사용하여 상온, 진공, 온도조절 등의 환경에서 방사를 실시할 수 있다.
다음, 제조된 나노복합체 섬유를 산화안정화처리한다. 이러한 산화안정화처리의 바람직한 예는 나노복합체 섬유를 온도조절기와 공기유량을 조절할 수 있는 전기로에 넣고 상온에서 350 ℃까지 분당 0.5 - 5℃로 승온하여 산화안정화 처리하는 것이다. 이와 같이 산화안정화처리하면 불융화섬유가 얻어진다.
다음, 산화안정화처리된 나노복합체 섬유는 탄소화처리한다. 이러한 탄소화처리의 바람직한 예는 산화안정화처리된 나노복합체 섬유를 불활성 분위기나 진공상태에서 500 - 1500 ℃의 온도범위에서 탄소화 처리하는 것이다. 이와같은 탄소화처리를 하게되면 카본나노튜브가 분산된 나노복합체 탄소섬유가 얻어지며, 얻어진 나노복합체 섬유의 대부분은 직경이 대략 50 - 500 nm 범위이며, 비표면적은 500 ㎡/g 이하이다.
이와 같이 얻어진 나노복합체 탄소섬유를 분쇄하여 미립화된 나노복합체 탄소섬유을 제조한다. 이러한 분쇄에는 예를 들어 볼밀 등의 방법에 의해 분당 300 rpm의 속도로 30분에서 4시간 분쇄한 후 150℃ 미만의 열풍내지는 진공하에서 건조하는 방법을 이용하는 것이 바람직하다. 이와 같이 미립화된 나노복합체 탄소섬유는 섬유상을 유지하면서 나노튜브가 섬유 내부 및 외부로 돌출되어 있는 형상을 하고 이때 섬유장은 대부분 10㎛ 이하이다.
본 발명에 따르는 연료전지용 전극촉매의 제조방법의 촉매제조공정은 미립화된 나노복합체 탄소섬유 지지체에 백금계 촉매활성물질을 분산, 담지시키는 공정이다. 이를 바람직한 구현의 방법으로 설명하면, 미립화된 나노복합체 탄소섬유를 통상의 환원법을 이용하여 백금(Pt), 백금/루테튬(Pt/Ru)과 같은 백금계 촉매활성물질 용액에 혼합하여 분산, 교반하고, 환원제를 첨가하면 백금계 촉매활성물질이 환원되어 나노복합체 탄소섬유에 고도록 분산, 담지된 연료전지용 전극촉매가 얻어진다.
바람직하게, 본 발명에 따라 제조되는 촉매는 NaOH 등과 같은 알카리로 pH를 대략 8 정도로 고정시키고, 교반 세척하여 고분자 전해질의 콜로이드형 분산용액을 카본페이퍼(가스확산층) 위에 도포, 건조하여 고분자 전해질형 연료전지 및 직접메탄올 연료전지용 전극의 제조에 이용할 수 있다.
이하 실시예를 통하여 본 발명을 더욱 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.
실시예
실시예 1
10(wt.%) 중량부의 폴리아크릴로 나이트릴(PAN)에 대해 정제된 카본나노튜브를 1- 10 (wt.%) 중량부 첨가하여 N,N-디메틸포름아마이드 (DMF)를 용매로 사용하여 60℃에서 1시간 교반한 후 상온에서 24시간 교반하여 방사용액을 제조하였다. 제조된 방사용액은 전기방사장치에서 전압 20 kV, 집전체와 방사구와의 거리 20cm, 상온에서 전기방사하여 폴리아크릴로 나이트릴에 탄소나노튜브가 복합화된 나노섬유를 얻었다. 도 1에는 얻어진 복합나노섬유의 카본나노튜브 함량별 전자 현미경 사진이 제시된다. 얻어진 복합나노섬유의 평균직경은 나노튜브 함량에 따라 달랐으며 50 - 500 nm 정도였다. 카본나노튜브의 함량이 증가할수록 열적거동은 증가하는 것으로 나타났다 (도 2 참조).
얻어진 복합섬유를 분당 2℃ 승온하여 300 ℃에서 1시간 공기중에서 산화안정화 처리하여 불융화 섬유를 얻었다. 이때 평균직경은 거의 변화가 없었으며, 산화안정화 처리에 의해 표면이 갈색 또는 흑색으로 변하는 것을 관찰 할 수 있었다.
상기 산화안정화 처리된 불융화 섬유를 질소가스나 아르곤가스 등의 불활성 분위기에서 700 - 1000 ℃ 범위로 탄소화처리하여 탄소섬유를 만들었다. 이렇게 만들어진 나노복합체 탄소섬유를 볼밀을 이용하여 분당 300 rpm의 속도로 회전시키면서 1시간 분쇄하였다. 이때 얻어진 섬유는 대부분 섬유장이 10 ㎛ 이하의 것이 얻어졌으며, 섬유상 형태를 유지하는 것을 관찰 할 수 있었다. 도 3에는 볼밀에 의해 얻어진 PAN계 탄소섬유 및 나노튜브가 3 중량부 혼합된 나노복합체 섬유의 전자현미경 사진이 제시된다. 도 3에서 알 수 있는 바와 같이 미립화된 나노복합체 섬유의 경우 카본나노튜브가 섬유의 내부 및 외부로 돌출되어 있는 것을 볼 수 있으며, 이와 같은 구조가 촉매 담체 및 반응물 및 생성물의 이동 통로를 수행하는데 매우 유리함을 알 수 있었다.
미립화된 나노복합체 탄소섬유에 20 %의 백금을 담지시키기 위하여 일반적으로 알려진 환원법을 사용하였다. 먼저 볼밀에 의해 분쇄된 나노복합체 탄소섬유를 100 ml의 증류수에 넣고 초음파 분산과 교반을 하였다. 여기에 증류수 100ml에 용해된 백금수용액에 적정하고 교반한 후 0.5M NaBH4를 이용하여 환원시킨다. 이렇게 환원시킨후 수세와 필터링을 거쳐, 80℃에서 24시간 진공건조하여 Pt/C(나노복합체 탄소섬유)를 제조하였다. 제조된 Pt/C의 백금 분산도를 비교하기 위해 상용촉매 Vulcan XC-72와 탄소나노튜브가 함유되지 않은 PAN계 탄소섬유에 20 % 함유된 백금의 투과전자현미경 사진을 도 4에 제시된다.
도 4에서와 같이 백금의 분산도는 탄소나노튜브가 함유된 경우나 전기방사에 의해 제조된 PAN계 탄소나노섬유와 거의 비슷하였으며, 상용촉매에 비해 백금의 분산도는 증가하는 경향을 관찰 할 수 있었다. 이때 백금의 분산도는 약 5nm 이하의 것이 대부분인 것을 투과전자 현미경 사진을 통해 알 수 있었다.
이렇게 얻어진 촉매의 산화반응을 방지하기 위해 물로 전체적으로 적신 후 전해질 용액(nafion solution)에 넣고 촉매잉크(슬러리)를 만든 후 발수처리된 탄소종이(카본 페이퍼)위에 스프레이코팅하여 촉매층을 형성시키고, 전해질로는 나피온 115를 사용하여 140℃ 200기압에서 90초간 열압착하여 전해질/전극 접합체(membrane electrode assembly, MEA)를 제조하여 단셀 측정을 하였다.
전극성능을 측정하기 위하여, 전류부하기를 이용하여 전지의 전압과 전류를 측정하였으며, 전지 운전조건은 작동온도 30, 60, 90℃의 조건에서 1기압, 가습된 산소와 수소를 공기극과 연료극에 공급하면서 성능을 측정하였다. 도 5에는 온도별 전극성능 결과를 나타냈다. 도 5에서와 같이 촉매 지지체로 카본나노튜브가 함유된 나노복합체 탄소섬유를 이용할 경우 기존 탄소재료에 비해 우수한 결과를 나타냈으며, 최대 출력밀도 90℃의 경우 750 mW를 나타냈다. 이러한 결과는 도 6에 나타낸 바와 같이 카본나노튜브가 함유된 나노복합체 섬유의 경우 고전도도의 카본나노튜브는 전극반응에서 생성된 수소이온을 빠르게 이동시킬 수 있는 전자전도 통로의 역할을 하는 것으로 생각되며, 직경이 약 200 - 300nm 인 PAN계 탄소섬유는 전자채널을 형성하는 동시에 반응물과 생성물의 이동통로 역할 및 나피온 용액의 함침에 기인하여 촉매활성을 크게 하는 것으로 판단된다.
실시예 2
상기 실시예 1의 방법에 의해 제조된 미립화된 나노복합체 탄소섬유를 백금용액에 혼합, 분산한 후 30 %의 과산화 수소수(H2O2)를 적정하여 교반하였다. 여기에 루테늄(Ru) 용액을 혼합한후 NaBH4 용액으로 환원시키고, 이를 수회 수세 및 건조하여 직접메탄올 연료전지용 촉매를 제조하였다. 도 7에는 Pt/Ru가 함유된 탄소나노섬유의 투과전자현미경 사진을 나타냈다. 그림에서와 같이 Pt/Ru 입자가 균일하게 분포되어 있는 것을 알 수 있으며, 단위셀 결과를 Vulcan XC-72와 비교하여 도 8에 나타냈다. 이때 연료극에는 1M의 메탄올을 사용하였으며, 운전온도 30, 60, 90℃였다. 이 결과로부터 상용촉매인 Vulcan SC-72에 비해 매우 우수한 결과를 나타냈으며, 이는 상기 실시예 1의 도 6의 결과와 같은 효과에 기인한 것으로 생각된다.
이상의 결과로부터 전기방사에 의한 나노복합체 탄소섬유는 최적의 촉매담체로 연료전지의 성능을 향상시키는 효과를 제공함을 알 수 있었다.
Therefore, according to the present invention, in the production of an electrode catalyst for a fuel cell,
Oxidative stabilization of nanocomposite fibers prepared by electrospinning a spinning solution in which carbon nanotubes were dispersed and mixed in a carbon fiber precursor polymer to prepare an infusible nanocomposite fiber, and carbonization of the prepared infusible nanocomposite fiber Preparing a nanocomposite carbon fiber, and then crushing the nanocomposite carbon fiber to produce an atomized nanocomposite carbon fiber, and
Provided is a method for producing an electrode catalyst for a fuel cell, comprising a catalyst manufacturing step of dispersing and supporting a platinum-based catalytically active material on an atomized nanocomposite carbon fiber support.
Hereinafter, the present invention will be described in more detail.
The electrode catalyst manufacturing method for a fuel cell of the present invention can be roughly divided into a nanocomposite carbon fiber support manufacturing process and a catalyst manufacturing process for dispersing and supporting a platinum-based catalytically active material on the support.
Referring to the process of preparing the support according to the present invention in a preferred embodiment,
First, the purified carbon nanotubes are mixed with a fibrous forming carbon fiber precursor polymer to prepare a spinning solution. Examples of the fibrous forming carbon fiber precursor polymer may include polyacrylonitrile, cellulose, phenol, pitch, and the like, and the carbon nanotubes include single walled carbon nanotubes (SWCNTs) and multilayer carbon nanotubes. Tubes (multi-walled carbon nanotubes, MWCNTs), nanohorns (nano hone), cup stacked carbon nanotubes (cup stacked carbon nanotubes), vapor grown carbon fibers (VGCF) and the like can be used. In this case, in order to allow the carbon nanotubes to be well mixed and dispersed with the carbon fiber precursor polymer, the nanotubes are placed in an organic solution such as N, N-dimethylformamide or a mixed organic solution thereof and dispersed using ultrasonic waves or a dispersant. Next, it is preferable to prepare a spinning solution by mixing the carbon fiber precursor polymer in a solution in which the nanotubes are dispersed.
Next, the spinning solution is electrospun under high voltage to prepare a nanocomposite fiber in which a carbon fiber precursor polymer and a carbon nanotube are mixed. At this time, the electrospinning can be performed in an environment such as room temperature, vacuum, temperature control using a conventional electrospinning apparatus.
Next, the prepared nanocomposite fibers are subjected to oxidation stabilization. Preferred examples of the oxidation stabilization treatment is to put the nanocomposite fibers in an electric furnace that can control the temperature controller and the air flow rate to increase the temperature to 0.5-5 ℃ per minute from 350 ℃ to room temperature oxidation treatment. Oxidative stabilization treatment in this way yields incompatible fibers.
Next, the oxidative stabilized nanocomposite fibers are carbonized. A preferred example of such carbonization is to carbonize the oxidative stabilized nanocomposite fibers in a temperature range of 500-1500 ° C. in an inert atmosphere or vacuum. This carbonization treatment yields nanocomposite carbon fibers in which carbon nanotubes are dispersed, and most of the obtained nanocomposite fibers have a diameter in the range of approximately 50 to 500 nm and a specific surface area of 500 m 2 / g or less.
The nanocomposite carbon fibers obtained as described above are pulverized to produce atomized nanocomposite carbon fibers. For such pulverization, for example, a ball mill or the like is preferably pulverized at 30 rpm for 4 hours at a speed of 300 rpm per minute, and then hot air of less than 150 ° C. is preferably dried under vacuum. The atomized nanocomposite carbon fiber has a shape in which the nanotubes protrude into and out of the fiber while maintaining the fibrous shape, and the fiber length is mostly 10 μm or less.
The catalyst manufacturing step of the method for producing an electrode catalyst for a fuel cell according to the present invention is a step of dispersing and supporting a platinum-based catalytically active material on an atomized nanocomposite carbon fiber support. In the description of the preferred embodiment, the atomized nanocomposite carbon fibers are mixed and dispersed in a solution of a platinum-based catalytically active substance such as platinum (Pt) and platinum / rutetium (Pt / Ru) using a conventional reduction method. When the reducing agent is added, the platinum-based catalytically active substance is reduced to obtain an electrode catalyst for a fuel cell dispersed and supported on the nanocomposite carbon fiber.
Preferably, the catalyst prepared according to the present invention is fixed to about 8 pH by alkali such as NaOH, stirred and washed to apply a colloidal dispersion solution of the polymer electrolyte on the carbon paper (gas diffusion layer) to dry the polymer electrolyte fuel It can be used for production of electrodes for batteries and direct methanol fuel cells.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited only to the following examples.
Example
Example 1
N-N-dimethylformamide (DMF) was used as a solvent by adding 1-10 (wt.%) Parts of purified carbon nanotubes to 10 (wt.%) Parts by weight of polyacrylonitrile (PAN). After stirring for 1 hour at 60 ℃ and stirred for 24 hours at room temperature to prepare a spinning solution. The prepared spinning solution was electrospun at a voltage of 20 kV, a distance of 20 cm between the current collector and the spinneret, and room temperature in an electrospinning apparatus to obtain nanofibers in which carbon nanotubes were complexed with polyacrylonitrile. 1 shows an electron micrograph of carbon nanotube content of the obtained composite nanofibers. The average diameter of the obtained composite nanofibers varied with the nanotube content and was about 50-500 nm. As the content of carbon nanotubes increased, the thermal behavior was increased (see FIG. 2).
The obtained composite fiber was heated at 2 ° C per minute, and subjected to oxidative stabilization in air at 300 ° C for 1 hour to obtain incompatible fiber. At this time, the average diameter was almost unchanged, and the surface changed to brown or black color by oxidative stabilization treatment.
The oxidative stabilized insoluble fiber was carbonized in an inert atmosphere such as nitrogen gas or argon gas in the range of 700 to 1000 ° C. to thereby produce carbon fiber. The nanocomposite carbon fiber thus produced was pulverized for 1 hour while rotating at a speed of 300 rpm per minute using a ball mill. At this time, most of the fibers obtained had a fiber length of 10 μm or less, and it was observed that the fibrous form was maintained. 3 shows an electron micrograph of a nanocomposite fiber in which 3 parts by weight of PAN-based carbon fibers and nanotubes obtained by a ball mill are mixed. As can be seen in FIG. 3, in the case of the atomized nanocomposite fibers, carbon nanotubes protrude into and out of the fiber, and such a structure is very useful for carrying out the transport passages of the catalyst carrier and the reactants and products. It was found to be advantageous.
A generally known reduction method was used to support 20% platinum on the atomized nanocomposite carbon fiber. First, the nanocomposite carbon fiber crushed by a ball mill was put in 100 ml of distilled water, and ultrasonic dispersion and stirring were performed. It is titrated with platinum solution dissolved in 100 ml of distilled water and stirred thereafter, followed by reduction using 0.5 M NaBH 4 . After reduction, water washing and filtering were performed, and vacuum dried at 80 ° C. for 24 hours to prepare Pt / C (nanocomposite carbon fiber). In order to compare the platinum dispersion of the prepared Pt / C, a transmission electron micrograph of platinum contained in 20% PAN-based carbon fiber containing no commercial catalyst Vulcan XC-72 and carbon nanotubes is shown in FIG. 4.
As shown in FIG. 4, the dispersion of platinum was almost similar to that of PAN-based carbon nanofibers prepared by electrospinning or containing carbon nanotubes, and the dispersion of platinum was increased in comparison with commercial catalysts. there was. At this time, the dispersion degree of platinum was found to be largely about 5 nm or less through transmission electron micrographs.
In order to prevent the oxidation reaction of the catalyst thus obtained, it is wetted entirely with water, then placed in an electrolyte solution (nafion solution) to form a catalyst ink (slurry), and then spray-coated on the water repellent treated carbon paper (carbon paper) to form a catalyst layer. The Nafion 115 was thermocompressed at 140 ° C. 200 atm for 90 seconds to prepare an electrolyte / electrode assembly (MEA) to measure single cell.
In order to measure the electrode performance, the voltage and current of the battery were measured using a current load, and the operating conditions of the battery were 1 atm of atmospheric pressure and humidified oxygen and hydrogen at the operating temperatures of 30, 60, and 90 ° C. Performance was measured while feeding. 5 shows the electrode performance results for each temperature. As shown in FIG. 5, when the nanocomposite carbon fiber containing carbon nanotubes was used as the catalyst support, excellent results were observed compared to the existing carbon materials, and the maximum output density of 750 mW was shown at 90 ° C. FIG. As shown in FIG. 6, the carbon nanotubes having high conductivity in the nanocomposite fibers containing carbon nanotubes are thought to act as electron conduction passages that can rapidly transfer hydrogen ions generated in the electrode reaction. In addition, PAN-based carbon fibers having a diameter of about 200-300 nm are believed to increase the catalytic activity due to the formation of electron channels and the passage of reactants and products and the impregnation of Nafion solution.
Example 2
The atomized nanocomposite carbon fiber prepared by the method of Example 1 was mixed and dispersed in a platinum solution, and 30% hydrogen peroxide (H 2 O 2 ) was titrated and stirred. The ruthenium (Ru) solution was mixed therein and then reduced to a NaBH4 solution, which was washed with water several times and dried to prepare a catalyst for direct methanol fuel cell. 7 shows a transmission electron micrograph of carbon nanofibers containing Pt / Ru. As shown in the figure, it can be seen that Pt / Ru particles are uniformly distributed, and the unit cell results are shown in FIG. 8 in comparison with Vulcan XC-72. At this time, 1M methanol was used for the fuel electrode, and operating temperatures were 30, 60, and 90 ° C. From this result, a very good result was obtained compared to the commercial catalyst Vulcan SC-72, which is considered to be due to the same effect as the result of FIG.
From the above results, it can be seen that the nanocomposite carbon fiber by electrospinning provides the effect of improving the performance of the fuel cell with the optimum catalyst carrier.

본 발명에 따라 미립화된 나노복합체 탄소섬유에 백금계 촉매활성물질이 분산, 담지된 촉매를 연료전지용 전극촉매로 이용하면 기존 탄소재료에 비해 향상된 전극성능을 제공하고, 또한 고전도도의 카본나노튜브는 전극반응에서 생성된 수소이온을 빠르게 이동시킬 수 있는 전자채널을 형성하는 동시에 반응물과 생성물의 이동통로 역할 및 나피온 용액의 함침에 기인하여 촉매활성을 크게 하는 등의 효과를 달성할 수 있게 된다. According to the present invention, when a platinum-based catalytically active material is dispersed and supported in an atomized nanocomposite carbon fiber and used as an electrode catalyst for a fuel cell, it provides improved electrode performance compared to conventional carbon materials. It is possible to achieve an effect of increasing the catalytic activity due to the formation of an electron channel that can quickly move the hydrogen ions generated in the electrode reaction and the role of the passage of the reactants and products and the impregnation of the Nafion solution.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 연료전지용 전극촉매의 제조에 있어서, In the production of an electrode catalyst for a fuel cell, 탄소섬유 전구체 고분자에 카본나노튜브가 분산, 혼합된 방사용액을 전기방사하여 제조한 나노복합체 섬유를 산화안정화처리하여 불융화 나노복합체섬유를 제조하고, 제조된 불융화 나노복합체섬유를 탄소화처리하여 나노복합체 탄소섬유를 제조한 다음, 이를 분쇄하여 미립화된 나노복합체 탄소섬유를 제조하는 지지체 제조공정, 및 Oxidative stabilization of nanocomposite fibers prepared by electrospinning a spinning solution in which carbon nanotubes were dispersed and mixed in a carbon fiber precursor polymer to prepare an infusible nanocomposite fiber, and carbonization of the prepared infusible nanocomposite fiber Preparing a nanocomposite carbon fiber, and then crushing the nanocomposite carbon fiber to produce an atomized nanocomposite carbon fiber, and 미립화된 나노복합체 탄소섬유 지지체에 통상의 연료전지용 백금계 촉매활성물질을 분산, 담지시키는 촉매제조공정을 포함하는 것을 특징으로 하는 연료전지용 전극촉매의 제조방법.A method for producing an electrode catalyst for a fuel cell, comprising the step of dispersing and supporting a conventional platinum-based catalytically active material for a fuel cell on an atomized nanocomposite carbon fiber support. 제 5항에 있어서, 상기 백금계 촉매활성물질이 백금 또는 백금/루테늄인 것을 특징으로 하는 연료전지용 전극촉매의 제조방법. The method of claim 5, wherein the platinum-based catalytically active material is platinum or platinum / ruthenium.
KR1020050037214A 2005-05-03 2005-05-03 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers KR100715155B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050037214A KR100715155B1 (en) 2005-05-03 2005-05-03 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050037214A KR100715155B1 (en) 2005-05-03 2005-05-03 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers

Publications (2)

Publication Number Publication Date
KR20050048579A KR20050048579A (en) 2005-05-24
KR100715155B1 true KR100715155B1 (en) 2007-05-10

Family

ID=37247310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050037214A KR100715155B1 (en) 2005-05-03 2005-05-03 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers

Country Status (1)

Country Link
KR (1) KR100715155B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180106558A (en) 2017-03-21 2018-10-01 주식회사 알티엑스 Method of preparing catalyst for fuel cell using electron beam
KR20190022161A (en) 2017-08-25 2019-03-06 한국과학기술원 Catalyst for oxygen reduction reaction comprising porous carbon nanofiber co-doped with transition metal and nitrogen and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759102B1 (en) * 2006-05-29 2007-09-19 주식회사 나노테크닉스 Preparation method of two-phase carbon nanofibers and activated carbon nanofibers by electrospinning from polyacrylonitrile/pitch blend solutions
KR100759103B1 (en) * 2006-06-19 2007-09-19 주식회사 나노테크닉스 Method of preparing for pan/phenolic-resin-based carbon nanofibers and activated carbon nanofibers by electrospinning
KR100844751B1 (en) * 2007-06-26 2008-07-07 현대자동차주식회사 Preparation method of ruos alloy for electrode material of solid electrolyte fuel cell
KR100871440B1 (en) * 2007-07-16 2008-12-03 주식회사 에이엠오 Blended nanofibers of pan/pvdf and preparation method of the same
KR100878751B1 (en) * 2008-01-03 2009-01-14 한국에너지기술연구원 Catalyst support using cellulose fiber, preparation method thereof, supported catalyst supporting nano metal catalyst on carbon nanotubes directly grown on surface of the catalyst support, and preparation method of the supported catalyst
KR20100011644A (en) * 2008-07-25 2010-02-03 주식회사 아모메디 Fuel cell electrode being unified catalyst layer and gas diffusion layer with carbon nanofibers web and method of preparing the same and fuel cell using the same
KR101156674B1 (en) * 2009-12-16 2012-06-15 충남대학교산학협력단 Gas sensor using porous nano-fiber containing electrically conductive carbon material and manufacturing method thereof
KR101314578B1 (en) * 2010-11-29 2013-10-10 광주과학기술원 Carbon nanofiber catalysts using nanofiber including low cost trasition metal for fuel cells and its Manufacturing Method Thereof
KR101336286B1 (en) 2012-11-13 2013-12-03 재단법인대구경북과학기술원 Manufacturing method for carbon nano fiber complex and carbon nano fiber complex
EP3019547B1 (en) * 2013-03-05 2020-07-22 The Penn State Research Foundation Composite materials
KR101454865B1 (en) * 2013-10-02 2014-11-04 부산대학교 산학협력단 Manufacturing method of fabrication of Lithium titanate hollow nanofibers anode
KR101632797B1 (en) * 2014-10-21 2016-06-23 한국과학기술원 Li-air battery using current collector-catalysts monolithic 3 dimensional nanofiber network for Li-air battery and manufacturing method thereof
KR101988087B1 (en) * 2016-03-15 2019-06-12 한국과학기술원 Metal oxide nanofibers functionalized by binary nanoparticle catalysts, catalyst for air electrode of lithium-air battery using the same and manufacturing method thereof
KR102262168B1 (en) * 2019-07-30 2021-06-08 연세대학교 산학협력단 Porous Fibrous Electrodes for Electrochemical Devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030095694A (en) * 2002-06-14 2003-12-24 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR20040042791A (en) * 2002-11-12 2004-05-20 홋카이도 유니버시티 Fibrous solid carbon manifold assembly and method for producing the same
KR20040083573A (en) * 2003-03-24 2004-10-06 김찬 Preparation of Carbon Nanotube Based Nanostructured Carbon Fiber by Electrospinning and Their Applications to Electric Double Layer Supercapacitor
KR20050014033A (en) * 2005-01-18 2005-02-05 (주) 아모센스 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
JP2005138204A (en) 2003-11-05 2005-06-02 Kaken:Kk Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor
KR20050062407A (en) * 2003-12-19 2005-06-23 남재도 Method of preparing composite and aggregate including carbon nanotube
KR20050064060A (en) * 2003-12-23 2005-06-29 재단법인 포항산업과학연구원 Method of preparing electrode material for supercapacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030095694A (en) * 2002-06-14 2003-12-24 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100485603B1 (en) 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR20040042791A (en) * 2002-11-12 2004-05-20 홋카이도 유니버시티 Fibrous solid carbon manifold assembly and method for producing the same
KR20040083573A (en) * 2003-03-24 2004-10-06 김찬 Preparation of Carbon Nanotube Based Nanostructured Carbon Fiber by Electrospinning and Their Applications to Electric Double Layer Supercapacitor
JP2005138204A (en) 2003-11-05 2005-06-02 Kaken:Kk Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor
KR20050062407A (en) * 2003-12-19 2005-06-23 남재도 Method of preparing composite and aggregate including carbon nanotube
KR20050064060A (en) * 2003-12-23 2005-06-29 재단법인 포항산업과학연구원 Method of preparing electrode material for supercapacitor
KR20050014033A (en) * 2005-01-18 2005-02-05 (주) 아모센스 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1020030095694
1020040083573
1020050014033

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180106558A (en) 2017-03-21 2018-10-01 주식회사 알티엑스 Method of preparing catalyst for fuel cell using electron beam
KR20190022161A (en) 2017-08-25 2019-03-06 한국과학기술원 Catalyst for oxygen reduction reaction comprising porous carbon nanofiber co-doped with transition metal and nitrogen and preparation method thereof

Also Published As

Publication number Publication date
KR20050048579A (en) 2005-05-24

Similar Documents

Publication Publication Date Title
KR100715155B1 (en) Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
KR100684854B1 (en) Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same
KR101201816B1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
US8518608B2 (en) Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
KR100823502B1 (en) Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR101162472B1 (en) Fuel cell electrode and method of fabricating thereof
KR100823505B1 (en) Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system femprising same
JP5106342B2 (en) Catalyst, method for producing the same and use thereof
KR101995830B1 (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
KR100541977B1 (en) Carbon nanoball supported Pt/Ru alloy electrode catalysts for direct methanol fuel cell and their preparation method
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
Lu et al. Pt-supported C–MnO 2 as a catalyst for polymer electrolyte membrane fuel cells
JP2010192436A (en) Catalyst for solid polymer fuel cell, and electrode for solid polymer fuel cell using the same
JP4892811B2 (en) Electrocatalyst
KR100585551B1 (en) Method for preparing electrodes for a fuel cell
KR102422340B1 (en) Catalyst for fuel cell and manufacturing method thereof
JP2008235156A (en) Electrode catalyst layer for fuel cell, and fuel cell using it
Akiyama et al. Effect of mesopores in the Marimo nanocarbon anode material on the power generation performance of direct glucose fuel cell
Kannan et al. Applications of carbon nanotubes in polymer electrolyte membrane fuel cells
KR20040063010A (en) Method for preparing electrocatalyst for fuel cell
Van Men et al. Carbon Black and Multi-walled Carbon Nanotubes Supported Cobalt for Anion Exchange Membrane Fuel cell
JP2006344449A (en) Electrode for fuel cell and fuel cell
KR100728199B1 (en) Catalyst for fuel cell, method of preparing same, membrane-electrode assembly for fuel cell, and fuel cell system comprising same
Çelebi Energy Applications: Fuel Cells
KR20050046317A (en) Carbon nanofiber supported pt/ru alloy electrode catalysts for direct methanol fuel cell and their preparation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130416

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170314

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200312

Year of fee payment: 14