JPWO2013008349A1 - 強度が高く、かつ反りの少ない電解銅箔及びその製造方法 - Google Patents

強度が高く、かつ反りの少ない電解銅箔及びその製造方法 Download PDF

Info

Publication number
JPWO2013008349A1
JPWO2013008349A1 JP2013523768A JP2013523768A JPWO2013008349A1 JP WO2013008349 A1 JPWO2013008349 A1 JP WO2013008349A1 JP 2013523768 A JP2013523768 A JP 2013523768A JP 2013523768 A JP2013523768 A JP 2013523768A JP WO2013008349 A1 JPWO2013008349 A1 JP WO2013008349A1
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic
electrolytic copper
tensile strength
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013523768A
Other languages
English (en)
Other versions
JP5822928B2 (ja
Inventor
倫也 古曳
倫也 古曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013523768A priority Critical patent/JP5822928B2/ja
Publication of JPWO2013008349A1 publication Critical patent/JPWO2013008349A1/ja
Application granted granted Critical
Publication of JP5822928B2 publication Critical patent/JP5822928B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

常態における引張り強さ( 以下、「常態引張り強さ」と称する。) が、45kgf/mm2〜55kgf/mm2であり、100mm角の四隅の浮き上がり量の平均値が2mm以下であることを特徴とする電解銅箔及び180?Cで60分間加熱した後の引張り強さ( 以下、「加熱後引張り強さ」と称する。)が、常態引張り強さの値の85%以上である前記電解銅箔。常態引張り強さ及び加熱引張り強さが高く、かつ反りの少ない電解銅箔、特に二次電池用負極集電体に有用である電解銅箔を提供することを課題とする。【選択図】図1

Description

本発明は、強度が高く、かつ反りの少ない電解銅箔及びその製造方法に関し、特に二次電池負極集電体に有用である電解銅箔に関する。
電気めっきによって製造される電解銅箔は、電気・電子関連産業の発展に大きく寄与しており、印刷回路材や二次電池負極集電体として不可欠の存在となっている。電解銅箔の製造の歴史は古い(特許文献1及び特許文献2参照)が、最近は二次電池負極集電体としてその有用性が再確認されている。
電解銅箔の製造例を示すと、例えば電解槽の中に、直径約3000mm、幅約2500mmのチタン製又はステンレス製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。
この電解槽の中に、銅、硫酸、にかわを導入して電解液とする。そして、線速、電解液温、電流密度を調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造している。
この電解銅箔製造方法は製造コストの低減化を図ることができ、数μ程度の極めて薄い層厚から70μ程度の厚い銅箔まで製造することが可能であり、また電解銅箔の片面が適度な粗度を有するので、樹脂との接着強度が高いという、多くの利点を有している。
近年、車載用電池負極材用銅箔として電解銅箔が使用されるが、その特性として電解銅箔の強度が高いことが要求されている。従来製造されている電解銅箔は、この耐熱性の要求に応えられる特性を有しているが、ロールから銅箔を引き出した際、箔が反るという問題がある。
これは電解銅箔の製造工程で発生する組織に原因があると考えられる。電解銅箔を使用して電池負極材を製造する工程では、この電解銅箔の反りは、好ましくないので、極力低減するか又は全く発生しないようにする必要がある。ここで反り量の評価方法として、電解銅箔をプレスにて100mm角シートに打ち抜き、室温で30分放置した際の4角の浮き上がり量の平均値と定義し、以降の検討を進めるものとする。
特開平7−188969号公報 特開2004−107786号公報
本発明は、強度が高く、かつ反りの少ない電解銅箔及びその製造方法に関し、特に二次電池負極集電体に有用である電解銅箔を提供することを課題とする。
本願は、次の発明を提供するものである。
(1)常態における引張り強さ( 以下、「常態引張り強さ」と称する。) が、45kgf/mm〜55kgf/mmであり、100mm角の四隅の浮き上がり量の平均値が2mm以下であることを特徴とする電解銅箔。
(3)電解銅箔の断面の結晶粒が、アスペクト比が2.0未満である微細粒子とアスペクト比が2.0以上の柱状粒子からなることを特徴とする上記(1)又は(2)記載の電解銅箔。
(4)柱状粒子の面積の合計が5%〜30%であり、残余が微細粒子であることを特徴とする上記(1)〜(3)のいずれか一項に記載の電解銅箔。
また本願は、次の発明を提供する。
(5)アスペクト比が2.0未満である微細粒子の平均粒径が0.2μm以下あることを特徴とする上記(1)〜(4)のいずれか一項に記載の電解銅箔。
(6)二次電池負極集電体用銅箔であることを特徴とする上記(1)〜(5)のいずれか一項に記載の電解銅箔。
(7)硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60〜65°Cとし、電流密度を60〜120A/dmとして電解することを特徴とする電解銅箔の製造方法。
(8)硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60〜65°Cとし、電流密度を60〜120A/dmとして電解することにより、上記(1)〜(6)のいずれか一項に記載の電解銅箔を製造することを特徴とする電解銅箔の製造方法。
本発明は、強度が高く、かつ反りの少ない電解銅箔及びその製造方法に関し、特に二次電池負極集電体に有用である電解銅箔を提供できる優れた効果を有している。
実施例1の電解銅箔の断面の粒子の形状を示す顕微鏡写真である。 比較例1の電解銅箔の断面の粒子の形状を示す顕微鏡写真である。
本発明は、電解銅箔の中に、柱状の粒子と微細粒子が同時に存在するようにして、反りの発生がなく、強度を維持できる電解銅箔を提供するものである。本願発明の電解銅箔は、二次電池負極集電体用銅箔として特に有用である。
具体的には、柱状の粒子の存在が反り量を軽減させることができ、微細粒子の存在が強度を維持することができる。
すなわち、これによって電解銅箔の常態における引張り強さ( 以下、「常態引張り強さ」と称する。) を、45kgf/mm〜55kgf/mmとし、100mm角の四隅の浮き上がり量の平均値を2mm以下とすることができる。
電流密度は高い方が、小さい粒子を形成でき、強度を高くすることができる。但し、低い場合でも本願発明の下限値を下回ることはない。むしろ反りの問題が大きい。すなわち、電流密度が60A/dm未満では、反りを2mm以下にできる温度条件は存在しない。これは、粒子全体が大きくなって、柱状粒子が存在しても、効果が小さくなるためと考えられる。
他方、電流密度が120A/dmを超えると全体が微細になり過ぎて、液温を上げても、柱状粒子が発生し難くなり、反りが大きくなると考えられる。
以上から、適切な範囲は電解液温と電流密度の組み合わせが重要であることが分かる。適正な電流密度の範囲の中で、電流密度が低い場合には、液温は低いほうが望ましいと言える。また、電流密度が低い場合、もともと粒子が大きめであるため、液温を高くすると柱状粒の増加よりも全体の粒径の大きいことにより、柱状粒子があっても反りは大きくなる。
一方、適正な電流密度の範囲の中で、電流密度が高い場合には、液温が高い方が望ましい。電流密度が高い場合には、粒子径がもともと小さいため、液温がたかくないと柱状粒が発達しにくいためと考えられる。
電解銅箔の組織内の粒子形状については、電解銅箔の断面を観察することにより、知ることができる。微細粒子については、アスペクト比(粒子の最大高さと最小幅の比)が2.0未満とすることができ、柱状粒子については、同様にアスペクト比が2.0以上として、両者の区別をすることができる。本発明の電解銅箔の組織内の粒子形状は、このアスペクト比によって、判別したものである。
本発明においては、柱状粒子の面積の合計が10%〜55%とし、残余を微細粒子とすることができる。ここで「柱状粒子の面積」とは、電解銅箔の断面において観察できる「柱状粒子の面積」を意味する。これは、電解銅箔の反りを抑制し、かつ強度を維持できる好ましい形態である。
柱状粒子が少なすぎる場合、すなわち5%未満では反りが大きくなるので、好ましくない。また、30%を超えると逆に微細粒子が相対的に少なくなるので、強度が低下して好ましくない。したがって、柱状粒子の面積の合計が5%〜30%とするのが好適な条件と言える。
また、本発明においては、電解銅箔に存在する微細粒子、すなわちアスペクト比が2.0未満である微細粒子の平均粒径が0.2μm以下あることが望ましい。この微細粒子は上記の通り、強度を増加させる役割を担うものであり、平均粒径の下限値は特に制限はない。この微細粒子の平均粒径が大きくなる場合には、たとえ柱状の粒子が存在していても、反りの低減という柱状粒子の効果が減少するという傾向がある。したがって、微細粒子の平均粒径が0.2μm以下であることは、望ましい形態である。なお、二次電池負極集電体用銅箔の箔厚みに関し、20μm以下が望ましく、10μm以下がより好ましい。
本願発明の電解銅箔は、硫酸系銅電解液を用いた電解法により電解銅箔を製造する。本願発明は、電解槽の中に、直径約3000mm、幅約2500mmのチタン製又はステンレス製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置した従来の電解銅箔製造装置を用いて、製造することができる。この装置の例は一例であり、装置の仕様に特に制限はない。
この電解槽の中に、銅濃度:80〜110g/L、硫酸濃度:70〜110g/L、にかわ濃度:2.0〜10.0ppmを導入して電解液とする。
そして、線速:1.5〜5.0m/s、電解液温:60°C〜65°C、電流密度:60〜120A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造する。
すなわち、上記の通り、電解液温度を60〜65°Cとし、電流密度を60〜120A/dmとして電解することが、上記の特性を有する電解銅箔を得る好適な条件である。特に電解液温の調整は重要である。詳細は、実施例及び比較例で説明する。
この電解の表面又は裏面、さらには両面に、必要に応じて粗化処理を施すことができる。例えば、平均の表面粗さRaを0.04〜0.20μmとすることができる。この場合、平均の表面粗さRaの下限を0.04μmとする理由は、微細な粒子を形成し、密着性を良好にするためである。
これによって、例えば二次電池の活物質を極力多く塗布することが可能となり、電池の電気容量を高めることができる。他方、上限を0.20μmとする理由は、重量厚みのばらつきを少なくするためである。これによって、例えば二次電池の充放電特性を向上させることができる。これらの表面粗さは一例を示すものであり、電解銅箔の用途に応じて適宜調節できる。
また、二次電池用負極集電体用銅箔を例に挙げると、粗化処理面の粗化粒子の平均直径を0.1〜0.4μmとすることが望ましい。粗化粒子は、微細な粒子であると共に、その微細粒子がより均一であることが望まれる。これも、上記と同様に、電池活物質の密着性を向上させ、活物質を極力多く塗布して電池の電気容量を高めるために好ましい形態である。
また、二次電池用負極集電体用銅箔は、粗化処理層の最大高さを0.2μm以下とすることが望ましい。これも粗化処理層の厚みばらつきを低減させ、電池活物質の密着性を向上させ、活物質を極力多く塗布して電池の電気容量を高めるために好ましい形態である。
本願発明は、この粗化粒子の厚みを0.2μm以下とする指標を基に、管理し、これを達成することが可能である。
二次電池用負極集電体用銅箔は、粗化粒子として、銅、コバルト、ニッケルの1種のめっき又はこれらの2種以上の合金めっきを形成することができる。通常、銅、コバルト、ニッケルの3者の合金めっきにより、粗化粒子を形成する。さらに、二次電池用負極集電体用銅箔は、耐熱性及び耐候(耐食)性を向上させるために、圧延銅合金箔の表裏両面の粗化処理面上に、コバルト−ニッケル合金めっき層、亜鉛−ニッケル合金めっき層、クロメート層から選択した一種以上の防錆処理層又は耐熱層及び/又はシランカップリング層を形成することが望ましい形態の要素である。
以上により、本発明の二次電池用負極集電体用銅箔は、表裏両面粗化処理後の圧延銅合金箔の銅箔幅方向の重量厚みばらつきを0.5%以下とすることができ、優れた二次電池用負極集電体用銅箔を提供することができる。
本発明の二次電池用負極集電体用銅箔上の粗化処理を、例えば銅の粗化処理又は銅−コバルト−ニッケル合金めっき処理を施すことができる。
例えば、銅の粗化処理は、次の通りである。
銅粗化処理
Cu: 10〜25g/L
SO: 20〜100g/L
温度: 20〜40°C
Dk: 30〜70A/dm
時間: 1〜5秒
また、銅−コバルト−ニッケル合金めっき処理による粗化処理は、次の通りである。電解めっきにより、付着量が15〜40mg/dm銅−100〜3000μg/dmコバルト−100〜500μg/dmニッケルであるような3元系合金層を形成するように実施する。この3元系合金層は耐熱性も備えている。
こうした3元系銅−コバルト−ニッケル合金めっきを形成するための一般的浴及びめっき条件は次の通りである。
(銅−コバルト−ニッケル合金めっき)
Cu:10〜20g/リットル
Co:1〜10g/リットル
Ni:1〜10g/リットル
pH:1〜4
温度:30〜50°C
電流密度Dk :20〜50A/dm2
時間:1〜5秒
粗化処理後、粗化面上にコバルト−ニッケル合金めっき層を形成することができる。このコバルト−ニッケル合金めっき層は、コバルトの付着量が200〜3000μg/dmであり、かつコバルトの比率が60〜70質量%とする。この処理は広い意味で一種の防錆処理とみることができる。
コバルト−ニッケル合金めっきの条件は次の通りである。
(コバルト−ニッケル合金めっき)
Co:1〜20g/リットル
Ni:1〜20g/リットル
pH:1.5〜3.5
温度:30〜80°C
電流密度Dk :1.0〜20.0A/dm
時間:0.5〜4秒
コバルト−ニッケル合金めっき上に更に、亜鉛−ニッケル合金めっき層を形成することができる。亜鉛−ニッケル合金めっき層の総量を150〜500μg/dmとし、かつニッケルの比率を16〜40質量%とする。これは、耐熱防錆層という役割を有する。
亜鉛−ニッケル合金めっきの条件は、次の通りである。
(亜鉛−ニッケル合金めっき)
Zn:0〜30g/リットル
Ni:0〜25g/リットル
pH:3〜4
温度:40〜50°C
電流密度Dk :0.5〜5A/dm
時間:1〜3秒
この後、必要に応じ、次の防錆処理を行うこともできる。好ましい防錆処理は、クロム酸化物単独の皮膜処理或いはクロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理である。クロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理とは、亜鉛塩または酸化亜鉛とクロム酸塩とを含むめっき浴を用いて電気めっきにより亜鉛または酸化亜鉛とクロム酸化物とより成る亜鉛−クロム基混合物の防錆層を被覆する処理である。
めっき浴としては、代表的には、KCr、NaCr等の重クロム酸塩やCrO等の少なくとも一種と、水溶性亜鉛塩、例えばZnO 、ZnSO・7HOなど少なくとも一種と、水酸化アルカリとの混合水溶液が用いられる。代表的なめっき浴組成と電解条件例は次の通りである。こうして得られた銅箔は、優れた耐熱性剥離強度、耐酸化性及び耐塩酸性を有する。
(クロム防錆処理)
Cr(NaCr或いはCrO):2〜10g/リットル
NaOH或いはKOH :10〜50g/リットル
ZnO 或いはZnSO・7HO:0.05〜10g/リットル
pH:3〜13
浴温:20〜80°C
電流密度Dk :0.05〜5A/dm
時間:5〜30秒
アノード:Pt-Ti 板、ステンレス鋼板等
クロム酸化物はクロム量として15μg/dm以上、亜鉛は30μg/dm以上の被覆量が要求される。
最後に、必要に応じ、銅箔と樹脂基板との接着力の改善を主目的として、防錆層上の少なくとも粗化面にシランカップリング剤を塗布するシラン処理が施される。このシラン処理に使用するシランカップリング剤としては、オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シランを挙げることができるが、これらを適宜選択して使用することができる。
塗布方法は、シランカップリング剤溶液のスプレーによる吹付け、コーターでの塗布、浸漬、流しかけ等いずれでもよい。例えば、特公昭60−15654号は、銅箔の粗面側にクロメート処理を施した後シランカップリング剤処理を行なうことによって銅箔と樹脂基板との接着力を改善することを記載している。詳細はこれを参照されたい。この後、必要なら、銅箔の延性を改善する目的で焼鈍処理を施すこともある。
上記については、主として二次電池用負極集電体に適用する本願発明の電解銅箔への付加的な表面処理層について説明したが、電解銅箔の用途に応じてこれらを任意に適用できることは言うまでもない。本発明はこれらを全て包含するものである。
以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明に含まれる他の態様または変形を包含するものである。
(実施例1)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:60°C、電流密度:84A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:50%、微細粒子の大きさ:0.2μm未満、強度(常態引張り強さ):51.4kgf/mm、反り量:1.5mmとなった。
いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。なお、表1において、「柱状粒子」を「柱状晶」と記載しているが、両者はいずれも「柱状晶からなる粒子」の意味であり、同一の意味で使用している。以下、同様である。
なお、実施例では、電流密度を84A/dmとした場合である。さらに、この電解銅箔の断面の粒子形状を示す顕微鏡写真を図1に示す。この図1では、アスペクト比が2.0以上である柱状粒子とアスペクト比が2.0未満である微細粒子が混在しているという特徴を示している。
(実施例2)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:63°C、電流密度:84A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:29%、微細粒子の大きさ:0.2μm、強度(常態引張り強さ):50.7kgf/mm、反り量:1.7mmとなった。
いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
(実施例3)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:63°C、電流密度:109A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:42%、微細粒子の大きさ:0.2μm未満、強度(常態引張り強さ):51.1kgf/mm、反り量:1.8mmとなった。いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
(実施例4)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:84A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:23%、微細粒子の大きさ:0.2μm、強度(常態引張り強さ):48.8kgf/mm、反り量:1.4mmとなった。いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
(実施例5)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:97A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:32%、微細粒子の大きさ:0.2μm、強度(常態引張り強さ):49.2kgf/mm、反り量:1.6mmとなった。いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
(実施例6)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:109A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:28%、微細粒子の大きさ:0.2μm、強度(常態引張り強さ):49.5kgf/mm、反り量:1.7mmとなった。
いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
(実施例7)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:120A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:52%、微細粒子の大きさ:0.2μm、強度(常態引張り強さ):51.0kgf/mm、反り量:1.8mmとなった。いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
(比較例1)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:57°C、電流密度:84A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:6%、微細粒子の大きさ:0.2μm未満、強度(常態引張り強さ):60.6kgf/mm、反り量:7.5mmとなった。図2は、比較例1の電解銅箔の断面の粒子の形状を示す顕微鏡写真である。
前記実施例1の図1では、アスペクト比が2.0以上である柱状粒子とアスペクト比が2.0未満である微細粒子が混在する状態となっているのに対して、この比較例1の図2では、アスペクト比が2.0以上の柱状粒子が少なく、2.0未満の微細粒子が殆どであるという好ましくない傾向を示していた。すなわち、柱状粒子の面積の合計が10%以上という本願発明の要件を満たしていなかった。この結果を表1に示すが、実施例に比べて、反り量が増加する原因となった。
(比較例2)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:57°C、電流密度:97A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:0%、微細粒子の大きさ:0.2μm未満、強度(常態引張り強さ):64.4kgf/mm、反り量:6.9mmとなった。いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
(比較例3)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:57°C、電流密度:109A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:0%、微細粒子の大きさ:0.2μm未満、強度(常態引張り強さ):66.7kgf/mm、反り量:8.1mmとなった。いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
(比較例4)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:60°C、電流密度:61A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:5%、微細粒子の大きさ:0.2μm未満、強度(り強さ):50.3kgf/mm、反り量:6.2mmとなった。
いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
(比較例5)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:60°C、電流密度:109A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:6%、微細粒子の大きさ:0.2μm未満、強度(常態引張り強さ):60.4kgf/mm、反り量:6mmとなった。いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
(比較例6)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:63°C、電流密度:61A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:9%、微細粒子の大きさ:0.2μm、強度(常態引張り強さ):55.3kgf/mm、反り量:12.6mmとなった。いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
(比較例7)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:70°C、電流密度:109A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
この条件を表1に示す。このようにして製造した電解銅箔の柱状粒子の面積比、微細粒子の大きさ、強度(常態引張り強さ)、反り量を調べた。その結果、柱状粒子の面積比:83%、微細粒子の大きさ:0.5μm、強度(常態引張り強さ):43.0kgf/mm、反り量:0.5mmとなった。いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
本発明は、常態引張り強さ及び加熱引張り強さが高く、かつ反りの少ない電解銅箔を提供できるので、特に二次電池用負極集電体用電解銅箔に有用である。

Claims (7)

  1. 常態における引張り強さ( 以下、「常態引張り強さ」と称する。) が、45kgf/mm〜55kgf/mmであり、100mm角の四隅の浮き上がり量の平均値が2mm以下であることを特徴とする電解銅箔。
  2. 電解銅箔の断面の結晶粒子が、アスペクト比が2.0未満である微細粒子とアスペクト比が2.0以上の柱状粒子からなることを特徴とする請求項1又は2記載の電解銅箔。
  3. 柱状粒子の面積の合計が10%〜55%であり、残余が微細粒子であることを特徴とする請求項1〜3のいずれか一項に記載の電解銅箔。
  4. アスペクト比が2.0未満である微細粒子の平均粒径が0.2μm以下あることを特徴とする請求項1〜4のいずれか一項に記載の電解銅箔。
  5. 二次電池負極集電体用銅箔であることを特徴とする請求項1〜5のいずれか一項に記載の電解銅箔。
  6. 硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60〜65°Cとし、電流密度を60〜120A/dmとして電解することを特徴とする電解銅箔の製造方法。
  7. 硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60〜65°Cとし、電流密度を60〜120A/dmとして電解することにより、請求項1〜6のいずれか一項に記載の電解銅箔を製造することを特徴とする電解銅箔の製造方法。
JP2013523768A 2011-07-13 2011-12-05 強度が高く、かつ反りの少ない電解銅箔及びその製造方法 Active JP5822928B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523768A JP5822928B2 (ja) 2011-07-13 2011-12-05 強度が高く、かつ反りの少ない電解銅箔及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011154480 2011-07-13
JP2011154480 2011-07-13
JP2013523768A JP5822928B2 (ja) 2011-07-13 2011-12-05 強度が高く、かつ反りの少ない電解銅箔及びその製造方法
PCT/JP2011/078048 WO2013008349A1 (ja) 2011-07-13 2011-12-05 強度が高く、かつ反りの少ない電解銅箔及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2013008349A1 true JPWO2013008349A1 (ja) 2015-02-23
JP5822928B2 JP5822928B2 (ja) 2015-11-25

Family

ID=47505667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013523768A Active JP5822928B2 (ja) 2011-07-13 2011-12-05 強度が高く、かつ反りの少ない電解銅箔及びその製造方法

Country Status (4)

Country Link
JP (1) JP5822928B2 (ja)
KR (2) KR102048116B1 (ja)
TW (1) TWI540227B (ja)
WO (1) WO2013008349A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190980B2 (ja) * 2015-09-25 2017-08-30 古河電気工業株式会社 電解銅箔、その電解銅箔を用いた各種製品
KR101755203B1 (ko) * 2016-11-11 2017-07-10 일진머티리얼즈 주식회사 이차전지용 전해동박 및 그의 제조방법
KR20180054985A (ko) * 2016-11-15 2018-05-25 케이씨에프테크놀로지스 주식회사 말림이 최소화된 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
TWI697574B (zh) * 2019-11-27 2020-07-01 長春石油化學股份有限公司 電解銅箔、電極及包含其之鋰離子電池
KR102463038B1 (ko) 2021-01-11 2022-11-03 세일정기 (주) 전해 동박 제조 장치
CN114703515B (zh) * 2022-04-14 2024-05-03 中国科学院金属研究所 一种铜箔及其制备方法、以及一种电路板和集电体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182890A (ja) * 1989-01-10 1990-07-17 Furukawa Saakitsuto Fuoiru Kk 電解銅箔の製造方法
JPH05502062A (ja) * 1990-05-30 1993-04-15 ジーエイテック インコーポレイテッド 電着された銅箔およびこれを低塩素イオン濃度の電解質溶液を用いて製造する方法
JPH0754183A (ja) * 1993-05-28 1995-02-28 Gould Electron Inc 電着銅箔、および、塩化物イオンならびに有機添加剤の制御添加物を含有する電解質溶液を用いる電着銅箔の製造方法
JP2000182623A (ja) * 1998-12-11 2000-06-30 Nippon Denkai Kk 電解銅箔、二次電池の集電体用銅箔及び二次電池
JP2006299320A (ja) * 2005-04-19 2006-11-02 Ls Cable Ltd 高強度を有する低粗度銅箔及びその製造方法
WO2008132987A1 (ja) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. リチウム二次電池用電解銅箔及び該銅箔の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431803A (en) 1990-05-30 1995-07-11 Gould Electronics Inc. Electrodeposited copper foil and process for making same
JP3789107B2 (ja) 2002-07-23 2006-06-21 株式会社日鉱マテリアルズ 特定骨格を有するアミン化合物及び有機硫黄化合物を添加剤として含む銅電解液並びにそれにより製造される電解銅箔
KR100827042B1 (ko) * 2004-01-06 2008-05-02 닛폰 덴카이 가부시키가이샤 전자파 실드필터용 동박 및 전자파 실드필터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182890A (ja) * 1989-01-10 1990-07-17 Furukawa Saakitsuto Fuoiru Kk 電解銅箔の製造方法
JPH05502062A (ja) * 1990-05-30 1993-04-15 ジーエイテック インコーポレイテッド 電着された銅箔およびこれを低塩素イオン濃度の電解質溶液を用いて製造する方法
JPH0754183A (ja) * 1993-05-28 1995-02-28 Gould Electron Inc 電着銅箔、および、塩化物イオンならびに有機添加剤の制御添加物を含有する電解質溶液を用いる電着銅箔の製造方法
JP2000182623A (ja) * 1998-12-11 2000-06-30 Nippon Denkai Kk 電解銅箔、二次電池の集電体用銅箔及び二次電池
JP2006299320A (ja) * 2005-04-19 2006-11-02 Ls Cable Ltd 高強度を有する低粗度銅箔及びその製造方法
WO2008132987A1 (ja) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. リチウム二次電池用電解銅箔及び該銅箔の製造方法

Also Published As

Publication number Publication date
TW201303083A (zh) 2013-01-16
WO2013008349A1 (ja) 2013-01-17
KR20160023927A (ko) 2016-03-03
KR102048116B1 (ko) 2019-11-22
KR20140035524A (ko) 2014-03-21
JP5822928B2 (ja) 2015-11-25
TWI540227B (zh) 2016-07-01

Similar Documents

Publication Publication Date Title
JP5417458B2 (ja) 二次電池負極集電体用銅箔
TWI589434B (zh) A liquid crystal polymer copper clad laminate and a copper foil for the laminate
JP5074611B2 (ja) 二次電池負極集電体用電解銅箔及びその製造方法
JP5822928B2 (ja) 強度が高く、かつ反りの少ない電解銅箔及びその製造方法
KR101967022B1 (ko) 전해 동박 및 전해 동박의 제조 방법
US8497026B2 (en) Porous metal foil and production method therefor
JP2012172198A (ja) 電解銅箔及びその製造方法
WO2014112619A1 (ja) 銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池
JP2019186134A (ja) 積層電解箔
JP5941959B2 (ja) 電解銅箔及びその製造方法
JP2005350761A (ja) 非水電解液二次電池の負極集電体用の複合箔及びその製造方法、並びに該複合箔を用いた負極集電体、非水電解液二次電池用電極及び非水電解液二次電池
WO2004049476A1 (ja) 非水電解液二次電池用負極集電体およびその製造方法
JP5019654B2 (ja) リチウムイオン二次電池の負極集電体用銅(合金)箔、その製造方法、及びリチウムイオン二次電池の負極電極、その製造方法
WO2012121020A1 (ja) 強度が高く、異常電着による突起形状が少ない電解銅箔及びその製造方法
WO2014033917A1 (ja) 電解銅箔及びその製造方法
JP2014152343A (ja) 複合銅箔および複合銅箔の製造方法
JP2011216478A (ja) 二次電池集電体用穴あき粗化処理銅箔、その製造方法及びリチウムイオン二次電池負極電極
WO2013150640A1 (ja) 電解銅箔及びその製造方法
US20230057775A1 (en) Roughened nickel-plated sheet
JP2013187114A (ja) リチウム二次電池集電体用銅箔、及びその表示方法、該銅箔を用いたリチウム二次電池用負極電極およびリチウム二次電池
TW201410922A (zh) 強度高且由異常電沉積所導致之突起形狀少之電解銅箔及其製造方法
TW202206649A (zh) 電解鐵箔
TW201341594A (zh) 電解銅箔及其製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5822928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250