JPWO2005119637A1 - プラズマディスプレイパネル駆動装置及びプラズマディスプレイ - Google Patents

プラズマディスプレイパネル駆動装置及びプラズマディスプレイ Download PDF

Info

Publication number
JPWO2005119637A1
JPWO2005119637A1 JP2006514104A JP2006514104A JPWO2005119637A1 JP WO2005119637 A1 JPWO2005119637 A1 JP WO2005119637A1 JP 2006514104 A JP2006514104 A JP 2006514104A JP 2006514104 A JP2006514104 A JP 2006514104A JP WO2005119637 A1 JPWO2005119637 A1 JP WO2005119637A1
Authority
JP
Japan
Prior art keywords
electrode
address
sustain
voltage
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006514104A
Other languages
English (en)
Inventor
井上 学
学 井上
池田 敏
敏 池田
新井 康弘
康弘 新井
中田 秀樹
秀樹 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2005119637A1 publication Critical patent/JPWO2005119637A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

プラズマディスプレイパネル(PDP)(10)の駆動装置は、放電維持期間中、維持電極(X)を固定電位(接地電位)に維持し、走査電極(Y)に第一の正パルス電圧と第一の負パルス電圧とを交互に放電維持パルス電圧として印加する放電維持パルス発生部(2A、4B)と、アドレス電極(A)に時間的に変化する電圧を印加するアドレス電圧発生部(4C)とを備える。アドレス電圧発生部(4C)は、放電維持期間中、アドレス電極(A)に一定の極性を持つ第二のパルス電圧を、放電維持パルス電圧のうち第二のパルス電圧と同極性のパルスに同期して印加する。

Description

本発明はプラズマディスプレイパネル(PDP)の駆動装置及びプラズマディスプレイに関する。
プラズマディスプレイは、気体放電に伴う発光現象を利用した表示装置である。プラズマディスプレイの表示部分、すなわちプラズマディスプレイパネル(PDP)は、大画面化、薄型化、及び広視野角の点で他の表示装置より有利である。PDPは、直流パルスで動作するDC型と、交流パルスで動作するAC型とに大別される。AC型PDPは特に、輝度が高く、かつ構造が簡素である。従って、AC型PDPは量産化と画素の精細化とに適し、広範に使用される。
AC型PDPは例えば三電極面放電型構造を有する(例えば特許文献1参照)。その構造では、PDPの背面基板上にアドレス電極がパネルの縦方向に配置され、PDPの前面基板上に維持電極と走査電極と(それぞれ、X電極とY電極ともいう)が交互に、かつパネルの横方向に配置される。アドレス電極と走査電極とは一般に、一本ずつ個別に電位を変化させ得る。
互いに隣り合う維持電極と走査電極との対及びアドレス電極の交差点には放電セルが設置される。放電セルの表面には、誘電体から成る層(誘電体層)、電極と誘電体層とを保護するための層(保護層)、蛍光体を含む層(蛍光体層)が設けられる。放電セルの内部にはガスが封入される。維持電極、走査電極、及びアドレス電極間に対するパルス電圧の印加により放電セル中で放電が生じるとき、そのガスの分子が電離し、紫外線を発する。その紫外線が放電セル表面の蛍光体を励起し、蛍光を発生させる。こうして、放電セルが発光する。
PDP駆動装置は一般に、PDPの維持電極、走査電極、及びアドレス電極の電位を、ADS(Address Display−period Separation)方式に従い制御する。ADS方式はサブフィールド方式の一種である。サブフィールド方式では画像の一フィールドが複数のサブフィールドに分けられる。サブフィールドは、初期化期間、アドレス期間、及び放電維持期間を含む。ADS方式では特に、PDPの全ての放電セルに対し上記三つの期間が共通に設定される(例えば特許文献1参照)。
初期化期間では、初期化パルス電圧が維持電極と走査電極との間に印加される。それにより、全ての放電セルで壁電荷が均一化される。
アドレス期間では、走査パルス電圧が走査電極に対し順次印加され、アドレスパルス電圧がアドレス電極のいくつかに対し印加される。ここで、アドレスパルス電圧が印加されるべきアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の一つに印加され、かつアドレスパルス電圧がアドレス電極の一つに印加されるとき、その走査電極とアドレス電極との交差点に位置する放電セルで放電が生じる。その放電によりその放電セル表面には壁電荷が蓄積される。
放電維持期間では、放電維持パルス電圧が維持電極と走査電極との全ての対に対し同時に、かつ周期的に印加される。ここで、放電維持パルス電圧は放電開始電圧より低い。しかし、アドレス期間中に壁電荷が蓄積された放電セルでは壁電荷による電圧、すなわち壁電圧が放電維持パルス電圧に加わる。従って、維持電極と走査電極との間の電圧が放電開始電圧を超える。その結果、ガスによる放電が持続し、発光が生じる。
放電維持期間の長さはサブフィールドごとに異なるので、放電セルの一フィールド当たりの発光時間、すなわち放電セルの輝度は発光すべきサブフィールドの選択により調整される。
PDP駆動装置は一般に、走査電極駆動部、維持電極駆動部、及びアドレス電極駆動部の三つを含む。それら三つの駆動部が独立に、又は協働して、初期化パルス電圧、走査パルス電圧、アドレスパルス電圧、及び放電維持パルス電圧を発生させる。
それら三つの駆動部によるパルス電圧の発生には様々な態様がある。
例えば、従来のPDP駆動装置による放電維持パルス電圧の発生の態様について、次のようなものが知られる(例えば特許文献1参照)。
図15は、そのPDP駆動装置について、放電維持期間での、走査電極駆動部110、維持電極駆動部120、アドレス電極駆動部130、及びPDP200の等価回路を示す図である。図15では、PDP200の等価回路が、維持電極X、走査電極Y、及びアドレス電極Aの間の浮遊容量CXY、CXA、及びCYA(以下、PDP200のパネル容量という)でのみ表される。放電セルでの放電時にPDP200を流れる電流、すなわち放電電流の経路は省略される。
図16は、放電維持期間中での、走査電極Y、維持電極X、及びアドレス電極Aの電位変化を示す波形図である。
放電維持期間中、走査電極駆動部110は走査電極Yを接地電位(≒0)に維持し、アドレス電極駆動部130はアドレス電極Aを接地電位に維持する(図16参照)。
維持電極駆動部120はハイサイドスイッチQ1とローサイドスイッチQ2とを含む。ハイサイドスイッチQ1とローサイドスイッチQ2とは電源100の正電位端子1Pと負電位端子1Nとの間に直列に接続される。更に、その直列接続の接続点J1がPDP200の維持電極Xに接続される。ここで、正電位端子1Pは一定の正電位+Vsに維持され、負電位端1N子は一定の負電位−Vsに維持される。
放電維持期間中、ハイサイドスイッチQ1とローサイドスイッチQ2とは交互にオンオフする。それにより、維持電極Xに対して、正パルス電圧(パルス高:+Vs)と負パルス電圧(パルス高:−Vs)とが交互に、放電維持パルス電圧として印加される(図16参照)。
特開平08−320667号公報
一般的にPDP駆動装置においては、放電維持期間中に維持電極等を駆動する回路と、アドレス期間及び初期化期間中に維持電極等を駆動する回路とがそれぞれ設けられている。放電維持期間中は、PDPには放電電流とパネル容量の充放電電流とから成る大電流が流れる。このため、放電維持期間中に維持電極等を駆動する回路は大型なものとなり、駆動装置全体の小型化の妨げとなっている。
本発明は上記課題を解決すべくなされたものであり、その目的とするところは、小型化を実現するPDP駆動装置ならびにプラズマディスプレイを提供することにある。
本発明によるPDP駆動装置はプラズマディスプレイに搭載される。ここで、そのプラズマディスプレイは次のようなPDPを具備する。そのPDPは、
内部に封入されたガスの放電により発光する放電セル、並びに、
所定の電圧を前記放電セルに対して印加するための維持電極、走査電極、及びアドレス電極、を有する。
本発明によるPDP駆動装置は放電維持パルス発生部及びアドレス電圧発生部を有する。
放電維持パルス発生部は、放電維持期間中、維持電極と走査電極とのうち、一方を所定電位(接地電位)に維持し、他方に対して第一の正パルス電圧と第一の負パルス電圧とを交互に、放電維持パルス電圧として印加する。アドレス電圧発生部はアドレス電極に時間的に変化する電圧を印加する。なお、アドレス電圧発生部は、アドレス電極に、一定の極性を持つ第二のパルス電圧を、放電維持パルス電圧のうち第二のパルス電圧と同極性のパルスに同期して印加してもよい。
本発明による上記のPDP駆動装置では、放電維持期間中、維持電極又は走査電極のいずれかが接地電位に維持される。すなわち、維持電極駆動部又は走査電極駆動部のいずれかは放電維持パルス発生部を含まない。それにより、駆動装置全体の面積が削減され、かつ回路設計の柔軟性が高まるので、本発明による上記のPDP駆動装置は小型化が容易である。
本発明による上記のPDP駆動装置は更に、維持電極又は走査電極のいずれかに対して第一の正パルス電圧又は負パルス電圧を印加するとき、アドレス電極に第二のパルス電圧を印加する。好ましくは、第二のパルス電圧の振幅が大きくとも、放電維持パルス電圧のうち第二のパルス電圧と同極性のパルスの振幅と等しい。そのとき以下のように、アドレス電極を通した放電が抑制される。
放電維持期間の開始時、アドレス電極側には壁電荷が蓄積される。その壁電荷は特に一定の極性を持つ。
例えば、その壁電荷の極性が正であるときを想定する。
その場合、第一の負パルス電圧の印加期間に負極性の第二のパルス電圧が印加される。そのとき、第一の負パルス電圧の印加先の電極とアドレス電極との間の電圧が、維持電極と走査電極との間の電圧より低い。従って、アドレス電極側では正の壁電荷の消去が抑えられる。すなわち、アドレス電極には放電電流が実質上流れない。更に、アドレス電極側では電子による衝撃が低減する。
一方、第一の正パルス電圧の印加期間では、アドレス電極側に蓄積される正の壁電荷が一定に維持される。すなわち、アドレス電極には放電電流が流れない。
上記の想定とは逆に、アドレス電極側に蓄積される壁電荷の極性が負であるときは、第一の正パルス電圧の印加期間に正極性の第二のパルス電圧が印加されれば良い。
以上の結果、放電維持期間全体を通して、アドレス電極側では実質的に一定の壁電荷が維持される。すなわち、アドレス電極には放電電流が実質上流れない。アドレス電極側では更に電子/イオン衝撃が低減するので、蛍光体の劣化が効果的に防止される。
こうして、本発明による上記のPDP駆動装置は、PDPの消費電力を小さく維持し、かつPDPの寿命を長く維持する。
また、アドレス電圧発生部は、放電維持期間中、放電維持パルス電圧が最大値から最小値へ変化する間に、アドレス電極の電位を接地電位から負の所定電位に変化させ、かつ、放電維持パルス電圧が最小値から最大値へ変化する間にアドレス電極の電位を負の所定電位から接地電位に変化させてもよい。
または、アドレス電圧発生部は、放電維持期間中、PDPのアドレス電極の電位を少なくとも2つの異なる電位に制御するとともに、第一の正パルス電圧を印加中にアドレス電極の電位を低下させ、第一の負パルス電圧を印加中にアドレス電極の電位を上昇させてもよい。または、アドレス電圧発生部は、放電維持期間中、前記放電維持パルス電圧が最大値から最小値へ変化する間に、前記アドレス電極の電位を低下させ、かつ、前記放電維持パルス電圧が最小値から最大値へ変化する間に前記アドレス電極の電位を上昇させてもよい。
好ましくはアドレス電圧発生部がアドレス電極に印加する低い方の電圧は接地電位である。このように維持放電期間中に、1回の放電が終了した後にアドレス電極の電位を上昇あるいは低下させることで、アドレス電極側の壁電荷を調整することができる。その結果、アドレス電極には放電電流が実質上流れない。アドレス電極側では更に電子/イオン衝撃が低減するので、蛍光体の劣化が効果的に防止される。こうして、本発明による上記のPDP駆動装置は、PDPの消費電力を小さく維持し、かつPDPの寿命を長く維持する。
本発明による上記のPDP駆動装置は好ましくは、初期化期間中、維持電極を接地電位に維持し、走査電極に対して初期化パルス電圧を印加する、初期化パルス発生部と、アドレス期間中、維持電極を接地電位に維持し、走査電極に対して走査パルス電圧を印加する、走査パルス発生部とを有する。そのとき、放電維持パルス発生部が放電維持期間中、維持電極を接地電位に維持する。
それにより、維持電極が実質上常に、接地電位に維持される。従って、PDP駆動装置の維持電極との接続部、すなわち維持電極駆動部が、パルス発生部を一切含まなくても良い。好ましくは、各パルス電圧の発生部と電源とがPDPの走査電極側に集中して配置される。すなわちPDP駆動装置のノイズ源と熱源とがPDPの走査電極側に集約される。従って、ノイズ/熱対策が容易である。例えばチューナ等、比較的ノイズに弱い高周波回路がPDPの維持電極側に配置されるとき、PDP駆動装置からのノイズによる悪影響を効果的に回避できる。更に、例えばファン等の冷却装置による冷却範囲がPDPの走査電極側に限定されても良いので、その冷却効率が効果的に向上できる。したがって、省エネルギーの観点でも好適なPDP駆動装置あるいはプラズマディスプレイを提供することができる。また、部品の削減もできるため、安価なPDP駆動装置あるいはプラズマディスプレイを提供することができる。
本発明によるPDP駆動装置では上記の通り、放電維持期間中、維持電極又は走査電極のいずれかが接地電位に維持される。すなわち、維持電極駆動部又は走査電極駆動部のいずれかは放電維持パルス発生部を含まないので、駆動装置全体の面積が削減され、かつ回路設計の柔軟性が高まる。
こうして、本発明による上記のPDP駆動装置は小型化が容易である。
本発明の実施形態1によるプラズマディスプレイの構成を示すブロック図である。 PDP10と本発明の実施形態1によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態1による第一の放電維持パルス発生部2Aの等価回路図である。 本発明の実施形態1による他の好適な第一の放電維持パルス発生部2Aの等価回路図である。 本発明の実施形態1による第二の放電維持パルス発生部4Bの等価回路図である。 本発明の実施形態1について、放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3A、Q4A、Q3B、Q4B、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 本発明の実施形態1について、他の好適な放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3D、Q4D、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 PDP10と本発明の実施形態2によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態2による走査電極駆動部2の等価回路図である。 本発明の実施形態2によるアドレス電極駆動部4の等価回路図である。 本発明の実施形態2について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及び、アドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS3、Q8、QA1、QA2のオン期間を示す波形図である。 PDP10と本発明の実施形態3によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態3について、放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3A、Q4A、Q3B、Q4B、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 本発明の実施形態3について、他の好適な放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3D、Q4D、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 PDP10と本発明の実施形態4によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態4によるアドレス電極駆動部4の等価回路図である。 本発明の実施形態4について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及び、アドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS4、Q9、QA1、QA2、Q3C、Q4Cのオン期間を示す波形図である。 従来のPDP駆動装置について、放電維持期間での、走査電極駆動部110、維持電極駆動部120、アドレス電極駆動部130、及びPDP200の等価回路を示す図である。 従来のPDP駆動装置について、放電維持期間中での、走査電極Y、維持電極X、及びアドレス電極Aの電位変化を示す波形図である。
符号の説明
1 二つの直流電圧源の直列接続
1P 直流電圧源1の正電位端子
1N 直流電圧源1の負電位端子
2 走査電極駆動部
2A 第一の放電維持パルス発生部
2B 第一の初期化/走査パルス発生部
2C 第一の放電維持パルス発生部2Aの出力端子
3 維持電極駆動部
3A 第二の初期化/走査パルス発生部
4 アドレス電極駆動部
4A アドレス電源部
4B 第二の放電維持パルス発生部
4C アドレスパルス発生部
4D 第二の放電維持パルス発生部4Bの出力端子
4G アドレス電源部4Aの高電位端子
4N アドレス電源部4Aの低電位端子
10 PDP
X PDP10の維持電極
Y PDP10の走査電極
A PDP10のアドレス電極
CXY 維持電極X−走査電極Y間のパネル容量
CXA 維持電極X−アドレス電極A間のパネル容量
CYA 走査電極Y−アドレス電極A間のパネル容量
以下、本発明の最良の実施形態について、図面を参照しつつ説明する。
実施形態1
本実施形態では、放電維持期間中において維持電極(または走査電極でもよい)の電位を一定値に固定して駆動するPDP駆動装置の構成、動作を説明する。放電維持期間中において維持電極(または走査電極)の電位を一定値に固定することで、放電維持期間中に維持電極(または走査電極)を駆動するための回路を省略でき、駆動装置の小型化、省電力化が図れる。
図1は、本発明の実施形態1によるプラズマディスプレイの構成を示すブロック図である。そのプラズマディスプレイは、PDP10、力率改善コンバータ(PFC)20、PDP駆動装置30、及び制御部40を有する。PDP10は例えばAC型であり、三電極面放電型構造を有する。PDP10の背面基板上にはアドレス電極A1、A2、A3、…がパネルの縦方向に配置される。PDP10の前面基板上には維持電極X1、X2、X3、…と走査電極Y1、Y2、Y3、…とが交互に、かつパネルの横方向に配置される。維持電極X1、X2、X3、…は互いに接続され、電位が実質的に等しい。アドレス電極A1、A2、A3、…と走査電極Y1、Y2、Y3、…とは一本ずつ個別に電位を変化させ得る。互いに隣り合う維持電極と走査電極との対(例えば維持電極X2と走査電極Y2との対)及びアドレス電極(例えばアドレス電極A2)の交差点には放電セルが設置される(例えば、図1に示される斜線部P参照)。放電セルの表面には、誘電体から成る層(誘電体層)、電極と誘電体層とを保護するための層(保護層)、及び蛍光体を含む層(蛍光体層)が設けられる。放電セルの内部にはガスが封入される。維持電極、走査電極、及びアドレス電極の間に対し所定のパルス電圧が印加されるとき、放電セルでは放電が生じる。そのとき、放電セル中のガス分子が電離し、紫外線を発する。その紫外線が放電セル表面の蛍光体を励起し、蛍光を発生させる。こうして放電セルが発光する。
PFC20は外部の商用交流電源ACへ接続される。PFC20は商用交流電源ACから交流電力を入力し、その交流電力を直流電力へ変換する。PFC20は更にそのスイッチング動作により、商用交流電源ACからの入力について力率を実質的に1と等しく保つ。プラズマディスプレイはPFC20に代え、力率改善を行わないAC−DCコンバータを有しても良い。その他に、ダイオードブリッジとコンデンサとで構成される全波整流回路や倍電圧整流回路を有するだけでも良い。
PDP駆動装置30は、DC−DCコンバータ1、走査電極駆動部2、維持電極駆動部3、及びアドレス電極駆動部4を含む。DC−DCコンバータ1はPFC20の出力電圧を正の直流電圧+Vsと負の直流電圧−Vsとに変換し、二つの出力端子1Pと1Nとをそれぞれ、正電位+Vsと負電位−Vsとに維持する。ここで、正負二つの直流電圧の大きさVsは好ましくは等しい。以下、それらの出力端子を正電位端子1Pと負電位端子1Nという。走査電極駆動部2、維持電極駆動部3、及びアドレス電極駆動部4はそれぞれスイッチ素子を含み、それらのスイッチ素子のスイッチングによりパルス電圧を発生させる。走査電極駆動部2の入力端子はDC−DCコンバータ1の正電位端子1Pと負電位端子1Nとに接続される。走査電極駆動部2の出力端子はPDP10の走査電極Y1、Y2、Y3、…のそれぞれに個別に接続される。走査電極駆動部2は走査電極Y1、Y2、Y3、…のそれぞれの電位を個別に制御する。維持電極駆動部3はPDP10の維持電極X1、X2、X3、…に接続される。維持電極駆動部3は維持電極X1、X2、X3、…の電位を一様に制御する。アドレス電極駆動部4はPDP10のアドレス電極A1、A2、A3、…のそれぞれに個別に接続される。アドレス電極駆動部4はアドレス電極A1、A2、A3、…のそれぞれの電位を個別に制御する。制御部40は、走査電極駆動部2、維持電極駆動部3、及びアドレス電極駆動部4それぞれのスイッチングを制御する。そのスイッチング制御はADS(Address Display−period Separation)方式に従う。ADS方式はサブフィールド方式の一種である。サブフィールド方式では画像の一フィールドが複数のサブフィールドに分けられる。サブフィールドはそれぞれ、初期化期間、アドレス期間、及び放電維持期間を含む。ADS方式では特に、PDP20の全ての放電セルに対し、上記三つの期間が共通に設定される。
初期化期間では、初期化パルス電圧が、PDP10の維持電極X1、X2、X3、…と走査電極Y1、Y2、Y3、…との間に印加される。それにより、全ての放電セルで壁電荷が均一化される。
アドレス期間では、走査パルス電圧が、走査電極Y1、Y2、Y3、…に対して順次印加される。走査パルス電圧に同期して、アドレスパルス電圧がアドレス電極A1、A2、A3、…のいくつかに対して印加される。ここで、アドレスパルス電圧が印加されるべきアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の一つY2に印加され、かつアドレスパルス電圧がアドレス電極の一つA2に印加されるとき、その走査電極Y2とアドレス電極A2との交差点Pに位置する放電セルで放電が生じる。その放電によりその放電セルP表面には壁電荷が蓄積される。
放電維持期間では、放電維持パルス電圧が維持電極X1、X2、X3、…と走査電極Y1、Y2、Y3、…との間に同時に、かつ周期的に印加される。ここで、放電維持パルス電圧は放電開始電圧より低い。しかし、アドレス期間中に壁電荷が蓄積された放電セルPでは放電維持パルス電圧に壁電圧が加わるので、維持電極と走査電極との間の電圧が放電開始電圧を超える。従って、ガスによる放電が持続し、発光が生じる。放電維持期間の長さはサブフィールドごとに異なるので、放電セルの一フィールド当たりの発光時間、すなわち放電セルの輝度は、発光すべきサブフィールドの選択により調整される。
制御部40は映像信号に基づき、アドレスパルス電圧の印加先のアドレス電極とサブフィールドとを決定する。その結果、PDP10には映像信号に対応する映像が再現される。
図2は、PDP10と本発明の実施形態1によるPDP駆動装置30との等価回路を示すブロック図である。ここで、PDP10の等価回路はパネル容量、すなわち、維持電極X、走査電極Y、及びアドレス電極Aの間の浮遊容量CXY、CXA、及びCYAでのみ表される。放電セルでの放電時にPDP10を流れる電流、すなわち放電電流の経路は省略される。
本発明の実施形態1によるPDP駆動装置30では従来のPDP駆動装置とは異なり、維持電極駆動部3が放電維持パルス発生部を含まず、代わりにアドレス電極駆動部4が放電維持パルス発生部を含む。それにより、PDP駆動装置30は放電維持期間での動作に特徴を持つ。以下では、放電維持期間での動作に係る構成と動作とを主に説明する。
DC−DCコンバータ1は二つの直流電圧源の直列接続と等価である。二つの直流電圧源の電圧は共にVsである。更に、二つの直流電圧源の接続点は接地される。それにより、正電位端子1Pと負電位端子1Nとはそれぞれ、正電位+Vsと負電位−Vsとに維持される。
走査電極駆動部2は、第一の放電維持パルス発生部2Aと第一の初期化/走査パルス発生部2Bとを有する。
図3Aは、第一の放電維持パルス発生部2Aの等価回路図である。
第一の放電維持パルス発生部2Aは、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、双方向スイッチ部Q7、及び電力回収部6を含む。
二つの維持スイッチ素子Q1、Q2は例えばMOSFETである。その他にIGBT又はバイポーラトランジスタであっても良い。以下は、スイッチ素子はMOSFETであることを前提として説明するため、スイッチ素子の端子としてゲート、ドレイン、ソースを使用するが、IGBTの場合に対応する端子名はベース、コレクタ、エミッタであることはいうまでもない。
第一のハイサイド維持スイッチ素子Q1のドレインは正電位端子1Pに接続される。第一のハイサイド維持スイッチ素子Q1のソースは第一のローサイド維持スイッチ素子Q2のドレインに接続される。第一のローサイド維持スイッチ素子Q2のソースは負電位端子1Nに接続される。第一のハイサイド維持スイッチ素子Q1と第一のローサイド維持スイッチ素子Q2との間の接続点J1は第一の放電維持パルス発生部2Aの出力端子2Cに接続される。
双方向スイッチ部Q7は二つのスイッチ素子の直列接続であり、スイッチ素子のソースが互いに接続される。あるいは、スイッチ素子のドレインが互いに接続される。それにより、二つのスイッチ素子が共にオフするとき、いずれの向きにも電流が流れない。二つのスイッチ素子のオン/オフ状態は常に等しく制御される。双方向スイッチ部Q7は上記の出力端子2Cと接地端子との間に接続される。
電力回収部6は二つの相似な電力回収回路6A、6Bを含む。第一の電力回収回路6Aは、第一の回収コンデンサCA、第一のハイサイドダイオードD1A、第一のローサイドダイオードD2A、第一のハイサイド回収スイッチ素子Q3A、第一のローサイド回収スイッチ素子Q4A、及び第一の回収インダクタLAを含む。第一の回収コンデンサCAの容量は、PDP10のパネル容量CXY、CXA、及びCYAのいずれよりも十分に大きい。第一の回収コンデンサCAの高電位端子J3Aは、正電位端子1Pの電位+Vsの半値+Vs/2と実質的に等しい電位に維持される。
第一の回収コンデンサCAの低電位端子は接地され、高電位端子J3Aは第一のハイサイドダイオードD1Aのアノードに接続される。第一のハイサイドダイオードD1Aのカソードは第一のハイサイド回収スイッチ素子Q3Aのドレインに接続される。第一のハイサイド回収スイッチ素子Q3Aのソースは第一のローサイド回収スイッチ素子Q4Aのドレインに接続される。第一のローサイド回収スイッチ素子Q4Aのソースは第一のローサイドダイオードD2Aのアノードに接続される。第一のローサイドダイオードD2Aのカソードは第一の回収コンデンサCAの高電位端子J3Aに接続される。
第一のハイサイド回収スイッチ素子Q3Aと第一のローサイド回収スイッチ素子Q4Aとの間の接続点J2Aは第一の回収インダクタLAの一端に接続される。第一の回収インダクタLAの他端は第一の放電維持パルス発生部2Aの出力端子2Cに接続される。
第二の電力回収回路6Bは、第二の回収コンデンサCB、第二のハイサイドダイオードD1B、第二のローサイドダイオードD2B、第二のハイサイド回収スイッチ素子Q3B、第二のローサイド回収スイッチ素子Q4B、及び第二の回収インダクタLBを含む。
それらの構成要素の特性、及び相互の接続は第一の電力回収回路6Aとほぼ同様である。但し、第二の回収コンデンサCBは、第一の回収コンデンサCAとは極性が逆である。すなわち、第二の回収コンデンサCBの高電位端子が接地され、低電位端子J3Bが第二のハイサイドダイオードD1Bと第二のローサイドダイオードD2Bとに接続される。更に、第二の回収コンデンサCBの低電位端子J3Bは、負電位端子1Nの電位−Vsの半値−Vs/2と実質的に等しい電位に維持される。
第一の初期化/走査パルス発生部2Bは、放電維持期間では、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を単に短絡させる(図2参照)。一方、初期化/アドレス期間では、第一の初期化/走査パルス発生部2Bは例えば、従来のものと同様に動作しても良い。従って、第一の初期化/走査パルス発生部2Bの詳細は省略される。
維持電極駆動部3は第二の初期化/走査パルス発生部3Aと接地スイッチ3Bとを含む(図2参照)。
第二の初期化/走査パルス発生部3Aは、放電維持期間では、接地スイッチ3Bと維持電極Xとの間を単に短絡させる。一方、初期化/アドレス期間では、第二の初期化/走査パルス発生部3Aは例えば、従来のものと同様に動作しても良い。従って、第二の初期化/走査パルス発生部3Aの詳細は省略される。
接地スイッチ3Bは放電維持期間にオンし、維持電極Xを接地する。ここで、接地電位は0Vであり、好ましくは、PDP10のシャーシ(図示せず)が接地導体として利用される。
アドレス電極駆動部4は、アドレス電源4A、第二の放電維持パルス発生部4B、及びアドレスパルス発生部4Cを含む(図2参照)。
アドレス電源4Aは負の直流電圧源であり、すなわち、高電位端子4Gを接地し、低電位端子4Nを一定の負電位−Vaに維持する。ここで、アドレス電源4Aの出力電圧Vaは好ましくはDC−DCコンバータ1の出力電圧Vs以下である:Va≦Vs。
図4は、第二の放電維持パルス発生部4Bの等価回路図である。
第二の放電維持パルス発生部4Bは、第二のハイサイド維持スイッチ素子Q5、第二のローサイド維持スイッチ素子Q6、及び第三の電力回収回路6Cを含む。第二のハイサイド維持スイッチ素子Q5のドレインは高電位端子4Gに接続される。第二のハイサイド維持スイッチ素子Q5のソースは第二のローサイド維持スイッチ素子Q6のドレインに接続される。第二のローサイド維持スイッチ素子Q6のソースは低電位端子4Nに接続される。
第二のハイサイド維持スイッチ素子Q5と第二のローサイド維持スイッチ素子Q6との間の接続点J4は第二の放電維持パルス発生部4Bの出力端子4Dに接続される。
第三の電力回収回路6Cは、第三の回収コンデンサCC、第三のハイサイドダイオードD1C、第三のローサイドダイオードD2C、第三のハイサイド回収スイッチ素子Q3C、第三のローサイド回収スイッチ素子Q4C、及び第三の回収インダクタLCを含む。
それらの構成要素の特性、及び相互の接続は第二の電力回収回路6Bとほぼ同様である(図3A参照)。但し、第三の回収コンデンサCCの低電位端子J3Cは、負電位端子4Nの電位−Vaの半値−Va/2と実質的に等しい電位に維持される。
アドレスパルス発生部4Cは、放電維持期間では、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を単に短絡させる(図2参照)。一方、初期化/アドレス期間では、アドレスパルス発生部4Cは例えば従来のものと同様に動作しても良い。従って、アドレスパルス発生部4Cの詳細は省略される。
放電維持期間では、第一の放電維持パルス発生部2Aが、走査電極Yに対して第一の正パルス電圧と第一の負パルス電圧とを、以下のように交互に印加する。一方、維持電極Xは接地スイッチ3B(図2参照)を通して接地される。そのとき、アドレス期間中に壁電荷が蓄積された放電セルでは放電が持続するので、発光が生じる。
更に、第二の放電維持パルス発生部4Bが、アドレス電極Aに対して負極性の第二のパルス電圧を、以下のように第一の負パルス電圧と同期して印加する。すなわち、走査電極Yが負電位−Vsに維持されるとき、アドレス電極Aと走査電極Yとの間の電圧Vs−Vaが維持電極Xと走査電極Yとの間の電圧Vsより低い。その結果、放電維持期間全体を通してアドレス電極Aと他の電極X、Yとの間では放電が生じない。
図5Aは、放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3A、Q4A、Q3B、Q4B、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。図5Aでは、それぞれのスイッチ素子のオン期間が斜線部で示される。
放電維持期間中、第一の初期化/走査パルス発生部2Bは第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させ、アドレスパルス発生部4Cは第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる(図2参照)。更に、維持電極駆動部3は維持電極Xを接地電位に維持する。
放電維持期間では、次の八つのモードI〜VIIIが反復される(図5A参照)。ここで、モードII〜IVが第一の正パルス電圧の印加期間に相当し、モードVI〜VIIIが第一の負パルス電圧と第二のパルス電圧との印加期間に相当する。
<モードI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7だけがオン状態に維持され、残りのスイッチ素子Q1、Q2、Q3A、Q4A、Q4Bがオフ状態に維持される(図3A参照)。それにより、走査電極Yが接地電位(≒0)に維持される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位に維持される。なお、図5Aでは、スイッチ素子Q3BならびにQ3Cはオフとなっているが、スイッチ素子Q3BはモードIの期間中に、スイッチ素子Q3CはモードIからモードVまでの期間中にそれぞれオフすればよい。
<モードII>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第一のハイサイド回収スイッチ素子Q3Aがオンする。それにより、接地端子→第一の回収コンデンサCA→第一のハイサイドダイオードD1A→第一のハイサイド回収スイッチ素子Q3A→第一の回収インダクタLA→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、第一の放電維持パルス発生部2Aの出力端子2C→走査電極Y−アドレス電極A間のパネル容量CYA→第二の放電維持パルス発生部4Bの出力端子4D→第二のハイサイド維持スイッチ素子Q5→アドレス電源4Aの高電位端子4G→接地端子の経路が導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路、及び第一の回収インダクタLAと走査電極Y−アドレス電極A間のパネル容量CYAとの直列回路がそれぞれ、第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。
<モードIII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のハイサイドダイオードD1Aがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図5Aでは、モードIIIの期間中には第一のハイサイド回収スイッチ素子Q3Aはオフとなっているが、モードIIIの期間中にオンからオフにすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位(≒0)に維持される。そのとき、走査電極Y−アドレス電極A間のパネル容量CYAには両電極間の電圧+Vsに応じた電荷が蓄積される。すなわち、PDP10の放電セルでは、特にアドレス電極A側に正の壁電荷が蓄積される。
<モードIV>
走査電極Yの電位が所定時間、放電維持パルス電圧の上限+Vsに維持された後、第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第一のローサイド回収スイッチ素子Q4Aがオンする。それにより、接地端子←第一の回収コンデンサCA←第一のローサイドダイオードD2A←第一のローサイド回収スイッチ素子Q4A←第一の回収インダクタLA←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、第一の放電維持パルス発生部2Aの出力端子2C←走査電極Y−アドレス電極A間のパネル容量CYA←第二の放電維持パルス発生部4Bの出力端子4D←第二のハイサイド維持スイッチ素子Q5←アドレス電源4Aの高電位端子4G←接地端子の経路が導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路、及び第一の回収インダクタLAと走査電極Y−アドレス電極A間のパネル容量CYAとの直列回路がそれぞれ、第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。
<モードV>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のローサイドダイオードD2Aがオフする。更に、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンする(図3A参照)。それにより、走査電極Yが接地電位に維持される。なお、図5Aでは、モードVの期間中には第一のローサイド回収スイッチ素子Q4Aはオフとなっているが、モードVの期間中にオンからオフにすればよい。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位に維持される。
<モードVI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第二のローサイド回収スイッチ素子Q4Bがオンする。それにより、接地端子←第二の回収コンデンサCB←第二のローサイドダイオードD2B←第二のローサイド回収スイッチ素子Q4B←第二の回収インダクタLB←出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子のループが導通する(矢印は電流の向きを表す。図2、3参照)。
そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードVII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第二のローサイドダイオードD2Bがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図5Aでは、モードVIIの期間中には第二のローサイド回収スイッチ素子Q4Bはオフとなっているが、モードVIIの期間中にオフすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Aの低電位端子4Nの電位−Vaまで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が低電位端子4Nの電位−Vaに維持される。なお、図5Aでは、モードVIIの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、モードVIIの期間中にオフすればよい。
ここで、アドレス電極Aの電位−Vaは接地電位(≒0)より低く、走査電極Yの電位−Vs以上である:−Vs≦−Va<0。好ましくは、アドレス電極Aの電位−Vaは走査電極Yの電位−Vsに近い。それにより、放電セルのアドレス電極A側には正の壁電荷が維持される。
<モードVIII>
第一の放電維持パルス発生部2Aでは、第一のローサイド維持スイッチ素子Q2がオフし、第二のハイサイド回収スイッチ素子Q3Bがオンする。それにより、接地端子→第二の回収コンデンサCB→第二のハイサイドダイオードD1B→第二のハイサイド回収スイッチ素子Q3B→第二の回収インダクタLB→出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子のループが導通する(矢印は電流の向きを表す。図2、3参照)。
そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。
共振電流が実質的に零まで減衰すると、第二のハイサイドダイオードD1Bがオフし、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンすることで走査電極Yが接地電位に維持され、モードIと同じとなる(図3A参照)。
第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q4C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
共振電流が実質的に零まで減衰するとき、第三のハイサイドダイオードD1Cがオフし、アドレス電極Aの電位が接地電位(≒0)まで達する。そのとき、第二のハイサイド維持スイッチ素子Q5がオンしてアドレス電極Aが接地電位に維持され、モードIと同じとなる(図3A参照)。
モードIIとVIとでは、維持電極X−走査電極Y間のパネル容量CXYが充電される。各モードでの充電に必要な電力は第一の回収コンデンサCA、及び第二の回収コンデンサCBのそれぞれからパネル容量CXYへ供給される。一方、モードIVとVIIIとでは、維持電極X−走査電極Y間のパネル容量CXYが放電する。それにより、モードIIとVIとで供給される電力がパネル容量CXYから第一の回収コンデンサCA、及び第二の回収コンデンサCBのそれぞれへ回収される。
同様に、モードVIで第三の回収コンデンサCCからパネル容量CXAへ供給される電力は、モードVIIIでパネル容量CXAから第三の回収コンデンサCCへ回収される。
こうして、放電維持パルス電圧の立ち上がり/立ち下がりでは、PDP10のパネル容量CXY、CXA、CYAと回収インダクタLA、LB、LCとが共振し、それらの間で電力が効率良く交換される。すなわち、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
上記の通り、本発明の実施形態1によるPDP駆動装置30では、放電維持期間中、維持電極駆動部3が維持電極Xを接地する。すなわち、維持電極Xの電位を一定値に固定する。これにより、維持電極駆動部3は放電維持パルス発生部を含む必要がなくなる。
上記の例では、図5Aに示すように、放電維持期間中、アドレス電極Aには、走査電極Yの負パルスに完全に同期して負パルスが印加されているが、これに限定されない。例えば、アドレス電極Aの電位は、走査電極Yの電位が最小値(−Vs)に達するまでに最小値(−Va)に達し、かつ、走査電極Yの電位が最大値(Vs)に達するまでに最大値(0)に達するよう制御されてもよい。
なお、放電維持期間中、上記の例とは逆に、走査電極駆動部2が走査電極Yを接地し、すなわち走査電極Yの電位を一定値に固定し、維持電極駆動部3が第一の放電維持パルス発生部2Aを含むように構成しても良い。その場合、走査電極駆動部2は放電維持パルス発生部を含む必要がなくなる。
以上のように放電維持期間中、維持電極X(または走査電極Yでもよい)を接地(一定値に固定)することで、維持電極駆動部3(または走査電極駆動部2)において放電維持パルス発生部を除去できる。これにより、放電維持パルス発生部だけ駆動装置全体の面積を低減でき、かつ回路設計の柔軟性が高まる。それ故、本発明の実施形態1によるPDP駆動装置30は小型化が容易である。
ところで、特許文献1のPDP駆動装置では、放電維持期間中、維持電極とともにアドレス電極も常に接地電位に維持されている。そのため、走査電極Yが正の電位あるいは負の電位に維持されるごとに、アドレス電極側から放電電流が流れ、PDPの省電力化において問題があった。また、アドレス電極側には実質上、壁電荷が残留しないので、蛍光体層での電子/イオン衝撃が激しく、蛍光体が損傷を受けやすく、PDPの長寿命化においても問題があった。これに対し、本実施形態のPDP駆動装置によれば、アドレス電極の電位を一定電位に固定せず、走査電極の電位に応じて変化させるため、上記の特許文献1の問題は生じ得ない。以下にこれを説明する。
PDP10の各放電セルでは、放電維持期間の開始時、アドレス電極A側に正の壁電荷が蓄積される可能性が高い。
本発明の実施形態1によるPDP駆動装置30は放電維持期間中、走査電極Yに対する第一の負パルス電圧の印加に同期して、アドレス電極Aに対して負極性の第二のパルス電圧を印加する(図5AのモードVI〜VIII参照)。
それにより、第一の負パルス電圧の印加期間では、アドレス電極Aと走査電極Yとの間の電圧が維持電極Xと走査電極Yとの間の電圧より低い。従って、アドレス電極A側では正の壁電荷の消去が抑えられる。すなわち、アドレス電極Aには放電電流が実質上流れない。更に、アドレス電極A側では電子による衝撃が低減する。
一方、第一の正パルス電圧の印加期間(図5AのモードII〜IV参照)では、アドレス電極A側に蓄積される正の壁電荷が一定に維持される。すなわち、アドレス電極Aには放電電流が流れない。
以上の結果、アドレス電極A側では放電維持期間全体を通して、正の壁電荷が一定に維持される。すなわち、アドレス電極Aには放電電流が実質上流れず、更にアドレス電極A側での電子/イオン衝撃が低減する。
こうして、本発明の実施形態1によるPDP駆動装置30によれば、PDP10の消費電力を小さく維持でき、かつPDP10の長寿命化が図れる。
ここで、放電維持期間の開始時、アドレス電極A側に蓄積される壁電荷の極性が負である可能性が高いときは、第二のパルス電圧の極性が正に設定されれば良い。その場合、第二のパルス電圧は、走査電極Yに対する第一の正パルス電圧の印加に同期してアドレス電極Aに対して印加される。
アドレス電極A側に蓄積される壁電荷の極性は実際には特定しにくい。従って、例えば実験により、放電維持期間中、正負各極性を持つ第二のパルス電圧を実際に印加し、アドレス電極Aに流れる放電電流の量を比較する。その放電電流量がより少ないときの極性が第二のパルス電圧の極性として決定されても良い。
第二のパルス電圧は第一の正/負パルス電圧よりパルス幅が小さくても良い。第二のパルス電圧のパルス幅は好ましくは、放電セルでの一回の放電が持続する時間に相当する。その場合、第二のパルス電圧の立ち上がりが第一の正/負パルス電圧の立ち上がりに同期すれば良い。
ここで、第一の放電維持パルス発生部2Aの他の好適な実施例として、図3Bにその等価回路図を示す。第一の放電維持パルス発生部2Aは、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、双方向スイッチ部Q7、及び電力回収部6Dを含む。電力回収部6Dの回路は、第四の回収インダクタLD、第四のハイサイドダイオードD1D、第四のローサイドダイオードD2D、第四のハイサイド回収スイッチ素子Q3D、第四のローサイド回収スイッチ素子Q4Dを含む。電力回収部6Aならびに6Bと異なるのは、回収コンデンサCAあるいはCBが削除され、接続点J3Dが直接接地している点であり、その他の各部の接続形態は同様である。図3Bのような電力回収部を用いる場合の放電維持期間中の動作は、図5Bのようになる。
<モードI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第四のハイサイド回収スイッチ素子Q3Dがオンする。それにより、接地端子→第四のハイサイドダイオードD1D→第四のハイサイド回収スイッチ素子Q3D→第四の回収インダクタLD→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに上昇する。
第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q4C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
<モードII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のハイサイドダイオードD1Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図5Bでは、モードIIの期間中には第四のハイサイド回収スイッチ素子Q3Dはオフとなっているが、モードIIの期間中にオンからオフにすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、スイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位(≒0)に維持される。なお、図5Bでは、モードIIの期間中には第三のハイサイド回収スイッチ素子Q3Cはオフとなっているが、モードIIの期間中にオンからオフにすればよい。
<モードIII>
第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第四のローサイド回収スイッチ素子Q4Dがオンする。それにより、接地端子←第四のローサイドダイオードD2D←第四のローサイド回収スイッチ素子Q4D←第四の回収インダクタLD←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに下降する。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードIV>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のローサイドダイオードD2Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図5Bでは、モードIVの期間中には第四のローサイド回収スイッチ素子Q4Dはオフとなっているが、モードIVの期間中にオフすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Aの低電位端子4Nの電位−Vaまで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が低電位端子4Nの電位−Vaに維持される。なお、図5Bでは、モードIVの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、モードIVの期間中にオフすればよい。
こうして、放電維持パルス電圧の立ち上がり/立ち下がりでは、PDP10のパネル容量CXY、CXA、CYAと回収インダクタLA、LB、LCとが共振し、それらの間で電力が効率良く交換される。すなわち、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
実施形態2
実施形態1では、放電維持期間中においてのみ維持電極(または走査電極)の電位を一定値に固定して駆動するPDP駆動装置の構成、動作を説明したが、本実施形態では、放電維持期間に加えて初期化期間及びアドレス期間においても維持電極(または走査電極)の電位を一定値に固定して駆動するPDP駆動装置の構成、動作を説明する。本実施形態によれば、維持電極(または走査電極)を駆動するための回路を完全に省略できるため、PDP駆動装置のさらなる小型化が図れる。
本発明の実施形態2によるプラズマディスプレイは上記の実施形態1によるプラズマディスプレイ(図1参照)と同様な構成を有する。従って、その構成についての説明は上記の実施形態1についての説明、及び図1を援用する。
図6は、PDP10と本発明の実施形態2によるPDP駆動装置30との等価回路を示すブロック図である。図2と図6とでは、同様な構成要素に対して同じ符号が付される。
本発明の実施形態2では上記の実施形態1とは異なり、維持電極駆動部3が初期化/走査パルス発生部を含まず、代わりにアドレス電極駆動部4が第二の初期化パルス発生部4Eを含む。それにより、維持電極駆動部3が実質的な回路を含まず、単に維持電極Xと接地端子との接続部に過ぎない。すなわち、維持電極Xは常に接地電位(≒0)に維持される。
図7は、走査電極駆動部2の等価回路図である。走査電極駆動部2は、第一の放電維持パルス発生部2Aと第一の初期化/走査パルス発生部2Bとを有する。
第一の放電維持パルス発生部2Aの構成は上記の実施形態1による第一の放電維持パルス発生部2Aの構成と同様である(図3Aあるいは図3B参照)。従って、図3A、図3Bと図7とでは、同様な構成要素に対して同じ符号が付される。更に、それら同様な構成要素についての説明は上記の実施形態1についての説明を援用する。
特に、電力回収部6の回路構成は上記の実施形態1による電力回収部6の回路構成(図3Aあるいは図3B参照)と同様である。従って、図7では、電力回収部6の等価回路については図示を省略する。更に、その等価回路についての説明は上記の実施形態1についての説明、及び図3Aあるいは図3Bを援用する。
第一の初期化/走査パルス発生部2Bは、三つの定電圧源E1、E2、E3;二つのランプ波形発生部QR1、QR2;二つの分離スイッチ素子QS1、QS2;バイパススイッチ素子QB;及び、走査スイッチ部2Dを含む。
三つの定電圧源E1、E2、E3はそれぞれ、例えばDC−DCコンバータ1から印加される直流電圧に基づき、正極と負極との間の電圧を一定値V1、V2、V3に維持する。
第一の定電圧源E1の電圧V1は初期化パルス電圧の上限と正電位端子1Pの電位+Vsとの差に等しい。すなわち、(初期化パルス電圧の上限)=Vs+V1。
第二の定電圧源E2の電圧V2は走査パルス電圧とは逆極性を持ち、走査パルス電圧の下限と大きさが等しい。すなわち、(走査パルス電圧の下限)=−V2。ここで、初期化パルス電圧の下限は走査パルス電圧の下限と等しい。
第三の定電圧源E3の電圧V3は走査パルス電圧の振幅(上限と下限との差)と等しい。すなわち、(走査パルス電圧の上限)=V3−V2。
二つのランプ波形発生部QR1、QR2はそれぞれ、例えばNMOSを含む。そのNMOSのゲートとドレインとは少なくともコンデンサを含む回路で接続される。ランプ波形発生部QR1、QR2がオンするとき、各波形発生部のドレインとソース間電圧が実質的に一定の速度で零まで変化する。
走査スイッチ部2Dは実際には複数の走査電極Y1、Y2、…(図1参照)と同数だけ設けられ、走査電極Y1、Y2、…のそれぞれに一つずつ接続される。
走査スイッチ部2Dのそれぞれは、ハイサイド走査スイッチ素子QY1とローサイド走査スイッチ素子QY2との直列接続を含む。
ハイサイド走査スイッチ素子QY1のソースはローサイド走査スイッチ素子QY2のドレインに接続される。その接続点J5は更に、対応する走査電極Yに接続される。
二つの分離スイッチ素子QS1、QS2が、第一の放電維持パルス発生部2Aの出力端子2Cとローサイド走査スイッチ素子QY2のソースとの間に直列に接続される。ここで、二つの分離スイッチ素子QS1とQS2との間は、互いのドレインが接続される。一方、第一の分離スイッチ素子QS1のソースが第一の放電維持パルス発生部2Aの出力端子2Cに接続され、第二の分離スイッチ素子QS2のソースがローサイド走査スイッチ素子QY2のソースに接続される。
放電維持期間では二つの分離スイッチ素子QS1、QS2、及びローサイド走査スイッチ素子QY2がオンし、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させる(上記の実施形態1についての説明を参照)。そのとき、それらのスイッチ素子QS1、QS2、及びQY2にはPDP10の放電電流及びパネル容量の充放電電流が流れる。従って、二つの分離スイッチ素子QS1、QS2は好ましくは、電流容量が大きい。例えば、分離スイッチ素子QS1、QS2はそれぞれ、複数のスイッチ素子の並列接続であっても良い。
第一の定電圧源E1の負極は第一の分離スイッチ素子QS1のソースに接続され、正極はハイサイドランプ波形発生部QR1のドレインに接続される。ハイサイドランプ波形発生部QR1のソースは第一の分離スイッチ素子QS1のドレインに接続される。すなわち、第一の定電圧源E1とハイサイドランプ波形発生部QR1との直列接続が、第一の分離スイッチ素子QS1と並列に接続される。
第二の定電圧源E2の正極は接地され、負極はローサイドランプ波形発生部QR2とバイパススイッチ素子QBとのそれぞれのソースに接続される。ローサイドランプ波形発生部QR2とバイパススイッチ素子QBとのそれぞれのドレインはローサイド走査スイッチ素子QY2のソースに接続される。すなわち、ローサイドランプ波形発生部QR2とバイパススイッチ素子QBとがローサイド走査スイッチ素子QY2のソースと第二の定電圧源E2の負極との間に、並列に、かつ同じ極性で接続される。ここで、ローサイドランプ波形発生部QR2の電流容量が十分に大きいとき、バイパススイッチ素子QBは設置されなくても良い。
第三の定電圧源E3の正極はハイサイド走査スイッチ素子QY1のドレインに接続され、負極はローサイド走査スイッチ素子QY2のソースに接続される。
なお、初期化/走査パルス発生部2Bは上述した回路構成以外の回路であってもよい。PDP10に必要な初期化および走査が可能な電圧を走査電極に印加できる回路構成であればよく、本願の発明は初期化/走査パルス発生部2Bの回路構成が上述したものに限定されない。
図8は、アドレス電極駆動部4の等価回路図である。
アドレス電極駆動部4は、第二の放電維持パルス発生部4B、アドレスパルス発生部4C、及び第二の初期化パルス発生部4Eを有する。
第二の放電維持パルス発生部4Bの構成は上記の実施形態1による第二の放電維持パルス発生部4Bの構成と同様である(図4参照)。従って、図4と図8とでは、同様な構成要素に対して同じ符号が付される。更に、それら同様な構成要素についての説明は上記の実施形態1についての説明を援用する。
特に、第三の電力回収回路6Cの構成は上記の実施形態1による第三の電力回収回路6Cの構成(図4参照)と同様である。従って、図8では、第三の電力回収回路6Cの等価回路については図示を省略する。更に、その等価回路についての説明は上記の実施形態1についての説明、及び図4を援用する。
第二の初期化パルス発生部4Eは、第四の定電圧源E4、ハイサイドスイッチ素子である第三の分離スイッチ素子QS3、及びローサイドスイッチ素子Q8を含む。
アドレスパルス発生部4Cは第五の定電圧源E5とアドレススイッチ部4Fとを含む。
二つの定電圧源E4、E5はそれぞれ、例えばDC−DCコンバータ1から印加される直流電圧に基づき、正極と負極との間の電圧を一定値V4、V5に維持する。
第四の定電圧源E4の電圧V4はアドレスパルス電圧とは逆極性を持ち、アドレスパルス電圧の下限と大きさが等しい。すなわち、(アドレスパルス電圧の下限)=−V4。
ここで、第四の定電圧源E4の電圧V4はアドレス電源4A(図6参照)の出力電圧Vaより高くても低くても良い。図8では、第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより高い場合が例示される:V4>Va。
第五の定電圧源E5の電圧V5は、アドレスパルス電圧の振幅(上限と下限との差)と等しい。すなわち、(アドレスパルス電圧の上限)=V5−V4。第五の定電圧源E5の電圧V5は特に、第四の定電圧源E4の電圧V4より低い:V5<V4。それにより、アドレスパルス電圧の上限は負である。
第三の分離スイッチ素子QS3とローサイドスイッチ素子Q8とは例えば、MOSFETで
ある。その他にIGBT又はバイポーラトランジスタであっても良い。
アドレススイッチ部4Fは実際には複数のアドレス電極A1、A2、…(図1参照)と同数だけ設けられ、アドレス電極A1、A2、…のそれぞれに一つずつ接続される。
アドレススイッチ部4Fのそれぞれは、ハイサイドアドレススイッチ素子QA1とローサイドアドレススイッチ素子QA2との直列接続を含む。
二つのアドレススイッチ素子QA1、QA2は例えば、MOSFETである。その他にIGBT又はバイポーラトランジスタであっても良い。
ハイサイドアドレススイッチ素子QA1のソースはローサイドアドレススイッチ素子QA2のドレインに接続される。その接続点J6は更に、対応するアドレス電極Aに接続される。
第五の定電圧源E5の正極は、ハイサイドアドレススイッチ素子QA1のドレインに接続され、負極はローサイドアドレススイッチ素子QA2のソースに接続される。
第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより高い場合(V4>Va)、図8に示されるように、第三の分離スイッチ素子QS3のソースがローサイドアドレススイッチ素子QA2のソースに接続され、ドレインが第二の放電維持パルス発生部4Bの出力端子4Dに接続される。放電維持期間では、第三の分離スイッチ素子QS3とローサイドアドレススイッチ素子QA2とがオンし、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる(上記の実施形態1についての説明を参照)。
第四の定電圧源E4の正極は接地され、負極はローサイドスイッチ素子Q8のソースに接続される。ローサイドスイッチ素子Q8のドレインが第三の分離スイッチ素子QS3のソースに接続される。
第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより低い場合(V4<Va)、図8とは異なり、ローサイドアドレススイッチ素子QA2のソースと第二の放電維持パルス発生部4Bの出力端子4Dとの間は短絡される(図示せず)。
更に、第三の分離スイッチ素子QS3とローサイドスイッチ素子Q8とは互いに逆極性で直列に接続され、双方向スイッチを構成する。その双方向スイッチは第四の定電圧源E4の負極とローサイドアドレススイッチ素子QA2のソースとの間に接続される(図示せず)。
図9は、本発明の実施形態2について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及びアドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS3、Q8、QA1、QA2のオン期間を示す波形図である。図9では、それぞれのスイッチ素子のオン期間が斜線部で示される。
ここで、第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより高い場合(V4>Va)が想定される。第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより低い場合(V4<Va)、第三の分離スイッチ素子QS3のオン期間は図9に示されるローサイドスイッチ素子Q8のオン期間と一致する。
本発明の実施形態2によるPDP駆動装置30では従来の駆動装置とは異なり、維持電極Xが常に接地電位(≒0)に維持される。
初期化期間では、走査電極Yとアドレス電極Aとの電位が初期化パルス電圧の印加で変化する。
初期化パルス電圧の変化に応じ、初期化期間は次の六つのモードI〜VIに分けられる。
<モードI>
走査電極駆動部2では二つの分離スイッチ素子QS1、QS2、双方向スイッチ部Q7、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される(図7参照)。それにより走査電極Yが接地電位(≒0)に維持される。
アドレス電極駆動部4では第二のハイサイド維持スイッチ素子Q5、第三の分離スイッチ素子QS3、及びローサイドアドレススイッチ素子QA2がオン状態に維持される。残りのスイッチ素子はオフ状態に維持される(図8参照)。それによりアドレス電極Aは接地電位に維持される。
<モードII>
走査電極駆動部2では第一のハイサイド維持スイッチ素子Q1がオンし、双方向スイッチ部Q7がオフする。そのとき、二つの分離スイッチ素子QS1、QS2、及び、ローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで上昇する。
アドレス電極駆動部4ではモードIの状態が維持される。それによりアドレス電極Aは接地電位(≒0)に維持される。
<モードIII>
走査電極駆動部2では第一の分離スイッチ素子QS1がオフし、ハイサイドランプ波形発生部QR1がオンする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の上限Vs+V1まで上昇する。
アドレス電極駆動部4ではモードIの状態が維持される。それによりアドレス電極Aは接地電位(≒0)に維持される。
こうして、PDP10の全ての放電セルでは一様に、印加電圧が初期化パルス電圧の上限Vs+V1まで比較的緩やかに上昇する。それにより一様な壁電荷が蓄積される。そのとき、印加電圧の上昇速度が小さいので、放電セルの発光は微弱に抑えられる。
<モードIV>
走査電極駆動部2では第一の分離スイッチ素子QS1がオンし、ハイサイドランプ波形発生部QR1がオフする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで下降する。
アドレス電極駆動部4ではモードIの状態が維持される。それによりアドレス電極Aは接地電位(≒0)に維持される。
こうして、PDP10の全ての放電セルでは放電が停止し、微弱な発光が止まる。
<モードV>
走査電極駆動部2ではモードIVの状態が維持される。従って、走査電極Yの電位が正電位端子1Pの電位+Vsに維持される。
アドレス電極駆動部4では、第二のハイサイド維持スイッチ素子Q5と第三の分離スイッチ素子QS3とがオフし、ローサイドスイッチ素子Q8がオンする。そのとき、ローサイドアドレススイッチ素子QA2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それによりアドレス電極Aの電位がアドレスパルス電圧の下限−V4まで下降する。ここで、アドレス電極Aと他の電極との間で放電が生じないように、アドレスパルス電圧の下限−V4は設定される。
<モードVI>
走査電極駆動部2では、第一のハイサイド維持スイッチ素子Q1と第二の分離スイッチ素子QS2とがオフし、ローサイドランプ波形発生部QR2がオンする。そのとき、第一の分離スイッチ素子QS1とローサイド走査スイッチ素子QY2とがオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の下限−V2まで下降する。
アドレス電極駆動部4ではモードVの状態が維持される。それによりアドレス電極Aはアドレスパルス電圧の下限−V4に維持される。
こうして、PDP10の放電セルにはモードII〜Vでの印加電圧とは逆極性の電圧が印加される。それにより、放電セルの全てで壁電荷が一様に除去され、均一化される。そのとき、印加電圧は比較的緩やかに下降するので、放電セルの発光は微弱に抑えられる。
特にアドレス電極Aが負電位−V4に維持されるので、放電セルのアドレス電極A側では電子による衝撃が抑えられる。
アドレス期間中、走査電極駆動部2では、ローサイドランプ波形発生部QR2がオフし、バイパススイッチ素子QBがオンする。それにより、ローサイド走査スイッチ素子QY2のソース(あるいはエミッタ)は走査パルス電圧の下限−V2に維持される。更に例えば、双方向スイッチ部Q7がオンする。そのとき、第一の分離スイッチ素子QS1がオン状態に維持される。
アドレス電極駆動部4では、ローサイドスイッチ素子Q8がオン状態に維持され、第三の分離スイッチ素子QS3がオフ状態に維持される。それにより、ローサイドアドレススイッチ素子QA2のソース(あるいはエミッタ)がアドレスパルス電圧の下限−V4に維持される。
アドレス期間の開始時、走査電極駆動部2は全ての走査電極Y1、Y2、Y3、…(図1参照)について、ハイサイド走査スイッチ素子QY1をオン状態に維持し、ローサイド走査スイッチ素子QY2をオフ状態に維持する。それにより、全ての走査電極Yの電位が一様に走査パルス電圧の上限V3−V2に維持される。
走査電極駆動部2は続いて、走査電極Y1、Y2、Y3、…のそれぞれの電位を順次、次のように変化させる(図9に示される走査パルス電圧SP参照)。走査電極の一つYが選択されるとき、その走査電極Yに接続されるハイサイド走査スイッチ素子QY1がオフし、ローサイド走査スイッチ素子QY2がオンする。それにより、その走査電極Yの電位が走査パルス電圧の下限−V2まで下降する。その走査電極Yの電位が所定時間、走査パルス電圧の下限−V2に維持されるとき、その走査電極Yに接続されるローサイド走査スイッチ素子QY2がオフし、ハイサイド走査スイッチ素子QY1がオンする。それにより、その走査電極Yの電位が走査パルス電圧の上限V3−V2まで上昇する。
走査電極駆動部2は走査電極Y1、Y2、Y3、…のそれぞれに接続される走査スイッチ素子対Q1Y、Q2Yについて、上記と同様なスイッチング動作を順次行う。こうして、走査パルス電圧SPが走査電極Y1、Y2、Y3、…のそれぞれに対し順次、印加される。
アドレス期間の開始時、アドレス電極駆動部4は全てのアドレス電極A1、A2、A3、…(図1参照)について、ローサイドアドレススイッチ素子QA2をオン状態に維持し、ハイサイドアドレススイッチ素子QA1をオフ状態に維持する。それにより、全てのアドレス電極Aの電位が一様にアドレスパルス電圧の下限−V4に維持される。そのとき、走査電極Yとアドレス電極Aとの間には、走査パルス電圧の上限V3−V2とアドレスパルス電圧の下限−V4との差に相当する電圧V3−V2+V4が維持される。
アドレス期間中、アドレス電極駆動部4は、外部から入力される映像信号に基づきアドレス電極の一つAを選択し、その選択されたアドレス電極Aの電位を所定時間、アドレスパルス電圧の上限V5−V4まで上昇させる。
例えば図9に示される区間SPでは、走査パルス電圧が走査電極の一つYに印加されると同時にアドレスパルス電圧がアドレス電極の一つAに印加される。そのとき、その走査電極Yとアドレス電極Aとの間には、走査パルス電圧の下限−V2とアドレスパルス電圧の上限V5−V4との差に相当する電圧−V2+V4−V5が印加される。その電圧は走査電極とアドレス電極との他の組合せの間の電圧より高い。従って、区間SPで同時に選択される走査電極Yとアドレス電極Aとの間の交差点に位置する放電セルでは、走査電極Yとアドレス電極Aとの間で放電が生じる。それにより、その放電セルの特に走査電極Y上には、他の放電セルより多量の壁電荷が蓄積される。
放電維持期間中、走査電極駆動部2は、二つの分離スイッチ素子QS1、QS2、及びローサイド走査スイッチ素子QY2をオン状態に維持する。それにより、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させる。一方、アドレス電極駆動部4は第三の分離スイッチ素子QS3とローサイドアドレススイッチ素子QA2とをオン状態に維持する。それにより、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる。
その状態で、第一の放電維持パルス発生部2Aと第二の放電維持パルス発生部4Bとが上記の実施形態1と同様に動作する。それにより、放電維持パルス電圧が走査電極Yとアドレス電極Aとに対して実施形態1と同様に印加される(図5A参照)。そのとき、アドレス期間に比較的多量の壁電荷が蓄積された放電セルでは放電が維持されるので、発光が生じる。
上記の通り、本発明の実施形態2によるPDP駆動装置30は、維持電極Xが常に接地電位に維持される。すなわち、維持電極駆動部3が維持電極Xと接地端子との間の単なる接続部で良い。その代わり、アドレス電極駆動部4がアドレスパルス発生部4Cの他に、第二の放電維持パルス発生部4Bと第二の初期化パルス発生部4Eとを含む必要がある。
これにより、維持電極Xの電位を駆動するための駆動回路を完全に除去することができ、実施の形態1の場合に対して更に回路規模を低減できる。更に、各パルス電圧の発生部と電源とがPDP10の走査電極Y側に集中して配置可能となる。すなわちPDP駆動装置30のノイズ源と熱源とがPDP10の走査電極Y側に集約されるため、ノイズ/熱対策が容易となる。
例えばチューナ等、比較的ノイズに弱い高周波回路は、PDP10の維持電極X側に配置すれば良い。そのとき、PDP駆動装置30からのノイズによる悪影響が効果的に回避される。
また、例えばファン等の冷却装置による冷却範囲がPDP10の走査電極Y側に限定されても良い。そのとき、その冷却効率が効果的に向上する。
なお、図9では放電維持期間中の電圧波形として図3Aに示した回収回路部を想定した波形を記載したが、図3Bに示した回収回路部を用いてもよく、その場合の放電維持期間中の電圧波形および各スイッチ素子のオンオフ状態は図5Bのようになる。
実施形態3
実施形態1、2では、放電維持期間において維持電極(または走査電極)の電位を一定値に固定しつつ、アドレス電極Aに対して負極性のパルス電圧を印加する例を説明したが、本実施形態では、アドレス電極Aに対して正極性のパルス電圧を印加しつつ、放電維持期間において維持電極(または走査電極)の電位を一定値に固定する例を説明する。
本発明の実施形態3によるプラズマディスプレイは上記の実施形態1によるプラズマディスプレイ(図1参照)と同様な構成を有する。従って、その構成についての説明は上記の実施形態1についての説明、及び図1を援用する。
図10は、PDP10と本発明の実施形態3によるPDP駆動装置30との等価回路を示すブロック図である。図2と図10とでは、同様な構成要素に対して同じ符号が付される。
本発明の実施形態3では、アドレス電極駆動部4に含まれる第二の放電維持パルス発生部4Bに印加される電圧の接地基準が、実施形態1と異なる。すなわち、アドレス電源4Hは正の直流電圧源であり、すなわち、高電位端子4Gを一定の正電位Veとし、低電位端子4Nを接地電位に維持する。
第二の放電維持パルス発生部4Bの具体的な回路構成は図4と同様であるため、上記の実施形態1についての説明及び図4を援用する。実施形態1との違いは、上述したように高電位端子4Gと低電位端子4Nに印加される電圧が異なる点であるため、回収コンデンサCCの電位は実質的にはVe/2となる。
第一の放電維持パルス発生部2Aの回路構成が実施形態1の図3Aの場合における第二の放電維持パルス発生部4Bの維持放電期間中の具体的な動作およびPDP10に印加される各電圧波形を図11Aに示す。
図11Aに示すように、本実施形態では、維持放電期間中において、維持電極Xの電位を接地電位に制御するとともに、アドレス電極Aの電位を走査電極Yの電位変化に応じて正電位Veまたは接地電位0のいずれかに制御している。より具体的には、走査電極Yの電位が最大値(Vs)にある期間中に、アドレス電極Aの電位を正電位Veから接地電位0に変化させ、走査電極Yの電位が最小値(−Vs)にある期間中に、アドレス電極Aの電位を接地電位0から正電位Veに変化させている。なお、アドレス電極Aの電位は、走査電極Yの電位が最小値(−Vs)から立ち上がった後、再度最小値(−Vs)に立ち下がるまでの期間中に、正電位Veから接地電位0に達するように変化させ、かつ、走査電極Yの電位が最小値(−Vs)に達した後、最大値(Vs)に達するまでの期間中に接地電位0から正電位Veに達するように変化させればよい。例えば、図11Aにおいて、アドレス電極Aの電位は、モードXIIからモードVIIIまでの間に正電位Veから接地電位0に達するように、かつ、モードIXからモードIIまでの間に接地電位0から正電位Veに達するように変化させればよい。
印加する電圧の変化に応じ、次の12のモードI〜XIIに分けられる。
<モードI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオン状態に維持され、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、第一のハイサイド回収スイッチ素子Q3A、第二のハイサイド回収スイッチ素子Q4A、第二のローサイド回収スイッチ素子Q4Bがオフ状態に維持される(図3A参照)。それにより、走査電極Yが接地電位(≒0)に維持される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、第二のローサイド維持スイッチ素子Q6、第三のハイサイド回収スイッチ素子Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが高電位(≒Ve)に維持される。なお、図11Aでは、第二のハイサイド回収スイッチ素子Q3Bならびに第三のハイサイド回収スイッチ素子Q3Cはオフとなっているが、オンでもよい。第二のハイサイド回収スイッチ素子Q3BはモードVIIを終了する期間までにオフすればよく、モードIからモードVIIまでのいずれの期間にオフしてもよい。また、第三のハイサイド回収スイッチ素子Q3Cは、モードIIIを終了する期間までにオフすればよく、モードIからモードIIIあるいはモードXI、モードXIIのいずれの期間にオフしてもよい。
<モードII>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第一のハイサイド回収スイッチ素子Q3Aがオンする。それにより、接地端子→第一の回収コンデンサCA→第一のハイサイドダイオードD1A→第一のハイサイド回収スイッチ素子Q3A→第一の回収インダクタLA→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。第二の放電維持パルス発生部4Bでは、モードIと同様の動作をする。
<モードIII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のハイサイドダイオードD1Aがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図11Aでは、第一のハイサイド回収スイッチ素子Q3Aはオフとなっているが、オンでもよい。第一のハイサイド回収スイッチ素子Q3AはモードVを終了する期間までにオフすればよく、モードIIIからモードVまでのいずれの期間にオフしてもよい。
第二の放電維持パルス発生部4Bでは、モードIと同様の動作をする。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
<モードIV>
第一の放電維持パルス発生部2Aでは、モードIIIと同様の動作をするが、放電は終了している。第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードV>
第一の放電維持パルス発生部2Aでは、モードIVと同様の動作をする。第二の放電維持パルス発生部4Bでは、共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Hの低電位端子4Nの電位すなわち接地電位まで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が接地電位に維持される。なお、図11Aでは、モードVの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、オンでもよい。第三のローサイド回収スイッチ素子Q4CはモードIXが終了するまでにオフすればよく、モードVからモードIXまでのいずれの期間にオフしてもよい。
<モードVI>
走査電極Yの電位が所定時間、放電維持パルス電圧の上限+Vsに維持された後、第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第一のローサイド回収スイッチ素子Q4Aがオンする。それにより、接地端子←第一の回収コンデンサCA←第一のローサイドダイオードD2A←第一のローサイド回収スイッチ素子Q4A←第一の回収インダクタLA←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。第二の放電維持パルス発生部4Bでは、モードVと同じ動作をする。
<モードVII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のローサイドダイオードD2Aがオフする。更に、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンする(図3A参照)。それにより、走査電極Yが接地電位に維持される。なお、図11Aでは、モードVIIの期間中には第一のローサイド回収スイッチ素子Q4Aはオフとなっているが、オンでもよい。第一のローサイド回収スイッチ素子Q4AはモードIが終了するまでにオフすればよく、モードVIIからモードXIIおよびモードIまでのいずれの期間にオフしてもよい。第二の放電維持パルス発生部4Bでは、モードVIと同じ動作をする。
<モードVIII>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第二のローサイド回収スイッチ素子Q4Bがオンする。それにより、接地端子←第二の回収コンデンサCB←第二のローサイドダイオードD2B←第二のローサイド回収スイッチ素子Q4B←第二の回収インダクタLB←出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子のループが導通する(矢印は電流の向きを表す。図2、3A参照)。そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。第二の放電維持パルス発生部4Bでは、モードVIIと同じ動作をする。
<モードIX>
第一の放電維持パルス発生部2Aでは、モードVIIIにて発生している共振電流が実質的に零まで減衰すると、第二のローサイドダイオードD2Bがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図11Aでは、モードIXの期間中には第二のローサイド回収スイッチ素子Q4Bはオフとなっているが、オンでもよい。第二のローサイド回収スイッチ素子Q4BはモードXIが終了するまでにオフすればよく、モードIXからモードXIまでのいずれの期間にオフしてもよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。第二の放電維持パルス発生部4Bでは、モードVIIIと同じ動作をする。
<モードX>
第一の放電維持パルス発生部2Aでは、モードIXと同様の動作をする。第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q3C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
<モードXI>
第一の放電維持パルス発生部2Aでは、モードXと同様の動作をする。第二の放電維持パルス発生部4Bでは、モードXにて発生している共振電流が実質的に零まで減衰するとき、第三のハイサイドダイオードD1Cがオフし、アドレス電極Aの電位が高電位電圧Veまで達する。そのとき、第二のハイサイド維持スイッチ素子Q5がオンしてアドレス電極Aが高電位Veに維持される(図4参照)。ここで、アドレス電極Aの電位Veは走査電極Yの電位Vsに近い。
<モードXII>
第一の放電維持パルス発生部2Aでは、第一のローサイド維持スイッチ素子Q2がオフし、第二のハイサイド回収スイッチ素子Q3Bがオンする。それにより、接地端子→第二の回収コンデンサCB→第二のハイサイドダイオードD1B→第二のハイサイド回収スイッチ素子Q3B→第二の回収インダクタLB→出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子のループが導通する(矢印は電流の向きを表す。図10、3A参照)。
そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。
共振電流が実質的に零まで減衰すると、第二のハイサイドダイオードD1Bがオフし、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンすることで走査電極Yが接地電位に維持され、モードIと同じとなる(図3A参照)。
次に電力回収部6が図3Bである場合の駆動方法を図11Bを用いて説明する。図11Bに、電力回収部6が図3Bである場合の本実施形態の駆動方法による駆動波形を示す。
<モードI>
第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、第四のローサイド回収スイッチ素子Q4Dがオフ状態に維持され、第四のハイサイド回収スイッチ素子Q3Dがオンされる。それにより、接地端子→第四のハイサイドダイオードD1D→第四のハイサイド回収スイッチ素子Q3D→第四の回収インダクタLD→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに上昇する。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、第二のローサイド維持スイッチ素子Q6、第三のハイサイド回収スイッチ素子Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが高電位(≒Ve)に維持される。なお、図11Bでは第三のハイサイド回収スイッチ素子Q3Cはオフとなっているがオンでもよい。第三のハイサイド回収スイッチ素子Q3Cは、モードIIを終了する期間までにオフすればよく、モードVIIIとモードIからモードIIのいずれの期間にオフしてもよい。
<モードII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のハイサイドダイオードD1Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図11Bでは、第四のハイサイド回収スイッチ素子Q3Dはオフとなっているが、オンでもよい。第四のハイサイド回収スイッチ素子Q3DはモードIVを終了する期間までにオフすればよく、モードIIからモードIVまでのいずれの期間にオフしてもよい。
第二の放電維持パルス発生部4Bでは、モードIと同様の動作をする。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
<モードIII>
第一の放電維持パルス発生部2Aでは、モードIIIと同様の動作をするが、放電は終了している。第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードIV>
第一の放電維持パルス発生部2Aでは、モードIIIと同様の動作をする。第二の放電維持パルス発生部4Bでは、モードIIIにて発生した共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Hの低電位端子4Nの電位すなわち接地電位まで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が接地電位に維持される。なお、図11Bでは、モードIVの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、オンでもよい。第三のローサイド回収スイッチ素子Q4CはモードVIが終了するまでにオフすればよく、モードIVからモードVIまでのいずれの期間にオフしてもよい。
<モードV>
走査電極Yの電位が所定時間、放電維持パルス電圧の上限+Vsに維持された後、第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第四のローサイド回収スイッチ素子Q4Dがオンする。それにより、接地端子←第四のローサイドダイオードD2D←第四のローサイド回収スイッチ素子Q4D←第四の回収インダクタLD←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに下降する。第二の放電維持パルス発生部4Bでは、モードIVと同じ動作をする。
<モードVI>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のローサイドダイオードD2Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図11Bでは、モードVIの期間中には第四のローサイド回収スイッチ素子Q4Dはオフとなっているが、オンでもよい。第四のローサイド回収スイッチ素子Q4DはモードVIIIが終了するまでにオフすればよく、モードVIからモードVIIIまでのいずれの期間にオフしてもよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。第二の放電維持パルス発生部4Bでは、モードVIと同じ動作をする。
<モードVII>
第一の放電維持パルス発生部2Aでは、モードVIと同様の動作をする。第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q3C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
<モードVIII>
第一の放電維持パルス発生部2Aでは、モードVIIと同様の動作をする。第二の放電維持パルス発生部4Bでは、モードVIIにて発生している共振電流が実質的に零まで減衰するとき、第三のハイサイドダイオードD1Cがオフし、アドレス電極Aの電位が高電位電圧Veまで達する。そのとき、第二のハイサイド維持スイッチ素子Q5がオンしてアドレス電極Aが高電位Veに維持される(図4参照)。ここで、アドレス電極Aの電位Veは走査電極Yの電位Vsに近い。
その後、各スイッチ素子の動作は<モードI>に戻り、放電維持期間中は継続される。
上記の通り、本発明の実施形態3によるPDP駆動装置30では、放電維持期間中、維持電極駆動部3が維持電極Xを接地するため、維持電極駆動部3は放電維持パルス発生部を含む必要がない。また、放電維持期間中、上記の例とは逆に、走査電極駆動部2が走査電極Yを接地し、維持電極駆動部3が第一の放電維持パルス発生部2Aを含んでも良い。その場合、走査電極駆動部2は放電維持パルス発生部を含む必要がない。これにより、走査電極駆動部2又は維持電極駆動部3において放電維持パルス発生部を除去できるので駆動装置全体の面積が低減し、かつ回路設計の柔軟性が高まる。それ故、本発明の実施形態3によるPDP駆動装置30は小型化が容易である。
実施形態4
実施の形態3では、放電維持期間中において、アドレス電極Aに対して正極性のパルス電圧を印加しつつ維持電極(または走査電極)の電位を一定値に固定する例を説明した。本実施形態では、放電維持期間に加えてさらに初期化期間及びアドレス期間においても、アドレス電極Aに対して正極性のパルス電圧を印加しつつ維持電極(または走査電極)の電位を一定値に固定する例を説明する。
本発明の実施形態4によるプラズマディスプレイは上記の実施形態2によるプラズマディスプレイ(図6参照)と同様な構成を有する。従って、その構成についての説明は上記の実施形態2についての説明、及び図6を援用する。
図12は、PDP10と本発明の実施形態4によるPDP駆動装置30との等価回路を示すブロック図である。図6と図12とでは、同様な構成要素に対して同じ符号が付される。
本発明の実施形態4では上記の実施形態2とは異なり、アドレス電極駆動部4に含まれる第二の放電維持パルス発生部4Bに印加される電圧の接地基準が、実施形態2と異なる。すなわち、アドレス電源4Hは正の直流電圧源であり、すなわち、高電位端子4Gを一定の正電位Veとし、低電位端子4Nを接地電位に維持する。走査電極駆動部2は実施形態2と同様のため、その構成についての説明は上記の実施形態2についての説明および図7を援用する。
図13は、アドレス電極駆動部4の等価回路図である。アドレス電極駆動部4は、第二の放電維持パルス発生部4B、アドレスパルス発生部4C、及び第二の初期化パルス発生部4Eを有する。第二の放電維持パルス発生部4Bの構成は上記の実施形態3による第二の放電維持パルス発生部4Bの構成と同様である。また、アドレスパルス発生部4Cの構成は上記の実施形態2によるアドレスパルス発生部4Cの構成と同様である。従って、図8と図13とでは、同様な構成要素に対して同じ符号が付される。更に、それら同様な構成要素についての説明は上記の実施形態2ならびに実施形態3についての説明を援用する。特に、第三の電力回収回路6Cの構成は上記の実施形態3による第三の電力回収回路6Cの構成と同様である。
第三の初期化パルス発生部4Jは、第六の定電圧源E6、ハイサイドスイッチQ9、及び第四の分離スイッチ素子QS4を含む。定電圧源E6はそれぞれ、例えばDC−DCコンバータ1から印加される直流電圧に基づき、正極と負極との間の電圧を一定値V6に維持する。
ここで、第六の定電圧源E6の電圧V6はアドレス電源4H(図12参照)の出力電圧Veより高くても低くても良い。図13では、第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより高い場合が例示される:V6>Ve。
アドレススイッチ部4Fは実際には複数のアドレス電極A1、A2、…(図1参照)と同数だけ設けられ、アドレス電極A1、A2、…のそれぞれに一つずつ接続される。アドレススイッチ部4Fのそれぞれは、ハイサイドアドレススイッチ素子QA1とローサイドアドレススイッチ素子QA2との直列接続を含む。ハイサイドアドレススイッチ素子QA1のソースはローサイドアドレススイッチ素子QA2のドレインに接続される。その接続点J6は更に、対応するアドレス電極Aに接続される。
第五の定電圧源E5の正極は、ハイサイドアドレススイッチ素子QA1のドレインに接続され、負極はローサイドアドレススイッチ素子QA2のソースに接続される。第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより高い場合(V6>Ve)、図13に示されるように、第四の分離スイッチ素子QS4のドレインがハイサイドアドレススイッチ素子QA2のソースに接続され、ソースが第二の放電維持パルス発生部4Bの出力端子4Dに接続される。放電維持期間では、第四の分離スイッチ素子QS4とローサイドアドレススイッチ素子QA2とがオンし、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる(上記の実施形態1についての説明を参照)。
第六の定電圧源E6の負極は接地され、正極はハイサイドスイッチ素子Q9のドレインに接続される。ハイサイドスイッチ素子Q9のソースが第四の分離スイッチ素子QS4のドレインに接続される。
第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより低い場合(V6<Ve)、図13とは異なり、ローサイドアドレススイッチ素子QA2のソースと第二の放電維持パルス発生部4Bの出力端子4Dとの間は短絡され、ハイサイドスイッチ素子Q9のドレインと第六の定電圧源E6との間にダイオードを挿入した回路となる。ダイオードのアノード側は第六の定電圧源E6と接続され、ダイオードのカソード側はハイサイドスイッチ素子Q9のドレインと接続される(図示せず)。
図14は、本発明の実施形態4について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及びアドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS4、Q9、Q3C、Q4C、QA1、QA2のオン期間を示す波形図である。図14では、それぞれのスイッチ素子のオン期間が斜線部で示される。
なお、第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより低い場合(V6<Ve)、第四の分離スイッチ素子QS4は短絡されていてないので無関係となる。
本発明の実施形態4によるPDP駆動装置30では従来の駆動装置とは異なり、維持電極Xが常に接地電位(≒0)に維持される。
初期化期間では、走査電極Yとアドレス電極Aとの電位が初期化パルス電圧の印加で変化する。初期化パルス電圧の変化に応じ、初期化期間は次の七つのモードI〜VIIに分けられる。
<モードI>
走査電極駆動部2では二つの分離スイッチ素子QS1、QS2、双方向スイッチ部Q7、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される(図7参照)。それにより走査電極Yが接地電位(≒0)に維持される。
アドレス電極駆動部4では第二のローサイド維持スイッチ素子Q6、第四の分離スイッチ素子QS4、及びローサイドアドレススイッチ素子QA2がオン状態に維持される。残りのスイッチ素子はオフ状態に維持される(図13参照)。それによりアドレス電極Aは接地電位に維持される。
<モードII>
走査電極駆動部2ではモードIの状態を維持する。アドレス電極駆動部4ではハイサイドスイッチ素子Q9がオンし、第四の分離す一致素子QS4がオフする。それにより、アドレス電極Aは第六の定電圧源E6の電位V6に維持される。
<モードIII>
走査電極駆動部2では第一のハイサイド維持スイッチ素子Q1がオンし、双方向スイッチ部Q7がオフする。そのとき、二つの分離スイッチ素子QS1、QS2、及び、ローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで上昇する。アドレス電極駆動部4ではモードIIの状態が維持される。
<モードIV>
走査電極駆動部2では第一の分離スイッチ素子QS1がオフし、ハイサイドランプ波形発生部QR1がオンする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の上限Vs+V1まで上昇する。
アドレス電極駆動部4ではモードIIIの状態が維持される。
こうして、PDP10の全ての放電セルでは一様に、印加電圧が初期化パルス電圧の上限Vs+V1まで比較的緩やかに上昇する。それにより一様な壁電荷が蓄積される。そのとき、印加電圧の上昇速度が小さいので、放電セルの発光は微弱に抑えられる。
<モードV>
走査電極駆動部2では第一の分離スイッチ素子QS1がオンし、ハイサイドランプ波形発生部QR1がオフする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで下降する。アドレス電極駆動部4ではモードIVの状態が維持される。こうして、PDP10の全ての放電セルでは放電が停止し、微弱な発光が止まる。
<モードVI>
走査電極駆動部2ではモードVの状態が維持される。従って、走査電極Yの電位が正電位端子1Pの電位+Vsに維持される。
アドレス電極駆動部4では、ハイサイドスイッチ素子Q9がオフし、第二のローサイド維持スイッチ素子Q6と第四の分離スイッチ素子QS4がオンする。そのとき、ローサイドアドレススイッチ素子QA2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それによりアドレス電極Aの電位が接地電位まで下降する。
<モードVII>
走査電極駆動部2では、第一のハイサイド維持スイッチ素子Q1と第二の分離スイッチ素子QS2とがオフし、ローサイドランプ波形発生部QR2がオンする。そのとき、第一の分離スイッチ素子QS1とローサイド走査スイッチ素子QY2とがオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の下限−V2まで下降する。アドレス電極駆動部4ではモードVIの状態が維持される。こうして、PDP10の放電セルの全てで壁電荷が一様に除去され、均一化される。そのとき、印加電圧は比較的緩やかに上昇あるいは下降するので、放電セルの発光は微弱に抑えられる。
アドレス期間中、走査電極駆動部2では、ローサイドランプ波形発生部QR2がオフし、バイパススイッチ素子QBがオンする。それにより、ローサイド走査スイッチ素子QY2のソース(あるいはエミッタ)は走査パルス電圧の下限−V2に維持される。更に例えば、双方向スイッチ部Q7がオンする。そのとき、第一の分離スイッチ素子QS1がオン状態に維持される。
アドレス電極駆動部4では、ローサイド維持スイッチ素子Q6と第四の分離スイッチ素子QS4がオン状態に維持される。それにより、ローサイドアドレススイッチ素子QA2のソースが接地電位に維持される。
アドレス期間の開始時、走査電極駆動部2は全ての走査電極Y1、Y2、Y3、…(図1参照)について、ハイサイド走査スイッチ素子QY1をオン状態に維持し、ローサイド走査スイッチ素子QY2をオフ状態に維持する。それにより、全ての走査電極Yの電位が一様に走査パルス電圧の上限V3−V2に維持される。
走査電極駆動部2は続いて、走査電極Y1、Y2、Y3、…のそれぞれの電位を順次、次のように変化させる(図14に示される走査パルス電圧SP参照)。走査電極の一つYが選択されるとき、その走査電極Yに接続されるハイサイド走査スイッチ素子QY1がオフし、ローサイド走査スイッチ素子QY2がオンする。それにより、その走査電極Yの電位が走査パルス電圧の下限−V2まで下降する。その走査電極Yの電位が所定時間、走査パルス電圧の下限−V2に維持されるとき、その走査電極Yに接続されるローサイド走査スイッチ素子QY2がオフし、ハイサイド走査スイッチ素子QY1がオンする。それにより、その走査電極Yの電位が走査パルス電圧の上限V3−V2まで上昇する。
走査電極駆動部2は走査電極Y1、Y2、Y3、…のそれぞれに接続される走査スイッチ素子対Q1Y、Q2Yについて、上記と同様なスイッチング動作を順次行う。こうして、走査パルス電圧SPが走査電極Y1、Y2、Y3、…のそれぞれに対し順次、印加される。
アドレス期間の開始時、アドレス電極駆動部4は全てのアドレス電極A1、A2、A3、…(図1参照)について、ローサイドアドレススイッチ素子QA2をオン状態に維持し、ハイサイドアドレススイッチ素子QA1をオフ状態に維持する。それにより、全てのアドレス電極Aの電位が一様に接地電位に維持される。
アドレス期間中、アドレス電極駆動部4は、外部から入力される映像信号に基づきアドレス電極の一つAを選択し、その選択されたアドレス電極Aの電位を所定時間、アドレスパルス電圧の上限Vaまで上昇させる。
例えば図14に示される区間SPでは、走査パルス電圧が走査電極Yの一つに印加されると同時にアドレスパルス電圧がアドレス電極の一つAに印加される。そのとき、その走査電極Yとアドレス電極Aとの間には、走査パルス電圧の下限−V2とアドレスパルス電圧の上限Vaとの差に相当する電圧−V2+Vaが印加される。その電圧は走査電極とアドレス電極との他の組合せの間の電圧より高い。従って、区間SPで同時に選択される走査電極Yとアドレス電極Aとの間の交差点に位置する放電セルでは、走査電極Yとアドレス電極Aとの間で放電が生じる。それにより、その放電セルの特に走査電極Y上には、他の放電セルより多量の壁電荷が蓄積される。
放電維持期間中、走査電極駆動部2は、二つの分離スイッチ素子QS1、QS2、及びローサイド走査スイッチ素子QY2をオン状態に維持する。それにより、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させる。一方、アドレス電極駆動部4は第四の分離スイッチ素子QS4とローサイドアドレススイッチ素子QA2とをオン状態に維持する。それにより、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる。
その状態で、第一の放電維持パルス発生部2Aと第二の放電維持パルス発生部4Bとが上記の実施形態3と同様に動作する。それにより、放電維持パルス電圧が走査電極Yとアドレス電極Aとに対して実施形態3と同様に印加される(図11A参照)。そのとき、アドレス期間に比較的多量の壁電荷が蓄積された放電セルでは放電が維持されるので、発光が生じる。
上記の通り、本発明の実施形態4によるPDP駆動装置30は、維持電極Xが常に接地電位に維持される。すなわち、維持電極駆動部3が維持電極Xと接地端子との間の単なる接続部で良い。その代わり、アドレス電極駆動部4がアドレスパルス発生部4Cの他に、第二の放電維持パルス発生部4Bと第三の初期化パルス発生部4Jとを含む。よって実質的に維持電極駆動部3を除去でき、PDP駆動装置の小型化が図れる。
また、各パルス電圧の発生部と電源とがPDP10の走査電極Y側に集中して配置される。すなわちPDP駆動装置30のノイズ源と熱源とがPDP10の走査電極Y側に集約される。従って、ノイズ/熱対策が容易である。
例えばチューナ等、比較的ノイズに弱い高周波回路は、PDP10の維持電極X側に配置すれば良い。そのとき、PDP駆動装置30からのノイズによる悪影響が効果的に回避される。
更に、例えばファン等の冷却装置による冷却範囲がPDP10の走査電極Y側に限定されても良い。そのとき、その冷却効率が効果的に向上する。
なお、図14では放電維持期間中の電圧波形として図3Aに示した回収回路部を想定した波形を記載したが、図3Bに示した回収回路部を用いてもよく、その場合の放電維持期間中の電圧波形および各スイッチ素子のオンオフ状態は図11Bのようになる。
本発明は、特定の実施形態について説明されてきたが、当業者にとっては他の多くの変形例、修正、他の利用が明らかである。それゆえ、本発明は、ここでの特定の開示に限定されず、添付の請求の範囲によってのみ限定され得る。なお、本出願は日本国特許出願、特願2004−164593号(2004年6月2日提出)に関連し、それらの内容は参照することにより本文中に組み入れられる。
本発明は、プラズマディスプレイパネルの駆動装置及びプラズマディスプレイを備えた表示装置に有用である。
本発明はプラズマディスプレイパネル(PDP)の駆動装置及びプラズマディスプレイに関する。
プラズマディスプレイは、気体放電に伴う発光現象を利用した表示装置である。プラズマディスプレイの表示部分、すなわちプラズマディスプレイパネル(PDP)は、大画面化、薄型化、及び広視野角の点で他の表示装置より有利である。PDPは、直流パルスで動作するDC型と、交流パルスで動作するAC型とに大別される。AC型PDPは特に、輝度が高く、かつ構造が簡素である。従って、AC型PDPは量産化と画素の精細化とに適し、広範に使用される。
AC型PDPは例えば三電極面放電型構造を有する(例えば特許文献1参照)。その構造では、PDPの背面基板上にアドレス電極がパネルの縦方向に配置され、PDPの前面基板上に維持電極と走査電極と(それぞれ、X電極とY電極ともいう)が交互に、かつパネルの横方向に配置される。アドレス電極と走査電極とは一般に、一本ずつ個別に電位を変化させ得る。
互いに隣り合う維持電極と走査電極との対及びアドレス電極の交差点には放電セルが設置される。放電セルの表面には、誘電体から成る層(誘電体層)、電極と誘電体層とを保護するための層(保護層)、蛍光体を含む層(蛍光体層)が設けられる。放電セルの内部にはガスが封入される。維持電極、走査電極、及びアドレス電極間に対するパルス電圧の印加により放電セル中で放電が生じるとき、そのガスの分子が電離し、紫外線を発する。その紫外線が放電セル表面の蛍光体を励起し、蛍光を発生させる。こうして、放電セルが発光する。
PDP駆動装置は一般に、PDPの維持電極、走査電極、及びアドレス電極の電位を、ADS(Address Display-period Separation)方式に従い制御する。ADS方式はサブフィールド方式の一種である。サブフィールド方式では画像の一フィールドが複数のサブフィールドに分けられる。サブフィールドは、初期化期間、アドレス期間、及び放電維持期間を含む。ADS方式では特に、PDPの全ての放電セルに対し上記三つの期間が共通に設定される(例えば特許文献1参照)。
初期化期間では、初期化パルス電圧が維持電極と走査電極との間に印加される。それにより、全ての放電セルで壁電荷が均一化される。
アドレス期間では、走査パルス電圧が走査電極に対し順次印加され、アドレスパルス電圧がアドレス電極のいくつかに対し印加される。ここで、アドレスパルス電圧が印加されるべきアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の一つに印加され、かつアドレスパルス電圧がアドレス電極の一つに印加されるとき、その走査電極とアドレス電極との交差点に位置する放電セルで放電が生じる。その放電によりその放電セル表面には壁電荷が蓄積される。
放電維持期間では、放電維持パルス電圧が維持電極と走査電極との全ての対に対し同時に、かつ周期的に印加される。ここで、放電維持パルス電圧は放電開始電圧より低い。しかし、アドレス期間中に壁電荷が蓄積された放電セルでは壁電荷による電圧、すなわち壁電圧が放電維持パルス電圧に加わる。従って、維持電極と走査電極との間の電圧が放電開始電圧を超える。その結果、ガスによる放電が持続し、発光が生じる。
放電維持期間の長さはサブフィールドごとに異なるので、放電セルの一フィールド当たりの発光時間、すなわち放電セルの輝度は発光すべきサブフィールドの選択により調整される。
PDP駆動装置は一般に、走査電極駆動部、維持電極駆動部、及びアドレス電極駆動部の三つを含む。それら三つの駆動部が独立に、又は協働して、初期化パルス電圧、走査パルス電圧、アドレスパルス電圧、及び放電維持パルス電圧を発生させる。
それら三つの駆動部によるパルス電圧の発生には様々な態様がある。
例えば、従来のPDP駆動装置による放電維持パルス電圧の発生の態様について、次のようなものが知られる(例えば特許文献1参照)。
図15は、そのPDP駆動装置について、放電維持期間での、走査電極駆動部110、維持電極駆動部120、アドレス電極駆動部130、及びPDP200の等価回路を示す図である。図15では、PDP200の等価回路が、維持電極X、走査電極Y、及びアドレス電極Aの間の浮遊容量CXY、CXA、及びCYA(以下、PDP200のパネル容量という)でのみ表される。放電セルでの放電時にPDP200を流れる電流、すなわち放電電流の経路は省略される。
図16は、放電維持期間中での、走査電極Y、維持電極X、及びアドレス電極Aの電位変化を示す波形図である。
放電維持期間中、走査電極駆動部110は走査電極Yを接地電位(≒0)に維持し、アドレス電極駆動部130はアドレス電極Aを接地電位に維持する(図16参照)。
維持電極駆動部120はハイサイドスイッチQ1とローサイドスイッチQ2とを含む。ハイサイドスイッチQ1とローサイドスイッチQ2とは電源100の正電位端子1Pと負電位端子1Nとの間に直列に接続される。更に、その直列接続の接続点J1がPDP200の維持電極Xに接続される。ここで、正電位端子1Pは一定の正電位+Vsに維持され、負電位端1N子は一定の負電位−Vsに維持される。
放電維持期間中、ハイサイドスイッチQ1とローサイドスイッチQ2とは交互にオンオフする。それにより、維持電極Xに対して、正パルス電圧(パルス高:+Vs)と負パルス電圧(パルス高:−Vs)とが交互に、放電維持パルス電圧として印加される(図16参照)。
特開平08−320667号公報
一般的にPDP駆動装置においては、放電維持期間中に維持電極等を駆動する回路と、アドレス期間及び初期化期間中に維持電極等を駆動する回路とがそれぞれ設けられている。放電維持期間中は、PDPには放電電流とパネル容量の充放電電流とから成る大電流が流れる。このため、放電維持期間中に維持電極等を駆動する回路は大型なものとなり、駆動装置全体の小型化の妨げとなっている。
本発明は上記課題を解決すべくなされたものであり、その目的とするところは、小型化を実現するPDP駆動装置ならびにプラズマディスプレイを提供することにある。
本発明によるPDP駆動装置はプラズマディスプレイに搭載される。ここで、そのプラズマディスプレイは次のようなPDPを具備する。そのPDPは、
内部に封入されたガスの放電により発光する放電セル、並びに、
所定の電圧を前記放電セルに対して印加するための維持電極、走査電極、及びアドレス電極、を有する。
本発明によるPDP駆動装置は放電維持パルス発生部及びアドレス電圧発生部を有する。
放電維持パルス発生部は、放電維持期間中、維持電極と走査電極とのうち、一方を所定電位(接地電位)に維持し、他方に対して第一の正パルス電圧と第一の負パルス電圧とを交互に、放電維持パルス電圧として印加する。アドレス電圧発生部はアドレス電極に時間的に変化する電圧を印加する。なお、アドレス電圧発生部は、アドレス電極に、一定の極性を持つ第二のパルス電圧を、放電維持パルス電圧のうち第二のパルス電圧と同極性のパルスに同期して印加してもよい。
本発明による上記のPDP駆動装置では、放電維持期間中、維持電極又は走査電極のいずれかが接地電位に維持される。すなわち、維持電極駆動部又は走査電極駆動部のいずれかは放電維持パルス発生部を含まない。それにより、駆動装置全体の面積が削減され、かつ回路設計の柔軟性が高まるので、本発明による上記のPDP駆動装置は小型化が容易である。
本発明による上記のPDP駆動装置は更に、維持電極又は走査電極のいずれかに対して第一の正パルス電圧又は負パルス電圧を印加するとき、アドレス電極に第二のパルス電圧を印加する。好ましくは、第二のパルス電圧の振幅が大きくとも、放電維持パルス電圧のうち第二のパルス電圧と同極性のパルスの振幅と等しい。そのとき以下のように、アドレス電極を通した放電が抑制される。
放電維持期間の開始時、アドレス電極側には壁電荷が蓄積される。その壁電荷は特に一定の極性を持つ。
例えば、その壁電荷の極性が正であるときを想定する。
その場合、第一の負パルス電圧の印加期間に負極性の第二のパルス電圧が印加される。そのとき、第一の負パルス電圧の印加先の電極とアドレス電極との間の電圧が、維持電極と走査電極との間の電圧より低い。従って、アドレス電極側では正の壁電荷の消去が抑えられる。すなわち、アドレス電極には放電電流が実質上流れない。更に、アドレス電極側では電子による衝撃が低減する。
一方、第一の正パルス電圧の印加期間では、アドレス電極側に蓄積される正の壁電荷が一定に維持される。すなわち、アドレス電極には放電電流が流れない。
上記の想定とは逆に、アドレス電極側に蓄積される壁電荷の極性が負であるときは、第一の正パルス電圧の印加期間に正極性の第二のパルス電圧が印加されれば良い。
以上の結果、放電維持期間全体を通して、アドレス電極側では実質的に一定の壁電荷が維持される。すなわち、アドレス電極には放電電流が実質上流れない。アドレス電極側では更に電子/イオン衝撃が低減するので、蛍光体の劣化が効果的に防止される。
こうして、本発明による上記のPDP駆動装置は、PDPの消費電力を小さく維持し、かつPDPの寿命を長く維持する。
また、アドレス電圧発生部は、放電維持期間中、放電維持パルス電圧が最大値から最小値へ変化する間に、アドレス電極の電位を接地電位から負の所定電位に変化させ、かつ、放電維持パルス電圧が最小値から最大値へ変化する間にアドレス電極の電位を負の所定電位から接地電位に変化させてもよい。
または、アドレス電圧発生部は、放電維持期間中、PDPのアドレス電極の電位を少なくとも2つの異なる電位に制御するとともに、第一の正パルス電圧を印加中にアドレス電極の電位を低下させ、第一の負パルス電圧を印加中にアドレス電極の電位を上昇させてもよい。または、アドレス電圧発生部は、放電維持期間中、前記放電維持パルス電圧が最大値から最小値へ変化する間に、前記アドレス電極の電位を低下させ、かつ、前記放電維持パルス電圧が最小値から最大値へ変化する間に前記アドレス電極の電位を上昇させてもよい。
好ましくはアドレス電圧発生部がアドレス電極に印加する低い方の電圧は接地電位である。このように維持放電期間中に、1回の放電が終了した後にアドレス電極の電位を上昇あるいは低下させることで、アドレス電極側の壁電荷を調整することができる。その結果、アドレス電極には放電電流が実質上流れない。アドレス電極側では更に電子/イオン衝撃が低減するので、蛍光体の劣化が効果的に防止される。こうして、本発明による上記のPDP駆動装置は、PDPの消費電力を小さく維持し、かつPDPの寿命を長く維持する。
本発明による上記のPDP駆動装置は好ましくは、初期化期間中、維持電極を接地電位に維持し、走査電極に対して初期化パルス電圧を印加する、初期化パルス発生部と、アドレス期間中、維持電極を接地電位に維持し、走査電極に対して走査パルス電圧を印加する、走査パルス発生部とを有する。そのとき、放電維持パルス発生部が放電維持期間中、維持電極を接地電位に維持する。
それにより、維持電極が実質上常に、接地電位に維持される。従って、PDP駆動装置の維持電極との接続部、すなわち維持電極駆動部が、パルス発生部を一切含まなくても良い。好ましくは、各パルス電圧の発生部と電源とがPDPの走査電極側に集中して配置される。すなわちPDP駆動装置のノイズ源と熱源とがPDPの走査電極側に集約される。従って、ノイズ/熱対策が容易である。例えばチューナ等、比較的ノイズに弱い高周波回路がPDPの維持電極側に配置されるとき、PDP駆動装置からのノイズによる悪影響を効果的に回避できる。更に、例えばファン等の冷却装置による冷却範囲がPDPの走査電極側に限定されても良いので、その冷却効率が効果的に向上できる。したがって、省エネルギーの観点でも好適なPDP駆動装置あるいはプラズマディスプレイを提供することができる。また、部品の削減もできるため、安価なPDP駆動装置あるいはプラズマディスプレイを提供することができる。
本発明によるPDP駆動装置では上記の通り、放電維持期間中、維持電極又は走査電極のいずれかが接地電位に維持される。すなわち、維持電極駆動部又は走査電極駆動部のいずれかは放電維持パルス発生部を含まないので、駆動装置全体の面積が削減され、かつ回路設計の柔軟性が高まる。
こうして、本発明による上記のPDP駆動装置は小型化が容易である。
以下、本発明の最良の実施形態について、図面を参照しつつ説明する。
実施形態1
本実施形態では、放電維持期間中において維持電極(または走査電極でもよい)の電位を一定値に固定して駆動するPDP駆動装置の構成、動作を説明する。放電維持期間中において維持電極(または走査電極)の電位を一定値に固定することで、放電維持期間中に維持電極(または走査電極)を駆動するための回路を省略でき、駆動装置の小型化、省電力化が図れる。
図1は、本発明の実施形態1によるプラズマディスプレイの構成を示すブロック図である。そのプラズマディスプレイは、PDP10、力率改善コンバータ(PFC)20、PDP駆動装置30、及び制御部40を有する。PDP10は例えばAC型であり、三電極面放電型構造を有する。PDP10の背面基板上にはアドレス電極A1、A2、A3、…がパネルの縦方向に配置される。PDP10の前面基板上には維持電極X1、X2、X3、…と走査電極Y1、Y2、Y3、…とが交互に、かつパネルの横方向に配置される。維持電極X1、X2、X3、…は互いに接続され、電位が実質的に等しい。アドレス電極A1、A2、A3、…と走査電極Y1、Y2、Y3、…とは一本ずつ個別に電位を変化させ得る。互いに隣り合う維持電極と走査電極との対(例えば維持電極X2と走査電極Y2との対)及びアドレス電極(例えばアドレス電極A2)の交差点には放電セルが設置される(例えば、図1に示される斜線部P参照)。放電セルの表面には、誘電体から成る層(誘電体層)、電極と誘電体層とを保護するための層(保護層)、及び蛍光体を含む層(蛍光体層)が設けられる。放電セルの内部にはガスが封入される。維持電極、走査電極、及びアドレス電極の間に対し所定のパルス電圧が印加されるとき、放電セルでは放電が生じる。そのとき、放電セル中のガス分子が電離し、紫外線を発する。その紫外線が放電セル表面の蛍光体を励起し、蛍光を発生させる。こうして放電セルが発光する。
PFC20は外部の商用交流電源ACへ接続される。PFC20は商用交流電源ACから交流電力を入力し、その交流電力を直流電力へ変換する。PFC20は更にそのスイッチング動作により、商用交流電源ACからの入力について力率を実質的に1と等しく保つ。プラズマディスプレイはPFC20に代え、力率改善を行わないAC−DCコンバータを有しても良い。その他に、ダイオードブリッジとコンデンサとで構成される全波整流回路や倍電圧整流回路を有するだけでも良い。
PDP駆動装置30は、DC−DCコンバータ1、走査電極駆動部2、維持電極駆動部3、及びアドレス電極駆動部4を含む。DC−DCコンバータ1はPFC20の出力電圧を正の直流電圧+Vsと負の直流電圧−Vsとに変換し、二つの出力端子1Pと1Nとをそれぞれ、正電位+Vsと負電位−Vsとに維持する。ここで、正負二つの直流電圧の大きさVsは好ましくは等しい。以下、それらの出力端子を正電位端子1Pと負電位端子1Nという。走査電極駆動部2、維持電極駆動部3、及びアドレス電極駆動部4はそれぞれスイッチ素子を含み、それらのスイッチ素子のスイッチングによりパルス電圧を発生させる。走査電極駆動部2の入力端子はDC−DCコンバータ1の正電位端子1Pと負電位端子1Nとに接続される。走査電極駆動部2の出力端子はPDP10の走査電極Y1、Y2、Y3、…のそれぞれに個別に接続される。走査電極駆動部2は走査電極Y1、Y2、Y3、…のそれぞれの電位を個別に制御する。維持電極駆動部3はPDP10の維持電極X1、X2、X3、…に接続される。維持電極駆動部3は維持電極X1、X2、X3、…の電位を一様に制御する。アドレス電極駆動部4はPDP10のアドレス電極A1、A2、A3、…のそれぞれに個別に接続される。アドレス電極駆動部4はアドレス電極A1、A2、A3、…のそれぞれの電位を個別に制御する。制御部40は、走査電極駆動部2、維持電極駆動部3、及びアドレス電極駆動部4それぞれのスイッチングを制御する。そのスイッチング制御はADS(Address Display-period Separation)方式に従う。ADS方式はサブフィールド方式の一種である。サブフィールド方式では画像の一フィールドが複数のサブフィールドに分けられる。サブフィールドはそれぞれ、初期化期間、アドレス期間、及び放電維持期間を含む。ADS方式では特に、PDP20の全ての放電セルに対し、上記三つの期間が共通に設定される。
初期化期間では、初期化パルス電圧が、PDP10の維持電極X1、X2、X3、…と走査電極Y1、Y2、Y3、…との間に印加される。それにより、全ての放電セルで壁電荷が均一化される。
アドレス期間では、走査パルス電圧が、走査電極Y1、Y2、Y3、…に対して順次印加される。走査パルス電圧に同期して、アドレスパルス電圧がアドレス電極A1、A2、A3、…のいくつかに対して印加される。ここで、アドレスパルス電圧が印加されるべきアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の一つY2に印加され、かつアドレスパルス電圧がアドレス電極の一つA2に印加されるとき、その走査電極Y2とアドレス電極A2との交差点Pに位置する放電セルで放電が生じる。その放電によりその放電セルP表面には壁電荷が蓄積される。
放電維持期間では、放電維持パルス電圧が維持電極X1、X2、X3、…と走査電極Y1、Y2、Y3、…との間に同時に、かつ周期的に印加される。ここで、放電維持パルス電圧は放電開始電圧より低い。しかし、アドレス期間中に壁電荷が蓄積された放電セルPでは放電維持パルス電圧に壁電圧が加わるので、維持電極と走査電極との間の電圧が放電開始電圧を超える。従って、ガスによる放電が持続し、発光が生じる。放電維持期間の長さはサブフィールドごとに異なるので、放電セルの一フィールド当たりの発光時間、すなわち放電セルの輝度は、発光すべきサブフィールドの選択により調整される。
制御部40は映像信号に基づき、アドレスパルス電圧の印加先のアドレス電極とサブフィールドとを決定する。その結果、PDP10には映像信号に対応する映像が再現される。
図2は、PDP10と本発明の実施形態1によるPDP駆動装置30との等価回路を示すブロック図である。ここで、PDP10の等価回路はパネル容量、すなわち、維持電極X、走査電極Y、及びアドレス電極Aの間の浮遊容量CXY、CXA、及びCYAでのみ表される。放電セルでの放電時にPDP10を流れる電流、すなわち放電電流の経路は省略される。
本発明の実施形態1によるPDP駆動装置30では従来のPDP駆動装置とは異なり、維持電極駆動部3が放電維持パルス発生部を含まず、代わりにアドレス電極駆動部4が放電維持パルス発生部を含む。それにより、PDP駆動装置30は放電維持期間での動作に特徴を持つ。以下では、放電維持期間での動作に係る構成と動作とを主に説明する。
DC−DCコンバータ1は二つの直流電圧源の直列接続と等価である。二つの直流電圧源の電圧は共にVsである。更に、二つの直流電圧源の接続点は接地される。それにより、正電位端子1Pと負電位端子1Nとはそれぞれ、正電位+Vsと負電位−Vsとに維持される。
走査電極駆動部2は、第一の放電維持パルス発生部2Aと第一の初期化/走査パルス発生部2Bとを有する。
図3Aは、第一の放電維持パルス発生部2Aの等価回路図である。
第一の放電維持パルス発生部2Aは、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、双方向スイッチ部Q7、及び電力回収部6を含む。
二つの維持スイッチ素子Q1、Q2は例えばMOSFETである。その他にIGBT又はバイポーラトランジスタであっても良い。以下は、スイッチ素子はMOSFETであることを前提として説明するため、スイッチ素子の端子としてゲート、ドレイン、ソースを使用するが、IGBTの場合に対応する端子名はベース、コレクタ、エミッタであることはいうまでもない。
第一のハイサイド維持スイッチ素子Q1のドレインは正電位端子1Pに接続される。第一のハイサイド維持スイッチ素子Q1のソースは第一のローサイド維持スイッチ素子Q2のドレインに接続される。第一のローサイド維持スイッチ素子Q2のソースは負電位端子1Nに接続される。第一のハイサイド維持スイッチ素子Q1と第一のローサイド維持スイッチ素子Q2との間の接続点J1は第一の放電維持パルス発生部2Aの出力端子2Cに接続される。
双方向スイッチ部Q7は二つのスイッチ素子の直列接続であり、スイッチ素子のソースが互いに接続される。あるいは、スイッチ素子のドレインが互いに接続される。それにより、二つのスイッチ素子が共にオフするとき、いずれの向きにも電流が流れない。二つのスイッチ素子のオン/オフ状態は常に等しく制御される。双方向スイッチ部Q7は上記の出力端子2Cと接地端子との間に接続される。
電力回収部6は二つの相似な電力回収回路6A、6Bを含む。第一の電力回収回路6Aは、第一の回収コンデンサCA、第一のハイサイドダイオードD1A、第一のローサイドダイオードD2A、第一のハイサイド回収スイッチ素子Q3A、第一のローサイド回収スイッチ素子Q4A、及び第一の回収インダクタLAを含む。第一の回収コンデンサCAの容量は、PDP10のパネル容量CXY、CXA、及びCYAのいずれよりも十分に大きい。第一の回収コンデンサCAの高電位端子J3Aは、正電位端子1Pの電位+Vsの半値+Vs/2と実質的に等しい電位に維持される。
第一の回収コンデンサCAの低電位端子は接地され、高電位端子J3Aは第一のハイサイドダイオードD1Aのアノードに接続される。第一のハイサイドダイオードD1Aのカソードは第一のハイサイド回収スイッチ素子Q3Aのドレインに接続される。第一のハイサイド回収スイッチ素子Q3Aのソースは第一のローサイド回収スイッチ素子Q4Aのドレインに接続される。第一のローサイド回収スイッチ素子Q4Aのソースは第一のローサイドダイオードD2Aのアノードに接続される。第一のローサイドダイオードD2Aのカソードは第一の回収コンデンサCAの高電位端子J3Aに接続される。
第一のハイサイド回収スイッチ素子Q3Aと第一のローサイド回収スイッチ素子Q4Aとの間の接続点J2Aは第一の回収インダクタLAの一端に接続される。第一の回収インダクタLAの他端は第一の放電維持パルス発生部2Aの出力端子2Cに接続される。
第二の電力回収回路6Bは、第二の回収コンデンサCB、第二のハイサイドダイオードD1B、第二のローサイドダイオードD2B、第二のハイサイド回収スイッチ素子Q3B、第二のローサイド回収スイッチ素子Q4B、及び第二の回収インダクタLBを含む。
それらの構成要素の特性、及び相互の接続は第一の電力回収回路6Aとほぼ同様である。但し、第二の回収コンデンサCBは、第一の回収コンデンサCAとは極性が逆である。すなわち、第二の回収コンデンサCBの高電位端子が接地され、低電位端子J3Bが第二のハイサイドダイオードD1Bと第二のローサイドダイオードD2Bとに接続される。更に、第二の回収コンデンサCBの低電位端子J3Bは、負電位端子1Nの電位−Vsの半値−Vs/2と実質的に等しい電位に維持される。
第一の初期化/走査パルス発生部2Bは、放電維持期間では、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を単に短絡させる(図2参照)。一方、初期化/アドレス期間では、第一の初期化/走査パルス発生部2Bは例えば、従来のものと同様に動作しても良い。従って、第一の初期化/走査パルス発生部2Bの詳細は省略される。
維持電極駆動部3は第二の初期化/走査パルス発生部3Aと接地スイッチ3Bとを含む(図2参照)。
第二の初期化/走査パルス発生部3Aは、放電維持期間では、接地スイッチ3Bと維持電極Xとの間を単に短絡させる。一方、初期化/アドレス期間では、第二の初期化/走査パルス発生部3Aは例えば、従来のものと同様に動作しても良い。従って、第二の初期化/走査パルス発生部3Aの詳細は省略される。
接地スイッチ3Bは放電維持期間にオンし、維持電極Xを接地する。ここで、接地電位は0Vであり、好ましくは、PDP10のシャーシ(図示せず)が接地導体として利用される。
アドレス電極駆動部4は、アドレス電源4A、第二の放電維持パルス発生部4B、及びアドレスパルス発生部4Cを含む(図2参照)。
アドレス電源4Aは負の直流電圧源であり、すなわち、高電位端子4Gを接地し、低電位端子4Nを一定の負電位−Vaに維持する。ここで、アドレス電源4Aの出力電圧Vaは好ましくはDC−DCコンバータ1の出力電圧Vs以下である:Va≦Vs。
図4は、第二の放電維持パルス発生部4Bの等価回路図である。
第二の放電維持パルス発生部4Bは、第二のハイサイド維持スイッチ素子Q5、第二のローサイド維持スイッチ素子Q6、及び第三の電力回収回路6Cを含む。第二のハイサイド維持スイッチ素子Q5のドレインは高電位端子4Gに接続される。第二のハイサイド維持スイッチ素子Q5のソースは第二のローサイド維持スイッチ素子Q6のドレインに接続される。第二のローサイド維持スイッチ素子Q6のソースは低電位端子4Nに接続される。
第二のハイサイド維持スイッチ素子Q5と第二のローサイド維持スイッチ素子Q6との間の接続点J4は第二の放電維持パルス発生部4Bの出力端子4Dに接続される。
第三の電力回収回路6Cは、第三の回収コンデンサCC、第三のハイサイドダイオードD1C、第三のローサイドダイオードD2C、第三のハイサイド回収スイッチ素子Q3C、第三のローサイド回収スイッチ素子Q4C、及び第三の回収インダクタLCを含む。
それらの構成要素の特性、及び相互の接続は第二の電力回収回路6Bとほぼ同様である(図3A参照)。但し、第三の回収コンデンサCCの低電位端子J3Cは、負電位端子4Nの電位−Vaの半値−Va/2と実質的に等しい電位に維持される。
アドレスパルス発生部4Cは、放電維持期間では、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を単に短絡させる(図2参照)。一方、初期化/アドレス期間では、アドレスパルス発生部4Cは例えば従来のものと同様に動作しても良い。従って、アドレスパルス発生部4Cの詳細は省略される。
放電維持期間では、第一の放電維持パルス発生部2Aが、走査電極Yに対して第一の正パルス電圧と第一の負パルス電圧とを、以下のように交互に印加する。一方、維持電極Xは接地スイッチ3B(図2参照)を通して接地される。そのとき、アドレス期間中に壁電荷が蓄積された放電セルでは放電が持続するので、発光が生じる。
更に、第二の放電維持パルス発生部4Bが、アドレス電極Aに対して負極性の第二のパルス電圧を、以下のように第一の負パルス電圧と同期して印加する。すなわち、走査電極Yが負電位−Vsに維持されるとき、アドレス電極Aと走査電極Yとの間の電圧Vs−Vaが維持電極Xと走査電極Yとの間の電圧Vsより低い。その結果、放電維持期間全体を通してアドレス電極Aと他の電極X、Yとの間では放電が生じない。
図5Aは、放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3A、Q4A、Q3B、Q4B、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。図5Aでは、それぞれのスイッチ素子のオン期間が斜線部で示される。
放電維持期間中、第一の初期化/走査パルス発生部2Bは第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させ、アドレスパルス発生部4Cは第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる(図2参照)。更に、維持電極駆動部3は維持電極Xを接地電位に維持する。
放電維持期間では、次の八つのモードI〜VIIIが反復される(図5A参照)。ここで、モードII〜IVが第一の正パルス電圧の印加期間に相当し、モードVI〜VIIIが第一の負パルス電圧と第二のパルス電圧との印加期間に相当する。
<モードI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7だけがオン状態に維持され、残りのスイッチ素子Q1、Q2、Q3A、Q4A、Q4Bがオフ状態に維持される(図3A参照)。それにより、走査電極Yが接地電位(≒0)に維持される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位に維持される。なお、図5Aでは、スイッチ素子Q3BならびにQ3Cはオフとなっているが、スイッチ素子Q3BはモードIの期間中に、スイッチ素子Q3CはモードIからモードVまでの期間中にそれぞれオフすればよい。
<モードII>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第一のハイサイド回収スイッチ素子Q3Aがオンする。それにより、接地端子→第一の回収コンデンサCA→第一のハイサイドダイオードD1A→第一のハイサイド回収スイッチ素子Q3A→第一の回収インダクタLA→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、第一の放電維持パルス発生部2Aの出力端子2C→走査電極Y−アドレス電極A間のパネル容量CYA→第二の放電維持パルス発生部4Bの出力端子4D→第二のハイサイド維持スイッチ素子Q5→アドレス電源4Aの高電位端子4G→接地端子の経路が導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路、及び第一の回収インダクタLAと走査電極Y−アドレス電極A間のパネル容量CYAとの直列回路がそれぞれ、第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。
<モードIII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のハイサイドダイオードD1Aがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図5Aでは、モードIIIの期間中には第一のハイサイド回収スイッチ素子Q3Aはオフとなっているが、モードIIIの期間中にオンからオフにすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位(≒0)に維持される。そのとき、走査電極Y−アドレス電極A間のパネル容量CYAには両電極間の電圧+Vsに応じた電荷が蓄積される。すなわち、PDP10の放電セルでは、特にアドレス電極A側に正の壁電荷が蓄積される。
<モードIV>
走査電極Yの電位が所定時間、放電維持パルス電圧の上限+Vsに維持された後、第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第一のローサイド回収スイッチ素子Q4Aがオンする。それにより、接地端子←第一の回収コンデンサCA←第一のローサイドダイオードD2A←第一のローサイド回収スイッチ素子Q4A←第一の回収インダクタLA←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、第一の放電維持パルス発生部2Aの出力端子2C←走査電極Y−アドレス電極A間のパネル容量CYA←第二の放電維持パルス発生部4Bの出力端子4D←第二のハイサイド維持スイッチ素子Q5←アドレス電源4Aの高電位端子4G←接地端子の経路が導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路、及び第一の回収インダクタLAと走査電極Y−アドレス電極A間のパネル容量CYAとの直列回路がそれぞれ、第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。
<モードV>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のローサイドダイオードD2Aがオフする。更に、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンする(図3A参照)。それにより、走査電極Yが接地電位に維持される。なお、図5Aでは、モードVの期間中には第一のローサイド回収スイッチ素子Q4Aはオフとなっているが、モードVの期間中にオンからオフにすればよい。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、残りのスイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位に維持される。
<モードVI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第二のローサイド回収スイッチ素子Q4Bがオンする。それにより、接地端子←第二の回収コンデンサCB←第二のローサイドダイオードD2B←第二のローサイド回収スイッチ素子Q4B←第二の回収インダクタLB←出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子のループが導通する(矢印は電流の向きを表す。図2、3参照)。
そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードVII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第二のローサイドダイオードD2Bがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図5Aでは、モードVIIの期間中には第二のローサイド回収スイッチ素子Q4Bはオフとなっているが、モードVIIの期間中にオフすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Aの低電位端子4Nの電位−Vaまで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が低電位端子4Nの電位−Vaに維持される。なお、図5Aでは、モードVIIの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、モードVIIの期間中にオフすればよい。
ここで、アドレス電極Aの電位−Vaは接地電位(≒0)より低く、走査電極Yの電位−Vs以上である:−Vs≦−Va<0。好ましくは、アドレス電極Aの電位−Vaは走査電極Yの電位−Vsに近い。それにより、放電セルのアドレス電極A側には正の壁電荷が維持される。
<モードVIII>
第一の放電維持パルス発生部2Aでは、第一のローサイド維持スイッチ素子Q2がオフし、第二のハイサイド回収スイッチ素子Q3Bがオンする。それにより、接地端子→第二の回収コンデンサCB→第二のハイサイドダイオードD1B→第二のハイサイド回収スイッチ素子Q3B→第二の回収インダクタLB→出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子のループが導通する(矢印は電流の向きを表す。図2、3参照)。
そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。
共振電流が実質的に零まで減衰すると、第二のハイサイドダイオードD1Bがオフし、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンすることで走査電極Yが接地電位に維持され、モードIと同じとなる(図3A参照)。
第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q4C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。
そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
共振電流が実質的に零まで減衰するとき、第三のハイサイドダイオードD1Cがオフし、アドレス電極Aの電位が接地電位(≒0)まで達する。そのとき、第二のハイサイド維持スイッチ素子Q5がオンしてアドレス電極Aが接地電位に維持され、モードIと同じとなる(図3A参照)。
モードIIとVIとでは、維持電極X−走査電極Y間のパネル容量CXYが充電される。各モードでの充電に必要な電力は第一の回収コンデンサCA、及び第二の回収コンデンサCBのそれぞれからパネル容量CXYへ供給される。一方、モードIVとVIIIとでは、維持電極X−走査電極Y間のパネル容量CXYが放電する。それにより、モードIIとVIとで供給される電力がパネル容量CXYから第一の回収コンデンサCA、及び第二の回収コンデンサCBのそれぞれへ回収される。
同様に、モードVIで第三の回収コンデンサCCからパネル容量CXAへ供給される電力は、モードVIIIでパネル容量CXAから第三の回収コンデンサCCへ回収される。
こうして、放電維持パルス電圧の立ち上がり/立ち下がりでは、PDP10のパネル容量CXY、CXA、CYAと回収インダクタLA、LB、LCとが共振し、それらの間で電力が効率良く交換される。すなわち、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
上記の通り、本発明の実施形態1によるPDP駆動装置30では、放電維持期間中、維持電極駆動部3が維持電極Xを接地する。すなわち、維持電極Xの電位を一定値に固定する。これにより、維持電極駆動部3は放電維持パルス発生部を含む必要がなくなる。
上記の例では、図5Aに示すように、放電維持期間中、アドレス電極Aには、走査電極Yの負パルスに完全に同期して負パルスが印加されているが、これに限定されない。例えば、アドレス電極Aの電位は、走査電極Yの電位が最小値(-Vs)に達するまでに最小値(-Va)に達し、かつ、走査電極Yの電位が最大値(Vs)に達するまでに最大値(0)に達するよう制御されてもよい。
なお、放電維持期間中、上記の例とは逆に、走査電極駆動部2が走査電極Yを接地し、すなわち走査電極Yの電位を一定値に固定し、維持電極駆動部3が第一の放電維持パルス発生部2Aを含むように構成しても良い。その場合、走査電極駆動部2は放電維持パルス発生部を含む必要がなくなる。
以上のように放電維持期間中、維持電極X(または走査電極Yでもよい)を接地(一定値に固定)することで、維持電極駆動部3(または走査電極駆動部2)において放電維持パルス発生部を除去できる。これにより、放電維持パルス発生部だけ駆動装置全体の面積を低減でき、かつ回路設計の柔軟性が高まる。それ故、本発明の実施形態1によるPDP駆動装置30は小型化が容易である。
ところで、特許文献1のPDP駆動装置では、放電維持期間中、維持電極とともにアドレス電極も常に接地電位に維持されている。そのため、走査電極Yが正の電位あるいは負の電位に維持されるごとに、アドレス電極側から放電電流が流れ、PDPの省電力化において問題があった。また、アドレス電極側には実質上、壁電荷が残留しないので、蛍光体層での電子/イオン衝撃が激しく、蛍光体が損傷を受けやすく、PDPの長寿命化においても問題があった。これに対し、本実施形態のPDP駆動装置によれば、アドレス電極の電位を一定電位に固定せず、走査電極の電位に応じて変化させるため、上記の特許文献1の問題は生じ得ない。以下にこれを説明する。
PDP10の各放電セルでは、放電維持期間の開始時、アドレス電極A側に正の壁電荷が蓄積される可能性が高い。
本発明の実施形態1によるPDP駆動装置30は放電維持期間中、走査電極Yに対する第一の負パルス電圧の印加に同期して、アドレス電極Aに対して負極性の第二のパルス電圧を印加する(図5AのモードVI〜VIII参照)。
それにより、第一の負パルス電圧の印加期間では、アドレス電極Aと走査電極Yとの間の電圧が維持電極Xと走査電極Yとの間の電圧より低い。従って、アドレス電極A側では正の壁電荷の消去が抑えられる。すなわち、アドレス電極Aには放電電流が実質上流れない。更に、アドレス電極A側では電子による衝撃が低減する。
一方、第一の正パルス電圧の印加期間(図5AのモードII〜IV参照)では、アドレス電極A側に蓄積される正の壁電荷が一定に維持される。すなわち、アドレス電極Aには放電電流が流れない。
以上の結果、アドレス電極A側では放電維持期間全体を通して、正の壁電荷が一定に維持される。すなわち、アドレス電極Aには放電電流が実質上流れず、更にアドレス電極A側での電子/イオン衝撃が低減する。
こうして、本発明の実施形態1によるPDP駆動装置30によれば、PDP10の消費電力を小さく維持でき、かつPDP10の長寿命化が図れる。
ここで、放電維持期間の開始時、アドレス電極A側に蓄積される壁電荷の極性が負である可能性が高いときは、第二のパルス電圧の極性が正に設定されれば良い。その場合、第二のパルス電圧は、走査電極Yに対する第一の正パルス電圧の印加に同期してアドレス電極Aに対して印加される。
アドレス電極A側に蓄積される壁電荷の極性は実際には特定しにくい。従って、例えば実験により、放電維持期間中、正負各極性を持つ第二のパルス電圧を実際に印加し、アドレス電極Aに流れる放電電流の量を比較する。その放電電流量がより少ないときの極性が第二のパルス電圧の極性として決定されても良い。
第二のパルス電圧は第一の正/負パルス電圧よりパルス幅が小さくても良い。第二のパルス電圧のパルス幅は好ましくは、放電セルでの一回の放電が持続する時間に相当する。その場合、第二のパルス電圧の立ち上がりが第一の正/負パルス電圧の立ち上がりに同期すれば良い。
ここで、第一の放電維持パルス発生部2Aの他の好適な実施例として、図3Bにその等価回路図を示す。第一の放電維持パルス発生部2Aは、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、双方向スイッチ部Q7、及び電力回収部6Dを含む。電力回収部6Dの回路は、第四の回収インダクタLD、第四のハイサイドダイオードD1D、第四のローサイドダイオードD2D、第四のハイサイド回収スイッチ素子Q3D、第四のローサイド回収スイッチ素子Q4Dを含む。電力回収部6Aならびに6Bと異なるのは、回収コンデンサCAあるいはCBが削除され、接続点J3Dが直接接地している点であり、その他の各部の接続形態は同様である。図3Bのような電力回収部を用いる場合の放電維持期間中の動作は、図5Bのようになる。
<モードI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第四のハイサイド回収スイッチ素子Q3Dがオンする。それにより、接地端子→第四のハイサイドダイオードD1D→第四のハイサイド回収スイッチ素子Q3D→第四の回収インダクタLD→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに上昇する。
第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q4C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
<モードII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のハイサイドダイオードD1Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図5Bでは、モードIIの期間中には第四のハイサイド回収スイッチ素子Q3Dはオフとなっているが、モードIIの期間中にオンからオフにすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、スイッチ素子Q6、Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが接地電位(≒0)に維持される。なお、図5Bでは、モードIIの期間中には第三のハイサイド回収スイッチ素子Q3Cはオフとなっているが、モードIIの期間中にオンからオフにすればよい。
<モードIII>
第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第四のローサイド回収スイッチ素子Q4Dがオンする。それにより、接地端子←第四のローサイドダイオードD2D←第四のローサイド回収スイッチ素子Q4D←第四の回収インダクタLD←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図2参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに下降する。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図2、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧−Va/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードIV>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のローサイドダイオードD2Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図5Bでは、モードIVの期間中には第四のローサイド回収スイッチ素子Q4Dはオフとなっているが、モードIVの期間中にオフすればよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。
第二の放電維持パルス発生部4Bでは、共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Aの低電位端子4Nの電位−Vaまで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が低電位端子4Nの電位−Vaに維持される。なお、図5Bでは、モードIVの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、モードIVの期間中にオフすればよい。
こうして、放電維持パルス電圧の立ち上がり/立ち下がりでは、PDP10のパネル容量CXY、CXA、CYAと回収インダクタLA、LB、LCとが共振し、それらの間で電力が効率良く交換される。すなわち、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
実施形態2
実施形態1では、放電維持期間中においてのみ維持電極(または走査電極)の電位を一定値に固定して駆動するPDP駆動装置の構成、動作を説明したが、本実施形態では、放電維持期間に加えて初期化期間及びアドレス期間においても維持電極(または走査電極)の電位を一定値に固定して駆動するPDP駆動装置の構成、動作を説明する。本実施形態によれば、維持電極(または走査電極)を駆動するための回路を完全に省略できるため、PDP駆動装置のさらなる小型化が図れる。
本発明の実施形態2によるプラズマディスプレイは上記の実施形態1によるプラズマディスプレイ(図1参照)と同様な構成を有する。従って、その構成についての説明は上記の実施形態1についての説明、及び図1を援用する。
図6は、PDP10と本発明の実施形態2によるPDP駆動装置30との等価回路を示すブロック図である。図2と図6とでは、同様な構成要素に対して同じ符号が付される。
本発明の実施形態2では上記の実施形態1とは異なり、維持電極駆動部3が初期化/走査パルス発生部を含まず、代わりにアドレス電極駆動部4が第二の初期化パルス発生部4Eを含む。それにより、維持電極駆動部3が実質的な回路を含まず、単に維持電極Xと接地端子との接続部に過ぎない。すなわち、維持電極Xは常に接地電位(≒0)に維持される。
図7は、走査電極駆動部2の等価回路図である。走査電極駆動部2は、第一の放電維持パルス発生部2Aと第一の初期化/走査パルス発生部2Bとを有する。
第一の放電維持パルス発生部2Aの構成は上記の実施形態1による第一の放電維持パルス発生部2Aの構成と同様である(図3Aあるいは図3B参照)。従って、図3A、図3Bと図7とでは、同様な構成要素に対して同じ符号が付される。更に、それら同様な構成要素についての説明は上記の実施形態1についての説明を援用する。
特に、電力回収部6の回路構成は上記の実施形態1による電力回収部6の回路構成(図3Aあるいは図3B参照)と同様である。従って、図7では、電力回収部6の等価回路については図示を省略する。更に、その等価回路についての説明は上記の実施形態1についての説明、及び図3Aあるいは図3Bを援用する。
第一の初期化/走査パルス発生部2Bは、三つの定電圧源E1、E2、E3;二つのランプ波形発生部QR1、QR2;二つの分離スイッチ素子QS1、QS2;バイパススイッチ素子QB;及び、走査スイッチ部2Dを含む。
三つの定電圧源E1、E2、E3はそれぞれ、例えばDC−DCコンバータ1から印加される直流電圧に基づき、正極と負極との間の電圧を一定値V1、V2、V3に維持する。
第一の定電圧源E1の電圧V1は初期化パルス電圧の上限と正電位端子1Pの電位+Vsとの差に等しい。すなわち、(初期化パルス電圧の上限)=Vs+V1。
第二の定電圧源E2の電圧V2は走査パルス電圧とは逆極性を持ち、走査パルス電圧の下限と大きさが等しい。すなわち、(走査パルス電圧の下限)=−V2。ここで、初期化パルス電圧の下限は走査パルス電圧の下限と等しい。
第三の定電圧源E3の電圧V3は走査パルス電圧の振幅(上限と下限との差)と等しい。すなわち、(走査パルス電圧の上限)=V3−V2。
二つのランプ波形発生部QR1、QR2はそれぞれ、例えばNMOSを含む。そのNMOSのゲートとドレインとは少なくともコンデンサを含む回路で接続される。ランプ波形発生部QR1、QR2がオンするとき、各波形発生部のドレインとソース間電圧が実質的に一定の速度で零まで変化する。
走査スイッチ部2Dは実際には複数の走査電極Y1、Y2、…(図1参照)と同数だけ設けられ、走査電極Y1、Y2、…のそれぞれに一つずつ接続される。
走査スイッチ部2Dのそれぞれは、ハイサイド走査スイッチ素子QY1とローサイド走査スイッチ素子QY2との直列接続を含む。
ハイサイド走査スイッチ素子QY1のソースはローサイド走査スイッチ素子QY2のドレインに接続される。その接続点J5は更に、対応する走査電極Yに接続される。
二つの分離スイッチ素子QS1、QS2が、第一の放電維持パルス発生部2Aの出力端子2Cとローサイド走査スイッチ素子QY2のソースとの間に直列に接続される。ここで、二つの分離スイッチ素子QS1とQS2との間は、互いのドレインが接続される。一方、第一の分離スイッチ素子QS1のソースが第一の放電維持パルス発生部2Aの出力端子2Cに接続され、第二の分離スイッチ素子QS2のソースがローサイド走査スイッチ素子QY2のソースに接続される。
放電維持期間では二つの分離スイッチ素子QS1、QS2、及びローサイド走査スイッチ素子QY2がオンし、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させる(上記の実施形態1についての説明を参照)。そのとき、それらのスイッチ素子QS1、QS2、及びQY2にはPDP10の放電電流及びパネル容量の充放電電流が流れる。従って、二つの分離スイッチ素子QS1、QS2は好ましくは、電流容量が大きい。例えば、分離スイッチ素子QS1、QS2はそれぞれ、複数のスイッチ素子の並列接続であっても良い。
第一の定電圧源E1の負極は第一の分離スイッチ素子QS1のソースに接続され、正極はハイサイドランプ波形発生部QR1のドレインに接続される。ハイサイドランプ波形発生部QR1のソースは第一の分離スイッチ素子QS1のドレインに接続される。すなわち、第一の定電圧源E1とハイサイドランプ波形発生部QR1との直列接続が、第一の分離スイッチ素子QS1と並列に接続される。
第二の定電圧源E2の正極は接地され、負極はローサイドランプ波形発生部QR2とバイパススイッチ素子QBとのそれぞれのソースに接続される。ローサイドランプ波形発生部QR2とバイパススイッチ素子QBとのそれぞれのドレインはローサイド走査スイッチ素子QY2のソースに接続される。すなわち、ローサイドランプ波形発生部QR2とバイパススイッチ素子QBとがローサイド走査スイッチ素子QY2のソースと第二の定電圧源E2の負極との間に、並列に、かつ同じ極性で接続される。ここで、ローサイドランプ波形発生部QR2の電流容量が十分に大きいとき、バイパススイッチ素子QBは設置されなくても良い。
第三の定電圧源E3の正極はハイサイド走査スイッチ素子QY1のドレインに接続され、負極はローサイド走査スイッチ素子QY2のソースに接続される。
なお、初期化/走査パルス発生部2Bは上述した回路構成以外の回路であってもよい。PDP10に必要な初期化および走査が可能な電圧を走査電極に印加できる回路構成であればよく、本願の発明は初期化/走査パルス発生部2Bの回路構成が上述したものに限定されない。
図8は、アドレス電極駆動部4の等価回路図である。
アドレス電極駆動部4は、第二の放電維持パルス発生部4B、アドレスパルス発生部4C、及び第二の初期化パルス発生部4Eを有する。
第二の放電維持パルス発生部4Bの構成は上記の実施形態1による第二の放電維持パルス発生部4Bの構成と同様である(図4参照)。従って、図4と図8とでは、同様な構成要素に対して同じ符号が付される。更に、それら同様な構成要素についての説明は上記の実施形態1についての説明を援用する。
特に、第三の電力回収回路6Cの構成は上記の実施形態1による第三の電力回収回路6Cの構成(図4参照)と同様である。従って、図8では、第三の電力回収回路6Cの等価回路については図示を省略する。更に、その等価回路についての説明は上記の実施形態1についての説明、及び図4を援用する。
第二の初期化パルス発生部4Eは、第四の定電圧源E4、ハイサイドスイッチ素子である第三の分離スイッチ素子QS3、及びローサイドスイッチ素子Q8を含む。
アドレスパルス発生部4Cは第五の定電圧源E5とアドレススイッチ部4Fとを含む。
二つの定電圧源E4、E5はそれぞれ、例えばDC−DCコンバータ1から印加される直流電圧に基づき、正極と負極との間の電圧を一定値V4、V5に維持する。
第四の定電圧源E4の電圧V4はアドレスパルス電圧とは逆極性を持ち、アドレスパルス電圧の下限と大きさが等しい。すなわち、(アドレスパルス電圧の下限)=−V4。
ここで、第四の定電圧源E4の電圧V4はアドレス電源4A(図6参照)の出力電圧Vaより高くても低くても良い。図8では、第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより高い場合が例示される:V4>Va。
第五の定電圧源E5の電圧V5は、アドレスパルス電圧の振幅(上限と下限との差)と等しい。すなわち、(アドレスパルス電圧の上限)=V5−V4。第五の定電圧源E5の電圧V5は特に、第四の定電圧源E4の電圧V4より低い:V5<V4。それにより、アドレスパルス電圧の上限は負である。
第三の分離スイッチ素子QS3とローサイドスイッチ素子Q8とは例えば、MOSFETで
ある。その他にIGBT又はバイポーラトランジスタであっても良い。
アドレススイッチ部4Fは実際には複数のアドレス電極A1、A2、…(図1参照)と同数だけ設けられ、アドレス電極A1、A2、…のそれぞれに一つずつ接続される。
アドレススイッチ部4Fのそれぞれは、ハイサイドアドレススイッチ素子QA1とローサイドアドレススイッチ素子QA2との直列接続を含む。
二つのアドレススイッチ素子QA1、QA2は例えば、MOSFETである。その他にIGBT又はバイポーラトランジスタであっても良い。
ハイサイドアドレススイッチ素子QA1のソースはローサイドアドレススイッチ素子QA2のドレインに接続される。その接続点J6は更に、対応するアドレス電極Aに接続される。
第五の定電圧源E5の正極は、ハイサイドアドレススイッチ素子QA1のドレインに接続され、負極はローサイドアドレススイッチ素子QA2のソースに接続される。
第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより高い場合(V4>Va)、図8に示されるように、第三の分離スイッチ素子QS3のソースがローサイドアドレススイッチ素子QA2のソースに接続され、ドレインが第二の放電維持パルス発生部4Bの出力端子4Dに接続される。放電維持期間では、第三の分離スイッチ素子QS3とローサイドアドレススイッチ素子QA2とがオンし、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる(上記の実施形態1についての説明を参照)。
第四の定電圧源E4の正極は接地され、負極はローサイドスイッチ素子Q8のソースに接続される。ローサイドスイッチ素子Q8のドレインが第三の分離スイッチ素子QS3のソースに接続される。
第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより低い場合(V4<Va)、図8とは異なり、ローサイドアドレススイッチ素子QA2のソースと第二の放電維持パルス発生部4Bの出力端子4Dとの間は短絡される(図示せず)。
更に、第三の分離スイッチ素子QS3とローサイドスイッチ素子Q8とは互いに逆極性で直列に接続され、双方向スイッチを構成する。その双方向スイッチは第四の定電圧源E4の負極とローサイドアドレススイッチ素子QA2のソースとの間に接続される(図示せず)。
図9は、本発明の実施形態2について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及びアドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS3、Q8、QA1、QA2のオン期間を示す波形図である。図9では、それぞれのスイッチ素子のオン期間が斜線部で示される。
ここで、第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより高い場合(V4>Va)が想定される。第四の定電圧源E4の電圧V4がアドレス電源4Aの出力電圧Vaより低い場合(V4<Va)、第三の分離スイッチ素子QS3のオン期間は図9に示されるローサイドスイッチ素子Q8のオン期間と一致する。
本発明の実施形態2によるPDP駆動装置30では従来の駆動装置とは異なり、維持電極Xが常に接地電位(≒0)に維持される。
初期化期間では、走査電極Yとアドレス電極Aとの電位が初期化パルス電圧の印加で変化する。
初期化パルス電圧の変化に応じ、初期化期間は次の六つのモードI〜VIに分けられる。
<モードI>
走査電極駆動部2では二つの分離スイッチ素子QS1、QS2、双方向スイッチ部Q7、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される(図7参照)。それにより走査電極Yが接地電位(≒0)に維持される。
アドレス電極駆動部4では第二のハイサイド維持スイッチ素子Q5、第三の分離スイッチ素子QS3、及びローサイドアドレススイッチ素子QA2がオン状態に維持される。残りのスイッチ素子はオフ状態に維持される(図8参照)。それによりアドレス電極Aは接地電位に維持される。
<モードII>
走査電極駆動部2では第一のハイサイド維持スイッチ素子Q1がオンし、双方向スイッチ部Q7がオフする。そのとき、二つの分離スイッチ素子QS1、QS2、及び、ローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで上昇する。
アドレス電極駆動部4ではモードIの状態が維持される。それによりアドレス電極Aは接地電位(≒0)に維持される。
<モードIII>
走査電極駆動部2では第一の分離スイッチ素子QS1がオフし、ハイサイドランプ波形発生部QR1がオンする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の上限Vs+V1まで上昇する。
アドレス電極駆動部4ではモードIの状態が維持される。それによりアドレス電極Aは接地電位(≒0)に維持される。
こうして、PDP10の全ての放電セルでは一様に、印加電圧が初期化パルス電圧の上限Vs+V1まで比較的緩やかに上昇する。それにより一様な壁電荷が蓄積される。そのとき、印加電圧の上昇速度が小さいので、放電セルの発光は微弱に抑えられる。
<モードIV>
走査電極駆動部2では第一の分離スイッチ素子QS1がオンし、ハイサイドランプ波形発生部QR1がオフする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで下降する。
アドレス電極駆動部4ではモードIの状態が維持される。それによりアドレス電極Aは接地電位(≒0)に維持される。
こうして、PDP10の全ての放電セルでは放電が停止し、微弱な発光が止まる。
<モードV>
走査電極駆動部2ではモードIVの状態が維持される。従って、走査電極Yの電位が正電位端子1Pの電位+Vsに維持される。
アドレス電極駆動部4では、第二のハイサイド維持スイッチ素子Q5と第三の分離スイッチ素子QS3とがオフし、ローサイドスイッチ素子Q8がオンする。そのとき、ローサイドアドレススイッチ素子QA2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それによりアドレス電極Aの電位がアドレスパルス電圧の下限−V4まで下降する。ここで、アドレス電極Aと他の電極との間で放電が生じないように、アドレスパルス電圧の下限−V4は設定される。
<モードVI>
走査電極駆動部2では、第一のハイサイド維持スイッチ素子Q1と第二の分離スイッチ素子QS2とがオフし、ローサイドランプ波形発生部QR2がオンする。そのとき、第一の分離スイッチ素子QS1とローサイド走査スイッチ素子QY2とがオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の下限−V2まで下降する。
アドレス電極駆動部4ではモードVの状態が維持される。それによりアドレス電極Aはアドレスパルス電圧の下限−V4に維持される。
こうして、PDP10の放電セルにはモードII〜Vでの印加電圧とは逆極性の電圧が印加される。それにより、放電セルの全てで壁電荷が一様に除去され、均一化される。そのとき、印加電圧は比較的緩やかに下降するので、放電セルの発光は微弱に抑えられる。
特にアドレス電極Aが負電位−V4に維持されるので、放電セルのアドレス電極A側では電子による衝撃が抑えられる。
アドレス期間中、走査電極駆動部2では、ローサイドランプ波形発生部QR2がオフし、バイパススイッチ素子QBがオンする。それにより、ローサイド走査スイッチ素子QY2のソース(あるいはエミッタ)は走査パルス電圧の下限−V2に維持される。更に例えば、双方向スイッチ部Q7がオンする。そのとき、第一の分離スイッチ素子QS1がオン状態に維持される。
アドレス電極駆動部4では、ローサイドスイッチ素子Q8がオン状態に維持され、第三の分離スイッチ素子QS3がオフ状態に維持される。それにより、ローサイドアドレススイッチ素子QA2のソース(あるいはエミッタ)がアドレスパルス電圧の下限−V4に維持される。
アドレス期間の開始時、走査電極駆動部2は全ての走査電極Y1、Y2、Y3、…(図1参照)について、ハイサイド走査スイッチ素子QY1をオン状態に維持し、ローサイド走査スイッチ素子QY2をオフ状態に維持する。それにより、全ての走査電極Yの電位が一様に走査パルス電圧の上限V3−V2に維持される。
走査電極駆動部2は続いて、走査電極Y1、Y2、Y3、…のそれぞれの電位を順次、次のように変化させる(図9に示される走査パルス電圧SP参照)。走査電極の一つYが選択されるとき、その走査電極Yに接続されるハイサイド走査スイッチ素子QY1がオフし、ローサイド走査スイッチ素子QY2がオンする。それにより、その走査電極Yの電位が走査パルス電圧の下限−V2まで下降する。その走査電極Yの電位が所定時間、走査パルス電圧の下限−V2に維持されるとき、その走査電極Yに接続されるローサイド走査スイッチ素子QY2がオフし、ハイサイド走査スイッチ素子QY1がオンする。それにより、その走査電極Yの電位が走査パルス電圧の上限V3−V2まで上昇する。
走査電極駆動部2は走査電極Y1、Y2、Y3、…のそれぞれに接続される走査スイッチ素子対Q1Y、Q2Yについて、上記と同様なスイッチング動作を順次行う。こうして、走査パルス電圧SPが走査電極Y1、Y2、Y3、…のそれぞれに対し順次、印加される。
アドレス期間の開始時、アドレス電極駆動部4は全てのアドレス電極A1、A2、A3、…(図1参照)について、ローサイドアドレススイッチ素子QA2をオン状態に維持し、ハイサイドアドレススイッチ素子QA1をオフ状態に維持する。それにより、全てのアドレス電極Aの電位が一様にアドレスパルス電圧の下限−V4に維持される。そのとき、走査電極Yとアドレス電極Aとの間には、走査パルス電圧の上限V3−V2とアドレスパルス電圧の下限−V4との差に相当する電圧V3−V2+V4が維持される。
アドレス期間中、アドレス電極駆動部4は、外部から入力される映像信号に基づきアドレス電極の一つAを選択し、その選択されたアドレス電極Aの電位を所定時間、アドレスパルス電圧の上限V5−V4まで上昇させる。
例えば図9に示される区間SPでは、走査パルス電圧が走査電極の一つYに印加されると同時にアドレスパルス電圧がアドレス電極の一つAに印加される。そのとき、その走査電極Yとアドレス電極Aとの間には、走査パルス電圧の下限−V2とアドレスパルス電圧の上限V5−V4との差に相当する電圧−V2+V4−V5が印加される。その電圧は走査電極とアドレス電極との他の組合せの間の電圧より高い。従って、区間SPで同時に選択される走査電極Yとアドレス電極Aとの間の交差点に位置する放電セルでは、走査電極Yとアドレス電極Aとの間で放電が生じる。それにより、その放電セルの特に走査電極Y上には、他の放電セルより多量の壁電荷が蓄積される。
放電維持期間中、走査電極駆動部2は、二つの分離スイッチ素子QS1、QS2、及びローサイド走査スイッチ素子QY2をオン状態に維持する。それにより、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させる。一方、アドレス電極駆動部4は第三の分離スイッチ素子QS3とローサイドアドレススイッチ素子QA2とをオン状態に維持する。それにより、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる。
その状態で、第一の放電維持パルス発生部2Aと第二の放電維持パルス発生部4Bとが上記の実施形態1と同様に動作する。それにより、放電維持パルス電圧が走査電極Yとアドレス電極Aとに対して実施形態1と同様に印加される(図5A参照)。そのとき、アドレス期間に比較的多量の壁電荷が蓄積された放電セルでは放電が維持されるので、発光が生じる。
上記の通り、本発明の実施形態2によるPDP駆動装置30は、維持電極Xが常に接地電位に維持される。すなわち、維持電極駆動部3が維持電極Xと接地端子との間の単なる接続部で良い。その代わり、アドレス電極駆動部4がアドレスパルス発生部4Cの他に、第二の放電維持パルス発生部4Bと第二の初期化パルス発生部4Eとを含む必要がある。
これにより、維持電極Xの電位を駆動するための駆動回路を完全に除去することができ、実施の形態1の場合に対して更に回路規模を低減できる。更に、各パルス電圧の発生部と電源とがPDP10の走査電極Y側に集中して配置可能となる。すなわちPDP駆動装置30のノイズ源と熱源とがPDP10の走査電極Y側に集約されるため、ノイズ/熱対策が容易となる。
例えばチューナ等、比較的ノイズに弱い高周波回路は、PDP10の維持電極X側に配置すれば良い。そのとき、PDP駆動装置30からのノイズによる悪影響が効果的に回避される。
また、例えばファン等の冷却装置による冷却範囲がPDP10の走査電極Y側に限定されても良い。そのとき、その冷却効率が効果的に向上する。
なお、図9では放電維持期間中の電圧波形として図3Aに示した回収回路部を想定した波形を記載したが、図3Bに示した回収回路部を用いてもよく、その場合の放電維持期間中の電圧波形および各スイッチ素子のオンオフ状態は図5Bのようになる。
実施形態3
実施形態1、2では、放電維持期間において維持電極(または走査電極)の電位を一定値に固定しつつ、アドレス電極Aに対して負極性のパルス電圧を印加する例を説明したが、本実施形態では、アドレス電極Aに対して正極性のパルス電圧を印加しつつ、放電維持期間において維持電極(または走査電極)の電位を一定値に固定する例を説明する。
本発明の実施形態3によるプラズマディスプレイは上記の実施形態1によるプラズマディスプレイ(図1参照)と同様な構成を有する。従って、その構成についての説明は上記の実施形態1についての説明、及び図1を援用する。
図10は、PDP10と本発明の実施形態3によるPDP駆動装置30との等価回路を示すブロック図である。図2と図10とでは、同様な構成要素に対して同じ符号が付される。
本発明の実施形態3では、アドレス電極駆動部4に含まれる第二の放電維持パルス発生部4Bに印加される電圧の接地基準が、実施形態1と異なる。すなわち、アドレス電源4Hは正の直流電圧源であり、すなわち、高電位端子4Gを一定の正電位Veとし、低電位端子4Nを接地電位に維持する。
第二の放電維持パルス発生部4Bの具体的な回路構成は図4と同様であるため、上記の実施形態1についての説明及び図4を援用する。実施形態1との違いは、上述したように高電位端子4Gと低電位端子4Nに印加される電圧が異なる点であるため、回収コンデンサCCの電位は実質的にはVe/2となる。
第一の放電維持パルス発生部2Aの回路構成が実施形態1の図3Aの場合における第二の放電維持パルス発生部4Bの維持放電期間中の具体的な動作およびPDP10に印加される各電圧波形を図11Aに示す。
図11Aに示すように、本実施形態では、維持放電期間中において、維持電極Xの電位を接地電位に制御するとともに、アドレス電極Aの電位を走査電極Yの電位変化に応じて正電位Veまたは接地電位0のいずれかに制御している。より具体的には、走査電極Yの電位が最大値(Vs)にある期間中に、アドレス電極Aの電位を正電位Veから接地電位0に変化させ、走査電極Yの電位が最小値(−Vs)にある期間中に、アドレス電極Aの電位を接地電位0から正電位Veに変化させている。なお、アドレス電極Aの電位は、走査電極Yの電位が最小値(−Vs)から立ち上がった後、再度最小値(−Vs)に立ち下がるまでの期間中に、正電位Veから接地電位0に達するように変化させ、かつ、走査電極Yの電位が最小値(−Vs)に達した後、最大値(Vs)に達するまでの期間中に接地電位0から正電位Veに達するように変化させればよい。例えば、図11Aにおいて、アドレス電極Aの電位は、モードXIIからモードVIIIまでの間に正電位Veから接地電位0に達するように、かつ、モードIXからモードIIまでの間に接地電位0から正電位Veに達するように変化させればよい。
印加する電圧の変化に応じ、次の12のモードI〜XIIに分けられる。
<モードI>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオン状態に維持され、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、第一のハイサイド回収スイッチ素子Q3A、第二のハイサイド回収スイッチ素子Q4A、第二のローサイド回収スイッチ素子Q4Bがオフ状態に維持される(図3A参照)。それにより、走査電極Yが接地電位(≒0)に維持される。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、第二のローサイド維持スイッチ素子Q6、第三のハイサイド回収スイッチ素子Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが高電位(≒Ve)に維持される。なお、図11Aでは、第二のハイサイド回収スイッチ素子Q3Bならびに第三のハイサイド回収スイッチ素子Q3Cはオフとなっているが、オンでもよい。第二のハイサイド回収スイッチ素子Q3BはモードVIIを終了する期間までにオフすればよく、モードIからモードVIIまでのいずれの期間にオフしてもよい。また、第三のハイサイド回収スイッチ素子Q3Cは、モードIIIを終了する期間までにオフすればよく、モードIからモードIIIあるいはモードXI、モードXIIのいずれの期間にオフしてもよい。
<モードII>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第一のハイサイド回収スイッチ素子Q3Aがオンする。それにより、接地端子→第一の回収コンデンサCA→第一のハイサイドダイオードD1A→第一のハイサイド回収スイッチ素子Q3A→第一の回収インダクタLA→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。第二の放電維持パルス発生部4Bでは、モードIと同様の動作をする。
<モードIII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のハイサイドダイオードD1Aがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図11Aでは、第一のハイサイド回収スイッチ素子Q3Aはオフとなっているが、オンでもよい。第一のハイサイド回収スイッチ素子Q3AはモードVを終了する期間までにオフすればよく、モードIIIからモードVまでのいずれの期間にオフしてもよい。
第二の放電維持パルス発生部4Bでは、モードIと同様の動作をする。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
<モードIV>
第一の放電維持パルス発生部2Aでは、モードIIIと同様の動作をするが、放電は終了している。第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードV>
第一の放電維持パルス発生部2Aでは、モードIVと同様の動作をする。第二の放電維持パルス発生部4Bでは、共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Hの低電位端子4Nの電位すなわち接地電位まで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が接地電位に維持される。なお、図11Aでは、モードVの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、オンでもよい。第三のローサイド回収スイッチ素子Q4CはモードIXが終了するまでにオフすればよく、モードVからモードIXまでのいずれの期間にオフしてもよい。
<モードVI>
走査電極Yの電位が所定時間、放電維持パルス電圧の上限+Vsに維持された後、第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第一のローサイド回収スイッチ素子Q4Aがオンする。それにより、接地端子←第一の回収コンデンサCA←第一のローサイドダイオードD2A←第一のローサイド回収スイッチ素子Q4A←第一の回収インダクタLA←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3A参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第一の回収インダクタLAと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が第一の回収コンデンサCAから電圧Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。第二の放電維持パルス発生部4Bでは、モードVと同じ動作をする。
<モードVII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第一のローサイドダイオードD2Aがオフする。更に、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンする(図3A参照)。それにより、走査電極Yが接地電位に維持される。なお、図11Aでは、モードVIIの期間中には第一のローサイド回収スイッチ素子Q4Aはオフとなっているが、オンでもよい。第一のローサイド回収スイッチ素子Q4AはモードIが終了するまでにオフすればよく、モードVIIからモードXIIおよびモードIまでのいずれの期間にオフしてもよい。第二の放電維持パルス発生部4Bでは、モードVIと同じ動作をする。
<モードVIII>
第一の放電維持パルス発生部2Aでは、双方向スイッチ部Q7がオフし、第二のローサイド回収スイッチ素子Q4Bがオンする。それにより、接地端子←第二の回収コンデンサCB←第二のローサイドダイオードD2B←第二のローサイド回収スイッチ素子Q4B←第二の回収インダクタLB←出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子のループが導通する(矢印は電流の向きを表す。図2、3A参照)。そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに下降する。第二の放電維持パルス発生部4Bでは、モードVIIと同じ動作をする。
<モードIX>
第一の放電維持パルス発生部2Aでは、モードVIIIにて発生している共振電流が実質的に零まで減衰すると、第二のローサイドダイオードD2Bがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3A参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図11Aでは、モードIXの期間中には第二のローサイド回収スイッチ素子Q4Bはオフとなっているが、オンでもよい。第二のローサイド回収スイッチ素子Q4BはモードXIが終了するまでにオフすればよく、モードIXからモードXIまでのいずれの期間にオフしてもよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。第二の放電維持パルス発生部4Bでは、モードVIIIと同じ動作をする。
<モードX>
第一の放電維持パルス発生部2Aでは、モードIXと同様の動作をする。第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q3C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
<モードXI>
第一の放電維持パルス発生部2Aでは、モードXと同様の動作をする。第二の放電維持パルス発生部4Bでは、モードXにて発生している共振電流が実質的に零まで減衰するとき、第三のハイサイドダイオードD1Cがオフし、アドレス電極Aの電位が高電位電圧Veまで達する。そのとき、第二のハイサイド維持スイッチ素子Q5がオンしてアドレス電極Aが高電位Veに維持される(図4参照)。ここで、アドレス電極Aの電位Veは走査電極Yの電位Vsに近い。
<モードXII>
第一の放電維持パルス発生部2Aでは、第一のローサイド維持スイッチ素子Q2がオフし、第二のハイサイド回収スイッチ素子Q3Bがオンする。それにより、接地端子→第二の回収コンデンサCB→第二のハイサイドダイオードD1B→第二のハイサイド回収スイッチ素子Q3B→第二の回収インダクタLB→出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子のループが導通する(矢印は電流の向きを表す。図10、3A参照)。
そのとき、第二の回収インダクタLB、及び維持電極X−走査電極Y間のパネル容量CXYの直列回路が第二の回収コンデンサCBから電圧−Vs/2を印加され、共振する。従って、走査電極Yの電位が滑らかに上昇する。
共振電流が実質的に零まで減衰すると、第二のハイサイドダイオードD1Bがオフし、走査電極Yの電位が接地電位(≒0)まで達する。そのとき、双方向スイッチ部Q7がオンすることで走査電極Yが接地電位に維持され、モードIと同じとなる(図3A参照)。
次に電力回収部6が図3Bである場合の駆動方法を図11Bを用いて説明する。図11Bに、電力回収部6が図3Bである場合の本実施形態の駆動方法による駆動波形を示す。
<モードI>
第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1、第一のローサイド維持スイッチ素子Q2、第四のローサイド回収スイッチ素子Q4Dがオフ状態に維持され、第四のハイサイド回収スイッチ素子Q3Dがオンされる。それにより、接地端子→第四のハイサイドダイオードD1D→第四のハイサイド回収スイッチ素子Q3D→第四の回収インダクタLD→出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C→維持電極X−走査電極Y間のパネル容量CXY→接地スイッチ3B→接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに上昇する。
第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオン状態に維持され、第二のローサイド維持スイッチ素子Q6、第三のハイサイド回収スイッチ素子Q4Cがオフ状態に維持される(図4参照)。それにより、アドレス電極Aが高電位(≒Ve)に維持される。なお、図11Bでは第三のハイサイド回収スイッチ素子Q3Cはオフとなっているがオンでもよい。第三のハイサイド回収スイッチ素子Q3Cは、モードIIを終了する期間までにオフすればよく、モードVIIIとモードIからモードIIのいずれの期間にオフしてもよい。
<モードII>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のハイサイドダイオードD1Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の正電位端子1Pの電位+Vs(すなわち、放電維持パルス電圧の上限)まで達する。そのとき、第一のハイサイド維持スイッチ素子Q1がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の上限+Vsに維持される。なお、図11Bでは、第四のハイサイド回収スイッチ素子Q3Dはオフとなっているが、オンでもよい。第四のハイサイド回収スイッチ素子Q3DはモードIVを終了する期間までにオフすればよく、モードIIからモードIVまでのいずれの期間にオフしてもよい。
第二の放電維持パルス発生部4Bでは、モードIと同様の動作をする。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の上限+Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から正電位端子1Pと第一のハイサイド維持スイッチ素子Q1とを通してPDP10に供給される。
<モードIII>
第一の放電維持パルス発生部2Aでは、モードIIIと同様の動作をするが、放電は終了している。第二の放電維持パルス発生部4Bでは、第二のハイサイド維持スイッチ素子Q5がオフし、第三のローサイド回収スイッチ素子Q4Cがオンする(図4参照)。それにより、接地端子→接地スイッチ3B→維持電極X−アドレス電極A間のパネル容量CXA→第二の放電維持パルス発生部4Bの出力端子4D→第三の回収インダクタLC→第三のローサイド回収スイッチ素子Q4C→第三のローサイドダイオードD2C→第三の回収コンデンサCC→接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに下降する。
<モードIV>
第一の放電維持パルス発生部2Aでは、モードIIIと同様の動作をする。第二の放電維持パルス発生部4Bでは、モードIIIにて発生した共振電流が実質的に零まで減衰すると、第三のローサイドダイオードD2Cがオフする。更に、アドレス電極Aの電位がアドレス電源4Hの低電位端子4Nの電位すなわち接地電位まで達する。そのとき、第二のローサイド維持スイッチ素子Q6がオンする(図4参照)。それにより、アドレス電極Aの電位が接地電位に維持される。なお、図11Bでは、モードIVの期間中には第三のローサイド回収スイッチ素子Q4Cはオフとなっているが、オンでもよい。第三のローサイド回収スイッチ素子Q4CはモードVIが終了するまでにオフすればよく、モードIVからモードVIまでのいずれの期間にオフしてもよい。
<モードV>
走査電極Yの電位が所定時間、放電維持パルス電圧の上限+Vsに維持された後、第一の放電維持パルス発生部2Aでは、第一のハイサイド維持スイッチ素子Q1がオフし、第四のローサイド回収スイッチ素子Q4Dがオンする。それにより、接地端子←第四のローサイドダイオードD2D←第四のローサイド回収スイッチ素子Q4D←第四の回収インダクタLD←出力端子2Cの経路が導通する(矢印は電流の向きを表す。図3B参照)。更に、出力端子2C←維持電極X−走査電極Y間のパネル容量CXY←接地スイッチ3B←接地端子の経路が導通する(矢印は電流の向きを表す。図10参照)。そのとき、第四の回収インダクタLDと維持電極X−走査電極Y間のパネル容量CXYとの直列回路が共振する。従って、走査電極Yの電位が滑らかに下降する。第二の放電維持パルス発生部4Bでは、モードIVと同じ動作をする。
<モードVI>
第一の放電維持パルス発生部2Aでは、共振電流が実質的に零まで減衰すると、第四のローサイドダイオードD2Dがオフする。更に、走査電極Yの電位がDC−DCコンバータ1の負電位端子1Nの電位−Vs(すなわち、放電維持パルス電圧の下限)まで達する。そのとき、第一のローサイド維持スイッチ素子Q2がオンする(図3B参照)。それにより、走査電極Yの電位が放電維持パルス電圧の下限−Vsに維持される。なお、図11Bでは、モードVIの期間中には第四のローサイド回収スイッチ素子Q4Dはオフとなっているが、オンでもよい。第四のローサイド回収スイッチ素子Q4DはモードVIIIが終了するまでにオフすればよく、モードVIからモードVIIIまでのいずれの期間にオフしてもよい。
アドレス期間に壁電荷が蓄積されるPDP10の放電セルでは、放電維持パルス電圧の下限−Vsに壁電圧が加わるので、走査電極Yと維持電極Xとの間の電圧が放電開始電圧を超える。従って、放電が持続するので、発光が生じる。そのとき、放電電流を維持するための電力がDC−DCコンバータ1から負電位端子1Nと第一のローサイド維持スイッチ素子Q2とを通してPDP10に供給される。第二の放電維持パルス発生部4Bでは、モードVIと同じ動作をする。
<モードVII>
第一の放電維持パルス発生部2Aでは、モードVIと同様の動作をする。第二の放電維持パルス発生部4Bでは、第二のローサイド維持スイッチ素子Q6がオフし、第三のハイサイド回収スイッチ素子Q3Cがオンする(図4参照)。それにより、接地端子←接地スイッチ3B←維持電極X−アドレス電極A間のパネル容量CXA←第二の放電維持パルス発生部4Bの出力端子4D←第三の回収インダクタLC←第三のハイサイド回収スイッチ素子Q3C←第三のハイサイドダイオードD1C←第三の回収コンデンサCC←接地端子のループが導通する(矢印は電流の向きを表す。図10、4参照)。そのとき、第三の回収インダクタLC、及び維持電極X−アドレス電極A間のパネル容量CXAの直列回路が第三の回収コンデンサCCから電圧Ve/2を印加され、共振する。従って、アドレス電極Aの電位が滑らかに上昇する。
<モードVIII>
第一の放電維持パルス発生部2Aでは、モードVIIと同様の動作をする。第二の放電維持パルス発生部4Bでは、モードVIIにて発生している共振電流が実質的に零まで減衰するとき、第三のハイサイドダイオードD1Cがオフし、アドレス電極Aの電位が高電位電圧Veまで達する。そのとき、第二のハイサイド維持スイッチ素子Q5がオンしてアドレス電極Aが高電位Veに維持される(図4参照)。ここで、アドレス電極Aの電位Veは走査電極Yの電位Vsに近い。
その後、各スイッチ素子の動作は<モードI>に戻り、放電維持期間中は継続される。
上記の通り、本発明の実施形態3によるPDP駆動装置30では、放電維持期間中、維持電極駆動部3が維持電極Xを接地するため、維持電極駆動部3は放電維持パルス発生部を含む必要がない。また、放電維持期間中、上記の例とは逆に、走査電極駆動部2が走査電極Yを接地し、維持電極駆動部3が第一の放電維持パルス発生部2Aを含んでも良い。その場合、走査電極駆動部2は放電維持パルス発生部を含む必要がない。これにより、走査電極駆動部2又は維持電極駆動部3において放電維持パルス発生部を除去できるので駆動装置全体の面積が低減し、かつ回路設計の柔軟性が高まる。それ故、本発明の実施形態3によるPDP駆動装置30は小型化が容易である。
実施形態4
実施の形態3では、放電維持期間中において、アドレス電極Aに対して正極性のパルス電圧を印加しつつ維持電極(または走査電極)の電位を一定値に固定する例を説明した。本実施形態では、放電維持期間に加えてさらに初期化期間及びアドレス期間においても、アドレス電極Aに対して正極性のパルス電圧を印加しつつ維持電極(または走査電極)の電位を一定値に固定する例を説明する。
本発明の実施形態4によるプラズマディスプレイは上記の実施形態2によるプラズマディスプレイ(図6参照)と同様な構成を有する。従って、その構成についての説明は上記の実施形態2についての説明、及び図6を援用する。
図12は、PDP10と本発明の実施形態4によるPDP駆動装置30との等価回路を示すブロック図である。図6と図12とでは、同様な構成要素に対して同じ符号が付される。
本発明の実施形態4では上記の実施形態2とは異なり、アドレス電極駆動部4に含まれる第二の放電維持パルス発生部4Bに印加される電圧の接地基準が、実施形態2と異なる。すなわち、アドレス電源4Hは正の直流電圧源であり、すなわち、高電位端子4Gを一定の正電位Veとし、低電位端子4Nを接地電位に維持する。走査電極駆動部2は実施形態2と同様のため、その構成についての説明は上記の実施形態2についての説明および図7を援用する。
図13は、アドレス電極駆動部4の等価回路図である。アドレス電極駆動部4は、第二の放電維持パルス発生部4B、アドレスパルス発生部4C、及び第二の初期化パルス発生部4Eを有する。第二の放電維持パルス発生部4Bの構成は上記の実施形態3による第二の放電維持パルス発生部4Bの構成と同様である。また、アドレスパルス発生部4Cの構成は上記の実施形態2によるアドレスパルス発生部4Cの構成と同様である。従って、図8と図13とでは、同様な構成要素に対して同じ符号が付される。更に、それら同様な構成要素についての説明は上記の実施形態2ならびに実施形態3についての説明を援用する。特に、第三の電力回収回路6Cの構成は上記の実施形態3による第三の電力回収回路6Cの構成と同様である。
第三の初期化パルス発生部4Jは、第六の定電圧源E6、ハイサイドスイッチQ9、及び第四の分離スイッチ素子QS4を含む。定電圧源E6はそれぞれ、例えばDC−DCコンバータ1から印加される直流電圧に基づき、正極と負極との間の電圧を一定値V6に維持する。
ここで、第六の定電圧源E6の電圧V6はアドレス電源4H(図12参照)の出力電圧Veより高くても低くても良い。図13では、第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより高い場合が例示される:V6>Ve。
アドレススイッチ部4Fは実際には複数のアドレス電極A1、A2、…(図1参照)と同数だけ設けられ、アドレス電極A1、A2、…のそれぞれに一つずつ接続される。アドレススイッチ部4Fのそれぞれは、ハイサイドアドレススイッチ素子QA1とローサイドアドレススイッチ素子QA2との直列接続を含む。ハイサイドアドレススイッチ素子QA1のソースはローサイドアドレススイッチ素子QA2のドレインに接続される。その接続点J6は更に、対応するアドレス電極Aに接続される。
第五の定電圧源E5の正極は、ハイサイドアドレススイッチ素子QA1のドレインに接続され、負極はローサイドアドレススイッチ素子QA2のソースに接続される。第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより高い場合(V6>Ve)、図13に示されるように、第四の分離スイッチ素子QS4のドレインがハイサイドアドレススイッチ素子QA2のソースに接続され、ソースが第二の放電維持パルス発生部4Bの出力端子4Dに接続される。放電維持期間では、第四の分離スイッチ素子QS4とローサイドアドレススイッチ素子QA2とがオンし、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる(上記の実施形態1についての説明を参照)。
第六の定電圧源E6の負極は接地され、正極はハイサイドスイッチ素子Q9のドレインに接続される。ハイサイドスイッチ素子Q9のソースが第四の分離スイッチ素子QS4のドレインに接続される。
第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより低い場合(V6<Ve)、図13とは異なり、ローサイドアドレススイッチ素子QA2のソースと第二の放電維持パルス発生部4Bの出力端子4Dとの間は短絡され、ハイサイドスイッチ素子Q9のドレインと第六の定電圧源E6との間にダイオードを挿入した回路となる。ダイオードのアノード側は第六の定電圧源E6と接続され、ダイオードのカソード側はハイサイドスイッチ素子Q9のドレインと接続される(図示せず)。
図14は、本発明の実施形態4について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及びアドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS4、Q9、Q3C、Q4C、QA1、QA2のオン期間を示す波形図である。図14では、それぞれのスイッチ素子のオン期間が斜線部で示される。
なお、第六の定電圧源E6の電圧V6がアドレス電源4Hの出力電圧Veより低い場合(V6<Ve)、第四の分離スイッチ素子QS4は短絡されていてないので無関係となる。
本発明の実施形態4によるPDP駆動装置30では従来の駆動装置とは異なり、維持電極Xが常に接地電位(≒0)に維持される。
初期化期間では、走査電極Yとアドレス電極Aとの電位が初期化パルス電圧の印加で変化する。初期化パルス電圧の変化に応じ、初期化期間は次の七つのモードI〜VIIに分けられる。
<モードI>
走査電極駆動部2では二つの分離スイッチ素子QS1、QS2、双方向スイッチ部Q7、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される(図7参照)。それにより走査電極Yが接地電位(≒0)に維持される。
アドレス電極駆動部4では第二のローサイド維持スイッチ素子Q6、第四の分離スイッチ素子QS4、及びローサイドアドレススイッチ素子QA2がオン状態に維持される。残りのスイッチ素子はオフ状態に維持される(図13参照)。それによりアドレス電極Aは接地電位に維持される。
<モードII>
走査電極駆動部2ではモードIの状態を維持する。アドレス電極駆動部4ではハイサイドスイッチ素子Q9がオンし、第四の分離す一致素子QS4がオフする。それにより、アドレス電極Aは第六の定電圧源E6の電位V6に維持される。
<モードIII>
走査電極駆動部2では第一のハイサイド維持スイッチ素子Q1がオンし、双方向スイッチ部Q7がオフする。そのとき、二つの分離スイッチ素子QS1、QS2、及び、ローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで上昇する。アドレス電極駆動部4ではモードIIの状態が維持される。
<モードIV>
走査電極駆動部2では第一の分離スイッチ素子QS1がオフし、ハイサイドランプ波形発生部QR1がオンする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の上限Vs+V1まで上昇する。
アドレス電極駆動部4ではモードIIIの状態が維持される。
こうして、PDP10の全ての放電セルでは一様に、印加電圧が初期化パルス電圧の上限Vs+V1まで比較的緩やかに上昇する。それにより一様な壁電荷が蓄積される。そのとき、印加電圧の上昇速度が小さいので、放電セルの発光は微弱に抑えられる。
<モードV>
走査電極駆動部2では第一の分離スイッチ素子QS1がオンし、ハイサイドランプ波形発生部QR1がオフする。そのとき、第一のハイサイド維持スイッチ素子Q1、第二の分離スイッチ素子QS2、及びローサイド走査スイッチ素子QY2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が正電位端子1Pの電位+Vsまで下降する。アドレス電極駆動部4ではモードIVの状態が維持される。こうして、PDP10の全ての放電セルでは放電が停止し、微弱な発光が止まる。
<モードVI>
走査電極駆動部2ではモードVの状態が維持される。従って、走査電極Yの電位が正電位端子1Pの電位+Vsに維持される。
アドレス電極駆動部4では、ハイサイドスイッチ素子Q9がオフし、第二のローサイド維持スイッチ素子Q6と第四の分離スイッチ素子QS4がオンする。そのとき、ローサイドアドレススイッチ素子QA2がオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それによりアドレス電極Aの電位が接地電位まで下降する。
<モードVII>
走査電極駆動部2では、第一のハイサイド維持スイッチ素子Q1と第二の分離スイッチ素子QS2とがオフし、ローサイドランプ波形発生部QR2がオンする。そのとき、第一の分離スイッチ素子QS1とローサイド走査スイッチ素子QY2とがオン状態に維持され、残りのスイッチ素子はオフ状態に維持される。それにより、走査電極Yの電位が一定の速度で、正電位端子1Pの電位+Vsから初期化パルス電圧の下限−V2まで下降する。アドレス電極駆動部4ではモードVIの状態が維持される。こうして、PDP10の放電セルの全てで壁電荷が一様に除去され、均一化される。そのとき、印加電圧は比較的緩やかに上昇あるいは下降するので、放電セルの発光は微弱に抑えられる。
アドレス期間中、走査電極駆動部2では、ローサイドランプ波形発生部QR2がオフし、バイパススイッチ素子QBがオンする。それにより、ローサイド走査スイッチ素子QY2のソース(あるいはエミッタ)は走査パルス電圧の下限−V2に維持される。更に例えば、双方向スイッチ部Q7がオンする。そのとき、第一の分離スイッチ素子QS1がオン状態に維持される。
アドレス電極駆動部4では、ローサイド維持スイッチ素子Q6と第四の分離スイッチ素子QS4がオン状態に維持される。それにより、ローサイドアドレススイッチ素子QA2のソースが接地電位に維持される。
アドレス期間の開始時、走査電極駆動部2は全ての走査電極Y1、Y2、Y3、…(図1参照)について、ハイサイド走査スイッチ素子QY1をオン状態に維持し、ローサイド走査スイッチ素子QY2をオフ状態に維持する。それにより、全ての走査電極Yの電位が一様に走査パルス電圧の上限V3−V2に維持される。
走査電極駆動部2は続いて、走査電極Y1、Y2、Y3、…のそれぞれの電位を順次、次のように変化させる(図14に示される走査パルス電圧SP参照)。走査電極の一つYが選択されるとき、その走査電極Yに接続されるハイサイド走査スイッチ素子QY1がオフし、ローサイド走査スイッチ素子QY2がオンする。それにより、その走査電極Yの電位が走査パルス電圧の下限−V2まで下降する。その走査電極Yの電位が所定時間、走査パルス電圧の下限−V2に維持されるとき、その走査電極Yに接続されるローサイド走査スイッチ素子QY2がオフし、ハイサイド走査スイッチ素子QY1がオンする。それにより、その走査電極Yの電位が走査パルス電圧の上限V3−V2まで上昇する。
走査電極駆動部2は走査電極Y1、Y2、Y3、…のそれぞれに接続される走査スイッチ素子対Q1Y、Q2Yについて、上記と同様なスイッチング動作を順次行う。こうして、走査パルス電圧SPが走査電極Y1、Y2、Y3、…のそれぞれに対し順次、印加される。
アドレス期間の開始時、アドレス電極駆動部4は全てのアドレス電極A1、A2、A3、…(図1参照)について、ローサイドアドレススイッチ素子QA2をオン状態に維持し、ハイサイドアドレススイッチ素子QA1をオフ状態に維持する。それにより、全てのアドレス電極Aの電位が一様に接地電位に維持される。
アドレス期間中、アドレス電極駆動部4は、外部から入力される映像信号に基づきアドレス電極の一つAを選択し、その選択されたアドレス電極Aの電位を所定時間、アドレスパルス電圧の上限Vaまで上昇させる。
例えば図14に示される区間SPでは、走査パルス電圧が走査電極Yの一つに印加されると同時にアドレスパルス電圧がアドレス電極の一つAに印加される。そのとき、その走査電極Yとアドレス電極Aとの間には、走査パルス電圧の下限−V2とアドレスパルス電圧の上限Vaとの差に相当する電圧−V2+Vaが印加される。その電圧は走査電極とアドレス電極との他の組合せの間の電圧より高い。従って、区間SPで同時に選択される走査電極Yとアドレス電極Aとの間の交差点に位置する放電セルでは、走査電極Yとアドレス電極Aとの間で放電が生じる。それにより、その放電セルの特に走査電極Y上には、他の放電セルより多量の壁電荷が蓄積される。
放電維持期間中、走査電極駆動部2は、二つの分離スイッチ素子QS1、QS2、及びローサイド走査スイッチ素子QY2をオン状態に維持する。それにより、第一の放電維持パルス発生部2Aの出力端子2Cと走査電極Yとの間を短絡させる。一方、アドレス電極駆動部4は第四の分離スイッチ素子QS4とローサイドアドレススイッチ素子QA2とをオン状態に維持する。それにより、第二の放電維持パルス発生部4Bの出力端子4Dとアドレス電極Aとの間を短絡させる。
その状態で、第一の放電維持パルス発生部2Aと第二の放電維持パルス発生部4Bとが上記の実施形態3と同様に動作する。それにより、放電維持パルス電圧が走査電極Yとアドレス電極Aとに対して実施形態3と同様に印加される(図11A参照)。そのとき、アドレス期間に比較的多量の壁電荷が蓄積された放電セルでは放電が維持されるので、発光が生じる。
上記の通り、本発明の実施形態4によるPDP駆動装置30は、維持電極Xが常に接地電位に維持される。すなわち、維持電極駆動部3が維持電極Xと接地端子との間の単なる接続部で良い。その代わり、アドレス電極駆動部4がアドレスパルス発生部4Cの他に、第二の放電維持パルス発生部4Bと第三の初期化パルス発生部4Jとを含む。よって実質的に維持電極駆動部3を除去でき、PDP駆動装置の小型化が図れる。
また、各パルス電圧の発生部と電源とがPDP10の走査電極Y側に集中して配置される。すなわちPDP駆動装置30のノイズ源と熱源とがPDP10の走査電極Y側に集約される。従って、ノイズ/熱対策が容易である。
例えばチューナ等、比較的ノイズに弱い高周波回路は、PDP10の維持電極X側に配置すれば良い。そのとき、PDP駆動装置30からのノイズによる悪影響が効果的に回避される。
更に、例えばファン等の冷却装置による冷却範囲がPDP10の走査電極Y側に限定されても良い。そのとき、その冷却効率が効果的に向上する。
なお、図14では放電維持期間中の電圧波形として図3Aに示した回収回路部を想定した波形を記載したが、図3Bに示した回収回路部を用いてもよく、その場合の放電維持期間中の電圧波形および各スイッチ素子のオンオフ状態は図11Bのようになる。
本発明は、特定の実施形態について説明されてきたが、当業者にとっては他の多くの変形例、修正、他の利用が明らかである。それゆえ、本発明は、ここでの特定の開示に限定されず、添付の請求の範囲によってのみ限定され得る。なお、本出願は日本国特許出願、特願2004−164593号(2004年6月2日提出)に関連し、それらの内容は参照することにより本文中に組み入れられる。
本発明は、プラズマディスプレイパネルの駆動装置及びプラズマディスプレイを備えた表示装置に有用である。
本発明の実施形態1によるプラズマディスプレイの構成を示すブロック図である。 PDP10と本発明の実施形態1によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態1による第一の放電維持パルス発生部2Aの等価回路図である。 本発明の実施形態1による他の好適な第一の放電維持パルス発生部2Aの等価回路図である。 本発明の実施形態1による第二の放電維持パルス発生部4Bの等価回路図である。 本発明の実施形態1について、放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3A、Q4A、Q3B、Q4B、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 本発明の実施形態1について、他の好適な放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3D、Q4D、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 PDP10と本発明の実施形態2によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態2による走査電極駆動部2の等価回路図である。 本発明の実施形態2によるアドレス電極駆動部4の等価回路図である。 本発明の実施形態2について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及び、アドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS3、Q8、QA1、QA2のオン期間を示す波形図である。 PDP10と本発明の実施形態3によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態3について、放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3A、Q4A、Q3B、Q4B、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 本発明の実施形態3について、他の好適な放電維持期間での、PDP10の走査電極Y、維持電極X、及びアドレス電極Aの電位変化、並びに、第一の放電維持パルス発生部2Aに含まれるスイッチ素子Q1、Q2、Q3D、Q4D、Q7のオン期間、及び、第二の放電維持パルス発生部4Bに含まれるスイッチ素子Q5、Q6、Q3C、Q4Cのオン期間を示す波形図である。 PDP10と本発明の実施形態4によるPDP駆動装置30との等価回路を示すブロック図である。 本発明の実施形態4によるアドレス電極駆動部4の等価回路図である。 本発明の実施形態4について、初期化期間、アドレス期間、及び放電維持期間のそれぞれでの、PDP10の走査電極Y、維持電極X、及び、アドレス電極Aそれぞれの電位変化、並びに走査電極駆動部2に含まれるスイッチ素子Q1、Q2、QS1、QS2、Q7、QB、QR1、QR2、QY1、QY2のオン期間、及び、アドレス電極駆動部4に含まれるスイッチ素子Q5、Q6、QS4、Q9、QA1、QA2、Q3C、Q4Cのオン期間を示す波形図である。 従来のPDP駆動装置について、放電維持期間での、走査電極駆動部110、維持電極駆動部120、アドレス電極駆動部130、及びPDP200の等価回路を示す図である。 従来のPDP駆動装置について、放電維持期間中での、走査電極Y、維持電極X、及びアドレス電極Aの電位変化を示す波形図である。
符号の説明
1 二つの直流電圧源の直列接続
1P 直流電圧源1の正電位端子
1N 直流電圧源1の負電位端子
2 走査電極駆動部
2A 第一の放電維持パルス発生部
2B 第一の初期化/走査パルス発生部
2C 第一の放電維持パルス発生部2Aの出力端子
3 維持電極駆動部
3A 第二の初期化/走査パルス発生部
4 アドレス電極駆動部
4A アドレス電源部
4B 第二の放電維持パルス発生部
4C アドレスパルス発生部
4D 第二の放電維持パルス発生部4Bの出力端子
4G アドレス電源部4Aの高電位端子
4N アドレス電源部4Aの低電位端子
10 PDP
X PDP10の維持電極
Y PDP10の走査電極
A PDP10のアドレス電極
CXY 維持電極X−走査電極Y間のパネル容量
CXA 維持電極X−アドレス電極A間のパネル容量
CYA 走査電極Y−アドレス電極A間のパネル容量

Claims (13)

  1. アドレス電極と維持電極と走査電極とを有するプラズマディスプレイパネルの駆動装置であって、
    放電維持期間中、
    前記維持電極と走査電極のうち、一方を所定電位に維持し、他方に第一の正パルス電圧と第一の負パルス電圧とを交互に、放電維持パルス電圧として印加する放電維持パルス発生部と、
    前記アドレス電極に時間的に変化する電圧を印加するアドレス電圧発生部と
    を備えたPDP駆動装置。
  2. 前記アドレス電圧発生部は、放電維持期間中、前記アドレス電極に、一定の極性を持つ第二のパルス電圧を、前記放電維持パルス電圧のうち前記第二のパルス電圧と同極性のパルスに同期して印加する、請求項1記載のPDP駆動装置。
  3. 前記第二のパルス電圧の最大振幅値は、前記放電維持パルス電圧のうち前記第二のパルス電圧と同極性のパルスの最大振幅値以下である、請求項2記載のPDP駆動装置。
  4. 前記第二のパルス電圧が負極性を持つ、請求項2記載のPDP駆動装置。
  5. さらに、初期化期間中、前記維持電極を接地電位に維持し、前記走査電極に対して初期化パルス電圧を印加する、初期化パルス発生部と、
    アドレス期間中、前記維持電極を接地電位に維持し、前記走査電極に対して走査パルス電圧を印加する、走査パルス発生部とを備え、
    前記放電維持パルス発生部が放電維持期間中、前記維持電極を接地電位に維持する、
    請求項2記載のPDP駆動装置。
  6. 前記アドレス電圧発生部は、放電維持期間中、前記放電維持パルス電圧が最大値から最小値へ変化する間に、前記アドレス電極の電位を接地電位から負の所定電位に変化させ、かつ、前記放電維持パルス電圧が最小値から最大値へ変化する間に前記アドレス電極の電位を負の所定電位から接地電位に変化させる、請求項1記載のPDP駆動装置。
  7. さらに、初期化期間中、前記維持電極を接地電位に維持し、前記走査電極に対して初期化パルス電圧を印加する、初期化パルス発生部と、
    アドレス期間中、前記維持電極を接地電位に維持し、前記走査電極に対して走査パルス電圧を印加する、走査パルス発生部とを備え、
    前記放電維持パルス発生部が放電維持期間中、前記維持電極を接地電位に維持する、
    請求項6記載のPDP駆動装置。
  8. 前記アドレス電圧発生部は、放電維持期間中、前記PDPのアドレス電極の電位を少なくとも2つの異なる電位に制御するとともに、前記第一の正パルス電圧を印加中に前記アドレス電極の電位を低下させ、前記第一の負パルス電圧を印加中に前記アドレス電極の電位を上昇させる、請求項1記載のPDP駆動装置。
  9. 前記アドレス電極の制御される電位のうち最も低い電位は、接地電位であることを特徴とする請求項8記載のPDP駆動装置。
  10. さらに、初期化期間中、前記維持電極を接地電位に維持し、前記走査電極に対して初期化パルス電圧を印加する、初期化パルス発生部と、
    アドレス期間中、前記維持電極を接地電位に維持し、前記走査電極に対して走査パルス電圧を印加する、走査パルス発生部とを備え、
    前記放電維持パルス発生部が放電維持期間中、前記維持電極を接地電位に維持する、
    請求項8記載のPDP駆動装置。
  11. 前記アドレス電圧発生部は、放電維持期間中、前記放電維持パルス電圧が最大値から最小値へ変化する間に、前記アドレス電極の電位を低下させ、かつ、前記放電維持パルス電圧が最小値から最大値へ変化する間に前記アドレス電極の電位を上昇させる、請求項1記載のPDP駆動装置。
  12. さらに、初期化期間中、前記維持電極を接地電位に維持し、前記走査電極に対して初期化パルス電圧を印加する、初期化パルス発生部と、
    アドレス期間中、前記維持電極を接地電位に維持し、前記走査電極に対して走査パルス電圧を印加する、走査パルス発生部とを備え、
    前記放電維持パルス発生部が放電維持期間中、前記維持電極を接地電位に維持する、
    請求項11記載のPDP駆動装置。
  13. 内部に封入されたガスの放電により発光する放電セル、及び、所定の電圧を前記放電セルに対して印加するための維持電極、走査電極及びアドレス電極を有するプラズマディスプレイパネルと、
    該プラズマディスプレイパネルを駆動する、請求項1ないし請求項12のいずれか1つに記載のPDP駆動装置と
    を有するプラズマディスプレイ。
JP2006514104A 2004-06-02 2005-05-31 プラズマディスプレイパネル駆動装置及びプラズマディスプレイ Withdrawn JPWO2005119637A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004164593 2004-06-02
JP2004164593 2004-06-02
PCT/JP2005/009989 WO2005119637A1 (ja) 2004-06-02 2005-05-31 プラズマディスプレイパネル駆動装置及びプラズマディスプレイ

Publications (1)

Publication Number Publication Date
JPWO2005119637A1 true JPWO2005119637A1 (ja) 2008-04-03

Family

ID=35463093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514104A Withdrawn JPWO2005119637A1 (ja) 2004-06-02 2005-05-31 プラズマディスプレイパネル駆動装置及びプラズマディスプレイ

Country Status (5)

Country Link
US (1) US20060038750A1 (ja)
JP (1) JPWO2005119637A1 (ja)
KR (1) KR20070029635A (ja)
CN (1) CN1898717A (ja)
WO (1) WO2005119637A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413865B2 (ja) * 2003-08-07 2010-02-10 パナソニック株式会社 表示装置
JP2005309397A (ja) * 2004-04-16 2005-11-04 Samsung Sdi Co Ltd プラズマディスプレイパネル、プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
CN100573637C (zh) * 2005-05-23 2009-12-23 松下电器产业株式会社 等离子显示面板驱动电路和等离子显示设备
TW200707376A (en) 2005-06-08 2007-02-16 Ignis Innovation Inc Method and system for driving a light emitting device display
KR100705814B1 (ko) * 2005-06-16 2007-04-09 엘지전자 주식회사 플라즈마 디스플레이 패널의 구동 장치
KR100774943B1 (ko) * 2005-10-14 2007-11-09 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동방법
US20070115219A1 (en) * 2005-11-22 2007-05-24 Matsushita Electric Industrial Co., Ltd. Apparatus for driving plasma display panel and plasma display
US20090237000A1 (en) * 2005-11-22 2009-09-24 Matsushita Electric Industrial Co., Ltd. Pdp driving apparatus and plasma display
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
EP1971975B1 (en) 2006-01-09 2015-10-21 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US7583033B2 (en) * 2006-02-06 2009-09-01 Panasonic Corporation Plasma display panel driving circuit and plasma display apparatus
US20070188416A1 (en) * 2006-02-16 2007-08-16 Matsushita Electric Industrial Co., Ltd. Apparatus for driving plasma display panel and plasma display
KR100825428B1 (ko) * 2006-03-14 2008-04-28 엘지전자 주식회사 플라즈마 디스플레이 패널의 구동 방법
JP4937635B2 (ja) * 2006-05-16 2012-05-23 パナソニック株式会社 プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
KR20080033716A (ko) * 2006-10-13 2008-04-17 엘지전자 주식회사 플라즈마 디스플레이 장치
KR101009889B1 (ko) * 2006-12-05 2011-01-20 파나소닉 주식회사 플라즈마 디스플레이 장치 및 그 구동 방법
JP4561734B2 (ja) * 2006-12-13 2010-10-13 株式会社日立製作所 半導体装置およびそれを用いたプラズマディスプレイ装置
CN101356562B (zh) * 2007-01-24 2010-12-01 松下电器产业株式会社 等离子显示面板驱动电路及等离子显示装置
KR100839383B1 (ko) * 2007-03-27 2008-06-20 삼성에스디아이 주식회사 플라즈마 표시 장치 및 그 구동 방법
US8159487B2 (en) * 2007-08-06 2012-04-17 Panasonic Corporation Plasma display device
JP5011091B2 (ja) * 2007-12-27 2012-08-29 株式会社日立製作所 プラズマディスプレイ装置
JP5466694B2 (ja) 2008-04-18 2014-04-09 イグニス・イノベーション・インコーポレイテッド 発光デバイス・ディスプレイのためのシステムおよび駆動方法
WO2009157180A1 (ja) * 2008-06-26 2009-12-30 パナソニック株式会社 プラズマディスプレイパネルの駆動回路およびプラズマディスプレイ装置
CA2637343A1 (en) 2008-07-29 2010-01-29 Ignis Innovation Inc. Improving the display source driver
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
EP2374122A4 (en) * 2008-12-09 2012-05-02 Ignis Innovation Inc LOW POWER OPERATION AND CONTROL METHOD FOR EMISSIONS INDICATORS
US8633873B2 (en) 2009-11-12 2014-01-21 Ignis Innovation Inc. Stable fast programming scheme for displays
CA2687631A1 (en) 2009-12-06 2011-06-06 Ignis Innovation Inc Low power driving scheme for display applications
CA2696778A1 (en) * 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US20140368491A1 (en) 2013-03-08 2014-12-18 Ignis Innovation Inc. Pixel circuits for amoled displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
CA2894717A1 (en) 2015-06-19 2016-12-19 Ignis Innovation Inc. Optoelectronic device characterization in array with shared sense line
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
CA2873476A1 (en) 2014-12-08 2016-06-08 Ignis Innovation Inc. Smart-pixel display architecture
CA2886862A1 (en) 2015-04-01 2016-10-01 Ignis Innovation Inc. Adjusting display brightness for avoiding overheating and/or accelerated aging
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
CA2908285A1 (en) 2015-10-14 2017-04-14 Ignis Innovation Inc. Driver with multiple color pixel structure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US246207A (en) * 1881-08-23 Strawberry-runner cutter
US117345A (en) * 1871-07-25 Improvement in ship-building
JP3666607B2 (ja) * 1995-05-24 2005-06-29 富士通株式会社 プラズマパネルの駆動方法、駆動装置及びプラズマパネル
JP3522013B2 (ja) * 1995-09-04 2004-04-26 富士通株式会社 画像表示装置、および画像表示装置の駆動方法
JP3492889B2 (ja) * 1996-09-03 2004-02-03 パイオニア株式会社 プラズマディスプレイパネルの駆動方法
US5966107A (en) * 1996-09-03 1999-10-12 Pioneer Electronic Corporation Method for driving a plasma display panel
JP2994631B2 (ja) * 1997-12-10 1999-12-27 松下電器産業株式会社 Pdp表示の駆動パルス制御装置
JP2994632B1 (ja) * 1998-09-25 1999-12-27 松下電器産業株式会社 発光中心変動防止のためのpdp表示の駆動パルス制御装置
JP2000122603A (ja) * 1998-10-19 2000-04-28 Noritake Co Ltd ガス放電パネルの駆動方法
KR100325857B1 (ko) * 1999-06-30 2002-03-07 김순택 에너지 복구 효율이 향상된 플라즈마 표시 패널 및 그 구동방법
JP3201603B1 (ja) * 1999-06-30 2001-08-27 富士通株式会社 駆動装置、駆動方法およびプラズマディスプレイパネルの駆動回路
JP2001282182A (ja) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Ac型プラズマディスプレイパネルの駆動方法
JP2002050296A (ja) * 2000-08-03 2002-02-15 Matsushita Electric Ind Co Ltd ガス放電表示装置とその駆動方法
JP2002287694A (ja) * 2001-03-26 2002-10-04 Hitachi Ltd プラズマディスプレイパネルの駆動方法、駆動回路及び画像表示装置
JP4058299B2 (ja) * 2001-06-12 2008-03-05 松下電器産業株式会社 プラズマディスプレイパネル表示装置とその駆動方法
JP4299987B2 (ja) * 2001-12-21 2009-07-22 株式会社日立製作所 プラズマディスプレイ装置及びその駆動方法
JP2005309397A (ja) * 2004-04-16 2005-11-04 Samsung Sdi Co Ltd プラズマディスプレイパネル、プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法

Also Published As

Publication number Publication date
KR20070029635A (ko) 2007-03-14
CN1898717A (zh) 2007-01-17
WO2005119637A1 (ja) 2005-12-15
US20060038750A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JPWO2005119637A1 (ja) プラズマディスプレイパネル駆動装置及びプラズマディスプレイ
JP4937635B2 (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
US6680581B2 (en) Apparatus and method for driving plasma display panel
US20070188416A1 (en) Apparatus for driving plasma display panel and plasma display
JP4338766B2 (ja) プラズマディスプレイパネル駆動回路
JP5110773B2 (ja) プラズマディスプレイパネル駆動装置
Liu et al. An energy-recovery sustaining driver with discharge current compensation for AC plasma display panel
US8605013B2 (en) Plasma display device, and plasma display panel driving method
JP4356024B2 (ja) エネルギー回収回路及びこれを用いたエネルギー回収方法
US20050190125A1 (en) Capacitive load driver and plasma display
KR100673471B1 (ko) 플라즈마 디스플레이 패널 장치와 구동방법
KR100790831B1 (ko) 플라즈마 디스플레이 패널의 구동 장치
WO2009130860A1 (ja) プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法
KR100649724B1 (ko) 플라즈마 디스플레이 패널의 에너지 회수장치
JP2006259061A (ja) プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法
WO2009098879A1 (ja) 容量性負荷駆動装置、それを搭載するプラズマディスプレイ装置、およびプラズマディスプレイパネルの駆動方法
KR100488451B1 (ko) 에너지 회수장치 및 이를 이용한 에너지 회수방법
JP2006208586A (ja) 容量性負荷駆動装置、及びそれを搭載するプラズマディスプレイ
JP2005077981A (ja) プラズマディスプレイパネルの駆動装置
US20110090211A1 (en) Circuit for driving plasma display panel and plasma display device
JP2009211059A (ja) プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
KR101174721B1 (ko) 플라즈마 디스플레이 패널의 구동회로
JP2008008980A (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
JP2006349721A (ja) プラズマディスプレイパネル駆動装置及びプラズマディスプレイ
JP2007011099A (ja) 容量性負荷駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080728