JPS6392726A - Production of carbon fiber by vapor process - Google Patents

Production of carbon fiber by vapor process

Info

Publication number
JPS6392726A
JPS6392726A JP23375886A JP23375886A JPS6392726A JP S6392726 A JPS6392726 A JP S6392726A JP 23375886 A JP23375886 A JP 23375886A JP 23375886 A JP23375886 A JP 23375886A JP S6392726 A JPS6392726 A JP S6392726A
Authority
JP
Japan
Prior art keywords
transition metal
droplet
carbon fiber
metal compound
seeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23375886A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP23375886A priority Critical patent/JPS6392726A/en
Publication of JPS6392726A publication Critical patent/JPS6392726A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1276Aromatics, e.g. toluene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Abstract

PURPOSE:To improve the production efficiency and reduce the cost of the vapor- phase growth of carbon fiber by dispersing minute droplets of a liquid organic compound containing a transition metal compound in a thermal decomposition furnace while specifying the concentration of the transition metal compound and the dimension of the droplet. CONSTITUTION:A liquid organic compound containing a transition metal compound is supplied in the form of minute droplets to the inside of a heat- decomposition furnace 1 to effect the vapor-phase growth of carbon fiber. In the above process, the concentration of the transition metal compound and the size of the minute droplet are adjusted in a manner to form p[articles of 20-300Angstrom diameter by the thermal decomposition of the transition metal compound. The diameter of the droplet is preferably 5-30mum and the concentration of the transition metal in the liquid organic compound is preferably 0.01-1.0mol/l.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相法炭素繊維、特に極微細な気相洗炭M#I
雑を効率よくつくることが出来る改良された方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to vapor-grown carbon fibers, particularly ultrafine vapor-washed carbon M#I.
This invention relates to an improved method for efficiently producing miscellaneous materials.

〔従来の技術〕[Conventional technology]

従来、気相法炭素il帷を製造する場合には、遷移金属
元素の超微粒子をシードとして用い、これに炭素を析出
、生長させて炭素繊維とするが、その製造法としては、
■熱分解炉中の基板上に「e等の遷移金属元素の超微粉
末を散布してシードとして用いる方法(特開昭52−1
03528 @−全公報、■l”e等の遷移金属化合物
を気化させ、キ1!リヤガスとともに熱分解炉内に送入
しシードを生成させて用いる方法(特開昭60−549
98号公報)、■Fe等の遷移金属化合物を液体有機化
合物の分散或は溶解させて熱分解炉中にスプレーしてシ
ードを生成させて用いる方法(特開昭58−18061
5@公報)などがある。
Conventionally, when manufacturing vapor-grown carbon il cloth, ultrafine particles of transition metal elements are used as seeds, and carbon is precipitated and grown to form carbon fibers, but the manufacturing method is as follows:
■A method of scattering ultrafine powder of transition metal elements such as e on a substrate in a pyrolysis furnace and using it as a seed (Japanese Patent Laid-Open No. 52-1
03528 @-Zen Publication, ■Method of vaporizing transition metal compounds such as l”e and feeding them into a pyrolysis furnace together with Kiriya gas to generate seeds (Japanese Unexamined Patent Publication No. 60-549)
98 Publication), ■ A method of using a transition metal compound such as Fe by dispersing or dissolving it in a liquid organic compound and spraying it into a pyrolysis furnace to generate seeds (Japanese Patent Laid-Open No. 58-18061
5@public bulletin).

これらの方法らおいては、いずれも1100〜1300
℃の反応空間に活性なFeシードと炭素源となる有機化
合物とを共存させることが必須である。
In these methods, 1100 to 1300
It is essential that an active Fe seed and an organic compound serving as a carbon source coexist in the reaction space at .degree.

■の基板にシードを散布する方法は、[eの超微粉末を
用いることが重要で、細い程炭素繊維の生成効率がよい
。しかし、最も細かいFe粉末は相対比で、粒径100
人: 200人=300人=10=2〜7:1〜6で、
これより細いものは存在しないと云われている(表面V
OJ24.Nα5゜P227〜233)。この方法で得
られる炭素繊維は、直径10〜30μm、長さ10〜2
01で、肉眼で炭素繊維とわかるものが得られる。■の
気化法、■のスプレー法で得られる炭素繊維は、−見煤
状であるが、SEMなどで拡大して見ると繊維であるこ
とが確認でき、径が0.1〜0.2μm1長さが数Mで
湾曲、分岐を有しているものが多く、■の基板法でつく
られた炭素llNに比して、はるかに微細であるが、収
率、生産性が高いのが特徴である。
In the method (2) of dispersing seeds on a substrate, it is important to use ultrafine powder (e), and the finer the powder, the better the carbon fiber production efficiency. However, in relative terms, the finest Fe powder has a particle size of 100
People: 200 people = 300 people = 10 = 2-7: 1-6,
It is said that there is nothing thinner than this (surface V
OJ24. Nα5°P227-233). The carbon fiber obtained by this method has a diameter of 10 to 30 μm and a length of 10 to 2
01, a material that can be recognized with the naked eye as carbon fiber is obtained. The carbon fibers obtained by the vaporization method in ① and the spray method in ② have a soot-like appearance, but when viewed under magnification using an SEM, they can be confirmed to be fibers, with a diameter of 0.1 to 0.2 μm and a length. Many of them have a length of several M and are curved and branched, and are much finer than the carbon 1N produced by the substrate method in (2), but are characterized by high yield and productivity. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記気相法炭素繊維は、周知のようにシードを炭素!!
雑の先端につけて生長するが、繊維先端部に残っている
Feシードの大きさを透過電子顕微鏡で観察すると、そ
の径は50〜150人である。
As is well known, the vapor-grown carbon fiber mentioned above uses carbon as a seed! !
The size of the Fe seeds remaining at the tips of the fibers is observed using a transmission electron microscope, and the diameter is 50 to 150.

したがって、効率よく気相法炭素[1を得るには、50
〜150A径のl”eシードを収率よく得ることが必要
である。したがって、粒度分布を20〜300人と調整
すると、50〜150人の粒子の割合が多くなるので好
ましい。
Therefore, in order to efficiently obtain vapor-grown carbon [1], 50
It is necessary to obtain l''e seeds with a diameter of ~150A in good yield. Therefore, it is preferable to adjust the particle size distribution to 20-300 particles, since this increases the proportion of particles with 50-150 particles.

上記3つの方法におけるFeシードの利用効率を求める
と、■の基板を用いる方法は3.3×10  、■の気
化法は3.7X 10−’ 、■のスプレー法は2.6
X10’となった。
The utilization efficiency of Fe seeds in the above three methods is 3.3 x 10 for the method using a substrate, 3.7 x 10 -' for the vaporization method, and 2.6 for the spray method.
It became X10'.

但し、上記利用効率は、次のようにして求めたものであ
る。すなわち、 ■の基板法では、0.1%のl”e超微粒子を含むエタ
ノールを基板上にスプレーしてシードとし、生成炭素繊
維と推定シードの数との比より求めた。
However, the above usage efficiency was determined as follows. That is, in the substrate method (2), ethanol containing 0.1% l''e ultrafine particles was sprayed onto the substrate to serve as seeds, and the number was determined from the ratio of the produced carbon fibers to the estimated number of seeds.

■の気化法では気化させることにより、分圧でベンゼン
95 torr1フェロセン59 torrを含むH2
ガスをつくり、これを熱分解炉に送り、生成炭素繊維の
本数と、フェロセンの供給最のバランスから、すべての
Feが径100人のFeシードとなったと仮定して、そ
の数との比より算出した。
In the vaporization method (2), by vaporizing H2 containing benzene 95 torr1 ferrocene 59 torr at a partial pressure
Create a gas, send it to the pyrolysis furnace, and from the balance between the number of carbon fibers produced and the best supply of ferrocene, assuming that all Fe becomes Fe seeds with a diameter of 100 people, the ratio to that number is Calculated.

■のスプレー法では、0.2wt%のフェロセンを含む
ベンゼン溶液を熱分解炉内にスプレーして反応させ、生
成炭素amの本数と、フェロセンのFeが仝け100人
のFeシードとなったと仮定して、その数との比より算
出した。
In the spray method (2), a benzene solution containing 0.2 wt% ferrocene is sprayed into the pyrolysis furnace to cause a reaction, and it is assumed that the number of produced carbon am and the Fe of ferrocene become 100 Fe seeds. It was calculated from the ratio to that number.

以上の結果より■のスプレー法のシード利用効率が格段
に高いことがわかる。
From the above results, it can be seen that the seed usage efficiency of the spray method (■) is significantly high.

■の基板法において、使用されるFeシードの平均粒径
は150人であるが、スート状のもので、実際に利用さ
れる部分は少なく、また、■の気化法は、Feシードが
生成するのに時間を要し、相当部分がシードとなる前に
反応域を通過するため、利用効率が低いものと思われる
。未利用のl”eは、製品の炭素繊維に付着回収されて
、不純物増加の原因にもなって、好ましい形ではない。
In the substrate method (2), the average particle size of the Fe seeds used is 150 particles, but they are in the form of soot, and the portion that is actually used is small, and in the vaporization method (2), the Fe seeds are The utilization efficiency is thought to be low because it takes time to process and a considerable portion passes through the reaction zone before becoming seeds. Unused l''e is collected and attached to the carbon fibers of the product, causing an increase in impurities, which is not a desirable form.

上記気相法炭素繊維の!ll造に用いられるFeシード
は、いずれもコストが高く、気相法炭素繊維のコストに
占める割合は比較的大きく、シードを有効利用すること
は重要である。
The above vapor grown carbon fiber! The cost of Fe seeds used in Il manufacturing is high, and their proportion in the cost of vapor-grown carbon fiber is relatively large, so it is important to use the seeds effectively.

本発明は上記の事情に鑑み、スプレー法のシード利用効
率が高いことに着目し、これを改良してさらにこれを高
め、操作の容易な気相法炭素繊維の製造法を提供するこ
とを目的とする。
In view of the above-mentioned circumstances, the present invention focuses on the high seed utilization efficiency of the spray method, and aims to improve this to further increase this and provide an easy-to-operate method for producing vapor-grown carbon fiber. shall be.

(問題点を解決するための手段〕 本発明はシードとして、径50〜150人のものが特に
有効であることから、スプレー法によってこれをつくる
ことを考え、到達したものである。
(Means for Solving the Problems) The present invention was developed based on the idea that seeds with a diameter of 50 to 150 are particularly effective, and that they can be produced by a spray method.

本発明者等の研究により、液滴が蒸発した際、多くは1
個の液滴中に含まれる金属が凝集(融合等を含む)して
粒子をつくり、かつ一つの液滴が他の液滴からの金属と
凝集することは少ないことが判明した。したがって、金
属粒子の大きさは、液滴の大・きざと、その中の濃度と
の函数であり、その大きさを調整することが出来る。
According to the research conducted by the present inventors, when a droplet evaporates, in most cases 1
It has been found that metals contained in individual droplets aggregate (including fusion, etc.) to form particles, and that one droplet rarely aggregates with metals from other droplets. Therefore, the size of the metal particles is a function of the size and size of the droplet and the concentration therein, and the size can be adjusted.

すなわち、本発明の要旨は、遷移金属の化合物を含有す
る液体有機化合物の微小液滴を熱分解炉内に分散し、遷
移金属元素の超微粒子をシードとして有機化合物の気相
熱分解により炭素繊維を製造する方法において、上記液
滴の大きざ及び遷移金属化合物の温度を液滴中に含まれ
ている遷移金属の原子が熱分解炉内で凝集して、該金属
粒子を形成したとき、その粒子の大きざの分布が20Å
〜300人となるように調整する気相法炭素繊維の製造
法にある。
That is, the gist of the present invention is to disperse micro droplets of a liquid organic compound containing a compound of a transition metal in a pyrolysis furnace, and to produce carbon fibers by vapor phase pyrolysis of the organic compound using ultrafine particles of a transition metal element as seeds. In the method for producing a metal particle, the size of the droplet and the temperature of the transition metal compound are determined by adjusting the size of the droplet and the temperature of the transition metal compound when the atoms of the transition metal contained in the droplet aggregate in a pyrolysis furnace to form the metal particles. Particle size distribution is 20 Å
The method for producing vapor-grown carbon fiber is to adjust the production time to 300 people.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下本発明を具体的に説明する。 The present invention will be specifically explained below.

本発明に用いられる遷移金属化合物は、Fe2O3等液
体有機化合物に不溶なものも、キャリヤガスとしてH2
を用いれば還元されてFeとなるので使用可能であるが
、均一分散を考慮すると、液体有機化合物に溶解する遷
移金属化合物が望ましい。
The transition metal compounds used in the present invention may be insoluble in liquid organic compounds such as Fe2O3 or H2 as a carrier gas.
However, in consideration of uniform dispersion, it is desirable to use a transition metal compound that dissolves in a liquid organic compound.

液体有機化合物としては、炭化水素、0.N。Liquid organic compounds include hydrocarbons, 0. N.

S等を有する有様化合物、或はアルコール類等が用いら
れるが、特にベンゼン等の炭化水素が、炭素の割合が多
(好ましい。
Compounds having S or the like, alcohols, etc. are used, and hydrocarbons such as benzene are particularly preferred since they have a large proportion of carbon.

また、キャリヤガスとしては、従来、気相法炭素繊維(
以下VGCFという)の製法において使用されるものが
いずれも使用出来、通常H2が用いられる。
In addition, conventionally, vapor grown carbon fiber (
Any of those used in the manufacturing method of VGCF (hereinafter referred to as VGCF) can be used, and H2 is usually used.

次にVGCFの製造に用いる装置を説明する。Next, the apparatus used for manufacturing VGCF will be explained.

第1図は外熱型反応装置の一例を示すもので、図中符号
1はムライト等によってつくられた熱分解炉である。熱
分解炉1の外周には、内部を1100〜1300℃に加
熱するヒータ2が取付けられている。また上記熱分解炉
1の一端には噴霧器3が取付けられ、他端にはガスの排
出管4が取付けられている。
FIG. 1 shows an example of an external thermal reactor, and the reference numeral 1 in the figure is a thermal decomposition furnace made of mullite or the like. A heater 2 is attached to the outer periphery of the pyrolysis furnace 1 to heat the inside to 1100 to 1300°C. Further, a sprayer 3 is attached to one end of the pyrolysis furnace 1, and a gas discharge pipe 4 is attached to the other end.

上記噴霧器3にはキャリヤガス5および容器6に貯留さ
れた遷移金属化合物を所定の濃度に溶解した液体有機化
合物6aが導入され、熱分解炉1内に噴霧される。
A carrier gas 5 and a liquid organic compound 6a in which a transition metal compound stored in a container 6 is dissolved to a predetermined concentration are introduced into the sprayer 3 and sprayed into the pyrolysis furnace 1.

上記噴霧器3は、後述する理由により、噴霧によって生
ずる液滴を計5〜30μmとしなければならないが、通
常の噴霧器では生成する液滴が数100μmとなり、■
dCFの生成効率が低下する。そのため2液、或は多液
混合型アトマイザ−を用いるのが好ましい。この混合型
のアトマイザ−は、径5〜2000μmの間の任意の狭
い範囲の液滴が容易に4りられるので本発明の方法に好
適に利用出来る。さらに分散をよくするため超音波発信
器を用いるか、或は超音波発信器ど他の分散装置とを併
用してもよい。
The above-mentioned sprayer 3 must generate droplets with a total size of 5 to 30 μm for the reasons described below, but with a normal sprayer, the droplets generated are several 100 μm, and
The production efficiency of dCF decreases. Therefore, it is preferable to use a two-liquid or multi-liquid mixing type atomizer. This mixed type atomizer can be suitably used in the method of the present invention because it can easily form droplets in any narrow range between 5 and 2000 μm in diameter. Furthermore, in order to improve the dispersion, an ultrasonic transmitter may be used, or another dispersion device such as an ultrasonic transmitter may be used in combination.

また、上記液体有機化合物中の遷移金属化合物の濃度は
、シードの利用効率を高めるため、各液滴中の遷移金属
化合物が熱分解して、50〜150Aの金属シードとな
ることが必要であり、液滴の径が小さい程その濃度は高
くなる。したがって、液滴が5〜30μmの場合、これ
に含まれる繊維化合物は、50〜100人の金属シード
を生成する濃度が望ましい。しかし、遷移金属化合物中
の金属がすべて遷移金属粒子となるのではなく、一部は
蒸発してしまうのでイの分を見込むと、0.01〜1.
0IIOJ/Jの範囲が適当である。
In addition, the concentration of the transition metal compound in the liquid organic compound must be such that the transition metal compound in each droplet is thermally decomposed to become a metal seed of 50 to 150 A in order to increase the efficiency of seed utilization. , the smaller the diameter of the droplet, the higher its concentration. Therefore, when the droplet is 5 to 30 μm, the fiber compound contained therein is preferably at a concentration that produces 50 to 100 metal seeds. However, not all of the metal in the transition metal compound becomes transition metal particles, but some of it evaporates, so if we take into account the amount of (a), it is 0.01 to 1.
A range of 0IIOJ/J is appropriate.

上記液滴の径が5μm未満では、シードに対するC源の
聞が不足し、30μmを越えると液体有機化合物の蒸発
に時間がかかるばかりでなく、落下速度が早くなり、共
にVGCFの生成効率、シードの利用率が低下する。
If the diameter of the droplet is less than 5 μm, there will be insufficient space between the C source and the seed, and if it exceeds 30 μm, not only will it take time to evaporate the liquid organic compound, but the droplet speed will increase, which will reduce the production efficiency of VGCF and the seed. utilization rate will decrease.

上記装置を用いてVGCFを製造するには、先ず熱分解
炉1を1100〜1300℃に加熱し、所定量のキャリ
ヤガスとともに所定量の右撮化合物溶液6aを噴霧する
。噴霧によって生成した液w!47は加熱され、沸点の
低い有機化合物の蒸発が進行する。さらに蒸発が進むと
遷移金属化合物の蒸発がはじまるが、高温雰囲気内の微
粒子であり、温度上昇が急激であるため、他の方法に比
べて格段に簡単、かつ再現性よく遷移金属原子集団の微
粒子が生成される。この生成された金属原子微粒子は、
液滴中の遷移金属化合物濃度が調整されているので、5
0〜100人の範囲のシードが効率よく得られ、かつこ
のシードはC瞭となる有機化合物蒸気中にある。したが
って、シードの利用率が高く、VGCF8が効率よく生
成される。
To produce VGCF using the above-mentioned apparatus, first, the pyrolysis furnace 1 is heated to 1100 to 1300° C., and a predetermined amount of the compound solution 6a is sprayed together with a predetermined amount of carrier gas. Liquid generated by spraying lol! 47 is heated, and evaporation of organic compounds with low boiling points progresses. As the evaporation progresses further, the transition metal compound begins to evaporate, but since the particles are in a high-temperature atmosphere and the temperature rises rapidly, it is much simpler and more reproducible than other methods to produce fine particles of transition metal atomic groups. is generated. This generated metal atomic fine particle is
Since the concentration of transition metal compound in the droplet is adjusted, 5
Seeds ranging from 0 to 100 are efficiently obtained, and the seeds are in a vapor of organic compounds that are carbonaceous. Therefore, the seed utilization rate is high and VGCF8 is efficiently generated.

上記方法は、Fe、Ni 、Go、V、 Ta。The above method applies to Fe, Ni, Go, V, Ta.

Mo、Cr等の遷移金属超微粉末を上記液体有機化合物
に懸濁し、これを噴霧しても比較的効率よ<VGCFが
得られるが、これら金属のシードに適した微粉末は高価
で、VGCFのコスト上昇につながり好ましくない。
Even if ultrafine powder of transition metals such as Mo and Cr are suspended in the liquid organic compound and sprayed, VGCF can be obtained relatively efficiently, but fine powders suitable for seeds of these metals are expensive, and VGCF is This is undesirable as it leads to an increase in costs.

第2図は、内熱型反応装置を示すもので、第1図のヒー
タ2の代りに、酸水素バーナ9を設けたもので、第1図
と同一部分には同一符号を付してその説明を省略する。
Fig. 2 shows an internal heating type reactor, in which an oxyhydrogen burner 9 is provided in place of the heater 2 in Fig. 1, and the same parts as in Fig. 1 are denoted by the same reference numerals. The explanation will be omitted.

〔実施例〕〔Example〕

次に実施例を示して本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実施例1 径200IIIR1長さ1500mの第1図に示す装置
を用いVGCFの!J造を行なった。
Example 1 Using the apparatus shown in Fig. 1 with a diameter of 200 m and a length of 1,500 m, VGCF! J construction was carried out.

噴霧器としては、原子吸光分析に使用する小型2液体式
アトマイザを用い、約1200℃に保持された熱分解炉
1内に、フェロセン1wt%を溶解したベンゼンを3c
c/分で供給し、キャリヤガス5としてH2を517分
で流して反応を行なった。
A small two-liquid atomizer used for atomic absorption spectrometry was used as the atomizer, and 3 c of benzene in which 1 wt% of ferrocene was dissolved was placed in the pyrolysis furnace 1 maintained at about 1200°C.
The reaction was carried out by supplying H2 as a carrier gas at 517 min.

3分間反応させた後、炉内および炉底に堆積したVGC
Fを回収して重量を測定した結果、6gであった。これ
をSEMrl察したところ、径0.1〜0.15μ瓦の
からまったm維であり、FQの利用率は、5.2X 1
0−であった。
VGC deposited inside the furnace and at the bottom of the furnace after reacting for 3 minutes
As a result of collecting F and measuring its weight, it was 6 g. SEMrl analysis of this revealed that it was a tangled fiber with diameters of 0.1 to 0.15μ, and the FQ utilization rate was 5.2X 1
It was 0-.

また同じ条件で常温空間に噴霧し、液層の大きさを測定
したところ10〜20μmであった。
Furthermore, when the liquid layer was sprayed into a room temperature space under the same conditions and the size of the liquid layer was measured, it was 10 to 20 μm.

実施例2 径500#I、長さ1500顛の第2図に示す装置を用
いVGCFを製造した。
Example 2 A VGCF was manufactured using the apparatus shown in FIG. 2 with a diameter of 500 #I and a length of 1500 #I.

先ず酸水素バーナ9によって炉内温度を1200〜13
00℃とし、この空間にフェロセンを1wt%、Sを0
.05 wt%含むベンゼンを10CC/分の速度で供
給し、キャリヤガス5としてH2を15J/分で流して
反応を行なった。3分間反応させた後、炉内に生成した
VGCFを回収し重量を測定したところ229であった
。これをSEMで観察した結果は、実施例1と同様の繊
帷で、l”eの利用率は5.8X 10″4であった。
First, the temperature inside the furnace is set to 1200 to 13
00℃, 1wt% ferrocene and 0 S in this space.
.. Benzene containing 0.05 wt% was supplied at a rate of 10 CC/min, and H2 was flowed as a carrier gas 5 at a rate of 15 J/min to carry out the reaction. After reacting for 3 minutes, the VGCF produced in the furnace was collected and its weight was measured and found to be 229. Observation of this with a SEM revealed that the fabric was the same as in Example 1, with a utilization rate of 1"e of 5.8X 10"4.

実施例3 ベンゼンの代りに、ナフサを用いた他は実施例1と同様
にしてVGCFをつくった。得られたVGCFは5g、
Feの利用率は4.3X10’であった。
Example 3 VGCF was produced in the same manner as in Example 1 except that naphtha was used instead of benzene. The obtained VGCF was 5 g,
The utilization rate of Fe was 4.3×10′.

実施例4 フェロセンの代りに、Crのメタロセンを用いた他は実
施例1と同じにしてVGCFをつくり、はぼ同様な結果
を得た。
Example 4 VGCF was produced in the same manner as in Example 1 except that Cr metallocene was used instead of ferrocene, and almost the same results were obtained.

実施例5 アトマイザの代りに、超音波発行器を用いて、ベンゼン
溶液をミスト化した他は実施例1と同じにしたところ、
VGCF5gを得た。
Example 5 The same procedure as Example 1 was carried out except that an ultrasonic generator was used instead of the atomizer to turn the benzene solution into a mist.
5 g of VGCF was obtained.

実施例6 アトマイザの代りに、高圧スプレー装置を用いた他は実
施例1と同一条件で行なった所、3分間でVGCF3〜
4gを得た。
Example 6 The same conditions as Example 1 were used except that a high-pressure spray device was used instead of the atomizer.
4g was obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法はVGCFのシードと
なる遷移金属微粉末が容易かつ効率よく生成され、生成
されたシードの周囲にはC源となる有機化合物蒸気が存
在するので、効率よくVGCFが生成され、また遷移全
屈のシードとしての利用率も高く、VGCr’のコスト
を大幅に低下することが出来る。
As described above, in the method of the present invention, fine transition metal powders that serve as seeds for VGCF are easily and efficiently generated, and organic compound vapor that serves as a C source exists around the generated seeds. VGCF is generated, and the utilization rate as a seed for transition total bending is high, and the cost of VGCr' can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の方法を実施する装置の
例を示す図で、第1図は外熱型装置の図、第2図は内熱
型装置の図である。 1・・・・・・熱分解炉、2・・・・・・ヒータ、3・
・・・・・噴霧器、4・・・・・・ガス排出管、5・・
・・・・キャリヤガス、6・・・・・・容器、6a・・
・・・・遷移金属化合物の液体有様化合物溶液、7・・
・・・・液滴、8・・・・・・気相法炭素ta維(VG
CF)、9・・・・・・酸水素バーナ。
FIGS. 1 and 2 are diagrams showing examples of apparatus for carrying out the method of the present invention, with FIG. 1 being an external heating type apparatus and FIG. 2 being an internal heating type apparatus. 1...Pyrolysis furnace, 2...Heater, 3.
...Sprayer, 4...Gas exhaust pipe, 5...
...Carrier gas, 6...Container, 6a...
...Liquid state compound solution of transition metal compound, 7...
...Droplet, 8...Vapour-grown carbon ta fiber (VG
CF), 9... Oxygen hydrogen burner.

Claims (2)

【特許請求の範囲】[Claims] (1)遷移金属の化合物を含有する液体有機化合物の微
小液滴を熱分解炉内に分散し、遷移金属元素の超微粒子
をシードとして有機化合物の気相熱分解により炭素繊維
を製造する方法において、上記液滴の大きさ及び遷移金
属化合物の濃度を液滴中に含まれている遷移金属の原子
が熱分解炉内で凝集して、該金属粒子を形成したとき、
その粒子の大きさの分布が20Å〜300Åとなるよう
に調整することを特徴とする気相法炭素繊維の製造法。
(1) In a method of manufacturing carbon fiber by vapor phase pyrolysis of the organic compound by dispersing micro droplets of a liquid organic compound containing a transition metal compound in a pyrolysis furnace and using ultrafine particles of a transition metal element as seeds. , the size of the droplet and the concentration of the transition metal compound when the atoms of the transition metal contained in the droplet aggregate in the pyrolysis furnace to form the metal particles,
A method for producing vapor-grown carbon fiber, which comprises adjusting the particle size distribution to be 20 Å to 300 Å.
(2)液滴の径が5μm〜30μmで、液体有機化合物
の中の遷移金属化合物の濃度が、遷移金属原子として0
.01mol/l〜1.0mol/lである特許請求の
範囲第1項記載の気相法炭素繊維の製造法。
(2) The diameter of the droplet is 5 μm to 30 μm, and the concentration of the transition metal compound in the liquid organic compound is 0 as transition metal atoms.
.. 01 mol/l to 1.0 mol/l, the method for producing vapor-grown carbon fiber according to claim 1.
JP23375886A 1986-10-01 1986-10-01 Production of carbon fiber by vapor process Pending JPS6392726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23375886A JPS6392726A (en) 1986-10-01 1986-10-01 Production of carbon fiber by vapor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23375886A JPS6392726A (en) 1986-10-01 1986-10-01 Production of carbon fiber by vapor process

Publications (1)

Publication Number Publication Date
JPS6392726A true JPS6392726A (en) 1988-04-23

Family

ID=16960114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23375886A Pending JPS6392726A (en) 1986-10-01 1986-10-01 Production of carbon fiber by vapor process

Country Status (1)

Country Link
JP (1) JPS6392726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002789A1 (en) * 2001-06-28 2003-01-09 Showa Denko K.K. Method and apparatus for producing vapor grown carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117622A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber through vapor-phase process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117622A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber through vapor-phase process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002789A1 (en) * 2001-06-28 2003-01-09 Showa Denko K.K. Method and apparatus for producing vapor grown carbon fiber
US7524479B2 (en) 2001-06-28 2009-04-28 Showa Denko K.K. Method for producing vapor grown carbon fiber

Similar Documents

Publication Publication Date Title
JP2778434B2 (en) Method for producing vapor grown carbon fiber
Vivekchand et al. Carbon nanotubes by nebulized spray pyrolysis
JP4781674B2 (en) Method and apparatus for vapor deposition of carbon nanotubes or nitrogen doped carbon nanotubes by pyrolysis
KR101753918B1 (en) Method for producing solid carbon by reducing carbon oxides
CN101370734B (en) Carbon nanotubes functionalized with fullerenes
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
Nikolaev Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the HiPco process
US7518045B2 (en) Method of preparing carbon nanocages
Pham-Huu et al. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst
JPS6054998A (en) Production of carbon fiber grown in vapor phase
US20100092367A1 (en) Synthesis of Nanoparticles by Laser Pyrolysis
US9676627B2 (en) Growth of silicon and boron nitride nanomaterials on carbon fibers by chemical vapor deposition
JP4871177B2 (en) Carbon nanotube synthesis method and apparatus using ultrasonic vibration method
Nagy et al. On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts
JP6890187B2 (en) Catalyst for mass production of multiwalled carbon nanotubes
JP2004176244A (en) Vapor grown carbon fiber, and production method and use thereof
JP3822806B2 (en) Mass production method of carbon nanocoils
JP2004149954A (en) Metal/metal compound coated carbon nanofiber and method for producing the same
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JPS6392726A (en) Production of carbon fiber by vapor process
JPS6054999A (en) Production of carbon fiber grown in vapor phase
Zhou et al. Flame synthesis of carbon nanotubes with high density on stainless steel mesh
US20140199546A1 (en) Multi-branched n-doped carbon nanotubes and the process for making same
Park et al. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method